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Abstract

In multi-objective optimization, one considers optimization problems with
more than one objective function, and in general these objectives conflict each
other. As the solution set of a multiobjective problem is often rather large and
contains points of no interest to the decision-maker, strategies are sought that
reduce the size of the solution set. One such strategy is to combine several
objectives with each other, i.e. by summing them up, before employing tools
to solve the resulting multiobjective optimization problem. This approach can
be used to reduce the dimensionality of the solution set as well as to discarde
certain unwanted solutions, especially the ’extreme’ ones found by minimizing
just one of the objectives given in the classical sense while disregarding all
others. In this paper, we discuss in detail how the strategy of combining
objectives linearly influences the set of optimal, i.e. efficient solutions.

1 Introduction

In multi-objective optimization, one considers optimization problems with more than
one objective function, and in general these objectives conflict each other. Such
optimization problems arise in many applications; in most of them the vectors of
different objective function values are compared componentwise. Using the classical
optimality concepts, any feasible point minimizing one of the concurrent objective
functions is thus considered to be at least a so-called weakly optimal solution of the
multi-objective optimization problem.
As the solution set of a multiobjective problem is often rather large and contains
points of no interest to the decision-maker, strategies are sought that reduce the
size of the solution set. One such strategy is to combine several objectives with
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each other, i.e. by summing them up, before employing tools to solve the resulting
multiobjective optimization problem. This approach can be used to reduce the
size of the solution set by discarding unwanted solutions, especially the ’extreme’
ones found by minimizing just one of the objectives given in the classical sense
while disregarding all others. For instance, in a recent application [8, Example 1],
the following approach was used: one of the objective functions was replaced by
a weighted sum of all objectives. This eliminated the ’unwanted’ minima of the
specific objective replaced in the overall solution set. Also, this strategy can be used
to reduce the dimensionality of the objective space —an important consideration,
as the time needed for solving multiobjective optimization problems (i.e. generating
an approximation of the set of solution points) in general grows exponentially with
the number of objective functions. Also, of course, reducing the dimension of the
objective space to 2 or 3 has immediate impact on the employment of visualization
strategies.
In this paper, we discuss in detail how the strategy of combining objectives linearly
influences the set of optimal, i.e. efficient solutions. In contrast to classical pertur-
bation analysis, our approach is a global one, i.e. we are interested in how the whole
solution set changes when the structure of the objective function vector is changed
in such a radical way. The rest of this paper is as follows. In Section 2 we provide
the necessary notations and definitions. The main results are presented in Section
3.

2 Notation and basic definitions

We study in this paper a multi-objective optimization problem with m not nec-
essarily convex objective functions fi : S → R defined on a nonempty closed set
S ⊂ Rn:

min
x∈S

 f1(x)
...

fm(x)

 . (MOP)

To define what constitutes an optimal solution, we assume that the image space Rm

of the problem is partially ordered. Let K ⊂ Rm be a convex cone which defines
this partial ordering. Then for all x, y ∈ Rm,

x ≤K y :⇔ y − x ∈ K ,

and it is this partial order that defines solutions of the given multiobjective problem,
see Definition 2.2 below. (Recall that a set K ⊂ Rm is a cone if λ x ∈ K for all
λ ≥ 0 and all x ∈ K and a cone is convex if x + y ∈ K for all x, y ∈ K.)
In the following, int(K) denotes the interior of the cone K. We will also consider
elements from the dual cone of K. The dual cone is defined by

K∗ := {y ∈ Rm | y>x ≥ 0 for all x ∈ K} .

For an arbitrary set M ⊂ Rm and a matrix A ∈ Rp×m, we write AM := {y ∈ Rp |
y = Ax, x ∈ M} and f(M) := {f(x) ∈ Rm | x ∈ M} for f : M → Rm.
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In applications, the most widely used cone is the convex cone K = Rm
+ which defines

the componentwise (natural) partial ordering in Rm. For any x, y ∈ Rm

x ≤Rm y ⇔ y − x ∈ Rm
+ ⇔ xi ≤ yi for all i = 1, . . . ,m .

Such partial orderings lead to the optimality concepts given in Definition 2.2. For
defining proper optimal solution (in the sense of Borwein [1]) we need the definition
of a contingent cone.

