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Abstract

We study chance-constrained problems in which the constraints involve the probability of a rare event.
We discuss the relevance of such problems and show that the existing sampling-based algorithms cannot
be applied directly in this case, since they require an impractical number of samples to yield reasonable
solutions. Using a Sample Average Approximation (SAA) approach combined with importance sampling
(IS) techniques, we show how variance can be reduced uniformly over a suitable approximation of the
feasibility set, and as a result the problem can be solved with much fewer samples. We provide sufficient
conditions to obtain such uniform variance reduction and prove asymptotic convergence of the combined
SAA-IS approach. We apply our methodology to a telecommunications problem, find IS distributions
that satisfy the conditions laid out for uniform variance reduction in that context and present numerical
results to illustrate the ideas.

1 Introduction

Chance-constrained programming was first introduced in [12] and has been extensively studied since then.In
many situations a decision maker wants a constraint to be satisfied with some pre-specified probability, that
is, violation may occur for some realizations that as a whole have small probability. Applications include
finance [6, 16], energy [2], water pollution management [25], mining [11] and telecommunications [24, 40].
For a theoretical background we refer to [32] and Chapter 4 of [38].

Although chance-constrained programming is a very flexible modeling tool to incorporate uncertainty
into optimization problems, the resulting problems are usually hard to solve. The requirement of having to
satisfy a certain constraint with high probability involves computing a multidimensional integration, which
can only be performed exactly for certain distributions. In addition, the set of feasible solutions satisfying
the chance constraint is usually non convex and therefore unsuitable for most optimization algorithms. Even
the evaluation of feasibility for a given candidate solution cannot be done explicitly and one has to employ
Monte Carlo simulation to check it.

Different approaches have been proposed in the recent years to deal with chance-constrained problems.
Among these approaches, we mention the concept of efficient points [5, 15], the Bernstein approximation [29],
combinatorial patterns [23] and data-driven optimization [20]. Another common technique is a sampling-
based method known as Sample Average Approximation (SAA). The SAA generates a sample from the
original distribution of the problem and creates an approximate problem with new sampled constraints that
replace the original chance constraint. Such an approach has been well studied in the literature; a series
of theoretical results ensure that the optimal value and the set of optimal solutions of those approximate
problems converge to their true counterparts under mild conditions [30, 26].

The most important parameter to be chosen in SAA is the number of samples, or scenarios, that will be
drawn from the original distribution. A series of papers ([7, 8, 9, 26]) study SAA (sometimes called “scenario
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approach”) and find a lower bound on the number of samples such that the solution of the sampled problem
is feasible to the original chance-constrained problem with high probability. The theoretical bound is often
too conservative in practice, but constraint discarding schemes can be used to improve the quality of the
obtained solutions [31]. In most applications of chance constraints the probability of violation should not
exceed 10%, 5% or 1%. The formulas for the sample size in the literature are usually of the order of one
over the probability of violation, so the resulting problems are of manageable size.

In this paper we consider chance-constrained optimization problems with rare events, that is, problems
in which the violation probability is very small, e.g, 10−6. In this case the theoretical guidelines would lead
to extremely large problems that cannot be solved due to computational limitations. Working with such
small values raises two important concerns. The first is how relevant those problems are. For example, in
the aviation industry the maximum tolerated probability of a catastrophic event per flight hour is 10−9 [39];
in structural engineering the maximum tolerated probability of failures is of order 10−4 [17]. Many other
such examples exist.

The second concern is from an algorithmic perspective: if the violation is so small, would not it be better
to simply forbid violation, assigning the value zero to the probability of violation and solving a “robustified”
the problem? We will show through an example that the answer is no. Significantly different solutions may
arise when some violation is allowed, even if the value is as small as 10−6. This is expected for distributions
that have a relatively long tail.

New techniques are needed to tackle chance-constrained problems in the presence of rare events. We
propose an integration of SAA with importance sampling (IS), a technique widely used in simulation to
estimate probabilities of rare events that dates back to [21] and [34]. Importance sampling is still an active
research topic that generates great interest among researchers; see, for instance, [22] and references therein.

In the optimization context the use of importance sampling is scarcer (e.g., [14, 19]). We are not aware
of any previous work that uses importance sampling in chance-constrained programming. The difficulty is
that for each decision variable there might be a different optimal IS estimator. The challenge is to choose
an estimator that is uniformly efficient, that is, that lowers the variance for all possible solutions.

In this paper we discuss such issues in detail. We define precisely what is meant by uniform variance
reduction and give a sufficient condition to accomplish that goal. We also discuss how the choice of an IS
distribution that depends on the decision variables of the optimization problem is instrumental to achieve
larger variance reduction, which in turn means that the problem can be solved with much fewer samples.
Reducing the number of samples is crucial especially in cases in which generating samples can be expensive.
In addition, we extend some of the convergence results for SAA available in the literature to the case with
importance sampling.

We apply our methodology to an optical network problem in which customers want to communicate with
each other with a certain rate. A central planner wants to minimize installed capacity subject to having
a low probability that the links of the network do not have enough capacity to allow communication (the
so-called blocking probability). We construct IS estimators for this problem and provide a series of results
showing that variance can be uniformly controlled. We also show how the resulting problems can be modeled
as mixed-integer programs, a non-trivial task especially when the IS distribution depends on the decision
variables.

A key insight obtained from our construction is the need to reduce variance uniformly on a suitable
outer approximation of the feasibility set—i.e., it is important to reduce variance at infeasible points so the
infeasibility can be detected, but it is counterproductive to reduce variance at points that are “too far” from
the feasibility set. Another insight is the existence of a trade-off between the amount of variance reduction
and the complexity of the resulting optimization problem, which means that larger reduction is achieved at
the expense of a problem with more variables and more constraints.

We illustrate our findings with extensive numerical computations for a ring network topology. The nu-
merical results corroborate our theoretical findings, demonstrating that when the IS distribution is carefully
constructed the problem can be solved with a small number of samples, even when the probability of violation
is very small.

The rest of the paper is organized as follows. In Section 2 we introduce the rare-event chance-constrained
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problem, discuss IS techniques and introduce a formal definition for uniform variance reduction that we
use throughout the paper. We also present convergence results showing the asymptotic validity of the
approximating formulations. In Section 3 we describe in detail the telecommunication problem and present
mixed integer programming formulations for the rare-event chance-constrained problem with importance
sampling. We construct IS measures that ensure uniform variance reduction over an appropriate set in
Section 4. Numerical results are presented in Section 5 and concluding remarks are discussed in Section 6.

2 Chance-constrained programming and SAA

In this paper we consider problems of the form

min
x∈X

h(x) s.t. P
{
Gi(x, ξ) ≤ 0

}
≥ 1− αi , i = 1, . . . ,M. (1)

Here X ⊂ Rn, ξ is a random vector defined on an underlying probability space (Ω,F ,P) with probability
distribution supported on a set Ξ ⊂ Rd, αi ∈ (0, 1), h : Rn 7→ R is a real valued function and Gi : Rn×Rd 7→ R
is a real-valued function. By choosing M > 1 we allow multiple chance constraints, each one with its own
reliability level αi.

Problem (1), which we will refer to as the original problem, can be written in the following equivalent
form:

min
x∈X

h(x) s.t. pi(x) ≤ αi , i = 1, . . . ,M, (2)

where
pi(x) := P{Gi(x, ξ) > 0} = Eξ

[
1l{Gi(x,ξ)>0}

]
, (3)

where 1lA is the indicator function of the event A, i.e., 1lA = 1 if A occurs and 1lA = 0 otherwise. In the
discussion that follows we will assume that M = 1, and drop the subscript. Later we will consider the case
M > 1.

For a given sample (ξ1, . . . , ξN ) of size N from the distribution of ξ, a natural approximation of function
p(x) in (3) is

p̂(x) :=
1

N

N∑
j=1

1l{G(x,ξj)>0} , (4)

that is, p̂(x) is equal to the proportion of indices j such that G(x, ξj) > 0. The Sample Average Approxi-
mation (SAA) problem associated with the generated sample is defined as

min
x∈X

h(x) s.t. p̂(x) ≤ γ . (5)

Following [30], we allow the tolerance levels γ ≥ 0 of the SAA problem and α of the original problem to
be different. A very important result regarding feasibility of chance-constrained programs was derived in [8].
The authors find a bound on the probability that a solution of the SAA problem with γ = 0 (the so-called
scenario problem) violates the original problem. Using the simpler expression shown in [10], they prove that
if the sample size N satisfies, for a d-dimensional problem,

N ≥ 2

α

(
ln

1

β
+ d

)
, (6)

then the optimal solution of the SAA problem violates the chance constraint in the original problem with
probability at most β. The result is very powerful because it does not depend on the distribution of ξ,
requiring only convexity of the function G with respect to x. A similar result is derived in [26] for the case
of a general function G but when the feasibility set X is finite.

As mentioned earlier, one of the goals of this paper is to solve chance constrained problems in which the
value of α is very small, say, of order 10−6. Using formula (6) we see that the resulting sample size would
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be impractical, of order 106. For this reason the applicability of (6) is limited in our context. The same
comment applies to the sample size estimates derived in [26].

Motivated by those difficulties, we propose the use of IS techniques within the SAA. In the remainder of
this section we formulate the SAA problem with importance sampling and show that the modified problem
is still consistent.

