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Liquefied Natural Gas (LNG) is steadily becoming a common mode for commercializing natural gas. In
this paper, we develop methods for improving both lower and upper bounds for a previously stated form
of an LNG inventory routing problem. A Dantzig-Wolfe-based decomposition approach is developed for
LNG inventory routing problem (LNG-IRP) attempting to overcome poor lower bounds. However, it fails
to find feasible integer solutions that would provide good upper bounds. Advanced construction heuristics
based on greedy randomized adaptive search procedure (GRASP) and rolling-time windows and several
novel, MIP-based neighborhood search techniques are developed to achieve improved solutions in shorter
computational time. The proposed algorithms are evaluated based on a set of realistic test instances that are
very large relative to most of the problem instances seen in recent literature. Extensive computational results
indicate that the proposed methods find improved lower bounds significantly faster than commercial solvers,
and further, optimal or near optimal feasible solutions are achievable substantially faster than commercial
optimization software as well as previously proposed heuristic methods.
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1. Introduction
Liquefied Natural Gas (LNG) is steadily becoming a common mode for commercializing natural
gas. The LNG supply chain includes one or multiple production terminals where natural gas is
produced, liquefied into LNG, and stored temporarily; a specialized ship fleet that loads and delivers
LNG; and a set of regasification terminals where LNG is unloaded, stored temporarily, regasified
and shipped to customers through pipelines.

Due to the historical illiquid nature of the LNG market, the LNG delivery contracts are struc-
tured such that an annual delivery schedule is agreed upon in advance by the LNG buyers and
LNG producer every year. This annual delivery schedule is negotiated to best accommodate the
expected requirements of each party for the planned year. The finalized schedule dictates when
each cargo is to be delivered and by what ship. It is obvious that developing an optimized annual
delivery schedule can be key to optimize the economics of an LNG project; moreover, it can also
serve a key purpose from a supply chain design standpoint. Specifically, an optimized schedule for
a given design can be used to evaluate the throughput and efficacy of that specific design. Due to
the capital intensive nature of LNG projects, the optimal design of LNG supply chains is extremely
important from a profitability perspective. In this paper, we address an LNG Inventory Routing
Problem (LNG-IRP) where optimized ship schedules are developed for analyzing LNG supply chain
design decisions.

In the research field of maritime transportation, most of the literature focuses on ship routing and
scheduling problems (see Ronen [1983], Ronen [1993], Christiansen et al. [2004] and Christiansen
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et al. [2007]). The problem being considered here is closer to the more complex class of problems
known as Maritime Inventory Routing Problems (MIRP). MIRP combines inventory management
and ship routing, which are typically treated separately in industrial practice. A basic maritime
inventory routing problem (see Christiansen and Fagerholt [2009]) involves the transportation of
a single product from loading ports to unloading ports, with each port having a given inventory
storage capacity, a pre-specified production or consumption rate, a restriction of number of visits
to the port, and a limitation of quantity of product to be loaded or unloaded. A recent survey
on the state-of-the-art in ship routing and scheduling research over the last decade is given by
Christiansen et al. [2013].

LNG inventory routing can be considered as a special case of the MIRP. An excellent overview of
the business cases and common characteristics for LNG inventory routing can be seen in Andersson
et al. [2010]. The LNG inventory routing problem shares the fundamental properties of a single
product MIRP with special features such as variable production and consumption rates, LNG
specific contractual obligations, and berth constraints. The LNG-IRP seeks to generate schedules
where each ship may make several voyages over a much longer than typical time horizon. Rakke
et al. [2011] seems to be the first MIRP to address problems of developing annual delivery schedules
for large LNG projects. Halvorsen-Weare and Fagerholt [2013] develops a decomposition-based
heuristic scheme for an LNG-IRP problem similar to the one considered in this paper. Halvorsen-
Weare et al. [2013] have recently studied the introduction of robustness strategies into the routing
and scheduling methods for LNG-IRP.

In this paper, we develop improved lower bounds and heuristic solution methods for the LNG-IRP
model proposed by Goel et al. [2012] which is based on the arc-flow formulation for maritime inven-
tory routing model introduced by Song and Furman [2013]. The heuristic methods for LNG-IRP
presented by Goel et al. [2012] were primarily based on very large neighborhood search heuristics
(see Ahuja et al. [2002] for a general review). The 2-ship neighborhood operator used in that work
was first introduced for MIRP by Song and Furman [2013], however the remainder of methods were
novel. In this paper, several new heuristics for both constructing initial solutions and improving
incumbent solutions are developed to solve this model more efficiently. New construction heuristics
are based on rolling time methods and the greedy randomized adaptive search procedure (GRASP).

The rolling time heuristic is designed to solve problems with long time horizons via a sequence
of subproblems, each of which is simplified to only consider a smaller time block with limited infor-
mation of future time periods. It was first proposed by Baker [1977] for manufacturing scheduling
problems, and has shown great success when applied by Stauffer and Liebling [1997], Mercé and
Fontan [2003], Dimitriadis et al. [1997] and Araujo et al. [2007]. These algorithms, however, are
specific for manufacturing problems and not generally applicable to MIRP. To the best of our
knowledge, Bredström and Rönnqvist [2006] and Rakke et al. [2011] are the only works that apply
rolling time heuristics to ship scheduling problems.

Bredström and Rönnqvist [2006] studies a combined supply chain and ship scheduling problem
for pulp over a 40 day planning horizon. In the rolling time heuristic they developed, a subproblem
includes an initial set of periods where schedules are frozen, a regular set of periods where schedules
need to be solved in this subproblem, and a forecast extension where binary variables are relaxed.
Computational results show that this algorithm works well for instances with realistic sizes. The
differences between their problem and LNG-IRP studied in this paper is that, (a) our model is a
arc flow model while theirs is a path flow model; (b) the cost structures are different, for example,
we include penalty for unmet annual delivery requirements at each demand port; (c) we consider a
large number of time periods (e.g. 365 days) while they consider a smaller number of time periods
(e.g. 40 days); (d) our subproblem only includes the frozen periods and the regular periods, and
we only lock in partial schedules after the subproblem is solved; and (e) we continue to improve
our solution with other neighborhood searching procedures.
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Rakke et al. [2011] developed a rolling time heuristic for LNG-IRP. In their problem, they consider
a single production terminal with multiple types of LNG. Having a single production terminals
allows for their MIP model formulation to use assignment variables to fully specify the decision for a
ship to depart on a specific departure day and its return trip back to the production terminal. Their
rolling time heuristic has the same structure as that used in Bredström and Rönnqvist [2006] where
each subproblem includes three partitions of the time periods: a frozen section, a regular section,
and a forecast section. However, they developed a scheme to improve the solution by searching in
a limited area and adding additional constraints. In comparison, the LNG-IRP we consider allows
multiple production and regasification terminals, however we do not consider maintenance events.

Unlike Bredström and Rönnqvist [2006] and Rakke et al. [2011] who use their original model
with limited time horizon in their subproblem, we develop a specific model for the subproblem, in
which all ships are traveling from production terminals and return back to production terminals.
By enforcing this property, we know the exact available day for each ship at production terminals
in each subproblem. From the producer’s point of view, we can avoid creating a myopic schedule
when considering a short time horizon which usually happens when there is a lack of information
that some more suitable ships will be available deliver LNG soon.

GRASP was first introduced to solve combinatorial problems by Feo and Resende [1989]. It
typically consists of iterations which include a construction of a greedy randomized solution and a
local search to improve the solution. This algorithm has been applied successfully to many fields
including routing (Kontoravdis and Bard [1995]) and transportation (Feo and Bard [1989] and
Bard [1997]). A survey of GRASP can be found in Festa and Resende [2002].

To the best of our knowledge, we are the first to apply GRASP to the maritime inventory routing
problems. In our method, the benefit function, which is used to construct the greedy randomized
solution, includes the real cost at the leaving port and the estimated cost at the arriving port that
cannot be avoided if a candidate is not selected. This benefit function structure has shown to be
very efficient for our problem. Unlike most of other literature, adaptive rules are not used in our
algorithm since our current setting is good enough for the instances that we tested.

Due to the difficulty of this class of problem, as well as those of similar classes, practical solution
methodologies for addressing LNG-IRP involve constructing an initial solution heuristically and
improving it with local search methods. The solutions obtained are obviously not guaranteed to be
globally optimal. Both exploration on the lower bound, and improvements to the upper bounds are
studied in this work to make progress toward better solutions with greater confidence in quality,
and found in shorter time spans. Although applied to the examples of Goel et al. [2012], these
methods should be generally applicable to many similar MIRP, especially those related to LNG.

The remainder of the paper is organized as follows: Section 2 gives a brief problem description;
Section 3 addresses the model and formulation which are the same as in Goel et al. [2012]; Section
4 describes the decomposition procedure aiming to obtain good lower bounds; Section 5 presents
the local searches for getting near-optimal solutions; Section 6 analyzes computational results; and
Section 7 summarizes the accomplished work.