Definition 2.1. The tangent cone TZ(x0) at x0 ∈ Z ⊂ Rm is the cone

TZ(x0) := {d ∈ Rm | ∃ {xk}∞k=1 ⊂ Z converging to x0, ∃ {tk}∞k=1 ↓ 0

with d = lim
k→∞

1
tk

(xk − x0)}.

The normal cone to the set Z at x0 ∈ Z is defined by

NZ(x0) := {d ∈ Rm | d>v ≥ 0 ∀ v ∈ TZ(x0)}.

Definition 2.2. (a) A point x̄ ∈ S is an optimal solution of (MOP) if

({f(x̄)} −K) ∩ f(S) = {f(x̄)} . (1)

(b) Let int(K) 6= ∅. A point x̄ ∈ S is a weakly optimal solution of (MOP) if

({f(x̄)} − int(K)) ∩ f(S) = ∅ . (2)

(c) A point x̄ ∈ S is a properly optimal solution of (MOP) if it is an optimal
solution of (MOP) and if

(−K) ∩ (Tf(S)+K(f(x̄))) = {0Rm} . (3)

We denote the set of optimal and of weakly optimal solutions of (MOP) w.r.t. the
convex cone K by M(MOP, K) and Mw(MOP, K), respectively.
For K = Rm

+ , (1) is equivalent to that there exists no x ∈ S with

fi(x) ≤ fi(x̄), i = 1, . . . ,m,
fj(x) < fj(x̄), for at least one j ∈ {1, . . . ,m}

and (2) is equivalent to that there exists no x ∈ S with

fi(x) < fi(x̄), i = 1, . . . ,m .

The individual minima of each objective function are weakly optimal solutions of
(MOP) w.r.t. K = Rm

+ , cf. [3, Lemma 2.12] or Lemma 3.8:

Remark 2.3. We have

argmin{fi(x) | x ∈ S} ⊆ Mw(MOP, Rm
+ ) for all i = 1, . . . ,m .
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In the following we study how the solution sets Mw(MOP, K) and M(MOP, K)
change when we modify the given multi-objective optimization problem as follows.
Let A be a real p ×m matrix with rows aj ∈ Rm and consider the multi-objective
optimization problem given by

min
x∈S

Af(x) =

 (a1)>f(x)
...

(ap)>f(x)

 . (A-MOP)

We denote the set of optimal and of weakly optimal solutions of (A-MOP) w.r.t.
a convex cone C by M(A-MOP, C) and Mw(A-MOP, C), respectively. Obviously,
M(A-MOP, K) = M(MOP, K) and Mw(A-MOP, K) = Mw(MOP, K) if p = m
and A is a positive definite diagonal matrix.
Note again that we are not interested in local perturbation analysis, i.e. what hap-
pens when entries of A (or the identity matrix implicitly assumed in (MOP)) are
perturbed by small values. Instead, our focus is on a global analysis of the change
of the solution set for arbitrary A and arbitrary p.

Example 2.4. In [8, Example 1] a multi-objective optimization problem with two
objective functions f1 and f2 over some feasible set S is considered. However, instead
of solving minx∈S(f1(x), f2(x)) directly, the modified problem

min
x∈S

(
f1(x)

f1(x) + 140f2(x)

)
w.r.t. the natural ordering cone, i.e. K = Rm

+ , was solved. In this case,

A =

(
1 0
1 140

)
.

3 Combining Objectives

3.1 Relationships between sets of optimal points

We begin our analysis by establishing some results on the relationships between the
set of solutions to the original problem, M(MOP, K), and the set of solutions of the
multi-objective problem where the objectives are linearly transformed by a matrix,
M(A-MOP, C).

Theorem 3.1. Let A be a p ×m matrix, let C ⊂ Rp be an arbitrary convex cone
and define K := {y ∈ Rm | Ay ∈ C}.

1. We have
M(MOP, K) ⊆M(A-MOP, C)

and if, in addition, int(K) = {y ∈ Rm | Ay ∈ int(C)}, we also have

Mw(MOP, K) = Mw(A-MOP, C) .
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2. Let A have rank m. We then have

M(MOP, K) = M(A-MOP, C) .

