
SEQUENTIAL QUADRATIC PROGAMMING METHODS
FOR PARAMETRIC NONLINEAR OPTIMIZATION

Vyacheslav Kungurtsev∗ Moritz Diehl †

July 2013

Abstract

Sequential quadratic programming (SQP) methods are known to be effi-
cient for solving a series of related nonlinear optimization problems because of
desirable hot and warm start properties–a solution for one problem is a good
estimate of the solution of the next. However, standard SQP solvers contain
elements to enforce global convergence that can interfere with the potential to
take advantage of these theoretical local properties in full. We present two new
predictor-corrector procedures for solving a nonlinear program given a suffi-
ciently accurate estimate of the solution of a similar problem. The procedures
attempt to trace a homotopy path between solutions of the two problems, stay-
ing within the local domain of convergence for the series of problems generated.
We provide theoretical convergence and tracking results, as well as some nu-
merical results demonstrating the robustness and performance of the methods.
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1. Introduction

In many engineering applications it is common to solve a series of nonlinear programs
dependent on a parameter. This can arise in a context of online tuning software for
design problems, where a user slightly adjusts the objective or constraints to study
how the optimal solution of a system behaves relative to certain perturbations, or in
model predictive control, where a dynamically evolving process is controlled in real
time. Since with each change, or each time step, the structure of the problem does
not fundamentally change, it should be expected that the solution of one problem
is a good initial guess for the subsequent problem. It is natural to develop theoret-
ical methodology to make the concept of a ”good” initial guess more precise, and
formulate practical algorithms that take advantage of this methodology to be able
to robustly and efficiently solve such a sequence of nonlinear programs.

In particular, we analyze properties of parametric exact Hessian sequential
quadratic programming (SQP) methods. SQP methods are well known to have
desirable “hot-start” properties, in contrast to interior point methods. This is be-
cause in a conventional SQP method, if the active set has stabilized, the algorithm
behaves like Newton’s method on the optimality conditions that are satisfied at
the solution. However, in practice, even arbitrarily close to the solution, a QP
solver may not estimate the optimal active set. Furthermore, typical NLP solvers
may modify the Hessian or use a positive definite quasi-Newton variant in order
to prevent the possibility of forming nonconvex QPs. Because of this, applications
typically will use off-the-shelf SQP software, which, as described, often does not pre-
serve the desired theoretical convergence properties, or write custom exact Hessian
SQP procedures, which may fail to find a solution of converge. We propose an exact
second-derivative procedure that is able to take advantage of fast local convergence
without attempting to solve nonconvex QPs. We use robust active set estimates
and constrain the QP problem to the active sets, allowing the use of exact Hessians
with each QP subproblem lying in the Newton domain of convergence in a sequence
of homotopy steps.

We consider a parametric nonconvex nonlinear optimization problem of the form,

minimize
x∈Rn

f(x, t)

subject to c(x, t) ≥ 0,
(1.1)

where f : Rn × R → R, c : Rn × R → Rm are nonlinear two times Lipschitz con-
tinuously differentiable (possibly nonconvex) functions and t ∈ [0, 1]. In particular,
t = 0 and t = 1 correspond to two optimization problems of interest and f and c
are homotopies with (f(x, 0), c(x, 0)) and (f(x, 1), c(x, 1)) corresponding to the two
optimization problems. This problem can be embedded in a more general study of
the problem,

minimize
x∈Rn

f(x, p)

subject to c(x, p) ≥ 0,
(1.2)

where, for ease of subsequent exposition, we relax notation in treating f and c as
the same in (1.1) and (1.2). Here p ∈ P ⊆ Rd is a parameter. Problem (1.1)
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corresponds to the analysis of problems at two p1, p2 ∈ P of interest, and using
the solution of (1.2) at p1 to guide an initial point for problem (1.2) at p2 using
p(t) = tp1 + (1− t)p2. We do not include equality constraints, even though they are
pervasive in engineering problems, because they do not provide additional challenge
to the machinery developed, and the analysis and algorithms presented in this pa-
per immediately extend to the case of mixed inequality and equality (or even just
equality) constraints.

We recall the definition of the first-order optimality conditions,

Definition 1.1. (First-order necessary conditions) A primal-dual pair (x∗, y∗)
satisfies the first-order necessary optimality conditions for (1.1) if,

∇xf(x∗, t) = J(x∗, t)Ty∗,
c(x∗, t) ≥ 0,

c(x∗, t)Ty∗ = 0,
y∗ ≥ 0.

(1.3)

where J(x, t) denotes the Jacobian constraint matrix for problem t at x. These
conditions necessarily hold for any local minimizer x∗ which satisfies a constraint
qualification, a geometric regularity condition involving the local properties of the
feasible region. There are a number of constraint qualifications of varying restric-
tiveness, a few of which we will mention later in the paper.

We will define A(x∗, t) to be the set of indices i such that for i ∈ A(x∗, t),
ci(x

∗, t) = 0, A0(x
∗, y∗, t) ⊆ A(x∗, t) to be the set such that i ∈ A0(x

∗, y∗, t) implies
that [y∗]i = 0 and A+(x∗, y∗, t) ⊆ A(x∗, t) to be the set such that i ∈ A+(x∗, y∗, t)
implies that [y∗]i > 0. We let Λ(x∗) be the set of y∗ such that (x∗, y∗) satisfy (1.3),
and define A+(x∗, t) = ∪y∗∈Λ(x∗)A+(x∗, y∗, t) and A0(x

∗, t) = ∩y∗∈Λ(x∗)A0(x
∗, y∗, t).

The Lagrangian function associated with (1.1) is L(x, y, t) = f(x, t)− c(x, t)Ty,
where y is an m-vector of dual variables associated with the inequality constraints.
The Hessian of the Lagrangian with respect to x is denoted by H(x, y, t) =
∇2f(x, t)−∑m

i=1 yi∇2ci(x, t).
We also define the second-order sufficiency condition.

Definition 1.2. (Second-order sufficient conditions (SOSC)) A primal-dual
pair (x∗, y∗) satisfies the second-order sufficient optimality conditions if it satisfies
the first-order conditions (1.3) and

dTH(x∗, y∗, t)d > 0 for all d ∈ C(x∗, y∗, t) \ {0}, (1.4)

where d ∈ C(x∗, y∗, t) if ∇ci(x∗, t)Td = 0 for i ∈ A+(x∗, y∗, t) and ∇ci(x∗, t)Td ≥ 0
for i ∈ A0(x

∗, y∗, t).

The strong form of the second-order sufficiency condition is defined as follows.

Definition 1.3. (Strong second-order sufficient conditions (SSOSC)) A
primal-dual pair (x∗, y∗) satisfies the strong second-order sufficient optimality con-
ditions if it satisfies the first-order conditions (1.3) and

dTH(x∗, y∗, t)d > 0 for all d ∈ C̃(x∗, y∗, t) \ {0}, (1.5)

where d ∈ C̃(x∗, y∗, t) if ∇ci(x∗, t)Td = 0 for i ∈ A+(x∗, y∗, t).
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It can be seen that the cone of directions on which positive definiteness of the
Hessian must hold is larger in the case of the SSOSC. If strict complementarity, the
condition that A0(x

∗, y∗, t) = ∅, holds, then the two are equivalent.
We make one assumption throughout the paper.

Assumption 1.1. The functions f(x, t) and c(x, t) are two times Lipschitz contin-
uously differentiable for all x and t ∈ [0, 1] with respect to both x and t.

We define the distance of a point to the nearest primal-dual solution by δ(x, y, t),

δ(x, y, t) =
√
‖x− x∗(t)‖2 + dist(y,Λ(x∗(t)))2,

where x∗(t) is the closest primal solution to (1.1) at t, and Λ(x∗(t)) is the set of
Lagrange multipliers {y∗} satisfying (1.3) together with x∗. We will also sometimes
write δ(x, t) to denote δ(x, t) = ‖x− x∗(t)‖.

The optimality residual η(x, y, t) is defined as

η(x, y, t) =

∣∣∣∣∣∣∣∣(∇f(x, t)− J(x, t)Ty
min(c(x, t), y)

)∣∣∣∣∣∣∣∣
∞
.

These two quantities bound each other under the SOSC.

Lemma 1.1. If the second-order sufficiency condition for optimality holds at
(x∗, y∗)(t), then for (x, y) sufficiently close to (x∗, y∗)(t), there exist constants
C1(t) > 0 and C2(t) > 0 such that it holds that,

C1(t)δ(x, y, t) ≤ η(x, y, t) ≤ C2(t)δ(x, y, t).

Alternatively, if the second-order sufficiency condition holds for all (x∗, y∗)(t),
with y∗ in a compact subset of Λ(x∗), and (x, y) is sufficiently close to this subset,
the estimate also holds.

Proof. See, e.g., Wright [45, Theorem 3.1 and Theorem 3.2].

The rest of the paper is organized as follows. In the rest of this section we re-
view the the previous literature on this topic. Section 2 discusses predictor-corrector
methods in the context of parametric nonlinear optimization. Section 3 discusses
an approach to solving the problem using conventional SQP, and Section 4 provides
theoretical tracking error results. Section 5 discusses an approach to solving de-
generate problems, with Section 6 providing the convergence results. We analyze
some numerical results in Section 7 and finally conclude the paper and present some
directions in future research in Section 8

1.1. Previous work

The local analysis of nonlinear programs depending on parameters has a rich litera-
ture. In particular, optimization theorists have long been interested in the existence
and stability of solutions, error bounds, and directional differentiability of nonlinear
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programs subject to perturbations. For some comprehensive surveys, see [4,12,29].
For some classical results, see [25,26,35,37,38].

This has contributed to some study of parametric optimization from the perspec-
tive of continuation. Some seminal work includes [24], [23] and [33], in which the
form of a parametric solution is analyzed depending on the properties of the prob-
lem, e.g., what conditions lend themselves to the satisfaction of the implicit function
theorem and a smooth primal-dual solution path, and which result in folds or other
forms of bifurcations in the solution set given the parameter, and what form these
bifurcations can take (e.g., a loss of second-order sufficiency, strict complementarity,
etc.).