2.1 Importance Sampling Techniques

Importance sampling (IS) is a well known simulation technique used to reduce variance (see, e.g., [4] for a
comprehensive discussion). For completeness, we review next the basic ideas of IS. Let µ denote the measure
in Rd induced by the random vector ξ, i.e. µ(A) = P(ξ ∈ A). We want to estimate p(x) for all x ∈ X. Now

let us consider ξ̂ a new random vector with induced measure ν, which we will call the IS measure, such that
µ is absolute continuous with respect to ν, i.e., µ(A) = 0 if ν(A) = 0. Let ξ̂1, . . . ξ̂N be i.i.d. copies of ξ̂.
Define

p̂IS(x) :=
1

N

N∑
j=1

1l{G(x,ξ̂j)>0}L(ξ̂j) , (7)

where L(·) is the likelihood ratio L(·) := dµ
dν (·) . The function L is the Radon-Nikodym derivative of µ with

respect to ν, i.e., L is a function Rd 7→ R such that µ(A) =
∫
A
L(s)dν(s) for any Borel set A ⊂ Rd. Note

that for any measurable function f : Rd 7→ R we have that
∫
Rd f(s) dµ(s) =

∫
Rd f(s)L(s) dν(s), that is,

Eξ [f(ξ)] = Eξ̂
[
f(ξ̂)L(ξ̂)

]
. (8)

In particular, by taking f ≡ 1 we have Eξ̂[L(ξ̂)] = 1. In the case where both ξ and ξ̂ have discrete support

L is the ratio between the respective probabilities mass functions, whereas in the case where both ξ and ξ̂
have probability densities L is the ratio between the respective probability densities. For each x ∈ X, we
have that p̂IS(x) is an unbiased estimator of p(x), since

Eξ̂
[
p̂IS(x)

]
=

1

N

N∑
j=1

Eξ̂
[
1l{G(x,ξ̂)>0}L(ξ̂)

]
=

1

N

N∑
j=1

Eξ
[
1l{G(x,ξ)>0}

]
= p(x).

Notice that the variance of the standard estimator p̂(x) in (4) is given by

NVar(p̂(x)) = p(x)− p(x)2 = Eξ
[
1l{G(x,ξ)>0}

]
− p(x)2

whereas the variance of the new estimator p̂IS(x) is given by

NVar(p̂IS(x)) = Eξ̂
[
1l2{G(x,ξ̂)>0}L(ξ̂)2

]
− p(x)2 = Eξ

[
1l{G(x,ξ)>0}L(ξ)

]
− p(x)2,

where the second equality follows from (8). Thus, we see that by choosing the IS measure ν in such a way
that the event 1l{G(x,ξ)>0} becomes more likely under that distribution, the variance of the new estimator
will be smaller. In fact, an optimal choice for ν is to put all of its weight on the set {ξ : G(x, ξ) > 0};
however, such a choice is impractical as it requires knowledge of the original probability p(x).

There is an extensive literature in simulation on how to chose a “good” IS measure ν, especially in
the context of estimation of rare-event probabilities; see, for instance, [22] for a recent account. Another
approach is to restrict the choice of IS distributions to some parametric family, say, indexed by θ, and then
to find the “best” (in some sense) parameter θ∗. For example, θ∗ can be the parameter that minimizes the
variance of the IS estimator subject to some restrictions, or one that minimizes some kind of distance to the
best (but idealized) distribution; see [36] and [35] for discussions. Many other approaches, which typically
work by exploiting somehow the structure of the problem, exist as well. In the telecommunications problem
described in Section 3 we use a parametric distribution but also exploit the structure of the problem in order
to obtain further variance reduction.
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2.2 Enhanced IS estimators

We move one step further and allow the IS estimator to depend on the decision variable x. As we shall
see later, this generalization will allow us to obtain better estimators. Before we proceed, we introduce an
assumption and some notation. Let I := {1, . . . , d} (recall that d is the dimension of ξ).

Assumption 1. The original probability measure µ and the IS probability measure ν are product measures
in Rd, i.e., that all components of ξ and ξ̂ are independent.

Definition 1. Given a subset J ⊆ I and x ∈ X, we say that the function G(x, ·) is J-determined if there is
a function GJ : Rn × R|J| 7→ R such that

G (x, (zi)i∈I) = GJ (x, (zj)j∈J)

for any vector z ∈ Rd. In words, only the coordinates zj for j ∈ J matter for calculation of G(x, z).

Next, let Ix be a set-function that chooses a subset of I for each x ∈ X. Given x ∈ X, there exists a
Borel measurable function φx on R|Ix| such that

φx ((zi)i∈Ix) = Eξ̂
[
L(ξ̂) | (ξ̂i)i∈Ix = (zi)i∈Ix

]
;

see, for instance, [13]. Define now a function Lx : Rd 7→ R in such a way that

Lx(ξ̂) = φx

(
(ξ̂i)i∈Ix

)
= Eξ̂

[
L(ξ̂) | (ξ̂i)i∈Ix

]
. (9)

By construction, Lx is Ix-determined. The following lemma shows that when the function G(x, ·) is Ix-
determined, the IS estimator of p(x) constructed with the likelihood function Lx is unbiased and its variance
is at most the same as the variance of the estimator p̂IS(x) defined in (7).

Lemma 2. Suppose that the set-function Ix defined above is such that G(x, ·) is Ix-determined for each

x ∈ X. Given an i.i.d. sample (ξ̂1, . . . , ξ̂N ) from the distribution of ξ̂, let

p̂IS0(x) :=
1

N

N∑
j=1

1l{G(x,ξ̂j)>0}Lx(ξ̂j). (10)

Then p̂IS0(x) is also an unbiased estimator of p(x). Moreover,

Var(p̂IS0(x)) = Var(p̂IS(x))− 1

N
Eξ̂
[
Var

(
1l{G(x,ξ̂)>0} | (ξ̂i)i∈Ix

)]
(11)

Proof. First let us prove that the estimator p̂IS0(x) is unbiased, for which it suffices to show that Eξ̂
[
1l{G(x,ξ̂)>0}Lx(ξ̂)

]
=

p(x). Indeed, we have

Eξ̂
[
1l{G(x,ξ̂)>0}Lx(ξ̂)

]
= Eξ̂

[
1l{G(x,ξ̂)>0}Eξ̂

[
L(ξ̂) |(ξ̂i)i∈Ix

]]
= Eξ̂

[
Eξ̂
[
1l{G(x,ξ̂)>0}L(ξ̂) | (ξ̂i)i∈Ix

]]
(12)

= Eξ̂
[
1l{G(x,ξ̂)>0}L(ξ̂)

]
= p(x), (13)

where the second equality follows from the assumption that G(x, ·) is Ix-determined, which implies that

G(x, ξ̂) is measurable with respect to the sigma-algebra generated by (ξ̂i)i∈Ix .
For the second assertion of the lemma, note that

Eξ̂
[
1l2{G(x,ξ̂)>0}Lx(ξ̂)2

]
= Eξ̂

[
1l{G(x,ξ̂)>0}

(
Eξ̂
[
L(ξ̂) | (ξ̂i)i∈Ix

])2
]

5



= Eξ̂

[(
Eξ̂
[
1l{G(x,ξ̂)>0}L(ξ̂) | (ξ̂i)i∈Ix

])2
]

= Eξ̂
[
Eξ̂
[
1l{G(x,ξ̂)>0}L(ξ̂)2 | (ξ̂i)i∈Ix

]
− Var

(
1l{G(x,ξ̂)>0}L(ξ̂) | (ξ̂i)i∈Ix

)]
= Eξ̂

[
1l{G(x,ξ̂)>0}L(ξ̂)2

]
− Eξ̂

[
Var

(
1l{G(x,ξ̂)>0}L(ξ̂) | (ξ̂i)i∈Ix

)]
and therefore

NVar(p̂IS0(x)) = Eξ̂
[
1l2{G(x,ξ̂)>0}Lx(ξ̂)2

]
− p(x)2

= Eξ̂
[
1l{G(x,ξ̂)>0}L(ξ̂)2

]
− Eξ̂

[
Var

(
1l{G(x,ξ̂)>0}L(ξ̂) | (ξ̂i)i∈Ix

)]
− p(x)2

= NVar(p̂IS(x))− Eξ̂
[
Var

(
1l{G(x,ξ̂)>0} | (ξ̂i)i∈Ix

)]
.

It is important to observe that p̂IS(x) corresponds to a particular case of p̂IS0(x) defined in Lemma 2,
obtained by choosing Ix = I for all x.

2.3 Uniform variance reduction

As mentioned earlier, a major challenge that arises when using IS in the context of solving chance-constrained
problems with SAA is that we need to use the same IS measure to perform the importance sampling for all
x ∈ X. For certain IS measures, variance can be reduced for some point in X but increase for others. We
propose the definition of a ε-Uniform variance reduction to capture the fact that we need to introduce
a new estimator that reduces the variance uniformly with respect to x.

Definition 3. Let p̂(x) be the standard Monte Carlo estimator of p(x) defined in (4), and let p̂′(x) be
another estimator of the same quantity. Given ε ∈ [0, 1], we say that p̂′(·) has ε-Uniform Variance Reduction
with respect to p̂(·) if for each x ∈ X we have

Var (p̂′(x)) ≤ εVar(p̂(x)).

The following proposition gives a sufficient condition to obtain estimators with ε-Uniform Variance Re-
duction. Before that, we provide a definition.

Definition 4. Let ε be such that 1 ≥ ε ≥ p(x) for all x ∈ X, and consider the IS estimator p̂IS0(x) defined
in (10). We say that p̂IS0(·) is an ε-Uniformly Bounded IS Estimator of p(·) if for all x ∈ X we have

1l{G(x,ξ̂)>0}Lx(ξ̂) ≤ ε w.p.1. (14)

Proposition 5. If p̂IS0(·) is an ε-Uniformly Bounded IS Estimator of p(·) then it has ε-Uniform Variance
Reduction with respect to p̂(·).

Proof. We have

NVar(p̂IS0(x)) = Eξ̂
[
1l{G(x,ξ̂)>0}Lx(ξ̂)2

]
−
(
Eξ̂
[
1l{G(x,ξ̂)>0}Lx(ξ̂)

])2

= Eξ
[
1l{G(x,ξ)>0}Lx(ξ)

]
− p(x)2, (15)

where the second equality follows from (8) and (13). Moreover, since p̂IS0(·) is an ε-Uniformly Bounded IS
Estimator of p(·), we have that (14) holds and hence absolute continuity of µ with respect to ν implies that
1l{G(x,ξ)>0}Lx(ξ) ≤ ε w.p.1, which in turn implies that

1l{G(x,ξ)>0}Lx(ξ) ≤ ε1l{G(x,ξ)>0} w.p.1.
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It follows that

NVar(p̂IS0(x)) = Eξ
[
1l{G(x,ξ)>0}Lx(ξ)

]
− p(x)2

≤ Eξ
[
1l{G(x,ξ)>0}ε

]
− p(x)2 = εp(x)− p(x)2

≤ ε(p(x)− p(x)2) = NεVar(p̂(x)),

which finishes the proof.