Proof. We have that x̄ ∈M(MOP, K) holds if and only if

({f(x̄)} −K) ∩ f(S) = {f(x̄)}
⇔ @ x ∈ S with f(x) 6= f(x̄) and f(x̄)− f(x) ∈ K
⇔ @ x ∈ S with f(x) 6= f(x̄) and A(f(x̄)− f(x)) ∈ C
⇔ ∀ x ∈ S it holds f(x)− f(x̄) = 0Rm or A(f(x̄)− f(x)) 6∈ C
(∗)⇒ ∀ x ∈ S it holds A(f(x)− f(x̄)) = 0Rp or A(f(x̄)− f(x)) 6∈ C
⇔ @ x ∈ S with Af(x) 6= Af(x̄) and A(f(x̄))− A(f(x)) ∈ C
⇔ ({Af(x̄)} − C) ∩ (Af(S)) = {Af(x̄)},

which shows the first relationship of part 1. If A has rank m, then in (*) above the
backward direction also holds, which shows part 2.
Similar, if int(K) = {y ∈ Rm | Ay ∈ int(C)}, we obtain the following: x̄ ∈
Mw(MOP, K) holds if and only if

({f(x̄)} − int(K)) ∩ f(S) = ∅
⇔ @ x ∈ S with f(x̄)− f(x) ∈ int(K)
⇔ @ x ∈ S with A(f(x̄)− f(x)) ∈ int(C)
⇔ @ x ∈ S with Af(x) ∈ A(f(x̄))− int(C)
⇔ ({Af(x̄)} − int(C)) ∩ (Af(S)) = ∅ .

This result generalizes the results given in [13, Lemma 2.3.4], [5, Cor. 4.1] and [3,
Lemma 1.18] for C = Rp

+.

Remark 3.2. A simple sufficient condition for int(K) = {y ∈ Rm | Ay ∈ int(C)} is
int(K) 6= ∅ 6= {y ∈ Rm | Ay ∈ int(C)}, as Theorem 6.7 from Rockafellar [12] shows.

Note that the assumption that A has rank m in the theorem above corresponds to
pointedness of the cone K, as the following lemma shows. Recall that a cone K ⊂ Rm

is pointed if K ∩ (−K) = {0Rm} and the binary relation ≤K is anti-symmetric if
and only if K is pointed.

Lemma 3.3. Let A be a p ×m matrix, let C ⊂ Rp be an arbitrary pointed convex
cone and define K := {y ∈ Rm | Ay ∈ C}. Then the following are equivalent:

(i) K is pointed;

(ii) K \ {0Rm} = {y ∈ Rm | Ay ∈ C \ {0Rp}};

(iii) rank(A) = m.
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Proof. We first show that (i) implies (ii). For that, assume there exists y ∈ K\{0Rm}
with Ay = 0Rp . Then A(−y) = 0Rp and hence −y ∈ K in contradiction to K being
pointed. Next we assume (ii) holds and we assume there is some y ∈ K ∩ (−K)
with y 6= 0Rm . Then z := Ay ∈ C \ {0Rp} and also −z = A(−y) ∈ C \ {0Rp} in
contradiction to C being pointed. Hence, (ii) implies (i). Next, (ii) implies

y = 0Rm ⇔ Ay = 0Rp

which is equivalent to rank(A) = m. Finally, assume (iii) and suppose there is a
y ∈ K, y 6= 0Rm . Then Ay 6= 0Rp , from which (ii) follows.

The result generalizes a result given in [5] for C = Rp
+.

In case the matrix A is a componentwise non-negative (i.e. it’s rows can be inter-
preted as rows of weights of the objective functions) m×m matrix and C = Rm

+ , we
have Rm

+ ⊆ K = {y ∈ Rm | Ay ∈ Rm
+}. It is a well known fact that if K1, K2 ⊂ Rm

are two convex cones with K1 ⊆ K2, then M(MOP, K2) ⊆ M(MOP, K1) and
Mw(MOP, K2) ⊆ Mw(MOP, K1) (in case int(K1) 6= ∅). This implies together
with the preceding theorem and Remark 3.2 with K := {y ∈ Rm | Ay ∈ Rm

+} the
following corollary.

Corollary 3.4. Let A be regular and nonnegative. Then

M(A-MOP, Rm
+ ) ⊆M(MOP, Rm

+ ) and Mw(A-MOP, Rm
+ ) ⊆Mw(MOP, Rm

+ ) .

Example 3.5. We consider the same setting as in Example 2.4. The implied poly-
hedral convex cone K is thus

K =
{
y ∈ R2 | y1 ≥ 0, y1 + 140y2 ≥ 0

}
which contains the non-negative orthant R2

+. Thus, one has to expect that the solu-
tion set of the modified multi-objective optimization problem (A-MOP) is a proper
subset of the solution set of the original multi-objective optimization problem (MOP).

