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Abstract. We propose a new method for solving univariate global opti-
mization problems by combining a lower bound function of αBB method
(see [1]) with the lower bound function of the method developed in [4].
The new lower bound function is better than the two lower bound func-
tions. We add the convex/concave test and pruning step which acceler-
ate the convergence of the proposed method. Illustrative examples are
treated efficiently.
Keywords. Global optimization, αBB method, quadratic lower bound
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1 Introduction

We consider the following problem

(P )
{

min b(s)
s ∈ [s0, s1] ⊂ R

with f of class C2 and nonconvex on [s0, s1] an interval of R.
Several methods have been studied in the literature for univariate global op-
timization problems. Let us mention some works, in [5] a branch and prune
algorithm is proposed, the pruning step(outer and inner) consists in solving lin-
ear equation, the linear bounding function is obtained by interval analysis. In
[3] a branch and bound algorithm is presented for Holder functions. In [6], the
improved linear bounding function is used and discard regions which do not con-
tain the minimum global by the pruning step(outer) as in [5]. In [2] a review of
recent advances in global optimization is presented.
Univariate global optimization problems attract attention of researchers not only
because they arise in many real-life applications but also the methods for these
problems are useful for the extension for the multivariable case or by reduc-
ing the multidimensional case to the univariate case. One class of deterministic
approaches, which called lower bounding method, emerged from the natural
strategy to find a global minimum for sure. The efficiency of a method is in
the construction of tight lower bound and to discard a big regions which do not
contain the global minimum as quickly as possible.
The aim of this paper is to combine the lower bound function of the method



which was already proposed (see [1]) with the lower bound function of the method
developed in [4] by constructing a better lower bound function. The convergence
is accelerated by adding the convex/concave test and the pruning step, this is
done by using the parameters of the two methods and by solving quadratic equa-
tions respectively.
The structure of the paper is as follows. The two lower bound functions in [1] and
in [4] with their properties are presented in section 2. In section 3, a new lower
bound is stated. In section 4, the algorithm is described and its convergence is
shown. Section 5 presents illustrative examples.

2 Background

2.1 Lower bound in αBB method

The lower bound in αBB method on the interval [s0, s1] is
LBα(s) = b(s)− Kα

2 (s− s0)(s1 − s)
with Kα = max{0,−b”} such that b” ≤ b”(s), ∀s ∈ [s0, s1]; b” is obtained by the
interval analysis method.
The properties of this lower bound function are:
1/ It is convex (i.e. LB”α(s) = b”(s)+Kα = b”(s)+max{0,−b”} ≥ b”(s)−b” ≥
0,∀s ∈ [s0, s1]).
2/ It coincides with the function b at the end points of the interval [s0, s1] (i.e.
by construction of LBα(s)).
3/ it is a lower bound function (i.e. b(s)−LBq(s) = Kα

2 (s−s0)(s1−s) ≥ 0, ∀s ∈
[s0, s1]).
For details see [1].

2.2 Quadratic lower bound

The quadratic lower bound developed in [4] on the interval [s0, s1] is
LBq(s) = b(s0) s1−s

s1−s0 + b(s1) s−s0

s1−s0 − Kq

2 (s− s0)(s1 − s)
with Kq = max{0, b”} such that b” ≥ b”(s),∀s ∈ [s0, s1]; b” is obtained by the
interval analysis method.
The properties of this lower bound function are:
1/ It is convex (i.e. Kq ≥ 0).
2/ It coincides with the function b at the end points of the interval [s0, s1] ( i.e.
by construction of LBq(s)).
3/ it is a lower bound function (i.e. (b(s) − LBq(s))” = b”(s) − Kq = b”(s) −
max{0, b”} ≤ b”(s) − b” ≤ 0 which implies that (b(s) − LBq(s)) is concave, it
vanishes at the end points of [s0, s1] then b(s)− LBq(s) ≥ 0, ∀s ∈ [s0, s1].
For details see [4].
Lemma 1. The second derivative of b is bracketed between −Kα and Kq (i.e.
−Kα ≤ b”(s) ≤ Kq,∀s ∈ [s0, s1]).