2. Problem Description
In this paper, we consider the problem addressed by Goel et al. [2012]. The problem under consid-
eration is a combined inventory management and cargo routing problem for the delivery of LNG.
Specifically, a problem instance includes a set of LNG production terminals with specified storage
capacities. Each production terminal has a given production profile over the planning horizon, as
well as a limited number of berths for ships to load cargoes. At the other end of the supply chain,
there is a set of regasification (regas) terminals that have specified storage capacities and unloading
berths. Each regas terminal has a specified contractual demand over the planning horizon and a
specified profile based on which the LNG is regasified.
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A problem instance includes a fleet of heterogeneous ships that may differ in terms of their LNG
loading capacities and compatibility with the various terminals. We restrict our attention to full-
load and full-discharge problems. In other words, we consider the scenario where LNG ships are
filled to their maximum capacity prior to departing an LNG terminal and are completely discharged
prior to departing regas terminals. This is common practice in the LNG industry for economic and
safety reasons.

Similar to Goel et al. [2012], we focus on the need for developing optimized annual delivery
schedules that will enable supply chain design analysis by quantifying the maximum throughput
of a given design. Consequently, we focus on a year-long planning horizon with one day time
discretization. Furthermore, the problem has the following goals: minimizing the under-delivery
of LNG to each contract, minimizing lost production at stemming from running out of storage at
production terminals, and minimizing stock-outs due to the lack of inventory for regasification at
regas terminals. A more detailed version of the problem description can be found in Goel et al.
[2012].

3. Model Formulation
In this section, we provide a brief description of the Mixed Integer Programming (MIP) formulation
presented by Goel et al. [2012] for the above problem. The model in Goel et al. [2012] is based on
a time-space network formulation proposed in Savelsbergh and Song [2008].

Figure 1 Example of Time-Space Network Structure

The time-space network in Figure 3 includes source (SRC) and sink (SNK) nodes to represent
initial and final locations for the ships. The network also includes “regular” nodes to represent
each terminal at a given time period. For each ship v, there are five types of arcs: an arc from
the SRC to SNK node represents that a ship is not utilized; an arc from SRC to a regular
node represents the arrival of a ship to its initial destination; an arc from a regular node to SNK
represents the final departure of the ship; waiting arcs allow a ship to wait at a terminal without
occupying a berth. These arcs connect regular nodes corresponding to the terminal at successive
time periods. Finally, a travel arc from a regular node n1 to a regular node n2 represents the loading
(or unloading) activity at the terminal corresponding to node n1 immediately followed by travel
to the node corresponding to node n2. A solution for this LNG-IRP specifies a path for each ship
within the network, together with the regas rates at each regas terminal during each time period.

The notations used in the MIP model developed by Goel et al. [2012] are presented at below.
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Sets and Parameters
L Production terminals, l ∈L= {1,2, . . . , |L|}
R Regas terminals, r ∈R= {1,2, . . . , |R|}
J All terminals, j ∈ J =L∪R
V Vessels or Ships, v ∈ V = {1,2, . . . , |V |}
T Planning horizon, t∈ T = {1,2, . . . , |T |}
cj Storage capacity at terminal j
cv,j Volume loaded (discharged) by ship v at production (regas) terminal j
Dr Demand for LNG over planning horizon at regas terminal r
bj Number of berths at terminal j
pl,t Production rate at production terminal l during time t
dr,t Minimum regas rate of regas terminal r during time t

dr,t Maximum regas rate of regas terminal r during time t
wj Penalty for lost production at production or stockout at regas terminal j
wDr Penalty for unmet demand at regas terminal r
Network Elements
N Set of all nodes, n∈N = (j, t)
N̄ Set of regular nodes. N̄ =N\{SRC,SNK}
ATv Set of travel arcs for ship v
ASv Set of arcs from regular nodes to SNK node for ship v
Av Set of all arcs for ship v
A Set of arcs, a∈A=∪vAv
δ+
n Set of outgoing arcs from node n
δ−n Set of incoming arcs to node n
Decision Variables
Ij,t Inventory level at terminal j at the end of time period t
dr,t Regas rate during time period t at regas terminal r
ol,t Lost production at production terminal l during time period t
sr,t Stockout at regas terminal r during time period t
δDr Unmet demand at regas terminal r during planning horizon
xva Binary variable for arc a

Now we present the MIP formulation which we will refer to as model (1) later.

min
∑

wlol,t +
∑

wrsr,t +
∑

wDr δ
D
r (1a)

s.t.
∑

a∈Av∩δ+(n)

xva−
∑

a∈Av∩δ−(n)

xva = 0, ∀v ∈ V,∀n∈ N̄ , (1b)∑
a∈Av∩δ+SRC

xva = 1, ∀v ∈ V, (1c)∑
a∈Av∩δ−SNK

xva = 1, ∀v ∈ V, (1d)

Il,t = Il,t−1 + pl,t−
∑
v

∑
a∈(AT

v ∪AS
v )∩δ+(l,t)

cv,lx
v
a− ol,t, ∀l ∈L,∀t∈ T, (1e)

Ir,t = Ir,t−1− dr,t +
∑
v

∑
a∈(AT

v ∪AS
v )∩δ+(r,t)

cv,rx
v
a + sr,t, ∀r ∈R,∀t∈ T, (1f)∑

v

∑
a∈(AT

v ∪AS
v )∩δ+(n)

xva ≤ bj, ∀n= (j, t)∈ N̄ , (1g)
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δDr ≥Dr−
∑
t

∑
v

∑
a∈(AT

v ∪AS
v )∩δ+(r,t)

cv,rx
v
a, ∀r ∈R, (1h)

dr,t ≤ dr,t ≤ dr,t, ∀r ∈R,∀t∈ T, (1i)
0≤ Ij,t ≤ cj, ∀j ∈ J,∀t∈ T, (1j)
ol,t ≥ 0,∀l ∈L, t∈ T, (1k)
dr,t ≥ 0,∀r ∈R, t∈ T, (1l)
δDr ≥ 0, r ∈R, (1m)
xva ∈ {0,1}, ∀v ∈ V,a∈ Va (1n)

The objective (1a) is to minimize the sum of weighted lost production, stockout, and unmet
demand. Constraints (1b)-(1d) are the flow conservation constraints for the network. Constraints
(1e) and (1f) ensure the inventory balance at the production terminals and regas terminals, respec-
tively. Lost production and stockout variables provide slack for these constraints. The berth limits
are enforced by constraints (1g). Constraint (1h), together with the objective function, takes care
of the unmet demand calculation. Since the objective function seeks to minimize the total unmet
demand, this constraint will be tight in every optimal solution that has a positive unmet demand.
The final set of constraints (1i)-(1n) ensures that all the variables satisfy their specific bounds.

4. Decomposition Procedure–Improving Lower Bounds
Due to the complex nature of the above problem, commercially available MIP solvers cannot solve
real world problems within a reasonable amount of time. The solution methodology developed by
Goel et al. [2012] is practical, however little effort is focused on proving optimality or improving
the lower bounds. In this section, we discuss the Dantzig-Wolfe-based decomposition approaches
that we developed for LNG-IRP attempting to overcome this obstacle.

Our decomposition scheme is a branch and price (B&P) algorithm that applies branch and
bound to find integral solutions while using Dantzig-Wolfe (DW) decomposition to solve the linear
programming (LP) relaxation of each node. This branch and price framework has been studied and
applied for MIRP by many researchers (see Christiansen [1999], Grønhaug et al. [2010], Engineer
et al. [2012] and Hewitt et al. [2013]). In all of these papers, inventory capacities are treated
as hard constraints which, together with other side hard constraints, are the basis of their valid
cut generation or algorithm development. However, these cuts are not appropriate for our LNG-
IRP since the inventory capacities are soft constraints with penalties in the objective function
in this model. Furthermore, the instances that were tested in these paper primarily involve only
5-10 vessels and/or consider 60 or fewer time periods, thus successful approaches to solving these
relatively small-sized instances have little value in approaching large, practical test cases with up
to 100 vessels and 365 time periods. Nevertheless, these studies show that their optimality gaps
can be closed quickly by using B&P. Thus, we attempt to develop our own B&P scheme with the
aim of obtaining good lower bounds quickly, even if we cannot expect to prove optimality for large
sized instances.

Our DW master problem is based on the management constraints (1e) - (1h). Each column
represents the schedule for one ship over the entire planning horizon. When constraints (1e) - (1h)
are removed from model (1), the resultant problem decomposes by ships into |V | subproblems,
each of which is a pure minimum cost flow network problem and can be solved in polynomial time
in turn to produce additional master problem columns.