The following example shows that a modification of the multi-objective optimization
problem with a matrix A as discussed above may not change the optimal solution
set at all:

Example 3.6. Let C = R2
+, A be a regular non-negative 2 × 2 matrix. Moreover,

let S = [1, 2]× [1, 2] and f : R2 → R2 with f(x) = x for all x ∈ R2.
Then by Lemma 3.3 and Corollary 3.4 the cone K is pointed, R2

+ ⊆ K and

M(MOP, K) = M(A-MOP, R2
+) ⊆M(MOP, R2

+).

We have M(MOP, R2
+) = {(1, 1)}. As there exists no d 6= 0R2 with d ∈ K ∩ (−R2

+)
as K is pointed this leads to

M(MOP, K) = M(A-MOP, R2
+) = M(MOP, R2

+) = {(1, 1)}

for any non-negative regular matrix A. An essential condition for this result is
uniqueness of the optimal solution.
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However, Mw(MOP, R2
+) = conv {(1, 1), (1, 2)} ∪ conv {(1, 1), (2, 1)}. But, for each

α > 0 and

A =

(
1 0
α 1

)
we have Mw(A-MOP, R2

+) = conv {(1, 1), (1, 2)}.

If the set of optimal solutions of the multi-objective optimization problem is un-
bounded, the modified multi-objective optimization problem may have no (weak)
optimal solution.

Example 3.7. Let S = {x ∈ R2 | x1 + x2 ≥ 0} and f(x) = x for all x ∈ R2. Then,
M(MOP, R2

+) = {x ∈ R2 | x1 + x2 = 0}. Consider the regular non-negative matrix

A =

(
1 0
α 1

)
with α ≥ 0

Then,

M(A-MOP, R2
+) =

{
{x ∈ R2 | x1 + x2 = 0}, if 0 ≤ α < 1

∅, if α ≥ 1

and

Mw(A-MOP, R2
+) =

{
{x ∈ R2 | x1 + x2 = 0}, if 0 ≤ α ≤ 1

∅, if α > 1
.

Next we examine some classical scalarization techniques, and how changing the
objectives to linear combinations of the given objectives changes the set of solutions
that can be recovered by scalarizations.

3.2 Linear Scalarizations

For the study of linear scalarizations, we need the following two basic lemmas.

Lemma 3.8. (a) If there exists some w ∈ K∗ \ {0Rm} with x̄ ∈ argmin{w>f(x) |
x ∈ S}, then x̄ ∈Mw(MOP, K). If even w ∈ int(K∗) then x̄ ∈M(MOP, K).

(b) If x̄ ∈Mw(MOP, K) and f(S) + K is convex, then x̄ ∈ argmin{w>f(x) | x ∈
S} for some w ∈ K∗ \ {0Rm}.

(c) If there exists some w ∈ int(K∗) with x̄ ∈ argmin{w>f(x) | x ∈ S}, then x̄ is
a properly optimal solution of (MOP). If x̄ is a properly optimal solution of
(MOP) and f(S) + K is convex, then x̄ ∈ argmin{w>f(x) | x ∈ S} for some
w ∈ int(K∗).

A proof of this lemma can be found in various places, see, e.g., [7, 2, 9].

Lemma 3.9. Let A be a regular m×m matrix, C a closed convex cone and let the
convex cone K = {y ∈ Rm | Ay ∈ C} = A−1C be given. The dual cone of K is

K∗ = {z ∈ Rm | (A−1)>z ∈ C∗} .
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Proof. We have

K∗ = {z ∈ Rm | z>y ≥ 0 ∀ y ∈ K}
= {z ∈ Rm | z>A−1s ≥ 0 ∀ s ∈ C}
= {z ∈ Rm | ((A−1)>z)>s ≥ 0 ∀ s ∈ C}
= {z ∈ Rm | (A−1)>z ∈ C∗}.

Corollary 3.10. Let A be a regular m × m matrix and let the convex cone K =
{y ∈ Rm | Ay ∈ Rm

+} = A−1Rm
+ be given. The dual cone of K is

K∗ = {z ∈ Rm | (A−1)>z ∈ Rm
+} .