The work of Guddat et al. [16] summarizes many of these results, as well as pro-
vides algorithms for tracing homotopy paths of parametric NLPs as well as jumping
across singularities. Some of the ideas presented foreshadow the more rigorously
treated active set estimation and locally convergent procedures used in this paper.
See also Gfrerer et al. [13] and Guddat et al. [17] for similar two-phase procedures.

From the reverse perspective, homotopy methods have been used as a method for
solving one-off NLPs (see, e.g., [43] for an early work). There continues a literature
on this for some contexts of convex problems, and in the framework of interior
point methods, but as the fundamental problem and the algorithms formulated are
entirely different than the methods discussed here, we do not discuss this line of
work further.

More recently, the development of practical algorithms for solving a series of re-
lated NLPs has been spurred by the recent interest in on-line process optimization,
(see, e.g., [39]). In [5], an SQP algorithm is presented for solving model predic-
tive control problems under the general principle of not iterating each solution to
optimality but solving a single subproblem at each step.

Zavala and Anitescu et al. [46] analyze the parametric NLP problem in the
context of generalized equations, and provide theoretical tracking results for an
augmented Lagrangian algorithm. Tran-Dinh et al. [41] formulate an adjoint-based
sequential convex programming algorithm to solve parametric NLPs. Using the
generalized equation framework given by Zavala and Anitescu, they prove a theo-
retical result on the tracking error and show numerical comparisons of their method
against several other approaches for nonlinear model predictive control of a hydro
power plant. The QP solver qpOASES [9–11] is designed to use a homotopy path
to solve successive QP problems generated from an SQP solver applied to model
predictive control. In [22] an inexact variant of this is explored, where the Hessian
(approximation) used in one problem is used in the subsequent problem, with a
correction term. They show that this inexact strategy can result, in some cases, in
considerable savings in computation time.

Contribution: This paper is unique in providing convergence theory for an algo-
rithm solving a sequence of related NLPs in a procedure that uses exact Hessians in
a robust and reliable way, taking full advantage of the potential strengths of SQP
methods for this context.
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1.2. Notation

The ith component of a vector labeled with a subscript will be denoted by [ · ]i, e.g.,
[v]i is the ith component of the vector v. The subvector of components with indices in
the index set S is denoted by [ · ]S , e.g., [v]S is the vector with components vi for i ∈
S. Similarly, if M is a symmetric matrix, then [M ]S denotes the symmetric matrix
with elements mij for i, j ∈ S. The norm of a vector ||v|| could be unspecified if in
the context the type of norm does not affect the statement. We will use component-
wise operations for min, i.e., for vectors v and w, [min(v, w)]i = min(vi, wi).

Let {αj}j≥0 be a sequence of scalars, vectors or matrices and let {βj}j≥0 be a
sequence of positive scalars. If there exists a positive constant γ such that ‖αj‖ ≤
γβj , we write αj = O(βj). If ‖αj‖ ≤ γjβj with γj → 0, we write αj = o(βj).

2. Predictor corrector methods for parametric nonlinear optimiza-
tion

Consider the more general problem of finding a solution of F (x, 1) = 0, given a
known x̄ such that F (x̄, 0) = 0.

Predictor-corrector methods are a class of methods that include a predictor step
that initially attempts to estimate the solution and a corrector step to refine the
estimate.

At the simplest level, for a homotopic method to be successful, i.e., reach a
solution of F (x, 1) = 0, at the minimum it should have a sequence of Newton
iterates, as described in Algorithm 2,

Newton corrector homotopy.

1: Begin with x a solution to F (x, t) = 0 at t = 0. Initialize ∆t = 1.
2: Choose constants γ1 and γ2 satisfying 0 < γ1 < 1 and γ2 > 1.
3: while t < 1 do
4: Solve ∆x = −F ′(x, t+ ∆t)−1F (x, t+ ∆t).
5: if ‖F (x+ ∆x, t+ ∆t)‖ is sufficiently small then
6: Set t = t+ ∆t.
7: Set x = x+ ∆x.
8: Let ∆t = min(γ2∆t, 1− t).
9: else

10: Let ∆t = γ1∆t.
11: end if
12: end while

In this case, there is only a corrector step. The initial point at which Newton’s
method is applied is the original x. If x happens to lie in the Newton domain of rapid
local convergence for the problem at t2, then the procedure would take a successful
step and the condition at Step 4 in Algorithm 2 is satisfied. Hence, this procedure is
effective at generating a point that sufficiently contracts ||F (x, t)|| for t2 − t1 small
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x∗(t)

(t1, x̄) (t2, x̄)

t

x

Figure 1: Using the previous x̄ as the predictor

enough that the domain of convergence relative to x does not change too much, as
illustrated in Figure 1.

However, by including a predictor step, described in Algorithm 2.1, we incorpo-
rate first order information in order to estimate the location of the solution at t2.
Here, if the first-order estimate is sufficiently accurate, we may take a larger step
along t and still achieve the desired level of contraction in ‖F‖ by staying within
the domain of local convergence, as illustrated in Figure 2.

A canonical predictor-corrector algorithm using one step of a linear tangential
predictor and a step of Newton’s method is given as Algorithm 2.1.

Algorithm 2.1 Predictor-corrector.

1: Begin with x a solution to F (x, t) = 0 at t = 0. Initialize ∆t = 1.
2: Choose constants γ1 and γ2 satisfying 0 < γ1 < 1 and γ2 > 1.
3: while t < 1 do
4: Calculate d = ∂x(t)

∂t .
5: Set x̂ = x+ ∆td.
6: Solve ∆x = −F ′(x̂, t+ ∆t)−1F (x̂, t+ ∆t).
7: if ‖F (x̂+ ∆x, t+ ∆t)‖ is sufficiently small then
8: Set t = t+ ∆t.
9: Set x = x̂+ ∆x.

10: Let ∆t = min(γ2∆t, 1− t).
11: else
12: Let ∆t = γ1∆t.
13: Go to Step 5
14: end if
15: end while
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t

x

(t1, x̄)

(t3, x̂)

x∗(t)

Figure 2: Using an additional tangential predictor

This is the Euler-Newton method using exact function and derivative definitions,
as described in Allgower and Georg [1].

Note that d uniquely exists if the assumptions of the implicit function theorem
hold. In practice, for generic cases, d is calculated as d =

(∂F (x,t)
∂x

)−1 ∂F (x,t)
∂t .

For a couple of references on continuation methods, see [1, 40].

2.1. Predictors for parametric NLP

In the context of the problem of parametric NLP (1.1), the direction of the predictor
is the first-order estimate of the change in x and y that would solve the problem
corresponding to a change in the parameter p. It also indicates which constraints
become inactive with the parameter change.

In this paper we explore a strategy where a predictor and corrector are computed
together in one QP subproblem, as well as a strategy where a predictor and corrector
are computed separately. In a general sense, the predictor (as a separate step, or
as an aspect of the QP) estimates the newly active or inactive constraints, and the
corrector refines the step on a properly reduced space with a Newton type iteration.

The existence of a predictor, i.e., directional differentiability of the parametric
NLP, has long been established to hold under strong regularity (see, e.g., Bonnans
and Shapiro [3, Proposition 3.3]). The case under weaker conditions does not hold
is less straightforward. In Levy [30], the concept of proto-differentiability was in-
troduced and directional differentiability in this sense was shown to exist for the
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primal solutions x∗(t) under the Mangasarian-Fromovitz constraint qualification.
In the case where the constant rank constraint qualification holds at x, Ralph and
Dempe [34] demonstrated the Bouligand-differentiability of the optimal primal so-
lution, and in particular the existence of a well-defined piecewise smooth path with
respect to the parameters, as well as showing a straightforward way to calculate this
direction.

Note that, in the case of nonunique multipliers, which we study in Section 5, what
directional differentiability of the optimal dual solution corresponds to is ambiguous,
since it is expected that the perturbed problem has multiple dual solutions as well.

2.1.1. Active set estimate

The directional derivative provides a one-sided estimate of the active set. In par-
ticular, for small perturbations of an NLP, the optimal inactive constraints remain
inactive and a subset of the weakly active constraints may become inactive. De-
pending on whether a one or two-step procedure is used, the estimation of newly
active constraints is performed by linearized constraints at the QP subproblem of
the predicted point, or a separate active set estimation procedure.

Facchinei et al. [7] presents an estimate of the active set,

Aγ(x, y, t) = {i : ci(x, t) ≤ η(x, y, t)γ}, (2.1)

where γ is a scalar satisfying 0 < γ < 1. In the case of the separate predictor and
corrector step strategy algorithm, described in Section 5, we use this estimate to
determine the active set on which to perform the corrector step.

2.1.2. Tangential direction

Izmailov [20] provides a thorough study of the directional differentiability of primal-
dual solution pairs. Consider a step (∆t,∆x,∆y) for a fixed ∆t from a base point
(t, x̄, ȳ). Letting A0 = A0(x̄, ȳ, t), the careful analysis is based on the splitting of
the null multipliers by the index sets,

A+
0 = {i ∈ A0|∂ci∂t ∆t+ ∂ci

∂x ∆x = 0, ∆yi > 0},
A0

0 = {i ∈ A0|∂ci∂t ∆t+ ∂ci
∂x ∆x = 0, ∆yi = 0},

AN0 = {i ∈ A0|∂ci∂t ∆t+ ∂ci
∂x ∆x > 0, ∆yi = 0},

(2.2)

indicating null constraints such that the perturbations change the multipliers to be
strongly active, to remain null, or the constraint to become inactive.

For ease of exposition, we will now ignore the multipliers corresponding to the
inactive constraints, as any reasonable predictor will be expected to maintain them
to be zero. Thus, in this section, y and J will correspond to the multipliers and
constraint gradients of just the active constraints at the current solution.