2.4 Consistency

When using sampling-based methods for stochastic optimization such as SAA, it is important to use con-
sistent estimators because they provide theoretical guarantees that the optimal value and solution set of
the approximate problem converge to their deterministic counterparts (see, e.g., [37] and [18] for a general
discussion of that issue). Here, we extend the consistency results of [30] derived for chance-constrained prob-
lems to the setting of SAA with importance sampling and show that consistency is present if the significance
levels of the SAA and true problems are the same.

The first step is to formulate an importance sampling version of the SAA problem (5), which we will
refer to as SAA-IS. Following the notation established in the previous section, we define SAA-IS problem as

min
x∈X

h(x) s.t. p̂IS(x) ≤ γ, (16)

where p̂IS(x) is the IS estimator defined in (7). Note that problem (16) is not stated for the more general
estimator p̂IS0(x) defined in (10), i.e., we use Ix = I for all x; we will comment on that shortly.

Before showing the consistency results for problem (16) we need some definitions. Recall that a sequence

fk(·) of extended real valued functions is said to epiconverge to a function f(·), written fk
e→ f , if for any

point x the following two conditions hold: (i) for any sequence xk converging to x one has

lim inf
k→∞

fk(xk) ≥ f(x), (17)

(ii) there exists a sequence xk converging to x such that

lim sup
k→∞

fk(xk) ≤ f(x). (18)

We discuss now the consistency results. Note initially that by the strong law of large numbers (SLLN)
(together with Lemma 2) we have that for any x, p̂IS(x) converges w.p.1 to p(x). Proposition 6 below shows
that, under mild assumptions, we actually have epiconvergence.

Proposition 6. Let G(x, ξ̂) be a Carathéodory function (i.e., continuous in x and measurable in ξ̂). Then

the functions p(·) and p̂IS(·) are lower semicontinuous, and p̂IS e→ p w.p.1.

Proof. To simplify the notation, define the functions φ(x, ξ̂) := 1l{G(x,ξ̂)>0} and ψ(x, ξ̂) := 1l{G(x,ξ̂)>0}L(ξ̂).

In [30, Proposition 2.1] it was shown that function φ is random lower semicontinuous. Combining this result
with Corollary 14.46 in [33] we see that ψ is also random lower semicontinuous1. The lower semicontinuity
of p was already established in [30]. The lower semicontinuity of p̂IS follows from Fatou’s lemma, since for
every x̄ ∈ Rn we have

lim inf
x→x̄

p̂IS(x) = lim inf
x→x̄

1

N

N∑
j=1

ψ(x, ξ̂j)

≥ 1

N

N∑
j=1

lim inf
x→x̄

ψ(x, ξ̂j) ≥ 1

N

N∑
j=1

ψ(x̄, ξ̂j) = p̂IS(x̄).

The epiconvergence p̂IS e→ p w.p.1 is then direct from [3, Theorem 2.3].

1Random lower semicontinuous functions are called normal integrands in [33].
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It is important to observe the role of the likelihood function L(ξ) in the above result. As mentioned earlier,

the result does not apply to the more general likelihood function Lx(ξ̂), the reason being that the dependence
of L on x may destroy the lower semicontinuity required to show the epiconvergence in Proposition 6. By
Proposition 2.2 in [30], we have that for γ = α, under mild regularity conditions, ϑ̂ and Γ̂ converge w.p.1 to
their counterparts of the true problem.

The above discussion shows that consistency of optimal values and optimal solutions is preserved when
using appropriate IS estimators. Note however that these results are stated with a continuous feasibility
set X in mind. On the other hand, when X is finite there is no need to require the epiconvergence result
in Proposition 6, since finiteness of X automatically implies uniform convergence of p̂IS to p. In fact, in
that case convergence holds for the more general estimator p̂IS0 , since the dependence of Lx on x does not
preclude uniform convergence when X is finite. It is also worth noticing that the above convergence results
extend readily to the case of multiple (but finitely many) chance constraints.

In the next section we describe a rare-event chance-constrained optimization model for a problem in
telecommunications, which we solve using an SAA approach combined with importance sampling as laid out
in this section. As we shall see, the use of IS techniques can be very effective for that problem, provided the
IS distribution is properly chosen. After presenting the problem and the model formulation, we will discuss
a particular choice of an IS distribution that yields promising results.

3 Joint routing and dimensioning problem for optical networks

We present now a problem arising in optical networks that illustrates the IS techniques discussed in Sec-
tion 2.1. We start by describing the problem and its relevance and then we write explicit mixed integer
programming formulations that approximate the problem using different IS estimators.

3.1 Problem description

Nowadays, the only technology that provides the high transmission speeds required in telecommunication are
optical networks with Wavelength Division Multiplexing (WDM) technology. WDM allows transmission of
multiple information channels (wavelengths) using a unique optical fiber. As a result, optical WDM networks
are widely deployed as transport networks around the globe.

In an end-to-end dynamic optical WDM network, every time a connection request (i.e. a request to
establish an optical channel from the source to the destination node) is generated, the resource allocation
algorithm must find a route and an available optical channel in each link of that route. We assume a network
equipped with wavelength conversion capability, that is, the resource allocation algorithm must only find a
route with at least one optical channel available in each link of this route, regardless the wavelength of the
channel. The algorithm in charge of finding a route is known as a routing algorithm.

When, in an end-to-end network, a connection is requested but there is not enough capacity in some
link of the route assigned to the origin-destination pair, a blockage occurs. The performance of a routing
algorithm in dynamic networks is typically measured in terms of the blocking probability. Routing algorithm
A is better than routing algorithm B if it obtains a lower value of blocking probability. The blocking
probability of a routing algorithm is in turn very much affected by the dimensioning of the network, that
is, the number of wavelengths or capacity allocated to each link. If all network links are equipped with
as many wavelengths as required in the worst case, then all routing algorithms would obtain zero blocking
probability. Since wavelengths are costly resources, network operators aim at equipping the network with the
minimum number of wavelengths per link such that the blocking obtained by the routing algorithms is below
a given threshold. To do so, the typical approach is to first select a routing algorithm and then dimension
the network in order to guarantee a given blocking probability according to the routes determined by the
routing algorithm. Since routing affects dimensioning, such sequential approach tends to be suboptimal. To
circumvent that problem, we will work with a model that solve both problems in a joint fashion.

We consider a network topology represented by a directed graph G = (V,A) where V is the set of network
vertices and A is the set of unidirectional arcs or links. The link capacity is measured in terms of number
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of wavelengths for link a ∈ A and is denoted by wa. Let C ⊂ V × V be the set of connections that should
be routed through the network. To facilitate the notation, we shall identify each connection with a number
c = 1, . . . , C, where C = |C|. Each connection is associated to a source sc and destination tc nodes. We
assume the traffic generated by source node sc to destination node tc is governed by an ON-OFF model
[1]. For this traffic model, the source is assumed to transmit at the maximum bitrate and, therefore, in
the long run the traffic load ρc corresponds to the fraction of time that connection c was transmitting data
through the network. If the traffic load ρc is the same for every connection c we say that the traffic load is
homogeneous, otherwise it is heterogeneous.

For source node sc, we model the ON-OFF process as independent Bernoulli random variables ξ =
(ξc)c=1,...,C , where ξc = 1 means connection c is in the ON state and thus the probability that such connection
is requested is equal to ρc. Hence, the number of requested connections (referred to as active connections
from now on) using a given link a is also a random variable. In this context, the blocking probability of link
a is the probability that the number of active connections exceeds its capacity wa.

Let α be the maximum blocking probability acceptable at every link. The Joint Routing and Dimen-
sioning (JRD) problem of an optical network consists in finding routes rc for each connection c = 1, . . . , C
and capacities wa for each arc a ∈ A such that the minimum number of wavelengths is used. A common
framework to model these kind of problems in telecommunications is by using multicommodity network flow
models [28]. The chance-constrained JRD optimization problem can be stated as

(CC-JRD) min
∑
a∈A

wa

N yc,· = dc ∀c = 1, . . . , C (19)

P

(
C∑
c=1

ξcyc,a ≤ wa

)
≥ 1− α ∀a ∈ A (20)

wa ∈ N, yc,a ∈ {0, 1} ∀a ∈ A, ∀c = 1, . . . , C (21)

The integer variable wa represents the capacity of arc a, while the binary variable yc,a takes value 1 if
connection c is routed through arc a, and 0 otherwise. Equation (19) is an abbreviated form of the flow
constraints to route each connection c from sc to tc. More specifically, we have

∑
a∈δ+(v)

yc,a −
∑

a∈δ−(v)

yc,a =


1 v = sc

−1 v = tc

0 otherwise

∀v ∈ V

where δ+(v) and δ−(v) are respectively the set of arcs that start in node v and the set of arcs that end in node
v. Finally, chance constraints (20) indicate that capacity constraints should be satisfied with probability at
least 1− α.

For the homogeneous case with traffic load ρ and for a fixed link a, the random variable
∑C
c=1 ξcyc,a follows

a binomial distribution with parameters
∑C
c=1 yc,a and ρ. For a given value of

∑C
c=1 yc,a, the minimum value

of wa such that constraint (20) is satisfied can be easily computed. Since the optimal value of wa is a discrete

step-increasing function on
∑C
c=1 yc,a, problem (CC-JRD) can be reformulated as an integer program and

solved to optimality (see [27, 41]). For the heterogeneous case, however, this argument is no longer valid,
since the dimensioning of wa depends not only on the number of connections routed through link a, but
also on which connections are being routed — and enumerating all possibilities is clearly not practical.
Nevertheless, the homogeneous case will serve as a benchmark for our IS approximations since the optimal
solution is known. In the heterogeneous case we rely on bounds for the optimal value in order to evaluate
the quality of the approximations obtained.