If A is regular and nonnegative, then Rm
+ ⊆ K = {y ∈ Rm | Ay ∈ Rm

+} and thus
K∗ ⊆ Rm

+ .

Lemma 3.11. Let K = {y ∈ Rm | Ay ∈ C}, f(S) + K be convex and int(K) =
{y ∈ Rm | Ay ∈ int(C)}. Then

Mw(MOP, K) = Mw(A-MOP, C) =
⋃

w∈K∗\{0Rm} argmin{w>f(x) | x ∈ S}
Mw(MOP, C) =

⋃
w∈C∗\{0Rm} argmin{w>f(x) | x ∈ S} .

If A has additionally rank m, then

M(MOP, K) = M(A-MOP, C) ⊇
⋃

w∈int(K∗)

argmin{w>f(x) | x ∈ S} (4)

M(MOP, C) ⊇
⋃

w∈int(C∗)

argmin{w>f(x) | x ∈ S} (5)

Proof. This follows directly from Lemma 3.8 and Theorem 3.1.

AsM(A-MOP, C) ⊆Mw(A-MOP, C) andM(MOP, C) ⊆Mw(MOP, C) the above
lemma provides upper and lower bounds for the sets of optimal solutions. It also
characterizes those optimal solutions which are not found considering the problem
(A-MOP) w.r.t. the componentwise ordering (i.e. C = Rm

+ ) instead of the origi-
nal problem (MOP) w.r.t. the componentwise ordering in case the matrix A is a
nonnegative regular matrix, see Corollary 3.4.
Lemma 3.8 also implies the following result:

Lemma 3.12. Let K = {y ∈ Rm | Ay ∈ Rm
+} and A be regular. Let x̄i denote a

minimum of the objective function fi, i = 1, . . . ,m. If ei ∈ K∗, i.e. (A−1)>ei ∈ Rm
+ ,

then x̄i ∈ Mw(MOP, K). If, in addition, ei ∈ int(K∗) or int(K) = {y ∈ Rm | Ay ∈
int(Rm

+ )}, then x̄i ∈M(A-MOP, Rm
+ ).

Example 3.13. Consider again the same setting as in Example 2.4. For the given
choice of A,

K∗ =

{
z ∈ R2

∣∣∣∣( 1 −1/140
0 1/140

)
z ∈ R2

+

}
.
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Hence, in case f(S)+K is convex, only those weakly optimal solutions x̄ of the orig-
inal problem Mw(MOP, Rm

+ ) are found by determining the weakly optimal solutions
of (A-MOP) for which x̄ ∈ argmin{w>f(x) | x ∈ S} for some w ∈ R2 \ {(0, 0)} with
w1 ≥ w2/140 ≥ 0.
As e2 6∈ K∗, x̄2, i.e. any minimal solution of minx∈S f2(x), is an optimal solution of
(MOP) but might not be found by solving (A-MOP) instead.

In what follows, we use the following notation:

E(MOP, K) := {f(x) ∈ Rm | x ∈M(MOP, K)}

and

Em(MOP, K) := {(f1(x), . . . , fm−1(x)) ∈ Rm−1 | x ∈M(MOP, K)}.

Moreover, let K have a nonempty interior and let u : Em(MOP, K) ⇒ R denote the
set-valued map with

graph(u) := {(y, z) ∈ Rm−1 × R | u(y) = z, y ∈ Em(MOP, K)} = E(MOP, K).

We use the notation ym for ym := (y1, . . . , ym−1) for some point y ∈ Rm.

Theorem 3.14. Let K be a convex closed pointed cone with Rm
+ ⊆ K, fi, i =

1, . . . ,m be convex, S be convex and compact, Em(MOP, K) be convex and let the
single-valued map u, defined as above, be convex. Let x̄ ∈ M(MOP, K) be a prop-
erly optimal solution with fm(x̄) ∈ int(Em(MOP, K)) and u be continuously partial
differentiable in fm(x̄). Then there exists a unique w ∈ int(K∗) with ‖w‖ = 1 and

x̄ ∈ argmin{w>f(x) | x ∈ S}.