4.1. Master Problem (MP)
First we build the master problem by taking the management constraints (1e) - (1h) as linking
constraints and converting the arc flow model a path flow model. The following notation is defined
for developing the master problem.
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Additional Notations for MP
K Set of all columns
Xv
k,a Binary parameter to indicate if arc a is selected in kth column for ship v

λvk Binary variable to select the kth column for ship v

The Master Problem (MP) is defined as follows.

min
∑

wlol,t +
∑

wrsr,t +
∑

wDr δ
D
r (2a)

s.t. Il,t + ol,t +
∑
v

{cv,l
∑

a∈(AT
v ∪AS

v )∩δ+(l,t)

∑
k

Xv
k,aλ

v
k}− Il,t−1 = pl,t, ∀l ∈L,∀t∈ T, (2b)

Ir,t− sr,t−
∑
v

{cv,r
∑

a∈(AT
v ∪AS

v )∩δ+(r,t)

∑
k

Xv
k,aλ

v
k}− Ir,t−1 =−dr,t,∀r ∈R,∀t∈ T, (2c)∑

v

∑
a∈(AT

v ∪AS
v )∩δ+(j,t)

∑
k

Xv
k,aλ

v
k ≤ bj, ∀j ∈ J,∀t∈ T, (2d)

δDr +
∑
t

∑
v

{cv,r
∑

a∈(AT
v ∪AS

v )∩δ+(r,t)

∑
k

Xv
k,aλ

v
k} ≥Dr, ∀r ∈R, (2e)∑

k

λvk = 1, ∀v ∈ V, (2f)

λvk ∈ {0,1},∀k ∈K,∀v ∈ V, (2g)
and constraints (1i)− (1m) (2h)

This model is the path flow network version of model (1). It keeps the inventory constraints
(2b)-(2c), berth limit constraints (2d) and unmet demand constraints (2e). In addition to these
original constraints, constraint (2f) selects one path for each ship.

When we implement DW decomposition algorithm, we only include a restricted number of
columns (paths) in MP and solve its corresponding linear relaxation. This problem is referred to as
the Restricted Linear Master Problem (RLMP). The dual solution of RLMP is used by the pricing
subproblems to generate new columns with negative reduced costs.

4.2. Pricing Subproblem (SP)
The purpose of the pricing subproblem in DW decomposition is to generate better columns with
negative reduced costs for the ships with respect to the current MP solution. When MP is resolved
after adding these new columns, the new solution should be improved compared to the current
solution. Such columns can be found by solving the pricing subproblems if they exist. To describe
the subproblem, let αj,t be the free dual variable for inventory constraints (2b) and (2c), βj,t be
the non-positive dual variable for berth constraints (2d), γr be the non-negative dual variable for
unmet demand constraints (2e), and µv be the free dual variable for path selection constraints (2f).
Now we can formulate the pricing subproblem as follows for ship v as follows.

min −
∑
l,t

{αl,tcv,l
∑

a∈(AT
v ∪AS

v )∩δ+(l,t)

xva}

+
∑
r,t

{αr,tcv,r
∑

a∈(AT
v ∪AS

v )∩δ+(r,t)

xva}

−
∑
j,t

{βj,t
∑

a∈(AT
v ∪AS

v )∩δ+(j,t)

xva} (3a)

−
∑
r

{γrcv,r
∑
t

∑
a∈(AT

v ∪AS
v )∩δ+(r,t)

xva}
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−µv
s.t. (1b)− (1d) (3b)

Notice that problem (3) is a pure minimum cost flow problem; thus solving it to optimality can
be done very efficiently in polynomial time. However, the associated lower bound that is achieved
in the root node is not promising since it is equivalent to LP. In order to improve the lower bound
quality, one method involves aggregating the ships into several groups by designing specific rules,
and decomposing the problem by ship groups while appropriately adapting some of the management
constraints (1e)-(1h) in the pricing subproblem. Nevertheless, this type of subproblem is usually
very difficult to solve and can be as difficult as the original problem (1) with respect to complexity.
When designing DW algorithms, a tradeoff between solution quality and computational difficulty
must be balanced.

4.3. Branch and Price Algorithm
In this section, components of our B&P implementation are discussed. These include the initial-
ization of the master problem, stabilization of column generation, the study of valid cuts, and
branching.

4.3.1. Initialization of MP As we mention above, the formulation of model (1) is very loose
which makes the master problem initialization trivial: the dummy paths from SRC to SNK for all
ships are feasible to the master problem (2) initially. When branching cuts are added, however, the
phase 1 problem is solved first to verify the feasibility of the branch and bound node and initialize
the master problem as bellow.

min |V | −
∑
v∈V

∑
k∈K

λvk (4a)

s.t.
∑
k

λvk ≤ 1,∀v ∈ V, (4b)

constraints (2b)-(2e) and (2g)-(2h), (4c)
constraints associated to all cuts (4d)

In this problem, the column selection constraints (2f) have been relaxed into constraints (4b).
If constraints (2f) are violated, the objective in (4a) will return to a positive value. Thus, for any
infeasible MP, its phase 1 problem is either infeasible or returns a positive value. Meanwhile, for
any feasible MP, its phase 1 problem must return zero. Therefore, the feasibility of MP can be
verified quickly and thus MP can be initialized successfully.

4.3.2. Stabilization technique Due to the high level of degeneracy of the problem (1), our
decomposition procedure encounters the typical tailing-off effect of DW decomposition. In this
phenomenon, MP objective value decreases rapidly in early iterations, but it takes a long time to
converge. In order to overcome this deficiency, du Merle et al. [1999] developed an effective scheme,
known as the stabilization technique, which uses two surplus and slack variables (ω− and ω+) in
an effort to reduce degeneracy. The stabilized version of model (2) is as follows.

min objective (2a) +
∑
v

{σv+wv+−σv−wv−} (5a)

s.t. constraints(2b)− (2e), (5b)
bounds(2g)− (2h), (5c)∑
k∈K

λvk +wv+−wv− = 1,∀v ∈ V, (5d)

0≤wv+ ≤ εv+,0≤wv− ≤ εv−,∀v ∈ V (5e)
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Here, the parameters εv+ and εv− are very small positive values so that the value of (5a) is not too
far off from that of (2a). The parameters σv+ and σv− are estimators of the dual variables µv with
σv− < σv+ to allow variants. The solution of problem (5) is feasible to the original master problem
(2) if wv+ =wv− = 0.

This stabilization technique is known to be parameter dependent and the updating strategies
for the parameters must ensure finite convergence. In the computations, we assume that the com-
ponents of ω− and ω+ vanish and hence (5d) is satisfied when their values are less that a ′′small′′

number ε. In the implementation, we initialize εv+ to be less than 1 and set εv− to be a very small
random number in the interval (0, ε] at each iteration. If the subproblems do not return any
columns with negative reduced costs, then we decrease εv+ at a rate η ∈ (0,1), i.e., εv+← ηεv+; oth-
erwise, no changes are made to εv+. The constantly changing random value of εv− provides a small
perturbation to the problem even when all other parameters remain fixed. The parameters σv+ and
σv− are estimated at the root node, and then set as the optimal dual solution of their parent nodes
at other branch and bound nodes.

4.3.3. Study of valid cuts In our procedure, efficient valid cuts are not discovered due to the
nature of model (1). Among all management constraints in model (1), only the berth constraints
(1g) are hard constraints while other constraints (1e), (1f) and (1h), have slack variables which
are penalized in the objective function. Compared to the inventory constraints (1e)-(1f), however,
berth constraints (1g) are usually not dominant which makes the valid inequalities associated to
berth constraints weak. Thus, other than branching cuts, cuts are not developed in our approach.

4.3.4. Branching strategies During the branch and bound search, both the Depth-First-
Search (DFS) and Best-Bound-First (BBF) strategies are implemented and tested for node selec-
tions. Computational results show that DFS performs substantially worse than BBF. Given a good
solution obtained from heuristic methods in Goel et al. [2012], DFS fails to find a better solution
within an acceptable time, and the gap remains flat since the lower bound does not improve either.
This result is intuitive since it is usually very hard to get even one integral solution by using branch
and bound scheme for LNG-IRP due to the high level of degeneracy of the problem. However,
BBF can reduce the gap significantly for some instances within an acceptable time as we observe
the global lower bound is increased significantly. This observation increases our confidence in the
heuristic solutions.

Regarding branching strategies, three categories have been developed and tested, including 14
rules in total. The first two categories aim to fix several variables simultaneously instead of one
variable at a time as in the last category. Research study shows that fixing several variables simul-
taneously is usually more effective than fixing one variable at a time when 0-1 MIP is solved (see
Wolsey [1998]).

The first category adopts Ryan-Foster branching (Ryan and Foster [1981]) for two scenarios. In
one of the scenarios, a ship v selects two or more schedules; among them, one schedule has traveling
arcs from both day t1 and day t2; another schedule has only one traveling arc from day t1 or day t2.
In one branch, ship v has a traveling arc from day d1 if and only if it has a traveling arc from day
d2; in the other branch, ship v has one and only one traveling arc from day t1 or t2. In the second
scenario, a ship v also selects two or more schedules; among them, one schedule includes both arc
a1 and arc a2; another schedule has only one arc between arc a1 and arc a2. In one branch, ship v
selects arc a1 if and only if arc a2 is selected; in the other branch, ship v selects one and only one
arc between arc a1 and a2.