The following result, found in several sources, is an important set of equations
characterizing the directional derivative of an NLP.
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Theorem 2.1. Izmailov [20, Theorem 2.1] Let (x̄, ȳ) be a solution of system (1.1)
with t = t̄. Assume there exist sequences {xk, yk, tk, sk} → {x̄, ȳ, t̄, 0}, where sk ∈ R,
such that for each k, (xk, yk) solves (1.1) with t = tk. Then, any limit point of
(∆t,∆x,∆y) of the sequence {tk − t̄, xk − x̄, yk − ȳ}/sk satisfies,

∂2L(x̄,ȳ,t̄)
∂x∂t ∆t+ ∂2L(x̄,ȳ,t̄)

∂2x
∆x+ J(x̄, t̄)T∆y= 0,

∂c(x̄,t̄)+
∂t ∆t+ ∂c(x̄,t̄)+

∂x ∆x= 0,
∂c(x̄,t̄)0
∂t ∆t+ ∂c(x̄,t̄)0

∂x ∆x≥ 0,
∆y0≥ 0,

∆yT0 (∂c(x̄,t̄)0∂t ∆t+ ∂c(x̄,t̄)0
∂x ∆x) = 0,

(2.3)

where the subscripts 0 and + denote the vector components or matrix rows corre-
sponding to A0(x̄, ȳ, t) and A+(x̄, ȳ, t). Note that the theorem does not state that
this sequence exists, nor that the limit of {tk − t̄, xk − x̄, yk − ȳ}/sk exists. The rest
of [20] establish conditions under which these two properties hold. Nevertheless this
set of equations form the computational basis for generating predictor steps.

2.1.3. Corrector

In standard continuation, correctors are a variation of Newton’s method. SQP
methods can correspond to Newton’s method in a direct way. In particular, for
(xk, yk) close to a primal dual solution (x∗, y∗), if A(xk) = A(xk+1) = A(x∗) then
the QP solution solves the system,(

H(xk, yk) ∇c(xk)
∇c(xk)T 0

)(
∆xk
−∆yk

)
= −

(
g(xk)−∇c(xk)Tyk

c(xk)

)
,

which is the Newton system for the first-order optimality conditions. Most proofs
of quadratic or superlinear local convergence of SQP methods rely on the correct
estimation of the active set and thereafter this system being solved.

Correct estimation of the active set is of importance from both the theoretical
and practical perspective. Even if the reduced Hessian is positive definite at the
solution, the Hessian could still be indefinite, and for a QP at a base point in
the neighborhood of the solution, there may be more than one solution, and even
an unbounded solution. A ”wrong” or unbounded solution is particularly likely
to be selected by the QP solver if strict complementarity does not hold. A local
convergence result can still be shown where a desired solution to a quadratic program
(QP) exists that is part of a quadratically convergent sequence, however, in the case
of multiple solutions, its selection depends on the QP solver. In order to have a
well-defined algorithm that selects a unique sequence of iterates that are solutions
to bounded QPs, all of the QPs we solve will be on a specific reduced space that
will ensure their convexity.

3. Conventional SQP methods for Homotopy solutions

In this section we discuss a conventional SQP method for solving nonlinear program-
ming homotopy problems. We begin with stating our assumptions for the problem.
We will denote by (x∗, y∗)(t) a primal-dual solution to problem (1.1) at t.
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Definition 3.1. The strict Mangasarian-Fromovitz constraint qualification holds
at x∗(t) if there exists a vector y∗(t) such that (x∗, y∗)(t) satisfy (1.3), the matrix
[∇xc(x∗, t)]A+(x∗,y∗,t) has rank |A+(x∗, y∗, t)|, and there exists a vector d such that

∇[c(x∗, t)]TA(x∗)d > 0.

The strict MFCQ is equivalent to the MFCQ holding at a point x∗ satisfying the
necessary optimality conditions (e.g., the existence of a Lagrange multiplier) in
conjunction to the uniqueness of the Lagrange multiplier [28] (see also the note
in [42]).

Assumption 3.1. For every t ∈ [0, 1], the problem (1.1) has at least one primal-
dual solution (x∗, y∗)(t) to the first-order KKT conditions. Furthermore at each x∗,
the SMFCQ and the SSOSC hold for (x∗, y∗)(t).

It should be emphasized that strict complementarity is not assumed and the
problem would be trivially uninteresting otherwise. For an optimal solution at
which strictly complementary holds, at any perturbation sufficiently small of the
problem, the optimal active set is the same. Thus, if strict complementarity held at
every point along the solution of the homotopy, there would be no active set changes,
and the problem would be identical to one that is strictly equality-constrained. Null
multipliers provide a branching point; if the constraint i is weakly active at the
solution, then for a perturbation of the problem it could remain weakly active, or
could become strongly active or inactive, as denoted in (2.2).

The corrector is the equivalent of a Newton step in the context of the KKT
optimality conditions. This makes SQP an appropriate framework, because once
the active set is correctly estimated, solving the quadratic subproblem is equivalent
to a step of Newton on the equations corresponding to the first-order optimality
conditions.

3.1. Properties of parametric NLP under strong regularity conditions

It shall be shown in Section 4 that Assumption 3.1 implies the existence of a unique
primal-dual path of solutions (x∗, y∗)(t) to (1.1). This suggests that the system (2.3)
should have a unique set of solutions. Note that this system corresponds to the
stationarity conditions for the QP,

minimize
∆x

1
2∆xTH(x∗, y∗, t)∆x+ ∆pT∂

2L(x∗,y∗,t)
∂t∂x ∆x

subject to ∇tci(x∗, t)T∆t+∇xci(x∗, t)T∆x = 0, for i ∈ A+(x∗, y∗, t),
∇tci(x∗, t)T∆t+∇xci(x∗, t)T∆x ≥ 0, for i ∈ A0(x

∗, y∗, t).

(3.1)

Under Assumption 3.1, the stationary point of this QP is the local minimizer. Let a
current iterate (x̄, ȳ, t) be close to the optimal solution (x∗, y∗)(t). Enforcing a step
towards feasibility, we consider the QP,

minimize
∆x

∇f(x̄, t+ ∆t)T∆x+ 1
2∆xTH(x̄, ȳ, t+ ∆t)∆x

subject to ci(x̄, t+ ∆t) +∇xci(x̄, t+ ∆t)T∆x = 0, for i ∈ A+(x∗, y∗, t),
ci(x̄, t+ ∆t) +∇xci(x̄, t+ ∆t)T∆x ≥ 0, for i ∈ A0(x

∗, y∗, t).

(3.2)
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It may appear as though formulating this QP requires an extra function evaluation.
However, this is not the case if we reformulate the problem so that the dependence
on the parameter is linear. In particular, note that (1.2) can be written as,

minimize
x∈Rn,z∈Rd

f(x, z)

subject to c(x, z) ≥ 0,
z = p.

Therefore, we will assume that ∇f(x, t) = ∇f(x, 0), ∇c(x, t) = ∇c(x, 0) and
H(x, y, t) = H(x, y, 0) for all x, y, t.

We can see now that because the solution to (3.2) corresponds to the directional
derivative of (2.3), plus the step to feasibility, it is the unique predictor along the
path of solutions. In addition, however, it can be expected that if the step maintains
the active set, it also behaves like Newton’s method on the optimality conditions,
and is thus a corrector.

This immediately suggests two procedures:

• Solving (3.2) using appropriate estimates of the strongly and weakly active
sets, and considering an iteration to be successful if there is quadratic con-
traction, or

• solving (3.2) to obtain a predictor step that is just sufficiently low in its opti-
mality residual, and then take an additional contractive Newton step on the
active set.

In this section, we present a procedure performing the first of these where the
QP is both the predictor and corrector in an iterative Homotopy method. We shall
consider a two-step approach in our discussion of parametric methods for degenerate
problems, in Section 5.

3.2. Statement of the algorithm

Define
A+,γ(x, y, t) = {i : yi ≥ η(x, y, t)γ}. (3.3)

This will be shown to be a reliable estimate of the strongly active set at t.
As discussed in the previous section, we use this estimate to set up a reduced

space in which to solve the predictor-corrector QP. In addition, we also enforce the
linearized inactive inequality constraints. Thus, we solve the QP,

minimize
∆x

∇f(x̄, t+ ∆t)T∆x+ 1
2∆xTH(x̄, ȳ, t+ ∆t)∆x

subject to ci(x̄, t+ ∆t) +∇ci(x̄, t+ ∆t)T∆x = 0, for i ∈ A+,γ(x̄, ȳ, t),
ci(x̄, t+ ∆t) +∇ci(x̄, t+ ∆t)T∆x ≥ 0, for i ∈ {1, ...,m} \ A+,γ(x̄, ȳ, t).

(3.4)
We formally state Algorithm 3.1. The procedure is relatively simple and consists

of the strongly active set estimate, the QP solution, and acceptance and refusal of
the step. It should be noted that in practice, parallelization will make sure that
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no iterations are wasted, i.e., on a machine with Q processors, we choose Q values
of ∆tj , solve the corresponding QP on each processor, and pick the largest value
of ∆tj with a successful iteration to be the base ∆t for the next iteration, with an
equal number of ∆tj larger and smaller than ∆t in the next iteration. As Q→∞,
there will be no failed iterations, and the step will always be the largest such that
a successful iteration can be made. Thus the worst-case computational complexity
of the procedure is the number of required steps (determined by the domain of
convergence of the problem) multiplied by the cost of solving the convex QP.

Algorithm 3.1 Parametric SQP Method.

1: Begin with (x̄, ȳ), an approximate solution to (1.1) at t = 0.
2: Set constants γ, γ1 ∈ (0, 1), γ2 > 1.
3: while t < 1 do
4: Calculate A+,γ(x̄, ȳ, t) by (3.3).
5: Solve (3.4) for (∆x,∆y).
6: if η(x̄+ ∆x, ȳ + ∆y, t+ ∆t) ≤ η(x̄, ȳ, t+ ∆t)1+γ then
7: Let x̄ = x̄+ ∆x, ȳ = ȳ + ∆y, and t = t+ ∆t.
8: Let ∆t = min(1− t, γ2∆t).
9: else

10: Let ∆t = γ1∆t. Go back to Step 5
11: end if
12: end while

Note that this procedure is defined to only approximately solve the problem at
t = 1. For a precise solution, at t = 1 the same QP can be successively solved,
and, under the right conditions the sequence of primal-dual solutions will converge
quadratically to the solution.