Proof. First, note that in case of em ∈ K ∪ (−K) (what can also be assumed by
re-sorting the functions fi), and hence in case of Rm

+ ⊆ K, the map u is in fact
single-valued. To see this, assume there exist y ∈ Em(MOP, K) and z1, z1 ∈ R,
z1 6= z2 with (y, z1), (y, z2) ∈ E(MOP, K). This implies

(0Rm−1 , z) := (0Rm−1 , z1 − z2) = (y, z1)− (y, z2) 6∈ K ∪ (−K)

and thus

em =
1

|z|
(0Rm−1 , z) 6∈ K ∪ (−K) ,

which is a contradiction to the assumption.
Under the assumptions of the theorem, the subdifferential of u in ȳm with ȳ := f(x̄)
equals {∇u(ȳm)}. For any x̄ ∈ M(MOP, K) which is properly optimal there exists
by Lemma 3.8(c) at least one w ∈ int(K∗) with ‖w‖ = 1 and

w>f(x)− w>f(x̄) ≥ 0 ∀ x ∈ S.

Note that w 6= 0Rm as otherwise K∗ = Rm and then K = {0Rm}. Moreover, as Rm
+ ⊆

K, we have int(K∗) ⊆ K∗ ⊆ Rm
+ . Let such a w be chosen. Then wm > 0. Under
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the assumptions of the theorem, for any y ∈ f(S) there exists some ŷ ∈ E(MOP, K)
and some k ∈ K with y = ŷ + k, see [13, Theorem 3.2.9], and as w ∈ K∗ we obtain
w>y = w>ŷ + w>k ≥ w>ŷ and thus it holds

w>(f(x)− f(x̄)) ≥ 0 ∀ x ∈ S

⇔ w>(y − ȳ) ≥ 0 ∀ y ∈ f(S)

⇔ w>(y − ȳ) ≥ 0 ∀ y ∈ E(MOP, K)

⇔ (wm)>(ym − ȳm) ≥ −wm(ym − ȳm) ∀ y ∈ E(MOP, K)

⇔ − 1
wm

(wm)>(ym − ȳm) ≤ ym − ȳm ∀ y ∈ E(MOP, K)

⇔ − 1
wm

(wm)>(ym − ȳm) ≤ u(ym)− u(ȳm) ∀ y ∈ E(MOP, K)

Thus, since u is convex,

− 1

wm

(wm) ∈ ∂u(ȳ) = {∇u(ȳm)}.

Hence there is only one weight vector w with ‖w‖ = 1.

Let S be compact. Then, for each w ∈ int(K∗) an optimal solution of the cor-
responding scalarized problem, i.e. a point in M(MOP, K) exists. Moreover, un-
der the assumptions above, for each properly optimal solution the corresponding
w ∈ int(K∗) is uniquely defined up to multiplication by a positive scalar. Thus,
we have a one-to-one correspondence between weight vectors and optimal solutions,
and if int(K∗) is smaller than int(Rm

+ ), the solution sets become smaller as well.
Convex multicriterial optimization problems have connected sets of (weakly) optimal
solutions. If the multiobjective optimization problem is a linear one, we obtain an
even more helpful characterization of the set of optimal solutions.

Theorem 3.15. Consider the linear multicriterial optimization problem, i.e. let S
be a convex polyhedron and f(x) = Cx for a m×n matrix C. If E(MOP, Rm

+ ) 6= f(S)
and int conv E(MOP, Rm

+ ) 6= ∅, then E(MOP, Rm
+ ) is equal to a connected union of

facets of the set f(S).

Here, a facet of the set f(S) ⊂ Rm is a face with dimension m− 1.

Proof. For each x ∈ M(MOP, Rm
+ ) there exists λ ≥ 0, λ 6= 0 such that x is an

optimal solution of the problem

min{λ>Cx : x ∈ S}. (6)

The set of optimal solutions Ψ(λ) is equal to a face of the set S. Hence, Ψ(Λ) :=⋃
λ∈Λ

Ψ(λ) with Λ = {λ ∈ Rm
+ :

m∑
i=1

λi = 1} is equal to the union of faces of the set S.

These faces are convex polyhedra of dimension zero (i.e. vertices) up to dimension n,
which is then equal to the set S itself. The last case is possible only if the interior of
S is not empty. By parametric linear optimization [11], this set is connected. This
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implies that the convex hull of E(MOP, Rn
+) is equal to a convex polyhedron, all

vertices of this polyhedron are vertices of f(S), too. By [10, Theorem 3.5, page 91]
and the assumption int conv E(MOP, Rm

+ ) 6= ∅, the set E(MOP, Rm
+ ) has a unique

minimal representation (to within scalar multiplication) as solution set of a system
of finitely many linear inequalities aiz ≤ bi, i = 1, . . . , p and for each facet (which is
a face of dimension m−1) Fi of conv E(MOP, Rn

+) there is an inequality representing
this facet:

Fi = {z ∈ conv E(MOP, Rm
+ ) : aiz = bi}.