We close this section by emphasizing that, although the probability α is very small, we cannot simply
approximate the chance-constrained problem by setting α = 0 — a strategy that might seem appealing given
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that it is much easier to solve the problem when α = 0. As it turns out, an optimal solution in the case
of small α can differ considerably from the optimal solution with α = 0. In fact, note that if α = 0 then
the optimal solution satisfies wa =

∑C
c=1 yc,a, so the objective function of (CC-JRD) is equal to minimize∑

a∈A
∑C
c=1 yc,a. Hence, the optimal solutions correspond to route each connection using its corresponding

shortest path. Consider for example the case of ring topologies with 7 and 9 nodes. In that case, each
link has either 6 (in case of 7 nodes) or 10 (in case of 9 nodes) connections routed through, so the optimal
objective values are 84 and 180, respectively. But, if α = 10−6 then a capacity at each link of 5 (in case of
7 nodes) and 7 (in case of 9 nodes) is enough, resulting in objective values of 5 · 14 = 70 and 7 · 18 = 126,
respectively, which are significant smaller than the optimal values in the α = 0 case. This example shows
that allowing for a small amount of violation, e.g 10−6, yields substantially different solutions from the 100%
reliable case. More interestingly, none of these solutions are optimal for α = 10−6. The optimal values for
these instances are 68 and 117, respectively, and the optimal routing differs considerably from the shortest
path routing (see Figure 1).

Figure 1: Example of two routings for the ring of 9 nodes for α = 10−6. In the left case, each arc satisfies∑C
c=1 yc,a = 10, requiring a minimum capacity of 7, and resulting in a objective value of 126. In the right

case, each clockwise (counterclockwise) arc satisfies
∑C
c=1 yc,a = 28 (

∑C
c=1 yc,a = 1) with capacity 12 (1)

resulting in a objective value of 117, which is the optimal solution.

3.2 Mixed integer programming formulations

Let y denote the vector (yc,a)a∈A, c=1,...,C and w denote the vector (wa)a∈A. We shall use x to denote the
joint vector (y, w), and ξ to denote the random vector (ξc)c=1,...,C . Let ξ1, . . . , ξN be an i.i.d sample from
the distribution of the random vector ξ. Using the notation of Section 2, we have that the chance constraints
of problem (CC-JRD) can be written as

P
{
Ga(x, ξ) ≤ 0

}
≥ 1− α , with Ga(x, ξ) =

C∑
c=1

ξcyc,a − wa . (22)

Following equation (4), one estimator is

p̂a(x) =
1

N

N∑
s=1

1l{Ga(x,ξs)>0} . (23)

We are interested in blocking probabilities that are very small, say of order 10−6 , which would lead to
intractable sample sizes if p̂a(x) were used in an SAA formulation. In order to construct IS estimators, we

choose the IS distribution in a parametric way as follows: consider independent random variables (ξ̂c)c=1,...,C
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with Bernoulli distribution with parameters (ρ̂c)c=1,...,C . The likelihood ratio is

L(ξ̂) =

C∏
c=1

(
ρc
ρ̂c

)ξ̂c (1− ρc
1− ρ̂c

)1−ξ̂c
, (24)

and the IS estimator can be written as follows:

p̂IS
a (x) =

1

N

N∑
s=1

1l{
∑C

c=1 ξ̂
s
cyc,a>wa}L(ξ̂) . (25)

A third unbiased estimator can be constructed by noting that function Ga defined in (22) is Ia,y-
determined, for Ia,y = {c = 1, . . . , C : yc,a = 1}. Then, the modified likelihood ratio defined in (9)
can be written as

Ly,a(ξ̂) :=

C∏
c=1

(
ρc
ρ̂c

)yc,aξ̂c (1− ρc
1− ρ̂c

)yc,a(1−ξ̂c)

, (26)

and consequently the estimator in (10) becomes

p̂IS0
a (x) :=

1

N

N∑
s=1

1l{
∑C

c=1 ξ̂
s
cyc,a>wa}Ly,a(ξ̂) . (27)

From (15), the variance of this estimator is

Var(p̂IS0
a (x)) =

1

N
Eξ
[
1l{

∑C
c=1 ξ

s
cyc,a>wa}Ly,a(ξ)

]
− p(x)2

N

=
1

N
Eξ

[
1l{

∑C
c=1 ξcyc>w}

C∏
c=1

(
ρc
ρ̂c

)ξcyc (1− ρc
1− ρ̂c

)(1−ξc)yc
]
− p(x)2

N
. (28)

From Lemma 2 we have that p̂IS0
a (x) is an unbiased estimator of pa(x) and its variance is less than or equal

to the variance of p̂IS
a (x) in (25).

In order to use these estimators in the formulation of (CC-JRD), we only need to replace the chance
constraint (20) by

C∑
c=1

ξ̂scyc,a ≤ wa + za,sM ∀a ∈ A,∀s = 1, . . . , N, (29)

N∑
s=1

L(ξ̂s)za,s ≤ α ∀a ∈ A, (30)

za,s ∈ {0, 1} ∀a ∈ A,∀s = 1, . . . , N.

The variable za,s indicates whether the capacity constraint on arc a is violated in sample s, which is captured
by the big-M constraint (29). Finally, equation (30) approximates the chance constraint (20) as follows: for

p̂a we use L(ξ̂s) ≡ 1, and for p̂IS
a we use L(ξ̂) as defined in equation (24).

The formulation of the problem for the estimator p̂IS0
a is more delicate since the likelihood ratio Ly,a(ξ̂)

defined in (26) depends nonlinearly on the decision variables. Nevertheless, we can formulate an equivalent
MIP problem for the homogeneous case (all parameters ρc equal) as follows:

min
∑
a∈A

wa (31)

11



N yc,· = dc ∀c = 1, . . . , C (32)

C∑
c=1

ξ̂scyc,a ≤ wa + za,sM ∀a ∈ A,∀s = 1, . . . , N (33)

C∑
c=1

yc,a =

C∑
k=0

kva,k ∀a ∈ A (34)

C∑
k=0

va,k = 1 ∀a ∈ A (35)

La,s ≥
C∑
k=1

Fa(s, k)va,k − (1− za,s)M ∀a ∈ A,∀s = 1, . . . , N (36)

N∑
s=1

La,s ≤ αN ∀a ∈ A (37)

wa ∈ N, yc,a ∈ {0, 1}, ∀a ∈ A,∀c = 1, . . . , C (38)

La,s ≥ 0, za,s ∈ {0, 1}, va,k ∈ {0, 1} ∀a ∈ A,∀s = 1, . . . , N (39)

Decision variables y and w, constraint (32) and the objective function (31) are the same as the ones defined
in the original formulation (CC-JRD). Decision variables z and constraint (33) are as in (29). The binary

decision variable va,k is equal to one if and only if
∑C
c=1 yc,a = k, which is obtained by constraints (34) and

(35). The formulation is such that the continuous decision variable La,s represents 1l{
∑C

c=1 ξ̂
s
cyc,a>wa}Ly,a(ξ̂s)

for the arc a and sample s. Indeed, the likelihood ratio for sample s when k connections are routed through
a link can be pre-computed as

Fa(s, k) :=

k∏
i=1

(
ρ

ρ̂

)ξ̂si (1− ρ
1− ρ̂

)(1−ξ̂si )

. (40)

It is important to observe that, since all connections have the same probability and scenarios are sampled
independently for each arc, this value does not depend on which connections are routed through a link, only
on the number of such connections. We can compute (40) using the first k components of the sample s.
Constraint (36) ensures that if k connections are routed through link a (i.e. va,k = 1) and if the corresponding
capacity constraint is violated under sample s (i.e. za,s = 1) then La,s ≥ Fa(s, k). Together with constraint
(37) we have the desired representation.

In the heterogeneous case the likelihood ratio depends on which — and not just how many — connections
are routed through a link a, so the above formulation cannot be used in that setting. However, it is possible
to construct a MIP formulation that approximates the nonlinearity of the likelihood ratio function. We
describe that formulation next.

Recall that the term Ly,a(ξ̂) from equation (26) can be written as

Ly,a(ξ̂) =

C∏
c=1

(
ρc
ρ̂c

)ξ̂scyc,a (1− ρc
1− ρ̂c

)(1−ξ̂sc)yc,a

=

C∏
c=1

(
ρc
ρ̂c

1− ρ̂c
1− ρc

)ξ̂scyc,a C∏
c=1

(
1− ρc
1− ρ̂c

)yc,a
.