In addition, in a software-level implementation, we will want to avoid cycling of
∆t back and forth (a successful iteration followed by a larger step in ∆t, followed by
failure, followed by a smaller ∆t and a successful iteration, etc.) and we intend to
dampen the constants in time depending on the accumulated history of successful
iterations.

4. Convergence

Proposition 4.1. For ‖p(1) − p(0)‖ sufficiently small, there exists a continuous
unique path (x∗, y∗)(t) between each solution (x∗, y∗)(0) of (1.1) for t = 0 and some
(x∗, y∗)(1) of (1.1) for t = 1.

Proof.
Kojima [26, Theorem 7.1] implies that for each x∗(t), there is a unique station-

ary point x∗(t + δt) for δ sufficiently small. Furthermore, this point is isolated.
This, together with Levy and Rockafellar [30, Theorem 3.1] implies that there is a
continuous path from x∗(t) to x∗(t+ δt), for δ sufficiently small.

We must now prove that the path of multipliers is continuous. In fact, however,
we can make a stronger statement. By the strong second order sufficiency condition,
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Robinson [37, Theorem 1] implies the error bound,

‖x∗(t)− x∗(t+ δt)‖+ ‖y∗(t)− y∗(t+ δt)‖ ≤ O(‖δt‖),

implying that the path is locally Lipschitz continuous.
We may continue this procedure indefinitely at (x∗, y∗)(t+ δt) until either t = 1

or an accumulation of open sets whose closure represents a non-KKT boundary
point.

Theorem 4.1. If (x̄, ȳ) is sufficiently close to some solution (x∗, y∗)(t) and ∆t is
sufficiently small, there is a unique solution to the quadratic subproblem (3.4), and
condition at step 6 in Algorithm 3.1 is satisfied.

Proof.
We first claim that A+,γ(x̄, ȳ, t) = A+(x∗(t), y∗(t), t). Note that the quan-

tity mini{[y∗(t)]i : i ∈ A+(x∗(t), y∗(t), t)} is positive which implies the inclusion
A+(x∗(t), y∗(t), t) ⊆ A+,γ(x̄, ȳ, t) since η(x̄, ȳ, t)→ 0 as (x̄, ȳ)→ (x∗, y∗)(t).

Assume i ∈ A+,γ(x̄, ȳ, t). Recall from Lemma 1.1 that |[ȳ]i − [y∗(t)]i| ≤
O(‖η(x̄, ȳ, t)‖). This implies that as y0 → y∗(t), eventually |[ȳ]i − [y∗(t)]i| <
η(x̄, ȳ, t)γ , which is only possible, by the definition of A+,γ (3.3), if y∗(t)i 6= 0.

Proposition 4.1 implies that for ∆t small enough, it holds that
A+(x∗(t), y∗(t), t) = A+(x∗(t+ ∆t), y∗(t+ ∆t), t+ ∆t).

The SSOSC, Kojima [26, Corollary 7.2] and Hager [18, Lemma 3] imply that (3.4)
is strictly convex and therefore has a unique solution.

Consider a standard QP centered at (x̄, ȳ),

minimize
∆x

∇f(x̄, t+ ∆t)T∆x+ 1
2∆xTH(x̄, ȳ, t+ ∆t)∆x

subject to ci(x̄, t+ ∆t) +∇ci(x̄, t+ ∆t)T∆x ≥ 0, for all i.
(4.1)

With (x̄, ȳ) sufficiently close to (x∗, y∗)(t) and ∆t small enough so that (x∗, y∗)(t) is
sufficiently close to (x∗, y∗)(t+ ∆t). we may consider this QP to be a perturbation
of (1.1) at t+ ∆t. By Kojima [26, Corollary 7.2], there is a solution (x̂, ŷ) of (4.1)
such that the active set at (x̂, ŷ) contains A+(x∗(t+ ∆t), y∗(t+ ∆t), t+ ∆t). Since
(x̂, ŷ) also, then, solves (3.4), this is in particular the solution generated by the
algorithm.

Quadratic contraction, i.e.,

η(x̂+ ∆t, ŷ + ∆t, t+ ∆t) ≤ Cq(t)η(x̂, ŷ, t+ ∆t)2, (4.2)

follows from the local convergence of SQP under the SMFCQ and the SOSC, see,
for example, Bonnans [2], and Lemma 1.1
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Theorem 4.2. If the initial point (x0, y0) is sufficiently close to some primal-dual
solution (x∗, y∗)(0), Algorithm 3.1 generates a sequence of points (xk, yk, tk) satis-
fying either 0 = t0 < t1 < t2 < ..., or 0 = t0 < t1 < t2 < ... < tN = 1. Furthermore,
there exist (t1, t2, t3, ...) such that for all k if δ(x0, y0) ≤ δ0 for some δ0, it holds
that,

δ(xk, yk, tk) ≤ δ(x0, y0, 0) (4.3)

Proof. Consider (x1, y1, t1). By the continuity of the primal-dual solution path,
Proposition 4.1, we have that for any ε1, there exists t1 such that,

δ(x0, y0, t1) = ‖(x0, y0)− (x∗, y∗)(t1)‖ ≤ ε1. (4.4)

Let ε1 = min(δ(x0, y0, 0), C1(t1)/(C2
2 (t1)Cq(t1))), where C1, C2, and Cq are con-

stants arising from Lemma 1.1 and (4.2).
There exists a t1 and δ(x0, y0, 0) sufficiently small such that the conditions of

Theorem 4.1 are satisfied for t1,

η(x1, y1, t1) ≤ η(x0, y0, t1)2.

and condition 6 in Algorithm 3.1 is satisfied, implying, after applying
Lemma 1.1 (4.4) and (4.2),

δ(x1, y1, t1) ≤ (1/C1(t1))η(x1, y1, t1) ≤ (Cq(t1)/C1(t1))η(x0, y0, t1)2

≤ (C2
2 (t1)Cq(t1)/C1(t1))δ(x0, y0, t1)2

≤ C2
2 (t1)Cq(t1)
C1(t1) min( C1(t1)

C2
2 (t1)Cq(t1)

, δ(x0, y0, 0))δ(x0, y0, 0)

≤ δ(x0, y0, 0).

Choosing t2 to be such that δ(x1, y1, t2) satisfies

δ(x1, y1, t2) ≤ min(1/(C2
2 (t2)Cq(t2)/C1(t2)), δ(x1, y1, t1)),

the same argument implies that,

δ(x2, y2, t2) = O(δ(x1, y1, t2)2) ≤ δ(x0, y0, 0),

and the procedure can be continued for arbitrary k, proving the estimate (4.3).

There are two points that must be made about the previous result. First, note
that it may happen that the Algorithm will iterate and produce a series of approx-
imate solutions at t = 1 even without tracking (δ(xk, yk, tk) ≤ δ(x0, y0, 0)). As it
is still along the radius of local convergence, this is a feature rather than a draw-
back, i.e., it takes the largest step along the homotopy it can, thus iterating across
solutions faster. If needed, the time saved in solving intermediate problems can be
applied to iterate the last obtained solution locally to refine the estimated solution.

Also, it could happen that the Algorithm generates an infinite sequence. If the
steps ∆t get repeatedly smaller, it could happen that limN→∞

∑N
i ∆ti < 1 and the

algorithm never reaches t = 1, the ultimately desired problem. We state a theorem
indicating the necessary assumptions to prevent this from happening.
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Theorem 4.3. If

• each path (x∗, y∗)(t) is globally Lipschitz continuous along t ∈ [0, 1].

• the domain of quadratic attraction for (1.1), i.e., the requisite maximal dis-
tance of (x0, y0) to (x∗, y∗)(t) for quadratic local convergence, is uniformly
bounded from below with respect to t, and the constant of quadratic conver-
gence Cq(t) in (4.2) is bounded above by C̄q, and

• the constants C1(t) and C2(t), and their inverses in Lemma 1.1 are uniformly
bounded from above by C̄ for t ∈ [0, 1],

then Algorithm (3.1) terminates after a finite number of iterations N and, there
exists a ∆t such that tk − tk−1 ≤ ∆t implies that,

δ(xN , yN , 1) ≤ δ(x0, y0, 0) (4.5)

Proof. The second assumption of the Theorem implies that quadratic contraction
requires, for some C3 ≤ 1,

δ(xk, yk, tk+1) ≤ C3.

Let δ(x0, y0, 0) and ‖p(tk)−p(tk−1)‖ be such that, with L the Lipschitz constant
associated with the first assumption of the Theorem,

δ(x0, y0, 0) + L‖p(tk)− p(tk−1)‖ ≤ 2δ(x0, y0, 0) ≤ min(C3, 4C̄
3Cq). (4.6)

Let it hold that,

δ(x0, y0, t1) = ‖(x0, y0)− (x∗, y∗)(t1)‖ ≤ 2δ(x0, y0, 0). (4.7)

and it follows that,

δ(x1, y1, t1) ≤ C̄η(x1, y1, t1) ≤ C̄C̄qη(x0, y0, t1)2 ≤ C̄3C̄qδ(x0, y0, t1)2

≤ 4C̄3C̄qδ(x0, y0, 0)2 ≤ δ(x0, y0, 0).

Likewise, for any k,
δ(xk, yk, tk) ≤ δ(x0, y0, 0).

Finite termination follows from the fact that Lipschitz continuity of (x∗, y∗)(t)
implies that there is a constant t̃ such that for tk − tk−1 ≥ t̃, ‖p(tk) − p(tk−1)‖
satisfies (4.6).

Since stability is a local property, the assumptions of the previous Theorem
should appear appropriate, since a priori we do not know whether there is uni-
form stability across the homotopic solution path. In general we expect that for
well-behaved problems, these assumptions should hold. The domain of Newton-like
convergence, and the constants appearing in error bounds are nuanced topics rela-
tively unexplored in the context of nonlinear programming and so we do not, in this
paper, analyze these assumptions in more detail.
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5. Algorithms for degenerate problems

In this section, we analyze problems for which the SMFCQ does not hold. Fur-
thermore we relax the condition of the SSOSC to just the SOSC. The motivation
is two-fold. First, although traditionally one perspective on degenerate problems
is that it is due to a faulty presentation of the nonlinear programming problem,
we disagree with this perspective for three reasons: 1) in an interest to make opti-
mization software widely applicable, understanding abstract conditions should not
necessarily be in the domain of the end user 2) it can be difficult to identify, a pri-
ori, the presence of degeneracy at the solution for nonlinear constraints and 3) some
problems, like MPECs, cannot be reformulated in a way satisfying the SMFCQ.