The second category is associated to the fractional number of voyages. For example, Letting yt be
the number of voyages that start on time t, its value Yt is fractional in the current LP solution, then
the node can be branched into two partitions: one has yt ≤ bYtc, and the other has yt ≥ dYte. The
following are the rules included in this category: the total number of voyages, number of voyages
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starting on time t, number of voyages leaving from terminal j, number of voyages departing from
a node (j, t), number of voyages executed by ship v or a ship group g, number of voyages for ship
v starting from terminal j, number of voyages entering the system through regular nodes, and
number of voyages exiting the system through regular nodes etc.

The third category is the default strategy that branches on the most fractional arc in the current
solution.

Performance of these branching rules differ significantly depending on individual cases. Among
them, after some computational experimentation, we determined that branching on number of
voyages starting from a terminal, number of voyages executed by a ship, together with the default
rule, give the best bounds. The results in Section 6 are limited to these branching strategies.

5. Local Search–Improving Upper Bounds
As discussed in detail later in Section 6, although the Branch and Price algorithm developed in
Section 4 significantly improves lower bounds for some of the test cases defined by Goel et al.
[2012], however it fails to find feasible integer solutions that would provide upper bounds. This is
not an unexpected result due to the known difficulty of this LNG-IRP. In order to further close the
optimality gap, we propose several new heuristic approaches in order to improve upper bounds.

Like most heuristic methods, our heuristic scheme includes two basic phases – construction and
improvement. In Phase I, two approaches are developed to construct good feasible solutions. In
Phase II, different local searches are designed and implemented in order to improve the solutions.
Among all of these construction approaches and local searches, the best strategy, which balances
the solution quality and running time, is discovered. Now each phase is described.

5.1. Construction Heuristics
In previous efforts (Goel et al. [2012]) for solving LNG-IRP, a simple rolling time greedy algorithm
was used to generate an initial solution. Construction of initial solutions has been extended by
developing two more advanced techniques: round-trip rolling time algorithm and GRASP.

5.1.1. Round-Trip Rolling Time Algorithm In this algorithm, a feasible solution is con-
structed by solving a sequence of optimization subproblems, each of which corresponds to one day.
In the subproblem, there is a focus on the production terminals and the algorithm attempts to
schedule a round-trip for each considered ship. The definition of ′′round-trip′′ is described at below.

Round-trip A round-trip for a ship is defined as a sequence of nodes that the ship visits,
among which only the first and last are production terminals. For example, if a ship visits (l, t),
(r, t + 3), (r, t + 4) and (l, t + 7) in a sequence, it has a round-trip. A round-trip is denoted as
g = [(l0, t0), (r, tr0), (r, tr1), (l1, t1)]; it defines the sequence such that a ship loads LNG and leaves
production terminal l0 on day t0, arrives at regas terminal r on day tr0, discharges gas and leaves
the regas terminal r on day tr1, and arrives at production terminal l1 on day t1. If the ship waits
at the production terminal, it has a waiting round-trip g= [(l0, t0), (l1, t1)] with l0 = l1.

We now start to describe our rolling time algorithm. Given a day t∗ and a length of time periods
∆, the corresponding day t∗ subproblem is created as follows. All round-trips that are selected
in the previous iteration and begin earlier than day t∗ are fixed; all ships whose next available
time is later than day t∗ + ∆ are ignored; one round-trip will be assigned for each ship that is
available during [t∗, t∗+ ∆]. After the subproblem is solved, each considered ship will either wait
at a production terminal for one day, or visit a regas terminal, wait there for several days, and
then return to a production terminal. The maximum number of days (denoted as Wmax) that a
ship is allowed to wait at regas terminals is one of the key parameters in this algorithm since it will
affect the size of the subproblem and the quality of the solution. Nevertheless, the ship is forced to
return as early as possible by penalizing the waiting days. After updating the production/regas,
inventory and berth usage at each terminal, we can then create and solve the subproblem for the
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next subproblem t∗+ 1. A feasible initial solution is constructed when the last day |T | subproblem
is solved. The pseudocode for this algorithm appears as Algorithm 1.

Algorithm 1 Round-Trip Rolling Time Algorithm

while t∗ ≤ |T | do
create subproblem for day t∗;
solve subproblem for day t∗;
accept the round-trips that begins on day t∗;
update production/regas, inventory and berth usage at each terminal;
set t∗← t∗+ 1;

end while

In addition to t∗, ∆ and Wmax, the following terms are used in defining the rolling time algorithm.
Sets for Rolling Time Algorithm
Vt∗ set of available ships during [t∗, t∗+ ∆]
G set of all round-trips, g ∈G
Gv set of round-trips for ship v, ∀v ∈ Vt∗
Gt∗ set of round-trips associated to subproblem t∗

Gj,t set of round-trips leaving terminal j on day t
Parameters for Rolling Time Algorithm
b∗j,t Remained available number of berths at terminal j on day t for subproblem t∗

c∗j,t Remained available inventory capacity at terminal j on day t for subproblem t∗

p∗l,t Remained production rate at terminal l during day t for subproblem t∗

d∗r,t Remained minimum regas rate of regas terminal r during day t for subproblem t∗

d
∗
r,t Remained maximum regas rate of regas terminal r during day t for subproblem t∗

wg number of waiting days at regas terminal for a round-trip g
Variables for Rolling Time Algorithm
xv,g Binary variable to select the round-trip g for ship v

The subproblem corresponding day t∗ is defined as follows.

min
∑

t∗≤t≤t∗+∆

wlol,t +
∑
t≥t∗

wrsr,t +
∑
v∈Vt∗

∑
g∈Gt∗∩Gv

εwgxv,g (6a)∑
g∈Gt∗∩Gv

xv,g = 1,∀v ∈ Vt∗ , (6b)

Il,t + ol,t +
∑
v∈Vt∗

{cv,l
∑

g∈Gt∗∩Gv∩Gl,t

xv,g}− Il,t−1 = p∗l,t,∀l ∈L, t∗ ≤ t≤ t∗+ ∆ (6c)

Ir,t− sr,t−
∑
v∈Vt∗

{cv,r
∑

g∈Gt∗∩Gv∩Gr,t

xv,g}− Ir,t−1 =−dr,t,∀r ∈R,∀t≥ t∗ (6d)∑
v∈Vt∗

∑
g∈Gt∗∩Gv∩Gj,t

xv,g ≤ b∗j,t,∀j ∈ J,∀t≥ t∗ (6e)

0≤ Il,t ≤ c∗l,t, ol,t ≥ 0,∀l ∈L,∀t≥ t∗ (6f)

0≤ Ir,t ≤ c∗r,t, sr,t ≥ 0, d∗r,t ≤ dr,t ≤ d
∗
r,t,∀r ∈R,∀t≥ t∗ (6g)

xv,g ∈ {0,1},∀v ∈ Vt∗ ,∀g ∈Gt∗ ∩Gv (6h)

This model (6) is analogous to the full arc flow model (1), however, since it is greatly simplified
with many fewer arcs and objective function terms, it can be solved quite efficiently by a commercial
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MIP solver (e.g. CPLEX). In this model, the objective function (6a) is to minimize the production

lost during [t∗, t∗+ ∆], stockouts during [t∗, |T |] and a penalty for waiting days at regas terminals.

For each available ship, a round-trip is guaranteed through constraints (6b); the inventory and

berth constraints are kept as in the original model through (6c)-(6e) with updated information for

production/regas, inventory and berth usage associated with day t∗. However, the unmet demand

constraints (1h) are not considered here since the unmet demand volume can only be calculated

at the end of the time horizon.

Depending on the value of ∆, two variants of this algorithm are posed: 1) a one-day variant

in which we only consider the ships that are available on the current day t∗, i.e., ∆ = 0; and 2)

a multi-day variant in which we consider ships that will be available over multiple days, i.e.,

∆ > 0. When the ′′multi-day′′ variant is considered, it is apparent that the subproblem will be

more difficult due enlarged problem size; however, a better solution quality is also expected. We

will report the results for both of these two variants in Section 6.

5.1.2. Greedy Randomized Adaptive Search Procedure (GRASP) In this algorithm,

the solution is also constructed day by day. Given a day t∗, we make a sequence of decisions, each

of which corresponds to a selection of a new voyage(arc) for some ship that is available on day t∗.

To select a voyage, we need to create the candidate list first, then calculate a benefit value for each

candidate, and finally select one candidate at random based on a probability distribution which is

associated to the benefit values. If a waiting arc is selected, the associated ship is forced to wait at

its current location for another day and becomes available on day t∗+ 1; otherwise, the ship will

be sent to another terminal and will become available after a certain number of days depending

on the traveling time. Along with this procedure, we ensure that a ship can only load or discharge

a cargo when there exists an available berth and ample production inventory or discharge tank

capacity. The pseudocode for the GRASP is exhibited as Algorithm 2.