As intersection of convex polyhedra, Fi is a convex polyhedron and all its vertices
are obviously vertices of E(MOP, Rm

+ ) ⊂ f(S). For each facet Fi there exists yi ∈ Fi

with yi 6∈ Fj, j 6= i. If yi ∈ M(MOP, Rm
+ ) then, Fi is a facet of M(MOP, Rm

+ ) and
the theorem is true.

Note that the vector ai used in the proof of Theorem 3.15 is unique up to scalar
multiplication, it is a normal vector of Fi. Since a vertex z ∈ Fi is equal to z = Cx,
where x solves

min{λ>Cx : x ∈ S}

for some λ ∈ Λ we can assume that ai

‖ai‖ ∈ Λ. This implies that the cone V of all

nonnegative linear combinations of the normals of all the facets Fi of E(MOP, Rm
+ )

is a subset of Rm
+ . If some of the optimal solutions x̂ of the linear multiobjec-

tive optimization problem is desired not to belong the set of optimal solutions of
M(MOP, K), the cone K can be obtained by deleting some normal vector ai from
the computation of the cone V . At the same time this can be used to decide if it is
possible to avoid the computation of x̂.
We close this section with a new characterization of weakly optimal solutions which
is related to the properly optimal solutions as defined in Definition 3.

Theorem 3.16. Let int(K) 6= ∅. Then x̄ ∈Mw(MOP, K) if and only if

({f(x̄)} − int(K)) ∩ ({f(x̄)}+ Tf(S)+K(f(x̄))) = ∅. (7)

Proof. First assume x̄ ∈Mw(MOP, K) and assume that there exists d ∈ ({f(x̄)}−
int(K))∩({f(x̄)}+Tf(S)+K(f(x̄))) 6= ∅. Then, there exist sequences {yk}∞k=1 ⊆ f(S),
{wk}∞k=1 ⊆ K and {tk}∞k=1 ↓ 0 such that

d = f(x̄) + lim
k→∞

1

tk
(yk + wk − f(x̄)).

Since d ∈ {f(x̄)} − int(K) and this set is open, we derive that

f(x̄) +
1

tk
(yk + wk − f(x̄)) =: zk ∈ ({f(x̄)} − int(K)) ∀ k ≥ k̄

and sufficiently large k̄, i. e.

zk − f(x̄) ∈ − int(K).
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This implies
1

tk
(yk + wk − f(x̄)) ∈ −int(K)

or
1

tk
(yk − f(x̄)) ∈ {− 1

tk
wk} − int(K) ⊆ int(K)

which results in
yk ∈ ({f(x̄)} − int(K)) ∩ f(S).

Hence f(xk) ∈ ({f(x̄)} − int(K)) ∩ f(S) for some xk and sufficiently large k. This
contradicts x̄ ∈Mw(MOP, K) and thus (7) holds.
Next assume that (7) holds but x̄ 6∈ Mw(MOP, K). Then there exists ŷ := f(x̂) ∈
f(S) \ {f(x̄)} and d ∈ int(K) such that

f(x̄) = ŷ + d.

Let tk = 1
k
, dk := (1− 1

k
) d ∈ int(K) and

yk := ŷ + dk ∈ {ŷ}+ int(K) ⊆ f(S) + K

for all k ∈ N. Then it follows

lim
k→∞

yk = lim
k→∞

ŷ + dk = lim
k→∞

(f(x̄)− 1

k
d) = f(x̄)

and

lim
k→∞

1

tk
(yk − f(x̄)) = lim

k→∞
k (ŷ + dk − f(x̄)) = lim

k→∞
k (dk − d) = −d ∈ Tf(S)+K(f(x̄)).

Hence
f(x̄) = ŷ + d ∈ {f(x̂)}+ int(K)

and
f(x̂) = f(x̄)− d = {f(x̄)}+ Tf(S)+K(f(x̄))

which contradicts (7).

Hence, as long as int(K) 6= ∅, then x̄ ∈Mw(MOP, K) if and only if

(−int(K)) ∩ Tf(S)(x̄) = ∅.