Second, even if the nonlinear program at t = 0 and t = 1 satisfy the MFCQ,
that does not mean that the SMFCQ is satisfied along every point on the homotopy
path between these two. Consider, for instance, the problem,

minimize
x∈R2

x2 + x2
1

subject to x2 ≥ x1,

x2 ≥ −x1,

x2 ≥ p.

(5.1)

as p changes from −1 to 1. It is clear that for p ∈ [−1, 0), x∗(p) = (0, 0) and
y∗ = (1/2, 1/2, 0), and for p ∈ (0, 1], x∗(p) = (0, p) and y∗ = (0, 0, 1), however, for
p = 0, x∗(p) = (0, 0) but y∗(p) = (ỹ, ỹ, 1− ỹ) for all ỹ ∈ [0, 0.5].

Algorithm 3.1 will, for p < 0, correctly estimate the two strongly active con-
straints x2 ≥ −x1 and x2 ≥ x1, on which there is a unique feasible point x = (0, 0).
At p = 0 and (x̄, ȳ) = (0, 0), the multipliers satisfying the solution of the QP
subproblem correspond to the optimal multipliers Λ(x∗(0)) of the original prob-
lem. However, since it can be difficult to confirm that any particular multiplier is
”preferable” to the QP solver, there is no particular reason to expect it to select
y∗ = (0, 0, 1), and subsequently estimate only the third constraint as strongly active,
as is necessary to continue to trace the solution path for p > 0.

For the remainder of this and the subsequent section, we make the following
assumption about (1.1),

Assumption 5.1. For every t ∈ [0, 1], the problem (1.1) has at least one primal-
dual solution (x∗, y∗)(t) to the first-order KKT conditions, i.e., the Lagrange mul-
tiplier set for the problem is nonempty. Furthermore, for each x∗(t), there ex-
ists a compact subset V(x∗, t) ⊆ Λ(x∗, t) of the set of multipliers such that for all
y∗ ∈ V(x∗, t) the second-order sufficiency condition holds at (x∗, y∗). Furthermore
the affine hulls of V(x∗, t) and Λ(x∗, t) are the same.

Note that by Robinson [38], Assumption 5.1 implies that any primal minimizer
x∗ is strict. So although we allow dual nonuniqueness, we do not consider the case
of locally nonunique primal solutions. This is motivated by the intended context;
optimization problems arising in engineering (whether standalone or arising from
optimal control) tend to have a regularization term that have the effect of distin-
guishing particular primal minima. So although we are aware of developments in
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the formulation of algorithms suitable for primal local non-uniqueness of solutions
(e.g., Facchinei et al. [6]), we do not incorporate them in our method.

Although the example of Problem (5.1) consists of degeneracy at just a single
point along the homotopy, we will be interested in analyzing the most general case
and allow for degeneracy along the entire solution path. Thus, in contrast to Al-
gorithm 3.1, we solve an equality constrained stabilized QP, using the active set
estimate (2.1). Note that the inequality constrained stabilized SQP procedure the-
oretically achieves superlinear convergence under weak regularity assumptions (see,
e.g., [8]) however, it is shown only that there exists a sequence of solutions converg-
ing superlinearly, and since these QPs are possibly indefinite with possibly multiple
or unbounded solutions, it is not a well-defined algorithm. We may, as in Section 3,
assume the SSOSC and solve a stabilized QP on the strongly active constraints, and
this is one plausible procedure. We are interested, however, in problems satisfying
just the regular SOSC, and under Assumption 5.1, QPs at a base point arbitrarily
close to the solution can result in nonconvex QPs if there are any inequality con-
straints. For a thorough discussion of the challenges of indefiniteness in the context
of perturbed QPs, see Chapter 5 of [27].

5.1. Calculating the extreme set of multipliers

As illustrated by problem (5.1), degeneracy can correspond to discontinuities in the
optimal multiplier set path, which can correspond to changes in the optimal active
set. Therefore, it becomes necessary to explore the extreme points of the region
Λ(x∗), where by extreme points we refer to the optimal multipliers with varying
number of weakly active components.

To begin the algorithm, we use the active set estimate (2.1) to estimate the
active set at x∗(0). Then we solve a series of LPs along a combinatorial expansion
of the possible set of weakly active multipliers. In particular, let

{ℵ1,ℵ2, ...,ℵk, ...,ℵN0} = P(Aγ(x0, y0, 0)),

where P indicates the power set, the set of all subsets.
Let σ be a constant such that 0 < σ < γ < 1. We solve the series of LPs,

minimize
ỹ∈Rm

κ

subject to 0 ≤ [ỹ]i ≤ κ for all i ∈ {1, ...,m}
−η(x0, y0)

1+σ
1+γ ≤ [∇f(x0, 0)− J(x0, 0)Tỹ]i ≤ η(x0, y0)

1+σ
1+γ , i ∈ {1, ..., n}

ỹi = 0, for i /∈ ℵk,
(5.2)

for each k ∈ {1, ..., N0} to generate a set of acceptable extremal multipliers. After
pruning for redundancies (i.e., a multiplier appearing multiple times across k), we
obtain a set of initial points {(x0, ỹk)} from which to calculate a predictor step. Each
ℵk serves as an estimate of A+(x∗(0), y∗k(0), 0) for some y∗k(0), with Aγ(x0, y0) \ ℵk
an estimate for A0(x

∗(0), y∗k(0), 0). Now, initialize x̄ to be equal to x0.
Note that it is immediately clear that this procedure will generate ỹ = (0, 0, 1)

as one of the multipliers at p = 0 for Problem (5.1).
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5.2. Calculating the solution to the predictor equations

Recall that the equations (2.3) are stationarity conditions for the QP,

minimize
∆x

(
∂2L(x̄,ȳ,t̄)
∂x∂t ∆t

)T
∆x+ 1

2∆x∂
2L(x̄,ȳ,t̄)
∂2x

∆x,

subject to ∂c(x̄,t̄)+
∂t ∆t+ ∂c(x̄,t̄)+

∂x ∆x = 0,
∂c(x̄,t̄)0
∂t ∆t+ ∂c(x̄,t̄)0

∂x ∆x ≥ 0.

(5.3)

However, unlike in the case of strong regularity, minimizing the QP does not corre-
spond to finding these stationary solutions. The curvature along such points is not
important for calculating a predictor and so a QP solver with provisions to ensure
descent in the course of solving the quadratic program may not be fully appropri-
ate. One alternative would be to solve a series of LPs. There are a finite number
of weakly active constraints, and the series of inequalities can be solved for each
combination of yi = 0 or [∂c(x̄,t̄)0∂t ∆t+ ∂c(x̄,t̄)0

∂x ∆x]i = 0 for each i ∈ A0.
In addition, there may be an infinite set of solutions to (2.3). In fact, this is

the more common case if the set of multipliers satisfying the first-order optimality
conditions at x̄ is not unique, see the examples in Levy [29], for instance. Therefore,
we regularize the direction in order to certify a unique solution. Recalling ỹk for a
the subset of constraint indices ℵk, we obtain another set of permutations

{ℵ̄k1, ℵ̄k2, ..., ℵ̄kj , ..., ℵ̄kNk} ∈ P(Aε(x̄, ỹk, t) \ ℵk),

and solve a series of problems of the form,

minimize
∆x,∆y

α‖∆x‖+ ‖∆y‖

subject to ∂2L(x̄,ỹk)
∂x∂t ∆t+ ∂2L(x̄,ỹk)

∂2x
∆x+ J(x̄, t̄)T∆y = 0,

∂c(x̄,t̄)+
∂t ∆t+ ∂c(x̄,t̄)+

∂x ∆x = 0,
∂c(x̄,t̄)0
∂t ∆t+ ∂c(x̄,t̄)0

∂x ∆x ≥ 0,
[∆y]A0(k) ≥ 0,

[∆y]i = 0 for i ∈ ℵ̄kj ,
[∂c(x̄,t̄)0∂t ∆t+ ∂c(x̄,t̄)0

∂x ∆x]i = 0 for i /∈ ℵ̄kj ,

(5.4)

for each j ∈ {1, ..., Nk}, where all the constraints correspond to only the estimated
active inequality constraints, A0(k) = Aε(x̄, ỹk, t) \ ℵk, and subscripts + and 0
correspond to Aε(x̄, ỹk, t) \ ℵk \ ℵ̄kj and ℵ̄kj , respectively. We let α be small enough
so that the second term in the objective dominates, because we expect multipliers
to drastically change with active set changes and we do not want to interfere with
their regularization due to poor primal-dual scaling.

We may use either the ∞ or the 1−norm in the subproblem to obtain an LP.
The first encourages an ”interior” solution, many multipliers change, and the lat-
ter encourages a ”sparse” solution, where many multipliers are expected to stay
constant.

The number of solutions to (5.4) may be larger than the number of true differ-
entiable solution paths, and so we cut out any solutions that do not correspond to
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actual approximate solutions at t + ∆t by discarding all solutions (x̂, ŷ)kj that do
not satisfy,

η(x̂kj , ŷkj , t+ ∆t) ≤ η(x̄, ỹk, t)
1−σ

2 (5.5)

for the solution (x̂kj , ŷkj) = (x̄ + ∆x, ỹk + ∆y) for ℵ̄kj . If the condition does not
hold, we discard this solution. Note if (x̂kj , ŷkj) is calculated to be the step along the
directional derivative of a solution path that is at least C2, then condition (5.5) holds
for sufficiently small ∆t by the fact that Lemma 1.1 implies that η(x̂kj , ŷkj , t+∆t) ≤
C2(t+∆t)δ(x̂kj , ŷkj , t+∆t) = C2(t+∆t)δ(x̄, ỹk, t)+o(∆t) = O(η(x̄, ỹk, t))+o(∆t).