Algorithm 2 GRASP

while t≤ |T | do
while available ships exist on day t∗ do

create candidate list of voyages starting on day t∗ for all available ships;
calculate benefit values for these candidates;
assign probability distribution based on the benefit values;
select one candidate at random;
remove the selected ship from the set of available ships on day t∗;
update the next available location and time for the selected ship;
update inventory and berth usage;

end while
set t∗← t∗+ 1;

end while

The terms which are used in describing GRASP are listed as follows.
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Notations for GRASP
Vt∗ set of available ships on day t∗

Av,t∗ set of compatible arcs starting on day t∗ for ship v
CLt∗ candidate list of voyages on day t∗, CLt∗ = {(v, a)|v ∈ Vt∗ , a∈Av,t∗}
jcurrv the current terminal of ship v
jarrv the potential arrival terminal of ship v
tarrv the potential arrival time of ship v
benv,a the benefit value to select (v, a)
bendepv,a the departure benefit value to select (v, a)
benarrv,a the arrival benefit value to select (v, a)
∆∗ the number of days that we consider for loss estimation

Now we start to describe the rules for picking a voyage (v, a) from the candidate list CLt∗ .
Given the current location jcurrv for ship v ∈ Vt∗ , we can also denote the set of compatible arcs
Av,t∗ = {(ncurrv , narrv )|ncurrv = (jcurrv , t∗), narrv = (jarrv , tarrv )} with ncurrv as the current node and narrv

as the potential arrival node for ship v. The benefit value benv,a for each candidate pair (v, a) is
then calculated as follows.

If ship v waits at terminal jcurrv , i.e., narrv = (jcurrv , t∗ + 1), we set benv,a = 1 for the associated
candidate voyage (v, a).

If ship v departs from terminal jcurrv , i.e., jarrv 6= jcurrv , it essentially needs to load (discharge)
LNG at the terminal jcurrv on day t∗ if jcurrv is a production (regas) terminal, and then it will
potentially discharge (load) LNG at the terminal jarrv on or after day tarrv . Whether or not the
associated voyage (v, a) can be selected depends on the resource availability at the terminal jcurrv

on day t∗. If the inventory level is not high enough to load the ship v or there is no available berth,
then we set benv,a = 0 directly; otherwise, the benefit value benv,a consists of two parts: departure
benefit bendepv,a and arrival benefit benarrv,a , i.e., benv,a = bendepv,a + benarrv,a .

Departure benefit If ship v departs terminal jcurrv on day t∗, the departure benefit bendepv,a is
defined as the amount of loss at terminal jcurrv during [t∗, t∗ + ∆∗] that cannot be avoided if the
associated voyage (v, a) is not selected.

In the case that another ship u becomes available at terminal jcurrv on day t with t ≥ t∗, we
assume that the ship u will take over the responsibility of ship v for the loss after day t, i.e., we
only estimate the loss during period [t∗,min{t∗+ ∆∗, t− 1}] as the departure benefit for ship v.

Let δ∗ be the updated number of days for loss estimation which is adjusted according to the rule
above. It is not hard to conclude that, ship v is the only available ship at terminal jcurrv during
[t∗, t∗+δ∗]; therefore there may exist some loss which can be avoided only if ship v departs terminal
jcurrv on day t∗. Depending on whether terminal jcurrv is a production terminal or regas terminal,
the loss can be lost production or stockout. If terminal jcurrv is a production terminal, it is the lost
production during [t∗, t∗+ δ∗] which can be calculated based on the inventory level Il,t∗−1 and the
fixed production rate pl,t : t= t∗, . . . , t∗+ δ∗; here l= jcurrv . If terminal jcurrv is a regas terminal, it
is the stockout during [t∗, t∗+ δ∗] which can be calculated based on the inventory level Ir,t∗−1 and
the maximum regasification rate dr,t : t= t∗, . . . , t∗ + δ∗; here r = jcurrv . This loss is then taken as
the departure benefit of the associated voyage (v, a).

The pseudocode for departure benefit calculation is shown at below.

GRASP – Calculating Departure Benefit

if jarrv = jcurrv then
bendepv,a = 1

else if jcurrv ∈L and jarrv ∈R then
— departing from a production terminal —
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totalStorage= cjcurrv
− Itrcurrv ,t∗−1

totalProduction= 0
for t= t∗→ t∗+ ∆∗ do

if there are other ships available on day t then
break

else
totalProduction+ = pjcurrv ,t

end if
end for
totalLoss= max{0, totalProduction− totalStorage}
bendepv,a = min{cv,jcurrv

, totalLoss}
else if jcurrv ∈R and jarrv ∈L then

— departing from a regas terminal —
totalInventory= Ijcurrv ,t∗−1

totalDemand= 0
for t= t∗→ t∗+ ∆∗ do

if there are other ships available on day d then
break

else
totalDemand+ = djcurrv ,t

end if
end for
totalLoss= max{0, totalDemand− totalInventory}
bendepv,a = min{cv,jcurrv

, totalLoss}
end if

Arrival benefit If ship v arrives at terminal jarrv on day tarrv , the arrival benefit benarrv,a is defined
as the amount of loss at terminal jarrv during [tarrv , tarrv + ∆∗] that cannot be avoided if the voyage
(v, a) is not selected.

This definition is similar as that of departure benefit except for the time period [tarrv , tarrv + ∆∗].
For the ships which are available at terminal jarrv during [t∗, tarrv −1], we assume that they will leave
the terminal as soon as possible. Those ships that cannot leave before day tarrv become available
on day tarrv .

Similar as the definition of departure benefit, whenever a ship u becomes available at terminal
jarrv on day t ∈ [tarrv , tarrv + ∆∗], we assume that the ship u will take over ship v’s responsibility of
the subsequent loss. Thus we only need to calculate the loss during [tarrv ,min{tarrv + ∆∗, t− 1}] for
ship v; this amount of loss is taken as the arrival benefit since it is unavoidable if the voyage (v, a)
is not selected.

The pseudocode for arrival benefit calculation at produciton terminals is shown as follows. The
calculation for regas terminals is similar.

GRASP – Calculating Arrival Benefit at Production Terminals

if jarrv = jcurrv then
benarrv,a = 0

else
totalInventory= Ijcurrv ,t∗−1

for t= t∗→ tarrv − 1 do
totalInventory+ = pjcurrv ,t

for all available ship u at terminal jcurrv on day t do
if ship u can be loaded then
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load ship u
update inventory level and berth usage at jcurrv

remove ship u from the set of available ships at terminal jcurrv

totalInventory−= cv,jcurrv

else
ship u becomes available at terminal jcurrv on day t+ 1

end if
end for
totalInventory= max{cjcurrv

, totalInventory}
end for
totalStorage= cjcurrv

− totalInventory
totalProduction= 0
for t= tarrv → tarrv + ∆∗ do

if other ship available on day t then
break

else
totalProduction+ = pjcurrv ,t

end if
end for
totalLoss= max{0, totalProduction− totalStorage}
benarrv,a = min{cv,jcurrv

, totalLoss}
end if

Probabilities After the benefit value is calculated for each candidate voyage, we simply set
benv,a/sum(v′,a′)∈CLt∗ benv′,a′ as the probability for voyage (v, a) ∈ CLt∗ , and then select a voyage
randomly according to this distribution.

Depending on the number of steps to select a voyage, there are also two variants of GRASP: 1)
a one-step variant which selects a voyage directly without distinguishing ships and destinations
separately; 2) a two-step variant which selects a ship first and then decide where the ship should
go. The one-step variant is the algorithm as described above. In the two-step variant, a ship is
selected randomly based on its flexibility, and then its destination is picked randomly based on the
benefit values calculated by using the same rules as described for the one-step variant. Results for
both of these two variants are reported in Section 6.

5.2. Local Search
After constructing an initial solution, there are a number of ways to improve upon that solution.
Neighborhood search improves solutions iteratively by searching the best neighbor in the current
solution’s neighborhood. In this article, MIP-based neighborhood search methods are developed
to improve solutions. Since subproblems are MIP, the neighborhood size and structure can greatly
affect the computational performance of a search. Four major categories of MIP-based neighbor-
hood search are explored in this section.

5.2.1. Singleton Search The neighborhood structure in this category is defined by varying
one specific aspect of the problem at a time. Four different structures are considered: one-ship
search, one-terminal search, one-direction search and one-day-flexibility search. The algorithm
pseudocode exhibited as Algorithms 3 through 6 only represents a basic version of these searches.
In implementation, both the order of considered subproblems and the stopping criteria could be
manipulated and tuned for better performance based on the problem characteristics.

One-Ship Search This search (Algorithm 3) optimizes the schedule of one ship given that the
schedules for all other ships have been fixed.
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One-Terminal Search This search (Algorithm 4) optimizes the schedule of one terminal by
keeping all travel arcs associated with some terminal free while fixing the travel arcs for all other ter-
minals. It should be emphasized that, if there is only one production terminal or one regasification
terminal, then that terminal will be skipped in the search procedure; otherwise, the neighborhood
would include the entire network. For example, if we try to optimize all voyages associated with
a production terminal which is the only production terminal in the instance, it is equivalent to
solving the entire original problem (1).