Hence, constraint p̂IS0
a (x) ≤ α is equivalent to

1

N

N∑
s=1

(
C∏
c=1

(
ρc
ρ̂c

1− ρ̂c
1− ρc

)ξ̂scyc,a)
1l
{

C∑
c=1

ξ̂scyc,a>wa}
≤ α

C∏
c=1

(
1− ρ̂c
1− ρc

)yc,a
. (41)
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We will show in Section 4 that we can build an appropriate important sampling distribution satisfying
ρc
ρ̂c

1−ρ̂c
1−ρc = eλ

∗
x for all c = 1, . . . , C, where λ∗x > 0 is the root of a certain equation (see Theorem 9). Hence, for

such IS distribution the left-hand size of the equation only depends on the number of active connections in
sample s (i.e.,

∑C
c=1 ξ̂

s
cyc,a), but not on which of them are active. However, this is not possible for the right-

hand size of (41), so we need to rely on an approximation of the non-linear term, replacing
∏C
c=1

(
1−ρ̂c
1−ρc

)yc,a
with Ga

(∑C
c=1 yc,a

)
, where

Ga(k) := max
C0⊆{1,...,C}:|C0|=k

∏
c∈C0

1− ρ̂c
1− ρc

. (42)

We argue that the above expression can be computed easily. In fact, by writing ρ̂c as a function of ρc it is
easy to check that such a function is concave and increasing, so we have that

1− ρ̂i
1− ρi

= eλ
∗
x
ρ̂i
ρi
≥ eλ

∗
x
ρ̂j
ρj

=
1− ρ̂j
1− ρj

whenever ρi ≥ ρj . Thus, assuming that ρ1 ≥ ρ2 ≥ . . . ≥ ρC— which can be done without loss of generality
—it follows that

Ga(k) =

k∏
i=1

1− ρ̂i
1− ρi

. (43)

Additionally, note that by using this approximation constraint (41) now depends only on the number of

connections routed through arc a (i.e.
∑C
c=1 yc,a) and on the number of these connections that are active in

each sample (i.e.
∑C
c=1 ξ̂

s
cyc,a), so we can formulate a model which is similar to the one constructed for the

homogeneous case.

min
∑
a∈A

wa (44)

N yc = dc ∀c = 1, . . . , C (45)

C∑
c=1

ξ̂scyc,a ≤ wa +

C∑
k=1

k · ua,s,k ∀a ∈ A,∀s = 1, . . . , S (46)

C∑
c=1

ξ̂scyc,a ≥
C∑
k=1

k · ua,s,k ∀a ∈ A,∀s = 1, . . . , S (47)

N∑
s=1

C∑
k=1

e−kλua,s,k ≤ αN
C∑
k=0

Ga(k)va,k ∀a ∈ A (48)

C∑
c=1

yc,a =

C∑
k=0

kva,k ∀a ∈ A (49)

C∑
k=0

va,k = 1 ∀a ∈ A (50)

C∑
k=1

ua,s,k ≤ 1 ∀a ∈ A,∀s = 1, . . . , S (51)

wa ∈ N, yc,a ∈ {0, 1}, ua,s,k ∈ {0, 1}, va,k ∈ {0, 1} ∀a ∈ A,∀c = 1, . . . , C, ∀s = 1, . . . , S (52)

Binary variables va,k, together with equations (50) and (49), satisfy that va,k = 1 if and only if
∑C
c=1 yc,a = k.

The role of binary variables u is explained in the following lemma
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Lemma 7. Let (x,w, u, v) be an optimal solution of previous formulation, then there exist an optimal solution
(x,w, û, v) such that

1.
∑C
c=1 ξ̂

s
cyc,a ≤ wa if and only if ûa,s,k = 0 for all k = 1, . . . , C.

2. if ûa,s,k = 1 then
∑C
c=1 ξ̂

s
cyc,a = k,

Hence,
C∑
k=1

e−kλûa,s,k = e
∑C

c=1 ξ̂
s
cyc,a1l

(
C∑

c=1
ξ̂scyc,a>wa)

Proof. First, note that constraint (46) impose that if ua,s,k = 0 for all k then
∑C
c=1 ξ̂

s
cyc,a ≤ wa. Suppose

that
∑C
c=1 ξ̂

s
cyc,a ≤ wa but ua,s,k′ = 1 for some k′. It is easy to see that defining ûa,s,k = 0 for all k and

û = u for the other variables, then û also satisfy Equation (46) and (47), and since û ≤ u then it also satisfy
Equations (51) and (48), hence (x,w, û, v) is also optimal. Repeating this procedure is easy to see that we
obtain a solution that satisfies condition (1). For the second condition, suppose that ua,s,k = 1 for some k

but
∑C
c=1 ξ̂

s
cyc,a > k. Let k̂ =

∑C
c=1 ξ̂

s
cyc,a and define ûa,s,k̂ = 1, ûa,s,k = 0 ∀k 6= k̂ and û = u for the other

variables. By definition, (w, x, û, v) satisfies (46) and (51), and since k̂ > k then it also satisfies (46). On

the other hand, since λ > 0 then e−λk > e−λk̂ so it also satisfy (48) and then (x,w, û, v) is also optimal.
Repeating this procedure is easy to see that we obtain a solution that satisfies condition (2).

Lemma 7 shows that the optimal solution (y, w) of this MIP formulation satisfies

1

N

S∑
s=1

e
∑C

c=1 ξ̂
s
cyc,a1l(

∑
c∈C

ξ̂scyc,a>wa) ≤ α ·Ga

(
C∑
c=1

yc,a

)
∀a ∈ A

which is the desired approximation of equation p̂IS0
a ≤ α. By construction the proposed scheme is an outer

approximation of constraint (41). Of course, by replacing max with min in (42) we can easily obtain an
inner approximation in a similar fashion.

4 Choosing the importance sampling estimator

In this section we discuss how to choose an IS distribution that ensures ε-uniform variance reduction over a
subset X0 of the set of points x = (y, w) satisfying (19) and (21), which we will denote by X henceforth. As
we shall see shortly, it is not necessary — in fact, it is not even desirable — to attempt to obtain uniform
reduction over the entire set X.

Since we want to estimate the blocking probability for each arc a in A, we can choose a different IS
distribution for each arc. Nevertheless, as our analysis is the same for each arc we drop the subscripts a to
simplify the notation.

Recall that ξ = (ξc)
C
c=1 is a vector of Bernoulli random variables modeling the presence or not of each

connection c, with E[ξc] = ρc. Throughout this section we will assume without loss of generality that the
connections are numbered in such a way that the corresponding rates ρc satisfy ρ1 ≥ ρ2 ≥ . . . ≥ ρC . As
discussed before, the probability we want to estimate is

p(x) = P

{
C∑
c=1

ycξc > w

}
=

∑
ξ∈{0,1}C

1l{
∑C

c=1 ycξc>w}

C∏
c=1

ρycξcc (1− ρc)yc(1−ξc),

and to do that we will use a product of Bernoulli distributions with parameters (ρ̂c)
C
c=1 as the IS distribution,

which results in the estimator p̂IS0(x) defined in (27). The problem then is to find the optimal value of the
parameters (ρ̂c)

C
c=1 such that the variance of IS estimator is uniformly minimized over an appropriate set

X0, that is, we will look for the best ε-uniform variance reduction over that set. We first discuss how to
choose good IS parameters for a given solution x = (y, w) ∈ X, and then we combine the results to choose
an overall IS distribution for the whole set.
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4.1 Choosing the IS parameters for a fixed solution (y, w).

Given x = (y, w) ∈ X, let us denote |y| =
∑C
c=1 yc. In order to reduce the variance of p̂IS0(x), from expression

(28) we should minimize the term

Eξ

[
1l{

∑C
c=1 ycξc>w}

C∏
c=1

(
ρc
ρ̂c

)ycξc (1− ρc
1− ρ̂c

)yc(1−ξc)
]

=Eξ

[
1l{

∑C
c=1 ycξc>w}

C∏
c=1

(
ρc(1− ρ̂c)
ρ̂c(1− ρc)

)ycξc C∏
c=1

(
1− ρc
1− ρ̂c

)yc]
. (53)

For each c ∈ C, let

λc := log

(
1/ρc − 1

1/ρ̂c − 1

)
= log

(
ρ̂c(1− ρc)
ρc(1− ρ̂c)

)
. (54)

Note that λc ≥ 0 when ρ̂c ≥ ρc — which is case since the IS distribution works by inflating the connection
rates so the event

∑C
c=1 ycξc > w happens more often. Moreover, a bit of algebra shows that 1−ρc

1−ρ̂c =

eλcρc + (1− ρc). It follows that we can write expression (53) as

Ax(~λ) := Eξ

[
1l{

∑C
c=1 ycξc>w}

e−
∑

c∈C λcycξc

C∏
c=1

(
eλcρc + (1− ρc)

)yc]
. (55)

Minimizing Ax(~λ) requires solving a multidimensional stochastic nonlinear problem, which is a difficult
task. Alternatively, our approach is to minimize the largest term inside the expected value, that is

Bx(~λ) := max
ξ :

∑C
c=1 ycξc>w

{
e−

∑
c∈C λcycξc

C∏
c=1

(
eλcρc + (1− ρc)

)yc}
. (56)

It is easy to see thatBx(~λ) > 0. Moreover, from Proposition 5 we obtain that Var
(
p̂IS0(x)

)
≤ Bx(~λ)Var (p̂(x))

provided that Bx(~λ) ≤ 1. Thus, we can reduce the variance of the IS estimator p̂IS0(x) by minimizing Bx(~λ)

over ~λ ≥ 0. By using KKT conditions, we obtain a characterization for the optimal ~λ, which is given in the
following Theorem 9. Furthermore, by using (54) we can compute the corresponding parameters ρ̂c = ρ̂c(λc)
as

ρ̂c(λc) =
eλcρc

eλcρc + (1− ρc)
,

and we define ρ̂c(∞) := limλc→∞ ρ̂c(λc) = 1.

Before we state the Theorem we present an auxiliary result — of independent interest — which gives a
lower bound on the probability that a random variable defined as a sum of independent Bernoulli random
variables exceeds its mean. Unlike upper bound inequalities such as Chebyshev’s, which are valid for any dis-
tribution, lower bound inequalities typically require exploiting characteristics of the underlying distributions
as we do below. The proposition will be used to verify the assumptions of Theorem 9.

Proposition 8. Let ζ1, . . . , ζm be m ≥ 1 independent Bernoulli random variables with P{ζi = 1} = pi, and
suppose that 0 < pi < 1 for all i. Let Z :=

∑m
i=1 ζi, and define δ := mini pi(1− pi) > 0. Then, we have

P {Z > E[Z]} >
δ

2m
. (57)

Proof. Let u : [0,m] 7→ R be the function defined as u(t) := m2−t2. Since u(·) is nonnegative and decreasing
on [0,m], we have that

P {Z ≤ E[Z]} = P {u(Z) ≥ u(E[Z])}
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= P
{
m2 − Z2 ≥ m2 − (E[Z])2

}
≤

E
[
m2 − Z2

]
m2 − (E[Z])2

,

where the last inequality follows from Markov’s inequality. Thus, we have

P {Z > E[Z]} ≥ 1−
E
[
m2 − Z2

]
m2 − (E[Z])2

=
E
[
Z2
]
− (E[Z])2

m2 − (E[Z])2

=
Var(Z)

(m+ E[Z])(m− E[Z])
. (58)

Next, notice that independence of {ζi} implies that Var(Z) =
∑m
i=1 pi(1−pi). Moreover, since 0 < E[Z] < m

we have that m+ E[Z] < 2m, m− E[Z] < m and thus from (58) we have that

P {Z > E[Z]} >

∑m
i=1 pi(1− pi)

2m2
≥ δm

2m2
=

δ

2m
.