It appears as though this procedure, in the worst case complexity, is exponential
in the number of active constraints. However, it should be noted that each of the LPs
in Section 5.1, as well as all of the LPs corresponding to each ℵk can be performed
entirely in parallel, and thus the extremal multiplier and predictor calculations are
perfectly parallelizable.

5.2.1. Contingencies

There are several possibilities for the solution of the predictor,

1. There are no feasible points of (5.4) and ℵk = ∅.

2. There are no feasible points of (5.4) and ℵk 6= ∅.

3. There is a solution to (5.4).

Izmailov [20, Theorem 2.4] suggests that the second case is pathological. In general,
however, the Theorem also implies that strictly complementary multipliers are only
certifiably stable under the linear independence constraint qualification (LICQ),
suggesting that in the case of degeneracy, the first case is not unlikely. However, in
this case, there are expected to be no active set changes, all constraints stay strongly
active, and so a primary purpose of the predictor of estimating active set changes
is irrelevant. In this case, we do not attempt to form a predictor step and move on
to the corrector. In particular (x̂kj , ŷkj) = (x̄, ỹk) for all j, again discarding if 5.5 is
unsatisfied.

5.3. Corrector step

Since we are considering the context of assuming no constraint qualifications, clas-
sical results implying that subproblems with a base point sufficiently close to a
primal-dual solution (see, e.g., Robinson [35]) are not directly applicable. In partic-
ular, if the properties of strict complementarity and the full rank of the constraint
Jacobian matrix are not satisfied, the solution to quadratic subproblems may not
necessarily have an active set corresponding to the active set at the solution. In
addition, the KKT matrix used to solve the QP subproblem,

K =

(
H(x, y, t) J(x, t)T

J(x, t) 0

)
,

may even be singular.
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We propose a strategy whereby we estimate the active set and solve a per-
turbed equality constrained SQP subproblem, namely the stabilized SQP subprob-
lem. Equality-constrained stabilized SQP has been shown [21] to converge superlin-
early under assumptions weaker than the ones made in this paper.

This algorithm resembles that of Wright [45], wherein an outer algorithm is
performed until a point with a sufficiently low optimality residual is generated,
and then the active set is estimated and the equality constrained stabilized SQP
is solved with the estimated active set corresponding to the equality constraints.
If the constraints and dual variables remained feasible and the optimality residual
sufficiently reduced, the equality sSQP step is considered successful.

5.3.1. Stabilized SQP iteration

After calculating the predictor step, we recalculate the active set estimate,
Aγ(x̂kj , ŷkj , t+ ∆t), potentially picking up new active constraints.

Solve,(
H(x̂kj , ŷkj , t+ ∆t) J(x̂kj , t+ ∆t)TA
J(x̂kj , t+ ∆t)A −η(x̂kj , ŷkj , t+ ∆t)I

)(
∆x
∆yA

)
=

(
−∇xL(x̂kj , ŷkj , t+ ∆t)
−c(x̂kj , t+ ∆t)A

)
,

(5.6)
where the subscript A corresponds to the rows or components in the respective
matrix or vector in Aγ(x̂kj , ŷkj , t+ ∆t). We set [∆y]Ac = 0.

The solution (∆x,∆y) is accepted if there is sufficient superlinear contraction
and if it remains feasible with respect to the inactive constraints,

η(x̂kj + ∆xkj , ŷkj + ∆ykj , t+ ∆t) ≤ η(x̂kj , ŷkj , t+ ∆t)1+γ .
c(x̂kj + ∆xkj)i ≥ 0 for i /∈ Aγ(x̂kj , ŷkj , t+ ∆t)

(5.7)

5.3.2. Recalculating the extremal multipliers

The corrector step cannot be limited to an iteration involving the primal-dual solu-
tion to this equality-constrained problem. In particular, the multipliers can switch
sign so that the component of a resultant dual variable becomes negative and thus,
non-optimal. The set of multipliers satisfying the optimality conditions for the
strictly equality-constrained problem may be larger than the set of multipliers satis-
fying the optimality conditions for the full inequality-constrained problem. It could
be that the step corresponding to the equality-constrained problem results in an
inappropriate multiplier, but there exists a multiplier that results in an appropriate
decrease in the optimality conditions.

Furthermore, as this is the end of the procedure, we must again recognize that
the set of optimal multipliers may not be a singleton and in order to capture the
active set changes at the next iteration, we will need to calculate the set of extremal
multipliers.

So we perform the same procedure as described in Section 5.1. In particular,
after re-estimating the active set, we solve, for each member of the power set

{ℵkj1,ℵkj2, ...,ℵkjl, ...,ℵkjNkj} ∈ P(Aγ(x̂kj + ∆xkj , ŷkj + ∆ykj , t+ ∆t))
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minimize
ỹ∈Rm

κ

subject to −κ ≤ [ỹ]i ≤ κ for all i ∈ {1, ...,m}
−η(x̂kj + ∆xkj , ŷkj + ∆ykj)

1+σ

≤ [∇f(x̂kj + ∆xkj , t+ ∆t)− J(x̂kj + ∆xkj , t+ ∆t)Tỹ]i
η(x̂kj + ∆xkj , ŷkj + ∆ykj)

1+σ

≥ [∇f(x̂kj + ∆xkj , t+ ∆t)− J(x̂kj + ∆xkj , t+ ∆t)Tỹ]i
for all i ∈ {1, ..., n}

0 ≤ ỹ,
ỹi = 0, for i /∈ ℵkjl,

(5.8)
for each l ∈ {1, 2, ..., Nkj}.

Note that we have a combinatorial expansion, at each iteration there are a num-
ber of initial multipliers from which we calculate a number of predictor steps, and
at each we calculate a corrector step and then a set of new extremal multipliers. In
the case of degeneracy, a unique solution path x∗(t) for t ∈ [0, 1] is not guaranteed.
As such, depending on the desired objective, a user of the algorithm could either
1) trace all unique valid solution paths or 2) select one to follow on a homotopy
path. In the next section, we present the outline of the algorithm for the second
case. Obtaining all of the solution paths would correspond to a recursive tree of
instances of the procedure. Since the combinatorial expansion is entirely paralleliz-
able on each level, however, neither objective is burdensome from the perspective of
computational cost.

Let {ℵ̄kj1, ..., ℵ̄kjN̂kj} ⊆ {ℵkj1, ...,ℵkjNkj} be the subset of constraint sets for

which there exists solutions {ỹkj1, ..., ỹkjN̂kj} to (5.8), we iterate the procedure by

resetting x̄ as x̄ = x̂kj + ∆xkj , N0 = N̂kj , {ℵ1,ℵ2, ...,ℵN0} = {ℵ̄kj1, ℵ̄kj2, ..., ℵ̄kjN̂kj},
and {ỹ1, ..., ỹN0} = {ỹkj1, ..., ỹkjN̂kj}.
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5.4. Statement of the algorithm

Algorithm 5.1 Predictor-corrector algorithm for degenerate parametric nonlinear
programming.

1: Begin with (x̄, ȳ, an approximate solution to (1.1) at t = 0
2: Set constants γ, γ1 ∈ (0, 1), γ2 > 1.
3: Estimate Aγ(x̄, ȳ, 0) by (2.1).
4: Solve (5.2) for each k ∈ {1, ..., N0}.
5: while t < 1 do
6: for each k do
7: Solve (5.4) for each j ∈ {1, ..., Nk} to obtain {x̂, ŷ}kj .
8: Discard all (x̂, ŷ)kj that do not satisfy (5.5).
9: if {(x̂, ŷ)kj} = ∅ then

10: Let (x̂kj , ŷkj) = (x̄, ỹk) for all j.
11: end if
12: for each (k, j) such that (x̂, ŷ)kj exists do
13: Calculate Aγ(x̂kj , ŷkj , t+ ∆t) by (2.1).
14: Solve (5.6) for (∆xkj ,∆ykj).
15: if (∆xkj ,∆ykj) satisfies (5.7) then
16: Estimate Aγ(x̂kj + ∆xkj , ŷkj + ∆ykj , t+ ∆t) by (2.1).
17: Solve (5.8) for each l ∈ {1, ..., Nkj} to obtain {ỹkjl}.
18: end if
19: end for
20: end for
21: if no satisfactory (∆xkj , ỹkjl) is found for all l, k, j then
22: Let ∆t = γ1∆t, go back to Step 7.
23: else
24: For some k, j, and for all l with a satisfactory (∆xkj , ỹkjl),

25: Let x̄ = x̂kj + ∆xkj , N0 = N̂kj ,
26: {ℵ1,ℵ2, ...,ℵN0} = {ℵ̄kj1, ℵ̄kj2, ..., ℵ̄kjN̂kj}
27: {ỹ1, ..., ỹN0} = {ỹkj1, ..., ỹkjN̂kj}, t = t+ ∆t.

28: Let ∆t = max(1− t, γ2∆t).
29: end if
30: end while

6. Convergence

We present three general assumptions that facilitate the results presented in this
section. All of these assumptions concern the properties of homotopic paths for (1.1)
between t = 0 and t = 1. As such, they are higher-level, a posteriori assumptions.
Consider the set valued mapping,

S : t→ X∗(t) = {x∗(t) : there exists a y∗ such that (x∗(t), y∗) satisfy (1.3)},

Assumption 6.1. The graph of S is arcwise-connected, i.e., for any (x∗(t0)) and
(x∗(t1)) corresponding to solutions of (1.1) with t = t0 and t = t1, there exists a
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continuous curve (x∗(t)) connecting x∗(t0) and x∗(t1) such that (x∗(t)) solves (1.1)
for t. Furthermore, for each t, every local minimizer x∗(t) is isolated.

The next assumption essentially implies that there are no ”dead ends” in the
homotopy path,

Assumption 6.2. For every continuous path of primal solutions that includes
x∗(0), for every branch point t̃, the number of solutions corresponding to t > t̃
is always at least one.

This effectively rules out turning points or boundary points in the continuation
path. Every primal bifurcation point must be a simple branching, a pitchfork, a
transcritical or otherwise a point for which there exists at least one primal solution
to (1.1) for t > t̃ arcwise connected to x(t̃) (which, due to this assumption and
Assumption 6.1, exists).