Proof. One has Kα = max{0,−b”} ≥ −b” ⇒ −Kα ≤ b” then −Kα ≤ b” ≤
b”(s),∀s ∈ [s0, s1] and the first inequality is proved.
The second inequality is immediate.



3 New lower bound function

We now present the new lower bound function on the interval [s0, s1], LB(s) =
max{LBα(s), LBq(s)}
Its properties are:
1/ LB(s) is convex on the interval [s0, s1] because it is a maximum of convex
functions on the interval [s0, s1].
2/ It coincides with the objective function at the end points of the interval [s0, s1]
by construction.
3/ It is a lower bound function and better than the two lower bound LBα(s)
and LBq(s) by construction

Remark 1. This new lower bound is nonsmooth function, to compute its mini-
mum, we can use the subgradient method or solve the following convex problem





minz
LBα(s) ≤ z
LBq(s) ≤ z

s ∈ [s0, s1], z ∈ R

3.1 Convex/concave test

At iteration k we compute Kk
q and Kk

α on the interval [ak, bk] by the interval
analysis method.
By the inequalities −Kα ≤ b”(s) ≤ Kq,∀s ∈ [s0, s1] (see lemma 1), one has
i) If Kk

α = 0 (i.e. 0 ≤ b”(s),∀s ∈ [s0, s1]) then b is convex on the interval [ak, bk],
any local search gives a global minimum on this interval
ii) If Kk

q = 0 (i.e. b”(s) ≤ 0, ∀s ∈ [s0, s1]) then b is concave on the interval [ak, bk]
and its minimum is attained at the end point of this interval.

Remark 2. The algorithm may stop by the convex/concave test if it is satisfied
for all subintervals.

3.2 Pruning method

LBk
q (s) the quadratic lower bound on the interval [ak, bk] and UBk the current

upper bound in the Branch and prune algorithm.
We solve the quadratic equation LBk

q (s) = UBk,
we have three cases:
1/ There is no solution then the entire interval [ak, bk] is fathomed.
2/ There is a double solution, if the value of the objective function at this
solution is equal to UBk, the interval is reduced to one point(this solution) and
we actualize the upper bound else the entire interval [ak, bk] is fathomed.
3 There is two distinct solutions ar1

k and br1
k then the interval [ak, bk] is reduced

to [ar1
k , br1

k ]



We compute again LBk
q (s) on the interval [ar1

k , br1
k ]

we solve the quadratic equation LBk
q (s) = UBk and see the above three cases

We repeat this procedure until b(arj

k ) = b(brj

k ) = UBk.

Remark 3. If the optimal solution is found at iteration k and the stopping rule
UBk − LBk < ε isn’t satisfied, the pruning method allows us to confirm this
solution and to stop the algorithm.

We present two simple examples.
Example 1
b(s) = −s3 + s2, s ∈ [0, 2]
b”(s) = −6s + 2, −10 ≤ b”(s) ≤ 2, Kq = 2, Kα = 10
LBq(s) = s2 − 4s
, LBα(s) = −s3 + 6s2 − 10s
The minimum of LBq(s) is attained at s = 2 and then is the global minimum of
the objective function.
The minimum of LBα(s) is attained at the point s = 2 −

√
3

3 which is not the
global minimum of the objective function
For this example LBq(s) is better than LBα(s).

Remark 4. If we take b(s) = s3 − s2, s ∈ [0, 2]
Kq = 10, Kα = 2
LBα(s) is better than LBq(s).

Example 2
f(s) = sins + coss, s ∈ [0, 2π]
f”(s) = −sins− coss;−2 ≤ f”(s) ≤ 2; Kα = Kq = 2,
LBq(s) = 1− s(2π − s); LBα(s) = sins + coss− s(2π − s)
The minimum of LBq(s) is attained at s = π, and LBq(π) = −1− π2.
The minimum of LBα(s) is attained at the point s = 9π

8 , and LBα( 9π
8 ) =

−1, 3− π2.
For this example LBq(s) is better than LBα(s).