Theorem 9. Suppose that 0 < ρc < 1 for all c = 1, . . . , C. Let x = (y, w) be such that w ∈ N satisfies∑C
c=1 ρcyc < w ≤

∑C
c=1 yc − 1. Then the function Bx(~λ) is convex and there exists λ∗x ∈ R+ ∪ {∞} such

that the vector ~λ defined as λc = λ∗x ∀c ∈ C minimizes Bx(~λ). If w =
∑C
c=1 yc − 1, then the optimal λ∗x is

λ∗x =∞ and ρ̂c(λ
∗
x) = 1; otherwise, λ∗x and ρ̂c(λ

∗
x) satisfy

C∑
c=1

ρ̂c(λ
∗
x)yc = w + 1 and ρ̂c(λ

∗
x) =

eλ
∗
xρc

eλ
∗
xρc + (1− ρc)

.

To prove the theorem, we need the following lemma, the proof of which is shown after the proof of the
theorem.

Lemma 10. For n ≥ 1, let ρi, i = 1, . . . , n be numbers such that ρi ∈ (0, 1) and ρ1 ≥ ρ2 ≥ . . . ≥ ρn. Given
an integer w such that 0 ≤ w ≤ n− 1, consider problem (P) defined as follows:

min
λ∈Rn

+

max
zi∈{0,1}n∑

i zi=w+1

−
n∑
i=1

ziλi +

n∑
i=1

log(eλiρi + (1− ρi)). (P)

Then, there exists an optimal solution to (P) that satisfies λ1 ≤ λ2 ≤ . . . ≤ λn.

of Theorem 9. Let n =
∑C
c=1 yc. Without loss of generality, let us assume for the sake of simplifying notation

that the set {c : yc = 1} corresponds to {1, . . . , n}. Since the log function is increasing, we have that

log(Bx(~λ)) = max
zi∈{0,1}n∑

i zi=w+1

−
n∑
i=1

ziλi +

n∑
i=1

log(eλiρi + (1− ρi))

By Lemma 10, minimizing log(Bx(~λ)) amounts to solving the following problem:

min
~λ∈Rn

ψ(~λ) := −
w+1∑
i=1

λi+

n∑
i=1

log(eλiρi + (1− ρi)) (59)

λi ≤ λi+1 i = 1 . . . n− 1 (60)

λ1 ≥ 0 (61)

16



Note that the objective function of the above problem is strictly convex in ~λ. In fact, its second derivatives
are

∂2ψ

∂λ2
i

=
eλiρi(1− ρi)

(eλiρi + (1− ρi))2
> 0,

∂2ψ

∂λi∂λj
= 0.

Since Bx(~λ) = exp(log(Bx(~λ)) and log(Bx(~λ)) is convex — though not strictly convex due to the components

λc such that yc = 0 — it follows that Bx is convex in ~λ. Of course, the components λc such that yc = 0 do
not affect the value of Bx(~λ).

Suppose first that w = n− 1. Then, the first derivative of the objective function in (59) is given by

∂ψ

∂λi
= −1 +

eλiρi
eλi + (1− ρi)

, i = 1, . . . , n,

so we see that lim~λ→∞∇ψ(~λ) = 0. Notice that we can in particular interpret lim~λ→∞ as limλ→∞ with
λi = λ. That is, in that case the optimal solution of (59)-(61) is λi =∞, i = 1, . . . , n.

Consider now the case w < n − 1. We will show that problem (59)-(61) has a unique optimal solution,
which can be found by writing the Karush-Kuhn-Tucker conditions as follows:

−1(i≤w+1) +
eλiρi

eλiρi + (1− ρi)
+ µi − µi−1 = 0 i = 1 . . . n− 1 (62)

eλnρn
eλnρn + (1− ρn)

− µn−1 = 0 (63)

µi(λi+1 − λi) = 0 i = 1 . . . n− 1 (64)

µ0λ1 = 0 (65)

µi ≥ 0 i = 0 . . . n− 1 (66)

where ~µ = (µi) is the vector of Lagrangean multipliers of constraints (60) and µ0 is the Lagrangean multiplier
of constraint (61).

Consider now a particular choice of vectors ~µ and ~λ defined as follows. All components of ~λ are identical,
with λi = λ∗, where λ∗ ∈ R+ solves the equation

ϕ(λ∗) :=

n∑
i=1

eλ
∗
ρi

eλ∗ρi + (1− ρi)
= w + 1. (67)

Note that we can always find such λ∗, since the function ϕ(λ) is continuous and increasing, and

ϕ(0) =

n∑
i=1

ρi < w < w + 1 (68)

lim
λ→∞

ϕ(λ) = n > w + 1. (69)

The inequalities in (68) follow from the assumptions of the theorem on w and the fact that we are analyzing
the case w < n− 1. The components of ~µ are defined as

µ0 := 0 (70)

µi := min{i, w + 1} −
i∑

j=1

eλ
∗
ρj

eλ∗ρj + (1− ρj)
i = 1, . . . , n− 1. (71)

We claim that ~µ and ~λ satisfy the KKT conditions (62)-(66) laid out above. To see that, observe that
equations (70)-(71) imply (62). Equation (63) follows from (67), since we have

eλ
∗
ρn

eλ∗ρn + (1− ρn)
= w + 1−

n−1∑
i=1

eλ
∗
ρi

eλ∗ρi + (1− ρi)
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and the latter term coincides with µn−1 defined in (71). Equations (64) and (65) are trivially satisfied.
Finally, we show that (66) holds, with strict inequality if i ≥ 1. Indeed, (67) implies that

i∑
j=1

eλ
∗
ρj

eλ∗ρj + (1− ρj)
< w + 1 i = 1, . . . , n− 1

and clearly have
i∑

j=1

eλ
∗
ρj

eλ∗ρj + (1− ρj)
< i i = 1, . . . , n

as each term in the summand is less than 1.

of Lemma 10. Suppose that ~λ = (λ1, . . . , λn) is an optimal solution and there exists some j < n such that

λj > λj+1. We will show that ~̄λ defined as λ̄j = λj+1, λ̄j+1 = λj and λ̄i = λi for i 6= {j, j + 1} has no worse

objective function than ~λ. Let ∆ be defined as the difference in objective function between ~λ and ~̄λ, i.e.,

∆ = max
zi∈{0,1}n∑

i zi=w+1

−
n∑
i=1

ziλi +

n∑
i=1

log(eλiρi + (1− ρi)) (72)

−

 max
zi∈{0,1}n∑

i zi=w+1

−
n∑
i=1

ziλ̄i +

n∑
i=1

log(eλ̄iρi + (1− ρi))

 . (73)

We will prove that ∆ ≥ 0, showing that ~̄λ is no worse than ~λ. Note initially that

max
zi∈{0,1}n∑

i zi=w+1

−
n∑
i=1

ziλi = max
zi∈{0,1}n∑

i zi=w+1

−
n∑
i=1

ziλ̄i,

since the maximum value on both sides is equal to the sum of the smallest w + 1 components of the vector
~λ. Thus, we only need to compare remaining part of the objective function, i.e., we have

∆ =

n∑
i=1

log(eλiρi + (1− ρi))−
n∑
i=1

log(eλ̄iρi + (1− ρi))

= log(eλjρj + (1− ρj)) + log(eλj+1ρj+1 + (1− ρj+1))

− log(eλ̄jρj + (1− ρj))− log(eλ̄j+1ρj+1 + (1− ρj+1)).

Since λ̄j = λj+1 and λ̄j+1 = λj , it follows that

∆ = log

(
eλjρj + (1− ρj)
eλj+1ρj + (1− ρj)

)
− log

(
eλjρj+1 + (1− ρj+1)

eλj+1ρj+1 + (1− ρj+1)

)
= log

(
eλj − eλj+1

eλj+1 + 1
ρj
− 1

+ 1

)
− log

(
eλj − eλj+1

eλj+1 + 1
ρj+1
− 1

+ 1

)
.

Note that the argument inside the log is positive, since λj > λj+1. Moreover, since ρj ≥ ρj+1, we see that
1/ρj − 1 ≤ 1/ρj+1 − 1 and hence we conclude that ∆ ≥ 0.

Theorem 9 reduces the minimization problem to a one-dimensional problem, which can be efficiently
solved numerically. Note that if x is such that |y| = w + 1, then ρ̂c = 1. In this case p̂IS0(x) is constant

and equal to p(x). Regarding the assumptions of Theorem 9, the condition
∑C
c=1 ρcyc < w is satisfied in
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our routing and dimensioning problem under mild assumptions. Indeed, since
∑C
c=1 yc ≤ C, it follows from

Proposition 8 that P {
∑
c ycξc >

∑
c ycρc} > δ/(2C) > 0, provided that 0 < ρc < 1 for all c. Therefore, if

δ/(2C) ≥ α — which is typically the case since α is very small — then w must be bigger than
∑C
c=1 ycρc to

be feasible. Similarly, the condition w ≤
∑C
c=1 yc−1 is harmless, since if w ≥

∑
c yc then p(x) = 0 regardless

of the value of the parameters ρc, i.e, there is nothing to estimate.