The next assumption ensures that each multiplier ỹkjl the procedure finds is in
the neighborhood of optimal multipliers that satisfy the second order conditions.
The assumption essentially implies that all multipliers not satisfying the second
order sufficiency condition are large in norm, i.e., the SOSC is only unsatisfied for
”unbounded” multipliers.

Assumption 6.3. Let κ = max(t∈[0,1],ℵ∈P(A(x∗(t)))) min{‖y‖∞ : y ∈ Λ(x∗(t)), [y]i =
0 for i ∈ ℵ}. For every y∗ ∈ Λ(x∗(t)) for all x∗(t) and all t, with ‖y∗‖∞ < 2κ,
(x∗, y∗) lies in the relative interior of V(x∗(t)), with V(x∗(t)) defined as in Assump-
tion 5.1.

Theorem 6.1. For (x̂, ŷ) = (x̂kj , ŷkj) sufficiently close to (x∗,V(x∗))(t+ ∆t) with
V(x∗) as in Assumption 6.1, there exists a solution to the system (5.6) satisfying
the condition (5.7), and a solution to (5.8) for some l

Proof. Wright [45, Theorem 3.3] implies that Aγ(x̂, ŷ, t+ ∆t) = A(x∗(t+ ∆t)).
Consider the problem,

min
x
f(x, t+∆t) subject to c(x, t+∆t)i = 0 for all i ∈ A, c(x, t+∆t)i ≥ 0, otherwise,

(6.1)
where A = Aε(x̂, ŷ, t+∆t). Note that the solutions to each of these problems contain
the primal-dual solutions (x∗,Λ(x∗)) of (1.1) for t+ ∆t.

Furthermore, Wright [45, Lemma 4.1] implies that this solution satisfies

η̄(x̂+ ∆x, ŷ + ∆y, t+ ∆t) ≤ η̄(x̂, ŷ, t+ ∆t)2, (6.2)

where

η̄(x, y, t) =

∣∣∣∣∣∣∣∣(g(x, t)− J(x, t)Ty
c(x, t)Aγ

)∣∣∣∣∣∣∣∣
∞
.

Clearly by the definition of η, since [ŷ+∆y]Acε = 0, we have that η(x̂+∆x, ŷ+∆y, t+
∆t) ≤ η̄(x̂+∆x, ŷ+∆y, t+∆t). On the other hand, η̄(x̂, ŷ, t+∆t) ≤ δ̄(x̂, ŷ, t+∆t),
the distance to a solution of (6.1) by [45, Theorem 3.4] and δ̄(x̂, ŷ, t+∆t) ≤ δ(x̂, ŷ, t+



6. Convergence 25

∆t), since x∗(t + ∆t) is isolated and the primal-dual solution set corresponding to
x∗(t+ ∆t) is no smaller for problem (6.1) than problem (1.1). Together, these facts,
along with another application of Lemma 1.1, imply that and solution (∆x,∆y)
satisfies,

η(x̂+ ∆x, ŷ + ∆y, t+ ∆t) ≤ η(x̂, ŷ, t+ ∆t)1+γ , (6.3)

Izmailov and Solodov [21, Lemma 2] implies that the matrix in (5.6) is nonsin-
gular and therefore there exists a unique solution to the system.

It holds that, for sufficiently small ∆t and by Lemma 1.1, for i /∈ Aγ(x̂, ŷ, t+∆t),

[c(x̂+∆x, t+∆t)]i ≥ [c(x̂, t+∆t)]i−L‖∆x‖ ≥ η(x̂, ŷ, t+∆t)γ−Lδ(x̂, ŷ, t+∆t) > 0,
(6.4)

where we also use Wright [45, Lemma 4.1] for the estimate ‖∆x‖ = O(δ(x̂, ŷ, t+∆t)).
Now we claim that there exists a ỹ such that,

η(x̂+ ∆x, ỹ, t+ ∆t) ≤ η(x̂, ŷ, t+ ∆t)1+σ.

Consider ỹ = miny∈Λ(x∗,t+∆t) ‖ŷ+ ∆y− y‖. Note that ‖ŷ+ ∆y− ỹ‖ ≤ δ(x̂+ ∆x, ŷ+
∆y, t+ ∆t).

The optimality residual at the new primal-dual point satisfies, η(x + ∆x, ỹ, t +
∆t) ≤ 2‖∇f(x̂+ ∆x)−J(x̂, t+ ∆t)Tỹ‖∞+ 2‖min(ỹ, c(x̂+ ∆x, t+ ∆t))‖∞. We have
already shown above that

‖min(ỹ, c(x̂+ ∆x, t+ ∆t))‖∞ ≤ ‖c(x̂+ ∆x, t+ ∆t)‖∞ ≤ η̄(x̂+ ∆x, ŷ + ∆y, t+ ∆t)
= O(η(x̂+ ∆x, ŷ + ∆y, t+ ∆t)) = O(η(x̂, ŷ, t+ ∆t)1+γ) = o(η(x̂, ŷ, t+ ∆t)1+σ).

It holds that ∇f(x∗, t+∆t)−J(x∗, t+∆t)Tỹ = 0. Therefore, by Assumption 1.1
and Lemma 1.1

‖∇f(x̂+ ∆x, t+ ∆t)− J(x̂, t+ ∆t)Tỹ‖∞
≤ ||∇f(x̂+ ∆x, t+ ∆t)−∇f(x∗, t+ ∆t)

−(J(x̂+ ∆x, t+ ∆t)− J(x∗, t+ ∆t))Tỹ||∞
≤ Lδ(x̂+ ∆x, t+ ∆t) + L‖ỹ‖∞δ(x̂+ ∆x, t+ ∆t)
≤ O(η(x̂, ŷ, t+ ∆t)1+γ) = o(η(x̂, ŷ, t+ ∆t)1+σ).

The conditions implying a successful series of steps of Algorithm 5.1 are described
in the next Theorem.

Theorem 6.2. Assume for all x∗(t) primal solutions of (1.1), it holds that for some
ℵ ∈ P(A(x∗(t))), there exists y∗(ℵ) ∈ Argmin{‖y‖∞ :∈ Λ(x∗), [y]i = 0 for i ∈ ℵ}
and for all such y∗(ℵ) there exists a continuous path y∗(s) for s ∈ [t, t+δs) for some
δs with y∗(t) = y∗ and (x∗(s), y∗(s)) solving (1.1).

Then, if the initial point (x0, y0) is sufficiently close to (x∗,V(x∗))(0), Algo-
rithm 3.1 generates a sequence of points (xk, yk, tk) satisfying either 0 = t0 < t1 <



7. Numerical results 26

t2 < ..., or 0 = t0 < t1 < t2 < ... < tN = 1. Furthermore, for any k, there exists
{t1, t2−t1, t3−t2, ...} such that for sufficiently small initial δ(x0, y0, 0), it holds that,

δ(xk, yk, tk) ≤ δ(x0, y0, 0) (6.5)

Proof. For (x0, y0) sufficiently close to (x∗,V(x∗))(0), it holds that A(x∗, 0) =
Aγ(x0, y0, 0) and by a similar argument as in Theorem 6.1, there exists a ỹk for
some ℵk ∈ P(Aγ(x0, y0, 0)) that solves (5.2).

By the stability of linear equations [36], we have that ‖ỹk−y∗k‖ = O(δ(x0, y0, 0))
for all y∗k ∈ Argmin{‖y‖∞ : y ∈ Λ(x∗), [y]i = 0 for i ∈ ℵk}. By the assumptions of
the Theorem there exists (x∗(s), y∗(s)) solving (1.1) close to (x∗, y∗k) for some k.

If y∗(s) is also Lipschitz continuous, this implies the existence of a solution
to (5.4) by Izmailov [20, Theorem 2.1]. The presence or absence of this case does
not affect the argument, however.

For sufficiently small t1, for some j condition (5.5) implies that, Aγ(x̂kj , ŷkj , t+
∆t) = ℵk ∪ (Aγ(x̄, ỹk, t) \ ℵ̄kj) for some k, j and by Wright [45, Theorem 3.3],
Aγ(x̂kj , ŷkj , t1) = A(x∗(t1), y∗(t1), t1).

For sufficiently small t1, by Assumption 6.3 and continuity of y∗(s), y∗(t1) must
lie in the relative interior of Λ(x∗(t1)) and the conditions of Theorem 6.1 are satis-
fied at (x̂, ŷ)(t1) for sufficiently small t1 and the procedure generates a point (x1, y1)
such that, η(x1, y1, t1) ≤ η(x̂, ŷ, t1)1+σ. The rest of the argument follows as in The-
orem 4.2 and the fact that 1+σ

1−σ/2 > 1 implying superlinear contraction of η(x, y, t)

by (5.5) and (6.3).

The existence of a path satisfying the conditions of a tangential predictor (2.3)
is a nuanced subject with assumptions that are, for the purposes of this exposition,
esoteric, and the interested reader can consult Izmailov [20]. We also do not include a
proof of finite termination, as the number of assumptions required becomes excessive.
This does suggest that successful homotopies may only be performed under small
perturbations for degenerate problems, but similarly as in the conventional case, if
the multiplier expansion/predictor successfully predicts newly inactive constraints,
and the analogous conditions as in Theorem 4.3 along each segment of the homotopy
path, and the domains of superlinear convergence are bounded from below across
the entire path, then it can be seen that finite termination of Algorithm 5.1 should
hold.

7. Numerical results

In this section we look at the performance of a MATLAB implementation of the
algorithms formulated in this paper for several toy problems as well as a homo-
topy solution to a subset of the CUTEst test set. The first few problems will be
illustrative of the properties and the needed conditions of the general algorithm,
and the performance on the larger test set should give an overview of the overall
performance of the algorithm. These results look encouraging, and with additional
tuning, suggest that the algorithms presented in this paper can prove effective in
solving the problems from the intended applications.
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Figure 3: Plot of the Problem 1 for t = 0 and t = 1.
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7.1. Problem 1: Active set change

For the first problem we illustrate Algorithm 3.1 on a simple two-dimensional non-
linear program.

minimize
x∈R2

p1x
3
1 + x2

2

subject to x2 − e−x1 ≥ 0,

x1 ≥ p2.