One-Direction Search This search (Algorithm 5) focuses on production terminals. It either
optimizes the inbound travel arcs while fixing the outbound travel arcs, or optimizes the outbound
travel arcs while fixing the inbound travel arcs.

One-Day-Flexibility Search This search (Algorithm 6) optimizes the schedule within a one-
day-flexibility neighborhood which is created based on the current solution as follows. Given the
current schedule, we have a sequence of selected traveling arcs. For each selected traveling arc, the
ship is allowed to leave either one day earlier or one day later; these corresponding arcs are called
as relaxed traveling arcs. In the one-day-flexibility neighhood, all traveling arcs, other than these
selected and relaxed ones, are frozen to zero. For example, if a ship v only has one traveling arc
[(l, t), (r, t+4)] in the current solution, then the ship can also take the relaxed arcs [(l, t−1), (r, t+3)]
and [(l, t + 1), (r, t + 5)]. Other than these three arcs, however, all other traveling arcs are not
allowed for this ship to take in the neighborhood.

It should be noted that the term ′′one-day′′ is used only for the purpose of a simple description, it
can also be extended to multiple days (say k-day-flexibility neighborhood). For example, if two-day-
flexibility is given, the ship is allowed to take relaxed arcs [(l, t− 2), (r, t+ 2)], [(l, t− 1), (r, t+ 3)],
[(l, t+ 1), (r, t+ 5)] and [(l, t+ 2), (r, t+ 6)] in its neighborhood.

The parameter k is calculated based on the ship fleet size. Given a solution X, each ship has an
annual schedule, i.e. each ship has one path in the entire network. The neighborhood defined by
this algorithm is basically expanding along the path with radius k days. Thus, the neighborhood
might be very large if the ship fleet size is large. In that case, parameter k should be set to a small
value in order to balance the subproblem size.

Algorithm 3 One-Ship Search

INPUT: a feasible solution X
while solution improved do

for v ∈ V do
Fix schedules for all ships other than v in model (1)
Solve model (1) and get new solution Xnew

If obj(Xnew)< obj(X) then set X←Xnew

end for
end while
OUTPUT: improved solution X

5.2.2. Time Windows Search This search is another improvement heuristic which involves
the use of time windows in a rolling fashion. A time window here is a sequence of consecutive days.
Starting from the beginning of the planning horizon, we define a time window tw with ∆tw days. In
the associated subproblem, all arcs are freed up within the window, and all arcs are fixed outside
the window. After the subproblem is solved, we will move to the next window which has ∆ovlap

(∆ovlap ≤∆tw − 1) overlapping days with the current one. These two parameters ∆tw and ∆ovlap

are the key parameters for this search. The larger these parameters, the better the solution quality;
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Algorithm 4 One-Terminal Search

INPUT: a feasible solution X
while solution improved do

for j ∈ J |j is not the unique terminal in its type do
Fix travel arcs for all terminals other than j in model (1)
Solve model (1) and get new solution Xnew

If obj(Xnew)< obj(X) then set X←Xnew

end for
end while
OUTPUT: improved solution X

Algorithm 5 One-Direction Search

INPUT: a feasible solution X
while solution improved do

Fix outbound travel arcs from production terminals in model (1)
Solve model (1) and get new solution Xnew

If obj(Xnew)< obj(X) then set X←Xnew

Fix inbound travel arcs to production terminals in model (1)
Solve model (1) and get new solution Xnew

If obj(Xnew)< obj(X) then set X←Xnew

end while
OUTPUT: improved solution X

Algorithm 6 One-Day-Flexibility Search

INPUT: a feasible solution X
INPUT: a parameter k
while solution improved do

for all selected arc a in the current solution X do
Identify k-day-flexibility relaxed arcs for a

end for
Freeze all traveling arcs, other than the selected and relaxed arcs, to zero
Solve model (1) and get new solution Xnew

If obj(Xnew)< obj(X) then set X←Xnew

end while
OUTPUT: improved solution X

however, the longer the running time. Therefore these parameters need to be set appropriately in
order to get a balance between the solution quality and running time.

Instead of fixing all arcs, different rules can be designed to fix the arcs outside the time windows
in the neighborhood construction. For example, we can fix the arcs in one direction at a time by
fixing all arcs inbound to production terminals first and then all arcs outbound from production
terminals. As is typical to all other neighborhood search methods, the fewer the number of fixed
arcs, the larger the neighborhood yielding better the solution improvement as the cost of greater
computational complexity. Although multiple construction rules have been designed and tested in
our implementation, only the basic version in which all arcs outside the time windows are fixed is
shown here in Algorithm 7.
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Algorithm 7 Time Windows Search

INPUT: a feasible solution X
INPUT: width of time window ∆tw

INPUT: overlapping days ∆ovlap

while solution improved do
Set start time of the time window tstart = 1
while tstart ≤ |T | −∆tw do

Set end time of the time window tend = tstart + ∆tw

Create time window tw= [tstart, tend]
Fix all arcs outside the time window tw in model (1)
Solve model (1) and get new solution Xnew

If obj(Xnew)< obj(X) then set X←Xnew

Set tstart← tend−∆ovlap

end while
end while
OUTPUT: improved solution X

5.2.3. Two-Ship Search This neighborhood is essentially the multi-ship extension of the
′′one-ship′′ neighborhood. In this search method, we optimize schedules for two ships simultaneously
while fixing schedules for all other ships. This method was originally proposed by Song and Furman
[2013] for a different maritime inventory routing problem, and was extensively studied for LNG-
IRP by Goel et al. [2012]. Neighborhoods of more than two ships could potentially provide greater
improvements to solution quality, however, their computational expense is usually prohibitive. In
order to speed up the search and improve upon previous methods, we propose three ship pair
selection techniques for selecting the ship pairs intelligently.

The basic version of this search simply loops though all ship pairs (u, v),∀u ∈ V, v ∈ V, v 6= u in
the original ordering of ships in the set until no further improvement is obtained. Goel et al. [2012]
refer to this method as lexicographic selection. This can be considered as the metric by which to
judge improvement in a ship pair selection technique.

Correlation Selection In this technique, we first rank each ship pair (u, v),∀u∈ V, v ∈ V, v 6= u
with a metric called ′′correlation′′ which is defined as the number of days t, that ship u is located
at a terminal on day t and ship v is also located at the same terminal some time during [t−k, t+k]
with parameter k ≥ 0. This correlation can be viewed as the extended number of days that both
of the ships are available at the same terminal. When it is large, the chance to swap some of their
voyages to improve the objective function value is also large. Therefore we sort and solve the ship
pairs according to their correlations in non-increasing order. Whenever an improved solution is
discovered, correlations are updated and ship pairs are resorted. Letting corru,v be the correlation
for ship pair (u, v), its calculation is described in Algorithm 8.

Benefit Selection In this technique, we rank each pair (u, v),∀u ∈ V, v ∈ V, v 6= u with a value
called ′′benefit′′ which is defined as a weighted sum of the evaluated loss associated with ship u
and ship v and their correlation. If a ship is compatible with a terminal that has a large loss in the
current solution, we may have room to improve the solution if the ship’s schedule is modified. Thus,
we simply sum up the loss at all terminals that are compatible with ship u or v as the evaluated
loss. Letting wcorr be the weight for correlation and benu,v be the benefit for ship pair (u, v), its
calculation is described in Algorithm 9.

Random Ship Selection Another metric for evaluating variants of the two-ship neigh-
borhood search is to randomly select ship pairs. For this implementation, probability pu,v =
benu,v/

∑
(u′,v′) benu′,v′ is assigned to each ship pair (u, v),∀u∈ V, v ∈ V, v 6= u, and one pair is ran-

domly selected to be rescheduled at each iteration. When improved solutions are detected, both
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Algorithm 8 Calculation for Two-Ship Correlation

INPUT: a feasible solution X
INPUT: a parameter k
Set corru,v = 0,∀u∈ V, v ∈ V,u 6= v
for u= 1→ |V | − 1, t= 1→ |T | do

if ship u is at any terminal j on day t then
for v= u+ 1→ |V | do

if ship v is at the terminal j some day during [t− k, t+ k] then
corru,v+ = 1

end if
end for

end if
end for
OUTPUT: corru,v,∀u∈ V, v ∈ V,u 6= v

Algorithm 9 Calculation for Two-Ship Benefit

INPUT: a feasible solution X
INPUT: weight of correlation wcorr

Set AssociatedLossu,v = 0,∀u∈ V,∀v ∈ V,u 6= v
for u∈ V, v ∈ V,u 6= v do

for j ∈ J do
if ship u or v is compatible with terminal j then

AssociatedLossu,v+ =Lossj
end if

end for
end for
Set benu,v =AssociatedLossu,v +wcorr · corr(u, v)
OUTPUT: benu,v,∀u∈ V, v ∈ V,u 6= v

the benefits and probabilities are updated. The search is terminated after a pre-specified number
of iterations.