Thus, given a cone K, the set of optimal solutions Mw(MOP, K) and some point
x̄ ∈ Mw(MOP, K), we can ask ourselves the following question: how do we need to
modify K to some cone C such that x̄ /∈ Mw(MOP, C)? The investigation of this
question is an interesting topic for future research but is beyond the scope of paper.
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3.3 Tschebyscheff-Scalarizations

In this section, which is on the Tschebyscheff-scalarization as used in [8], we need
the notion of cone-monotone functions. For a cone C ⊆ Rm, a function g : Rm −→ R
is called C-monotone, if

x ≤C y =⇒ g(x) ≤ g(y)

holds for all x, y ∈ Rm.
Let us assume that all objective functions fi are bounded below, and assume without
loss of generality that 0 is a strict bound for all objectives fi (i = 1, . . . ,m) and
that the cones C and K which we are considering in the following are such that
f(S) ⊂ {0Rm} + int(C) as well as Af(S) ⊂ {0Rm} + int(K). With Ω denoting a
positive definite diagonal matrix, the corresponding Tschebyscheff-scalarization of
(MOP) is given by

min
x∈S

‖Ωf(x)‖∞. (8)

Likewise, the corresponding scalarization of (A-MOP) is

min
x∈S

‖ΩAf(x)‖∞. (9)

These scalarization problems have a reformulation by introducing an additional
variable t ∈ R as follows and are thus related to the Pascoletti-Serafini scalarization
as discussed in [4]. A point x̄ is a minimal solution of (8) (with Ω having positive
diagonal entries ω1, . . . , ωm) if and only if there exists a t̄ ∈ R such that (t̄, x̄) is an
optimal solution of

min t
subject to the constraints

1
ωi

t− fi(x) ≥ 0, i = 1, . . . ,m,

t ∈ R, x ∈ S .

Similarly, a point x̄ is a minimal solution of (9) (with Ω having positive diagonal
entries ω1, . . . , ωp) if and only if there exists a t̄ ∈ R such that (t̄, x̄) is an optimal
solution of

min t
subject to the constraints

1
ωi

t− (ai)>f(x) ≥ 0, i = 1, . . . , p,

t ∈ R, x ∈ S .

It is well-known that ‖Ω · ‖∞ is Rm
+ -monotone for all positive definite diagonal ma-

trices Ω, i. e. for all y1, y2 ∈ Rm

y2 − y1 ∈ Rm
+ ⇒ ‖Ωy1‖∞ ≤ ‖Ωy2‖∞ .

Thus (8) is an adequate scalarization to characterize the minimal solutions of (MOP)
w.r.t. the convex cone C = Rm

+ while (9) is an adequate scalarization to characterize
the minimal solutions of (A-MOP) w.r.t. the convex cone C = Rm

+ . This also implies
for a regular matrix A that ‖ΩAy1‖∞ ≤ ‖ΩAy2‖∞ is satisfied whenever

A(y2 − y1) = Ay2 − Ay1 ∈ Rm
+ ⇔ y2 − y1 ∈ A−1Rm

+ .
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Naturally, we arrive thus at

K := A−1Rm
+ = {y ∈ Rm | Ay ∈ Rm

+}

for the functional ‖ΩA · ‖∞ to be K-monotone and hence (9) can also be used
to characterize the optimal solutions w.r.t. K of (MOP) in case A is a regular
matrix. This corresponds to the result of Theorem 3.1 for a regular matrix A,
M(MOP, K) = M(A-MOP, Rm

+ ) .
We conclude this section by an illustration on the impact of numerical approxima-
tions as it was also realized in [8]. The approximation can for instance be calculated
by using the Pascoletti-Serafini reformulations as discussed above.

Example 3.17. We consider the nonconvex multi-objective optimization problem

min

(
x1

x2

)
such that

x1 ≤ 1, x2 ≤ 1,
x2

1 + x2
2 ≥ 1

and the version (A-MOP) of it using the same nonnegative regular matrix A as
in Example 2.4 w.r.t. the natural ordering cone. Generating an approximation of
E(A-MOP, R2

+) leads to Figure 1(a). The same approximation points x re-mapped
for the original problem (MOP) lead to Figure 1(b). These points form an approxi-
mation of the set E(MOP, K).
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Figure 1: (a) Approximation of E(A-MOP, Rm
+ ) (b) approximation points x re-

mapped for the original problem (MOP)
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