4.2 Uniform variance reduction for the (CC-JRD) formulation

The results in Section 4.1 show how to control the variance of the estimator p̂IS0(x) for a fixed x. We would
like to find an IS distribution that reduces the variance uniformly for all x ∈ X (recall that X is set of points
x = (y, w) satisfying (19) and (21)). As it turns out, such a requirement is too strong. To understand why,
consider a point x ∈ X such that p(x)� α. Not only is x infeasible for problem Problem (CC-JRD), but
also its variance may be large. On the other hand, there is no need to obtain a precise estimation of that
quantity in order to check its infeasibility. So, trying to obtain uniform variance reduction over X may not be
desirable, since by requiring such uniformity over the whole set X we would be sacrificing the quality of the
estimators at the points that really matter, i.e. where p(x) ≈ α. The numerical experiments in Section 5 will
illustrate this issue. Of course, characterizing exactly the feasibility set {x ∈ X : p(x) ≤ α} is impractical,
since such a task is as difficult as solving the original problem. Our approach is then to construct an outer
approximation X0 of the feasibility set such that variance is reduced uniformly over X0. In what follows we
proceed in that direction.

As discussed in Section 4.1, a necessary condition for feasibility of x (when α is sufficiently small) is that

w >
∑C
c=1 ρcyc. Thus, we can replace the original set X with the set

X0 :=

{
x ∈ X : w >

C∑
c=1

ρcyc

}
(74)

since this entails simply adding a linear inequality to the original problem. Our initial goal is to ensure
uniform reduction variance for all x in X0.

The following result shows how to choose IS parameters in order to guarantee variance reduction for all
x ∈ X0. Recall from Theorem 9 that there is a minimizer of the function Bx(~λ) such that all components

of ~λ have the same value. Consider now the restriction of Bx to the set {~λ ∈ RC+ : λ1 = . . . = λC}. To
abbreviate the notation, we shall write this function as Bx(λ), where λ ∈ R+. Similarly, we will write the
corresponding IS parameter as ρ̂c(λ) for all c ∈ 1 . . . C.

Proposition 11. Let
εIS0(λ) := max

x∈X0

Bx(λ) (75)

Then, εIS0(·) is a convex function and there is a λ̄ ∈ R+ ∪ {∞} that minimizes that function. Moreover,
εIS0(λ̄) < 1 and p̂IS0 has εIS0(λ̄)-uniform variance reduction with respect to the standard Monte Carlo esti-
mator p̂ on the set X0.

Proof. By Theorem 9, Bx(·) is a continuous convex function, so εIS0(·) is also a continuous convex function.
Moreover, using an argument similar to that used in the proof of Theorem 9 we find that the derivative of
the function ψx(λ) := logBx(λ) is

dψx
dλ

= −(w + 1) +

C∑
c=1

eλρcyc
eλρc + (1− ρc)

.

Since dBx

dλ = Bx(λ)dψx

dλ and Bx(0) = 1, it follows that dBx

dλ (0) =
∑C
c=1 ρcyc − (w + 1) < 0 for all x ∈ X0.

Therefore, the λ̄ that minimizes εIS0(·) is such that λ̄ > 0 (possibly λ̄ = ∞) and εIS0(λ̄) < 1. Finally, from
Proposition 5 we conclude that p̂IS0 has εIS0 -uniform variance reduction with respect to p̂ on the set X0.
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Further enhancement in variance reduction can be obtained as follows. As we have seen in Section 4.1,
for the points x = (y, w) such that w ≥ |y| we have p(x) = 0 and so any sampling approximation will yield
the correct value. Thus, we can assume that w ≤ |y| − 1, which implies that

p(x) = P

{
C∑
c=1

ξcyc > w

}
≥ P

{
C∑
c=1

ξcyc > |y| − 1

}
= P

{
C∑
c=1

ξcyc = |y|

}

= P{ξc = 1, for all c such that yc = 1} ≥
C∏

c=C−|y|+1

ρc ,

where the last inequality arise from our stated assumption that ρ1 ≥ . . . ≥ ρC and the independence of {ξc}.
It follows that if

|y| ≤ n0 := max

{
k :

C∏
c=C−k+1

ρc ≥ Kα

}
(76)

for some reasonably large K (say, K = 10), then we have that p(x) ≥ Kα, in which case we say that x is
sufficiently far from the feasibility set and therefore variance need not be reduced for such x. In addition, let
w0(y) be a valid lower bound for w for any feasible x, such that w0(y) >

∑C
c=1 ρcyc (later we will see how

to construct one such bound). Define the set

X ′0 := {x ∈ X0 : w ≥ w0(y) and |y| ≥ n0} . (77)

Since X ′0 ⊆ X0, from Proposition 11 it is clear that by re-defining εIS0 as εIS0(λ) := maxx∈X′0 Bx(λ) we also
obtain uniform variance reduction on X ′0. The advantage of working with the reduced set X ′0 instead of X0

is that, by discarding points that are “too far” from the feasibility set (in the sense that p(x) ≥ Kα) and
by cutting further the feasibility set via the sharper lower bound w0(y), larger variance reduction can be
obtained; as we shall see in Section 5, such intuition is confirmed by the numerical experiments.

It remains to discuss how to calculate εIS0(λ) in (75) (using X ′0 in (77) in place of X0) since the maximum
is computed over an uncountable set. In the particular case where w0(y) only depends on |y|, let xk be the
routing such that the k connections with highest rates are routed through the link, i.e., yc = 1lc≤k, and let
wk := w0(y) for y such that |y| = k. Then we have

εIS0(λ) = max
x∈X0

{
exp

(
− λ(w0(y) + 1)

) C∏
c=1

(
1 + ρc(e

λ − 1)
)yc}

= max
k=n0,...,C

max
x:|y|=k

{
exp

(
− λ(w0(y) + 1)

) C∏
c=1

(
1 + ρc(e

λ − 1)
)yc}

= max
k=n0,...,C

{
exp

(
− λ(wk + 1)

) k∏
c=1

(
1 + ρc(e

λ − 1)
)}

= max
k=n0,...,C

{Bxk
(λ)} .

Hence, in order to find λ̄ that minimizes εIS0(·) we only need to consider the maximum among C − n0 + 1
convex functions.

To illustrate the calculation, in Figure 2 we plot Bxk
for a case of C = 21 connections with rates ρc

randomly chosen between 0.1 and 0.3 and α = 10−6. We use K = 10 in (76), which yields n0 = 6, and the
lower bound w0(y) constructed as the (1 − α)-quantile of a binomial distribution with parameters |y| and
ρC . It can be seen that Bxk

has a steep decrease near zero, and εIS0(λ) can reach very low values, resulting
in considerable variance reduction.

Finally, note that all of the results in this section can be naturally extended to the estimator p̂IS(x)
defined in (25). In fact, in that case the calculation is much easier, due to the fact that the likelihood
function does not depend on x. We state the result in Proposition 12 below.
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Figure 2: Example of the values of Bxk
(λ) for C = 21 connections with rates ρc randomly chosen between

0.1 and 0.3 and α = 10−6 for λ ∈ [0, 4] (left) and an enlarged version for λ ∈ [1, 2.5] (right).

Proposition 12. Suppose that the lower bound w0(y) is a non-decreasing function that only depends on |y|,
let wk := w0(y) for y s.t. |y| = k, and let

εIS(λ) := e−λ(wn0
+1)

C∏
c=1

(eλρc + (1− ρc)) , (78)

where n0 is defined in (76). If
∑C
c=1 ρc ≤ wn0 + 1 then the optimal λ̄ that minimizes εIS(·) satisfies

C∑
c=1

ρ̂c(λ̄) = wn0 + 1 and ρ̂c(λ̄) =
eλ̄ρc

eλ̄ρc + (1− ρc)
.

Moreover, εIS(λ̄) < 1 and p̂IS has εIS(λ̄)-uniform variance reduction with respect to the standard Monte Carlo
estimator p̂ on the set X ′0.

Proof. By doing a similar construction to that in Section 4.1 for the estimator p̂IS(x), we obtain that the

quantity Bx(~λ) defined in (56) is the same except that it does not have the exponent yc. Thus, Theorem 9
applies, with yc = 1 for all c. It follows that the quantity analogous to (75) can be written as

ε(λ) := max
x∈X′0

{
e−λ(w+1)

C∏
c=1

(eλρc + (1− ρc))

}
.

Note that the quantity inside the braces is a decreasing function of w, so the max is achieved at the smallest
value of w + 1 in X ′0, which is wn0

+ 1. This leads to the expression (78). By applying logarithm and
minimizing over λ we reach the desired conclusion.

We conclude this section by recalling that the above calculations have been conducted for an arbitrary
arc a. While the calculations are similar for other arcs, the obtained IS parameter values for the estimator
p̂IS0 may of course be different, as they depend on which and how many connections are routed through that
particular arc. In the case of the estimator p̂IS, however, we see from Proposition 12 that the parameter
values depends on all the connections that can be potentially routed through that arc.

5 Computational experiments

In this section we compare the performance of the different approaches for solving problem (CC-JRD)
through computational experiments. When we use estimators p̂a(x), p̂IS

a (x) and p̂IS0
a (x), for each arc a ∈ A,
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we will refer to the corresponding approximation as SAA, SAA-IS and SAA-IS0, respectively. We are
interested in evaluating the quality of the solutions obtained, in particular when the sample size N is
significantly smaller than 1/α.

We test the three approaches over a ring topology, which is one of the most common real-world topologies
for optical networks. We study rings with 7 and 9 nodes for the homogeneous case, in which all connection
rates ρc are identical and equal to 0.1. As mentioned earlier, in that case the problem can be solved directly
by inverting binomial distributions; nevertheless, we apply our SAA methodology to that problem in order
to verify the quality of the solutions obtained with the importance sampling approach. We later report
experiments conducted for the heterogeneous case, for which there is no analytical solution.