6. Computational Results
In this section, we present results for all of the proposed methods for improving the lower and
upper bounds of the LNG-IRP. All algorithms were coded in C++ with CPLEX 12.2 as the LP and
MIP solvers and run on a workstation with Intel(R) Xeon(R) CPU X5687@3.60Ghz and 24 GB
RAM. Test cases are adopted from Goel et al. [2012] and results are compared with the methods
of Goel et al. [2012].

6.1. Testing Cases
Goel et al. [2012] designed and evaluated 14 problems which were categorized into three groups: 1)
easy problems (P1-P5) for which CPLEX can generate the best solutions that were known by Goel
et al. [2012] within 1 CPU hour; 2) medium problems (P6-P10) for which CPLEX can generate
′′good′′ solutions (within 15% of the best knowns) within 1-5 hours; and 3) hard problems (P11-
P14) for which CPLEX cannot generate a good solution within 10 CPU hours. The characteristics
of these problems are highlighted in Table 1 including the best known solutions reported in Goel
et al. [2012].
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Dimensions Cont. 0-1 Best knowns
Case (|L|, |R|, |V |) Variables Variables Constraints in Goel et al. [2012]
P1 (1,2,6) 2557 12812 6504 1172
P2 (1,3,8) 4019 16988 8635 294
P3 (2,1,10) 2557 21029 9303 5650
P4 (3,1,13) 2922 27547 12196 0
P5 (1,4,15) 5115 31449 14269 1701
P6 (4,1,4) 3652 8377 6406 151
P7 (1,6,6) 5117 18335 10812 1565
P8 (1,1,14) 1827 28830 11205 116
P9 (1,2,17) 2558 35142 14061 126
P10 (1,4,27) 5115 95788 32744 29388
P11 (1,5,14) 6228 34438 15625 0
P12 (1,4,18) 3655 37752 16491 631
P13 (1,8,40) 6579 132995 47364 1453
P14 (1,10,69) 11691 232856 79425 53240

Table 1 Problem Instances

6.2. Results for Decomposition Procedure
The computational expense of the branch and price algorithm for finding lower bounds is excessive
when compared to the local search methods for finding good upper bounds. None of the test cases
can be solved to optimality, nor does the B&P algorithm produce any integer solutions for any of
the test cases. However, the B&P algorithm does obtain better lower bounds with substantially
better computational efficiency compared to CPLEX.

DW Performance. First we compare the performance of our DW decomposition with CPLEX
at the root node. In our implementation, the entire problem is decomposed by individual ships. The
termination criteria for convergence is defined as achieving a gap between the objective function
value of MP and DW lower bound within 0.1%. Although we do not report the detailed perfor-
mance of stabilization technique separately, our computational experimentation indicates that is
cuts 15.12% of CPU time on average. Due to the structure of our subproblems, we would not
expect better bounds at root node as discussed earlier. However, DW decomposition speeds up
the computation time significantly when the problem size is extremely large when compared to
CPLEX using its default dual simplex method on the arc-flow formulation. Table 2 illustrates these
results.

In Table 2, columns 2-3 are the objective value and CPU time respectively solving the root node
using CPLEX as the solver. Columns 4-9 address the DW lower bound, objective value of MP,
total CPU time, CPU time for solving MP, CPU time for solving SP and the percent of MP CPU
time over the entire DW procedure, respectively, for DW decomposition algorithm. Columns 10-11
present the speed up in which all subproblems are run in series, as well as the hypothetical speed
up if we assume subproblems are all run in parallel with same CPU time (i.e. the CPU time for
the MP plus the slowest of the subproblems).

Table 2 illustrates that both CPLEX (dual simplex) and DW procedure solved the root nodes
successfully within 20 minutes, with the exception of case P14, which took CPLEX around 28
hours while DW only required 1.2 hours. When subproblems in DW are run in series, DW can solve
easy, medium and hard test cases 1.09, 0.77 and 2.50 (geometric mean) times faster than CPLEX,
respectively. This indicates that serial DW does not gain much in computational efficiency if an
instance is not hard to solve or large. According to column ′′MP CPU/CPU′′, however, DW spends
98.29% of time on average in solving subproblems. Parallelization of solving subproblem would yield
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CPLEX DW decomposition Speed Up
CPU DW MP CPU MP CPU SP CPU MP CPU Synthetic

Case Obj. (s) LB Obj. (s) (s) (s) /CPU(%) Serial Parallel
P1 1026 5 1026 1026 21.2 0.3 20 1.42 0.25 1.19

P2 95 21 95 95 15.4 0.5 14 3.25 1.36 6.82
P3 5457 21 5454 5457 29.9 0.3 28 1.00 0.71 4.21
P4 0 32 0 0 12.5 0.3 11 2.40 2.54 15.32
P5 1647 112 1647 1647 44.4 1.0 39 2.25 2.51 13.33
P6 0 1 0 0 10.1 0.1 9 0.99 0.12 0.39
P7 0 14 0 0 89.1 3.2 82 3.59 0.16 0.67
P8 116 29 116 116 9.3 0.1 9 1.08 3.06 25.25
P9 126 47 126 126 15.9 0.1 15 0.63 2.96 20.86
P10 28766 648 28744 28768 403.4 1.4 367 0.35 1.61 13.01
P11 0 100 0 0 47.5 1.4 43 2.95 2.11 13.1
P12 0 65 0 0 105.9 1.2 92 1.13 0.61 3.39
P13 1337 978 1337 1337 756.8 11.1 578 1.47 1.29 5.07
P14 48049 101582 48028 48050 4342.9 64.6 2299 1.49 23.39 48.91

Table 2 Comparison at Root Nodes: DW Decomposition v.s CPLEX

significant improvements on CPU time, however since design of parallelization algorithm is not in
the scope of this work, we simply report a hypothetical speed up metric to evaluate the potential
for improvement. If subproblems were solved in parallel with such a hypothetical algorithm, in a
best case scenario, DW can solve the root nodes 5.87, 4.48 and 10.24 times faster than CPLEX for
easy, medium and hard problems respectively.

B&P Performance. Test case P14 is a large scale instance of a practical industrial scale
with respect to size and difficulty. Since CPLEX requires over one day to solve the root node of
instance P14, CPLEX is not a good choice for evaluating the quality of heuristic solutions for large
scale LNG-IRP instances. Acknowledging that proving optimality is unlikely, the B&P algorithm
proposed can be used to obtain lower bounds. As discussed previously, the results reported here are
associated to the node selection rule BBF and the branching strategy which combines branching the
number of voyages starting from terminals, number of voyages executed by ships and the default
rules. Each instance was run with two hours, and results are shown in Table 3.

Table 3 lists the default LP bounds and the B&P bounds obtained within two hours, along with
the corresponding gaps calculated using the following formula: (Best Known Solution Goel et al.
[2012] - LB) / LB *100%. Except for the four instances whose value of LP relaxation is equivalent
to that of MIP, B&P provides improved bounds for four instances, and these improvements are
substantial for case P2, P7 and P12. These results show that B&P is an efficient method for
obtaining lower bounds and evaluating the quality of heuristic solutions. Even though B&P does
not improve lower bounds for other five cases, this deficiency could be overcome by designing
a more sophisticated decomposition scheme as described previously, for example, by aggregating
homogeneous ships into groups.

6.3. Results for Local Search
Next we present the results for local search including both the construction heuristics and solution
improvement via neighborhood search.

Construction Heuristics. Table 4 compares the proposed construction heuristics with the
previously developed methods by Goel et al. [2012]. The improved construction solutions derived
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LP B&P (2 hours)
Case LB GAP(%) LB GAP(%) Performance
P1 1026 14.23 1026 14.23 -

P2 95 209.47 191 53.93 improved
P3 5457 3.54 5470 3.29 improved
P4 0 0 0 0 optimal
P5 1646 3.34 1646 3.34 -
P6 0 inf 0 inf -
P7 0 inf 1221 28.17 improved
P8 116 0 116 0 optimal
P9 126 0 126 0 optimal
P10 28766 2.16 28670 2.16 -
P11 0 0 0 0 optimal
P12 0 inf 292 116.10 improved
P13 1337 8.68 1337 8.68 -
P14 48049 10.80 47868 10.80 -

Table 3 Performance of B&P on Lower Bounds Improvement

by Goel et al. [2012] are listed in column 2 with the corresponding CPU time in column 3; the
previously determined final solutions are listed in column 4 at the CPU time in column 5. Columns
6-7 present the results of the one-day round-trip rolling time algorithm; 3 iterations are completed
and the accumulated CPU time is reported. Columns 8-9 list the results of the multi-day round-
trip rolling time algorithm. Columns 10-11 list the results for one-step GRASP; it is run for 10
iterations and accumulated CPU time is reported. Columns 12-13 list results for two-step GRASP;
in this algorithm, higher priority is given to the more flexible ships; 10 iterations are completed;
accumulated CPU time is reported. All of the CPU times are reported in the unit of ′seconds′.