Remark 5. By using LB(s), we are sure that this lower bound function is always
better than the two lower bound functions LBα(s) and LBq(s).
.

4 Algorithm and its convergence

We now describe the algorithm

4.1 Algorithm

1.Initialization:
a) Let ε be a given sufficiently small number, let [s0, s1] the initial interval,



compute K0
α and K0

q such that K0
α = max{0,− 1

2b”}, and K0
q = max{0, 1

2b”}
with b” a upper bound of b”(s) on [s0, s1].
b)Convex/concave test
If K0

α = 0 stop b is convex, any local search gives an optimal solution.
If K0

q = 0 stop b is concave, the optimal solution is attained on the end point
of [s0, s1]
Else
c)Pruning step
if b(s0) = b(s1) no pruning
else
compute LB0

q and solve the equation LB0
q = min{b(s0), b(s1)} to obtain

[s0r1 , s1r1 ].
Compute LBr1

q and solve the equation LBr1
q = min{b(s0), b(s1)} to obtain

[s0r2 , s1r2 ].
Repeat this procedure until
b(s0rj ) = b(s1rj ) = min{b(s0), b(s1)}
e)Set k := 0; T 0 = [a0, b0] := [s0rj , s1rj ];M := T 0

f)Compute LB0
α(s) and LB0

q (s) on T 0, and solve the convex program
min

{
z : LB0

α(s) ≤ z, LB0
q (s) ≤ z, z ∈ R, s ∈ T 0

}
to obtain an optimal solution z0 and s∗0.
g)Set UB0 := min {b(a0), b(b0), b(s∗0)} = b(s0), LB0 = LB(T 0) := z0.
2. While UBk − LBk ≥ ε do
3. Let T k = [ak, bk] ∈ M be the interval such that LBk = LB(T k)
4.Bisect T k into two intervals by w − subdivision procedure
T k

1 = [ak, s∗k];T k
2 = [s∗k, bk]

Set T k
1 := [a1

k, b1
k] and T k

2 := [a2
k, b2

k]
5. For i = 1, 2 do
a) Convex/concave test
Compute Kki

α and Kki
q on T k

i .
If Kki

α = 0, b is convex, any local search gives an optimal solution s∗ki on T k
i ,

then update LB(T k
i ) = UB(T k

i ) = b(sk
i ) and goto 5.d)

If Kki
q = 0 b is concave on T k

i , then update LB(T k
i ) = UB(T k

i ) = min{b(ai
k, b(bi

k)}
and goto 5.d)
b) Pruning step
Compute LBki

q and solve the equation LBki
q = UBk to obtain

T kr1
i = [ai

kr1
, bi

kr1
],

Compute LBkr1i
q and solve the equation LBkr1i

q = UBk to obtain
T kr2

i = [ai
kr2

, bi
kr2

],
Repeat this procedure until b(ai

krj
) = b(bi

krj
) = UBk

Set T k
i = [ai

k, bi
k] := [ai

krj
, bi

krj
]

c)Compute LBki
α (s)

Set s∗ki the solution of the convex problem
min

{
z : LBki

α (s) ≤ z, LBki
q (s) ≤ z, z ∈ R, s ∈ T k

i

}

d) To fit into M the intervals T k
i : M ← M

⋃{T k
i : UBk − LB(T k

i ) ≥ ε, i =



1, 2} \ {T k}
e) Update UBk = min{UBk, b(ai

k), b(bi
k), b(s∗k

i)} := b(sk)
6. Update LBk = min{LB(T ) : T ∈ M}
7. Delete from M all intervals T such that LB(T ) > UBk − ε.
8. Set k := k + 1
9. End while
10. sk is an ε− optimal solution to (P )

4.2 Convergence

Theorem 1. The sequence {sk} generated by the algorithm converges to an op-
timal solution of the problem (P )