As previously explained, we need to consider a smaller subset X ′0 where the variance of p̂IS0 is uniformly
reduced, which is given by the choice of the function w0(y). Table 1 shows the obtained IS measure ρ̂ and the
resulting theoretical variance reduction obtained by applying different IS estimators, with different functions
w0. All IS parameters were computed using Propositions 11 and 12, for n0 computed using (76) with K = 10.
In column SAA-IS0-1 we use the best possible lower bound w0(y), obtained by computing the (1−α)-quantile
of a binomial distribution with parameters |y| and ρ. We see that we obtain enormous variance reduction in
this case for all x ∈ X ′0, with values similar to the value of α. However, note that by adding this constraint
to the problem we generate exactly the feasibility set of problem (CC-JRD), without requiring to use a
sampling approximation of the chance constraints; of course, we can do that in this case because we are
dealing with a homogeneous setting, which as we mentioned before can be solved without sampling—recall
that our goal in studying the homogeneous case is just to test our procedure. In column SAA-IS0-2 we use
the worst lower bound that satisfy the conditions of Theorem 9, that is, w0(y) =

∑C
c=1 ρcya,c. In this case,

the subset X ′0 is too large, resulting in negligible variance reduction. In order to mimic an intermediate
situation, in column SAA-IS0-3 we present the results obtained using a linear function w0 = m|y|, where m
is the maximum scalar such that w0 is a valid lower bound. As we can see, by using this restriction of the
feasible set we still can decrease the variance of the estimator by 2 to 3 orders of magnitude. Hence, in the
following experiments we will use this last IS estimator, and we include the constraint wa ≥ m

∑C
c=1 ya,c for

all a ∈ A in all formulations.

Instance SAA-IS SAA-IS0-1 SAA-IS0-2 SAA-IS0-3

Size α ρ̂ εIS ρ̂ εIS0 ρ̂ εIS0 ρ̂ εIS0

7 10−3 0.142 8.3E-01 0.524 6.9E-03 0.147 7.9E-01 0.644 6.E-02

7 10−6 0.285 5.9E-02 0.693 9.0E-06 0.147 7.9E-01 0.667 4.E-03

9 10−3 0.100 1.0E+00 0.437 1.2E-02 0.128 8.7E-01 0.523 1.E-01

9 10−6 0.166 4.7E-01 0.575 2.8E-05 0.128 8.7E-01 0.555 2.E-02

Table 1: Optimal IS parameter ρ̂ and resulting variance reduction ε for different IS.

We solve the corresponding MIP formulations, SAA, SAA-IS and SAA-IS0, with sample sizes N = 20
and N = 50 for ρ = 0.1 and α = 10−3 and α = 10−6. Additionally, we solve the SAA formulation with
N = 1000 samples. Each instance is solved 100 times with different random seeds.

Instance SAA SAA-IS SAA-IS0

Size α Opt. N = 20 N = 50 N = 1000 N = 20 N = 50 N = 20 N = 50

7 10−3 47 31.87 35.22 44.56 35.62 40.41 44.36 46.26

7 10−6 68 42.34 42.77 48.10 52.01 57.26 67.03 67.65

9 10−3 81 57.57 62.01 76.93 57.57 62.01 78.73 OOM

9 10−6 117 72.64 73.51 84.07 77.62 82.61 114.94 117.29

Table 2: Computational results for the homogeneous case ρ = 0.1.
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The average value of the obtained objective function is presented in Table 2, and the true optimal value
is presented in column Opt. As expected, we see that the SAA formulation only provides a reasonably good
approximation of the true optimum value when the number of samples is of order 1/α. A striking feature
of the SAA-IS0 is that it generates good approximation of the real optimal value of the problem even with
a very small number of samples. However, this IS requires a more complex formulations, that runs out of
memory (OOM) for one of these instances. For the case of SAA-IS, the approximation is not as good as in
the previous case, but still better than the traditional SAA formulation. Those results strongly support the
use of importance sampling in chance-constrained problems with very small α.

Figure 3: Homogeneous case: boxplot of the different estimators for a ring of size 7 and ρ = 0.1, for α = 10−3

and α = 10−6.

Table 2 illustrates our claim that by using importance sampling it is possible to obtain good approxima-
tions with very reduced sample sizes, that is, much smaller than O(1/α). In order to study the dispersion of
these values, in Figure 3 we present a boxplot of the resulting objective values for each approach in the case
of a ring of size 7 where α = 10−3 (left) and 10−6 (right). The first three columns show SAA, SAA-IS and
SAA-IS0 for N = 50, respectively. The last column exhibit the values for SAA with N = 1000 samples. As
we can see, IS estimators produce better results than SAA in almost all runs, particularly when α = 10−6.

It is worth noting that in the majority of cases the resulting objective values are smaller than the real
optimal value in almost every run. Therefore, the resulting solution of each problem must be infeasible for
the original problem. This infeasibility comes from an underestimation of the capacity wa required at each
link a ∈ A, given the corresponding routing decision of each solution (i.e., the y variables). In fact, all runs
of SAA and SAA-IS returns an infeasible solution, but for SAA-IS0 that is not the case. For the ring of
size 7, N = 50 samples and α = 10−3 and 10−6, formulation SAA-IS0 returns 4 and 28 times (of the 100
runs) the true optimum, respectively. For the ring of size 9, N = 50 samples and α = 10−6, this formulation
returns 19 times the true optimum.

For the heterogeneous case, we use a traffic rate ρc randomly chosen according to a uniform distribution
between 0.1 and 0.3. Recall that the exact optimal solution for these instances is not known. Nevertheless,
we can obtain a lower bound for variables w by computing the (1 − α)-quantile of a binomial distribution
with parameters |y| and ρC , that is, the smallest rate. Then, we use this lower bound as our function w0(y)
to define the set X ′0 where variance will be uniformly reduced. Note that each link has a different set of
connections that can potentially be routed through them, so a different IS parameter may be obtained for
each link. We choose the IS parameter ρ̂c for each link as explained in Propositions 11 and 12. The range
of theoretical ε-variance reduction among all links is presented in Table 3.

In Table 4 we show results for the heterogeneous case. As before, each column shows the average obtained
objective value among 100 runs of each configuration. Since the exact optimal solution for these instances is
not known, we present an optimality range, constructed assuming that for each link all connections have an
homogeneous rate equal to the minimum (maximum) rate among all connections that can be routed though
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Size α εIS εIS0

7 10−3 1.000 0.1589 - 0.2994

7 10−6 0.1370 - 0.2821 0.0024 - 0.0085

9 10−3 1.000 0.2081 - 0.4366

9 10−6 0.8441 - 0.9121 0.0036 - 0.0177

Table 3: Range of optimal ε-variance reduction for different IS, among all links.

them, in order to obtain a lower (upper) bound of the optimal value.

Instance Optim. SAA SAA-IS SAA-IS0

N α range N = 20 N = 50 N = 1000 N = 20 N = 50 N = 20 N = 50

7 10−3 48-70 49.29 50.93 60.38 49.29 50.93 57.67 OOM

7 10−6 69-84 69.00 69.00 69.18 70.03 71.40 76.60 OOM

9 10−3 84-135 85.34 87.92 OOM 85.34 87.92 OOM OOM

9 10−6 122-171 122.07 122.14 123.44 122.24 122.51 OOM OOM

Table 4: Computational results for the heterogeneous case ρc ∈ [0.1, 0.3].

It can be seen that for SAA, the resulting objective values are very close to the lower bound w0(y),
particularly for α = 10−6. For SAA-IS, the results are similar to the SAA, which is explained by the small
variance reduction of this estimator, as presented in Table 3. However, for SAA-IS0 we obtain higher values
than the other estimators using only N = 20 samples. Since rates are chosen uniformly between [0.1, 0.3], it
is reasonable to expect that the optimal value should be near the middle of the optimality range, which is the
case for the values obtained by SAA-IS0 for the 7-node ring instances. Nevertheless, it is hard to conclude
further about the quality of the approximation of our IS estimators without knowing the true optimal value.
Unfortunately the formulation SAA-IS0 could not be solved for the 9-node ring and for 7-node ring with
N = 50, since the resulting mixed-integer programs are too big. Still, our goal in this paper is to provide
a “proof of concept” to demonstrate that the use of importance sampling in rare-event chance-constrained
problems has the potential to allow for the solution of such problems with small sample sizes; conceivably,
a more efficient formulation of the mixed integer program can be derived by exploiting characteristics of the
problem, but such a task is out of the scope of this paper.

6 Conclusions

Sampling methods for chance-constrained programming (CCP) problems are extremely popular and have
been used extensively lately. Our main contribution in this paper is to address the situation in which the
desired reliability level is very close to one, e.g. 1−10−6. The results and algorithms available in the literature
cannot cope with this situation, and we showed that importance sampling is a provably convergent tool to
solve rare-event CCP problems. Importance sampling has been extensively used in simulation to estimate
rare events, but in an optimization context several difficulties arise. The main problem is the dependence of
the estimator on the decision variables, which motivates us to look for estimators that uniformly reduce the
variance over the decision space.

We studied a problem in telecommunications and wrote explicit formulations that use IS techniques. We
constructed IS distributions for which we can theoretically guarantee uniform variance reduction over an
outer approximation of the feasibility set. For the homogeneous case our experiments showed that sample
sizes much smaller that 1/α, e.g. α = 10−6 with a sample size of 50, can yield excellent approximations
to the true optimum. In the heterogeneous case the optimal solution is not known but we showed that
small sample sizes can yield good solutions as in the homogeneous case. For the SAA-IS0 estimator the
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computational burden is significant and better formulations need to be derived in order to obtain solutions
for the most demanding cases.

We would like to highlight the problem-dependent characteristic of importance sampling problems. We
believe that in order to use IS techniques in other CCP problems with rare events two requirements must be
satisfied: on one hand, IS estimators must be customized for each decision and, at the same time, lead to a
tractable optimization problem. On the other hand, one must find an outer approximation of the feasibility
set in which variance can be significantly reduced. It is worth pointing out that for some problems using
a non adapted IS estimator such as SAA-IS can be a good compromise between a simple mathematical
programming formulation and a good enough variance reduction, although it does not perform as well as an
adapted one such as SAA-IS0.

Therefore, we believe the results and ideas presented here could serve as a guidance for choosing the
appropriate IS estimator for other problems. We hope that this work will foster further research on rare-
event chance constrained problems, which seem to have been neglected so far in the literature.
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