(7.1)

We look at the problem starting at the approximate solution (x0, y0) =
((0.5, 0.6), 1.2) to (7.1) with p = (1,−4) tracing a path to generate an approximate
solution for p = (8, 1). The contour plots and constraints for the two variations of
the problem are given in Figure 3.

Figure 4 plots x1 with respect to t. Notice the steep linear change as the bound
constraint becomes active. The procedure starts by reducing ∆t, then achieves a
contracted step, then again reduces ∆t to absorb the new constraint. The problem
at t = 1 is solved after 28 iterations in total. Algorithm 5.1 performs similarly,
and since the problem is fairly simple, we do not investigate its specific properties.
Although the problem is simple, the change in the problem is quite substantial in
terms of both the nature of the active constraints and the grade of the objective
function.

7.2. Problem 2: A degenerate problem

We look at the problem described by Wright [44], which we write as,

minimize
x∈R2

x1

subject to (x1 − 2)2 + x2
2 − p2 ≤ 0,

(x1 − 4)2 + x2
2 − (p+ 2)2 ≤ 0.

(7.2)

We analyze shifts in the problem close to p = 2. The problem is drawn in Figure 5.
The solution is at the edge of both of the circles, and increasing the value of

p increases the size of the circles, while the solution remains on the leftmost edge
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Figure 4: Problem 1: x1 as a function of t.

x1

x2

Figure 5: Problem 2 and 3.
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of the circles, where they touch. The active constraint gradients are rank deficient
at the solution for any p, and the SMFCQ condition does not hold. In this case,
however, Algorithm 3.1 converges. It estimates one constraint as strongly active
and proceeds to a solution.

7.3. Problem 3: Modified problem 2

We modify the problem as done in Mostafa et al. [32], to be of the form,

minimize
x∈R2

x1

subject to (x1 − 2)2 + x2
2 − p2 ≤ 0,

−(x1 − 4)2 − x2
2 + (p+ 2)2 ≤ 0.

(7.3)

In this case, the MFCQ condition does not hold for any p, the set of multipliers is
unbounded, with

y∗(p) = (y, y/2− 1/(4p)), for any y ≥ 0.

Algorithm 3.1 does not converge, whereas the stabilized algorithm, Algorithm 5.1
described in Section 5 converges in 252 iterations. The sequence of points steadily
converges, however, only with a small step-size, indicating a small radius of con-
vergence. For the conventional algorithm, by contrast, degeneracy prevents a suffi-
ciently contractive step from being generated by the subproblem.

7.4. Problem 4: Sensitivity to second order conditions

Consider the problem,
minimize

x∈R2
−2x2

1 + x2

subject to −x2
1 + x2 ≥ p,

x2 ≤ 0.

(7.4)

We plot the problem in Figure 6. Consider attempting to solve a homotopy path
from p = 0 to p = −1. At p = 0, the optimal solution is x∗ = (0, 0) and y∗ = (1+ȳ, ȳ)
for ȳ ≥ 0, and in fact (0, 0) is the only feasible point for problem (7.4) at p = 0.
The Hessian matrix is,

H(x∗, y∗) =

(
−2 + 2ȳ 0

0 0

)
,

which is negative definite for ȳ ∈ [0, 1), and the Jacobian is J(x∗) =

(
0 1
0 −1

)
for which the null-space is vn =

(
ṽ
0

)
for all ṽ ∈ R, implying that the second order

sufficient conditions (both strong and regular)are not satisfied. It can be shown that
the second order Guignard constraint qualification does not hold as well, implying
that the second order necessary conditions are not necessary at a local minimizer.

As theoretically expected, for an initial point close to x∗ = (0, 0) and y∗ = (1, 0),
Algorithm 3.1 attempts to solve an unbounded quadratic program, and the stabilized
variation, Algorithm 5.1 fails to generate a step with the desired contraction rate,
and neither achieve a successful iteration.
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Figure 6: Plot of the Problem 4 for p = 0.
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7.5. Tests on the CUTEst test set

We performed a series of tests on the CUTEst test set [15]. We selected a subset
of the constrained ”HS” problems [19], and, in order, for nonconvex problems, to
attempt to find solutions satisfying the second order sufficient conditions, we used
an algorithm known to converge to points satisfying the second order necessary
conditions [14] to find solutions. We discarded three problems for which an optimal
solution was not found, and two for which the second order sufficiency condition did
not hold, leaving 108 problems for the test set. We then perturbed the primal-dual
solution by some factor ξ with ξ < |ξ̄| < 1, e.g., (x0, y0) = (1+ξ)(x∗, y∗) and formed
a homotopy problem. The homotopy was formed such that (x0, y0) is a solution for
t = 0 and (x∗, y∗) is a solution for t = 1. This was done by forming the parametric
problem,

minimize
x∈Rn

f(x)− (1− t)(∇f(x0)− J(x0)Ty0)Tx

subject to c(x) ≥ (1− t) min(0, c(x0)),
(7.5)

where min is component-wise.
We report the number of successful path-following to an approximate solution

of (7.5) at t = 1 in Table 1 and the mean number of iterations for problems for which
both algorithms were successful in Table 2. The median number of iterations was
always 1, so the average iterations are the unstable mean of a highly skewed distri-
bution. It appears that the stabilized variation is overall less robust than standard
parametric SQP but generally requires fewer major iterations. Typical failed prob-
lems produce a large number successful tracking steps, after driving ∆t to be very
small and the procedure exceeding the maximum number of iterations. It should be
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Table 1: Number of successful path-following homotopies to an approximate primal-
dual solution (out of 108 problems).

Algorithm ξ̄ = 1 ξ̄ = 10−4 10−8

Parametric SQP 58 86 94
Stabilized PSQP 33 76 86

Table 2: Average number of iterations for successful path-following homotopies
to an approximate primal-dual solution, for problems for which both algorithms
converge.

Algorithm ξ̄ = 10−4 10−8

Parametric SQP 6.38 22.96
Stabilized PSQP 6.62 12.28

noted that the nature of each iteration in the stabilized variation is different, how-
ever, and so the difference in the number of iterations does not necessarily indicate
improved computational performance in all cases.

Since neither algorithm is supposed to be a standalone NLP solver, the results
must be interpreted carefully. For many problems, the procedure is expected to
yield a quadratic contraction in one inexpensive step, and sometimes a few, in a
relatively simple algorithm. Thus, in a procedure to solve a series of related NLPs,
the homotopy approach can be attempted as a first choice, and if it appears that
the problems happen to be so far apart as to require an excessive number of steps,
one can revert to some reliable NLP solver.

In Figure 7, we show a performance profile of parametric SQP, stabilized para-
metric SQP and SNOPT for ξ̄ = 10−4. A performance profile provides an “at a
glance” comparison of a set of algorithms on a large test set. Let rp,s be the ratio of
major iterations for solver s as compared to the best-performing solver on problem
p. Let |A| denote the size of a set. The function,

πs(τ) =
1

|P| |{p ∈ P : log2(rp,s) ≤ τ}|,

expresses the proportion of problems that are solved in at worst 2τ iterations times
the number of iterations the best solver takes. The performance profile plots πs(τ)
as a function of τ for the different solvers. A solver starting and initially staying
at a comparatively a high-value on the vertical axis indicates a fast solver, and a
solver that has a comparatively high value on the vertical axis for larger values on
the horizontal axis represents a reliable solver.

In this case we measure the performance with respect to the number of major
iterations. Since the task of parametric SQP is to generate an approximate solution
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Figure 7: Performance profile of parametric SQP, stabilized parametric SQP and
SNOPT for ξ̄ = 10−4.
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of (1.1) at t = 1, we set the optimality tolerance for SNOPT to be the best optimality
level reached by either PSQP or sPSQP, or if neither converged, we set it to 10−8.

SNOPT solves all of the HS problems. Both parametric SQP and the stabilized
variation, however, are faster, as they are the fastest performers on the vast ma-
jority of the problems. This suggests that as a strategy to solve a problem given
a solution to a similar problem, the homotopy procedures described in this paper
are expected to exhibit good performance, relative to the conventional approach of
using conventional SQP solvers for each nonlinear program in the sequence.

8. Conclusion and future work

Thus far, parametric nonlinear programming has been primarily a theoretical study
of the local properties of solutions subject to a parameter, or heuristics for solving
a series of related NLPs. Detailed, thorough study of the properties of nonlinear
programs dependent on a parameter for the purpose of algorithm development is a
largely unexplored subject in the context of SQP methods.

We developed and analyzed an SQP-based algorithm for the topic. It is well
known that SQP is effective for solving a series of related NLPs due to its “hot/warm-
start” advantages, and the ideas developed here largely formalized these notions.
Exact Hessians were used throughout, because since we are able to estimate the
active set at the optimal solution, indefiniteness is no longer a concern.

We noted the assumptions necessary to show solvability and finite termination
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of any homotopy-SQP procedure. Some of these are non-standard in the optimiza-
tion literature, and thus point to a large number of additional future theoretical
and applied research topics. In particular, these include studying the domain of
convergence for (1.1) as a function of t. The Assumptions for the degenerate case,
Assumptions 6.1 and 6.2 are relatively “high-level” in that they are about the solu-
tion path themselves. A study of the regularity properties needed to ensure these
properties hold for all p in a particular range could be be a fruitful source of some
insightful stability analysis.

From the more applied perspective, there is also the analysis of problems from
engineering design and model predictive control. We are interested in exploring the
presentation of the requisite properties of the problems that must hold in order for
the conditions of the solution path, or the regularity assumptions necessary for these
properties, to be maintained.

In addition, we can extend the analysis to problems with multiple solutions,
offering the possibility of tracing one or multiple solution paths. This can include
a procedure of singularity detection and pseudo-arclength continuation methods, as
in [31].

Finally, we are very interested in the tuning and performance of these algorithms
for practical problems arising in model predictive control, and developing easy-to-
use software for a flexible NLP solver. We believe that incorporating these in a
general procedure that adaptively chooses the correct algorithm by the presence or
lack of degeneracy, switching to a regular NLP solver when the step-size is driven
too small, could be more efficient than solving a series of NLPs by standard solvers,
and we intend to implement these procedures and investigate this conjecture.
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