Proof. If the algorithm stops at iteration k which may be obtained by the con-
vex/concave test or the pruning method or the stopping rule UBk − LBk < ε
then it is clair that the solution is optimal.
If the algorithm generates an infinite sequence, it suffices to show that limk→∞(UBk−
LBk) = 0
Let UBk

q and LBk
q the upper and lower bound obtained in [4] where we have

shown that limk→∞(UBk
q − LBk

q ) = 0
one has
i) UBk

q ≥ UBk, because we add in this algorithm the pruning step and the con-
vex/concave test which improve the upper bound.
ii) LBk

q ≤ LBk by construction.
then 0 ≤ UBk − LBk ≤ UBk

q − LBk
q → 0 when k →∞.

5 Numerical example

Example 1
b(s) = sins, s ∈ [0, 2π]
b”(s) = −sins;−1 ≤ b”(s) ≤ 1; Kα = Kq = 1,
LBq(s) = − 1

2s(2π − s); LBα(s) = sins− 1
2s(2π − s)

b(0) = b(2π) = 0 then no pruning step.
We solve the convex problem

min
{

z : sins− 1
2
s(2π − s) ≤ z,−1

2
s(2π − s) ≤ z, z ∈ R, s ∈ [0, 2π]

}

we obtain, z0 = − 1
2π2, s∗0 = π

LB0 = z0, UB0 = 0
we bisect [0, 2π] by w − subdivision via s∗0 = π, we obtain [0, π] and [π, 2π]
we begin by the interval [0, π], we compute K1

α = 1, K1
q = 0

Convex/concave test:K1
q = 0 ⇒ b is concave on [0, π] its minimum is attained at

0 and π
We pass to the interval [π, 2π], we compute K2

α = 0, K2
q = 1



Convex/concave test:K2
α = 0 ⇒ b is convex on [π, 2π] its minimum is attained

at 3π
2 .

The algorithm stops at the global minimum s1 = 3π
2 with b(3π

2 ) = −1

Example 2 ( we take the same example 2 as in section 3)
b(s) = sins + coss, s ∈ [0, 2π]
b”(s) = −sins− coss;−2 ≤ b”(s) ≤ 2; Kα = Kq = 2,
LBq(s) = 1− s(2π − s); LBα(s) = sins + coss− s(2π − s)
b(0) = b(2π) = 0 then no pruning step.
We solve the convex problem

min
{

z : sins + coss− 1
2
s(2π − s) ≤ z, 1− 1

2
s(2π − s) ≤ z, z ∈ R, s ∈ [0, 2π]

}

we obtain, z0 = 1− π2, s∗0 = π
LB0 = z0, UB0 = −1, s0 = π
we bisect [0, 2π] by w − subdivision via s∗0 = π, we obtain [0, π] and [π, 2π]
we begin by the interval [0, π], we compute K11

α =
√

2, K11
q = 1

Convex/concave test: No interval discarded.
Pruning step: we compute LB11

q (s) = 1− 2s
π − 1

2s(π − s) = UB0 = −1
we find two solutions, 1

2 and π then the interval [0, π] is reduced to the interval
[ 12 , π] (i.e. the part [0, 1

2 ] is discarded).
we compute again LB1r11

q (s) on the interval [ 12 , π] and we solve the quadratic
equation LB1r11

q (s) = −1, this procedure stops when the interval [ 12 , π] is re-
duced to one point π then UB11 = LB11 = −1.
We pass to the second interval [π, 2π], we compute K12

α = 0 then by the con-
vex/concave test, b is convex on the interval [π, 2π], we apply local search and
find its minimum s∗12 = 5π

4 ; b(s∗12) = −√2 = UB12 = LB12.
We have UB1 = LB1 = −√2 then the algorithm stops after two iterations with
the optimal solution s1 = 5π

4 with b( 5π
4 ) = −√2.

6 Conclusion

We have proposed in this theoretical paper a combination of two lower bound
functions in branch and prune algorithm. the convergence is accelerated by the
convex/concave test and the pruning step. The preliminary results show that
this method is promising.
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