In Table 4, those values in bold are no worse than the construction heuristic solutions of Goel
et al. [2012] and those with an underline are no worse than the final solutions of Goel et al. [2012].
Taking case P1 as an example, the one-day rolling time algorithm achieves 1179 in 2 seconds
which is better than the final solution 1187 found by Goel et al. [2012]; all other construction
heuristics return a value of 1199 which is same as the construction solution of Goel et al. [2012].
From Table 4, we can conclude that, the initial solutions based on the new construction techniques
are significantly better than those previously reported. Among the four techniques, the multi-day
round trip rolling time algorithm performs best with respect to the objective values. By using
this algorithm, the initial solutions for cases P4 and P14 are strictly better than the best known
solutions reported in Goel et al. [2012]. However, this algorithm requires more CPU time than
other construction methods due to its greater sophistication.

Further, several of the new construction solutions compete with the final solutions found via
previous methods with significantly less CPU time, especially for these difficult cases. For exam-
ple, for the three most challenging cases P10, P13 and P14, the solutions produced by the new
construction methods are no worse than those found by Goel et al. [2012] while faster by at least
a factor of 10. The comparison of the three most challenging cases are illustrated in Figure 2, in
which the rolling time algorithm is donated as ′′RTA′′.

The results of Table 4 and Figure 2 illustrate that rolling time algorithms and GRASP have good
performance across different cases. If we apply both heuristics in sequence, for example running
multiple-day rolling time algorithm and then one-step GRASP, strong results are achieved for
the majority of the test cases while maintaining the fast run times. Thus combining two different
construction techniques can be a good strategy to generate a good initial solution for LNG-IRP.
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Goel et al. [2012] Rolling Time Algorithm GRASP
Constr. Sol. Final Sol. One-Day Multiple-Day One-Step Two-Step

Case Obj. CPU Obj. CPU Obj. CPU Obj. CPU Obj. CPU Obj. CPU
(s) (s) (s) (s) (s) (s)

P1 1199 6 1187 200 1179 2 1199 6 1199 5 1199 4

P2 475 17 320 73 1226 7 348 15 749 4 681 6
P3 5923 18 5696 74 5830 3 6281 11 5998 4 6220 6
P4 288 12 0 197 0 13 49 44 202 6 174 7
P5 2880 27 1961 332 2891 9 1818 42 2415 11 2640 11
P6 151 3 151 235 151 3 151 12 151 3 151 3
P7 4194 8 1565 2080 1602 5 1509 19 1709 5 1692 6
P8 116 5 116 111 116 19 116 40 116 6 116 6
P9 126 6 126 184 134 47 888 74 126 9 126 9
P10 30331 96 29559 2645 29725 22 29403 149 29587 61 29413 57
P11 504 7 0 446 108 36 0 75 436 14 650 13
P12 656 127 631 735 668 9 656 50 631 14 637 13
P13 6499 146 1722 13557 2067 181 1570 598 2830 89 3139 87
P14 66387 349 53519 27595 53781 196 52899 1496 55321 206 55970 202

Table 4 Comparison: Construction Heuristics v.s. Goel et al. [2012]

Figure 2 Comparison on The Three Most Challenging Cases: Construction Heuristics v.s. Goel et al. [2012]

Solution Improvements We now report the results for neighborhood search algorithms. A
1000 branch-and-bound node limit was used in the solution of subproblems for all of the heuristics
with the exception of the rolling time windows directional search. Due to the large size of the
neighborhoods in this method, a 100 node limit was used.
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A 60 second CPU time limit was also imposed for subproblems in One-Terminal Search. As
mentioned previously, the ′′one-terminal′′ neighborhood is the full MIP problem when the selected
terminal is unique within its type. Further, even when the selected terminal is not unique, if the
number of terminals of its type is small, the subproblem might still be very large and difficult
to solve. It is possible that in MIP subproblems the run time for each branch-and-bound node
is excessively long even though no improvement in the solution is seen while approaching 1000
nodes. In order to avoid this situation, a 60 second time limit was placed on the MIP solver. This
unfortunately could make it difficult to reproduce identical results for the One-Terminal Search.
However, this situation is rare, and in fact across all of the results, this only occurs in one iteration
of one instance and all of the remaining results for this search method terminate at the 1000 node
limit within 60 seconds.

Figure 3 Comparison on The Three Most Challenging Cases: Different Neighborhood Searches

Even though all 14 instances are tested for all neighborhood searches starting from different
initial solutions obtained by different construction heuristics, we only show the performance of
these searches for the three most challenging test cases starting from the initial solutions obtained
by One-Day Rolling Time Algorithm here in Figure 3. In Figure 3, the rolling time windows search
is denoted as ′′TW-Both′′ and rolling time windows directional search is denoted as ′′TW-One′′;
also, ′′Two-Ship-C′′, ′′Two-Ship-B′′ and ′′Two-Ship-R′′ represent the Two-Ship with the rule of
correlation selection, benefit selection and random selection respectively.

From Figure 3, we conclude that the Singleton methods while not very computationally expen-
sive make significant improvements to the objective values. The Two-Ship search, while the most
computationally expensive, improves the solution value most significantly. Very similar results were
observed starting from initial solutions obtained via other construction methods for all instances.

Given the level of performance of the Singleton methods, the natural next step is to consider
combining these methods and running them in sequence, as this has the potential to produce
substantial gains in solution quality with a low computational expense. Figure 4 illustrates that a
sequence of Singleton methods produces solutions of similar quality to the two-ship neighborhood
search with a computational cost lower by an order magnitude.
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Figure 4 Comparison on The Three Most Challenging Cases: Sequential Singletons v.s. Two-Ship Searches

Using the sequential Singletons as a solution-improvement scheme combined with any of the
newly proposed construction heuristics can yield strictly better solutions than the benchmark set
of heuristics in Goel et al. [2012] with significantly less CPU time. Results considering the three
most challenging cases are shown in Figure 5.

Figure 5 Comparison on The Three Most Challenging Cases: New Approaches v.s. Goel et al. [2012]

A Dolan & Moré performance profile (see Dolan and Moré [2002]) is provided in Figure 6 to
illustrate results for all 14 test cases. In this figure, the benchmark is based on the greedy construc-
tion heuristic, time window local search and lexicographic two-ship neighborhood search developed
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by Goel et al. [2012]. The figure is generated based on the idea that a technique is successful if it
can find a better or equivalent solution for a case when compared to the benchmark method. If a
technique is successful on a case, then its normalized CPU time is calculated. This normalized CPU
time is defined as the the ratio of a technique’s CPU time to the fastest successful techniques’s real
CPU time for a test case. In Figure 6, the X-axis represents the normalized CPU time and Y-axis
represents the percentage of test cases for which a technique is successful. Thus, the step-lines
reflect the performance of the various techniques. In the plot, sequential singleton search starting
from different construction heuristics or a combination of construction heuristics is compared to
the benchmark. All of these variations find good solutions to many instances quickly relative to the
benchmark. Applying both the Multiple-Day round-trip rolling time search and One-Step GRASP
and choosing the best of the two to determine the initial point performs best among the variations
considered even given the added computational cost. These results indicate that the combination
of multiple inexpensive construction heuristics is a good strategy. In general, these results seem to
support combining a portfolio of algorithms as the best overall strategy since no individual method
completely dominates the others.

Figure 6 Performance Profile: Relative to Goel et al. [2012]

The optimal solution is unproven in many of the test instances. Figure 7 illustrates the corre-
sponding performance profile based on a comparison with the benchmark method for finding the
best known solutions for each case. Best known solutions are based on a combination of the results
of this article and the previous effort of Goel et al. [2012]. The results show the best strategy
yielding the best known solution in 87% of cases very quickly, while the benchmark method only
obtains the best solution in 50% of cases and requires substantially greater CPU time. The tails
associated to the two rolling time algorithms are coincident in Figure 7.

7. Conclusions
Computational results indicate that the proposed methods for improving lower bounds for this
LNG-IRP are substantially faster than commercial optimization software. In order to evaluate solu-
tion qualities, we developed B&P algorithm using DW decomposition procedure to solve each node.
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Figure 7 Performance Profile: Relative to Best Known Solution

Although the algorithm fails to provide optimal solutions for the test instances, it is demonstrated
as a good approach to improve the lower bounds for this LNG-IRP. The extension of this method,
for example, aggregating ships into groups, could potentially further improve its efficiency.

With the aim of finding better feasible solutions, we developed a series of construction heuristics
and neighborhood search methods with overall good performance. The benchmark method Goel
et al. [2012] was improved upon with better solutions and significantly less CPU time, and for the
most difficult cases, the speed up is by an order of magnitude. Furthermore, the results indicate
that combining a portfolio of algorithms is the best overall strategy for LNG-IRP since none of
these heuristics or neighborhood search methods completely dominates the others.
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