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Abstract. In a general Hilbert framework, we consider continuous gradient-like dynamical systems
for constrained multiobjective optimization involving non-smooth convex objective functions. Based
on the Yosida regularization of the subdifferential operators involved in the system, we obtain the
existence of strong global trajectories. We prove a descent property for each objective function,
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Introduction

Throughout the paper, H is a real Hilbert space with scalar product and norm denoted by 〈·, ·〉
and ‖ · ‖ =

√
〈·, ·〉 respectively. We are interested with a gradient-like dynamical approach to the

Pareto optima of the Constrained Multiobjective Optimization problem ((CMO) for short)

(CMO) min {F (v) : v ∈ K}
where F : H → Rq, F (v) = (fi(v))i=1,...,q, q ∈ N∗. Working in a general Hilbert space (possibly

infinite dimensional) covers both applications in decision sciences and engineering. We make the
following standing assumptions on the multiple objective functions (fi)i=1,2,..,q, and constraint K:

H0) K ⊂ H is a closed convex nonempty set.

For each i = 1, 2, ..., q, fi : H → R is a real-valued function which satisfies:

H1) fi is convex continuous. It is supposed to be Lipschitz continuous on bounded sets. Equiv-
alently, its subdifferential ∂fi : H → 2H is bounded on bounded sets;

H2) fi is bounded from below on H.

We are interested in this paper with the lazy solutions (also called slow solutions, see [10, Ch.
6, section 8]) of the differential inclusion

(1) u̇(t) +NK(u(t)) + Conv {∂fi(u(t))} 3 0,

which is governed by the sum of the two set-valued operators u 7→ NK(u), and u 7→ Conv {∂fi(u)}.
For u ∈ K, NK(u) is the normal cone to K at u, a closed convex cone modeling the contact forces
which are attached to the constraint K. Besides, Conv {∂fi(u)} denotes the closed convex hull of
the sets {∂fi(u); i = 1, ..., q}, and models the driving forces which govern our system.
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Lazy solution means that the trajectory chooses a velocity which has minimal norm among all
possible directions offered by the differential inclusion. This type of differential inclusion occurs in
various domains (mechanics, economics, control...), and has subsequently be the object of active re-
search, see for example [5], [9], [13], [20]. Precisely, for any u ∈ K, the set −NK(u)−Conv {∂fi(u)}
is a closed convex set, therefore it has a unique element of minimal norm, denoted as usual
(−NK(u)− Conv {∂fi(u)})0. The direction s(u) := (−NK(u)− Conv {∂fi(u)})0 is called the mul-
tiobjective steepest descent direction at u, and the associated dynamical system

(2) (MOG) u̇(t) +

(
NK(u(t)) + Conv {∂fi(u(t))}

)0

= 0,

is called the Multi-Objective Gradient system, (MOG) for short. It was first investigated by Henry
[31], Cornet [21], [22], [23], and Smale [38] in the seventies (in the finite dimensional case, and in the
case where the objective functions fi are smooth), as a dynamical model of allocation of resources
in economics (planification procedure).
From the point of view of modeling, we will show that the (MOG) system has the following prop-
erties:

a) It is a descent method, i.e., for each i = 1, ..., q, t 7→ fi(u(t)) is nonincreasing.
b) Its trajectories converge to weak Pareto optimal points.
c) The scalarization of the multiobjective optimization problem is done endogeneously. At time

t, the vector field which governs the system involves a convex combination
∑q

i=1 θi(t)∂fi(·) of the
subdifferential ∂fi(·), with scalars θi(t) which are not fixed in advance. They are part of the process,
whence the decentralized features of this dynamic.

Indeed, this system provides a weighting of the different criteria which offers applications in vari-
ous domains, and which are still largely to explore. In inverse problems, signal/imaging processing,
putting convenient weights on the data fitting term, and the regularization, or sparsity term is a
central question. In game theory, economics, social science, management, the multiobjective steep-
est descent direction has attractive properties: it improves each of the objective functions, while
putting a higher weight on the “weakest”agents, a key property of the interaction between coop-
erating agents. In addition, for each trajectory, the Pareto equilibrium which is finally reached, is
not too far from the initial Cauchy data. In some particular situations, it is the projection of the
initial data on the Pareto set.

Mathematical analysis of (MOG) gives rise to general statements whose formulation is simple,
but some proofs are quite technical. The dynamic is governed by a vector field, u 7→ s(u), which
is discontinuous. Indeed, the multivalued operators u 7→ NK(u) and u 7→ Conv {∂fi(u)} are only
upper semicontinuous (with closed graphs). Moreover, in general, u 7→ s(u) is not a gradient vector
field, nor Lipschitz continuous, and u 7→ −s(u) is not a monotone operator. Let us list our main
results concerning the (MOG) dynamical system. A section is devoted to each of them.

i) In Theorem 1.9, section 1, based on von Neumann’s minmax duality theorem, we provide equiv-
alent formulations of the multiobjective steepest descent direction: instead of the subdifferential
operators, they make use of the directional derivatives of the objective functions.

ii) In Theorem 2.2, section 2, we prove the weak convergence of the trajectories of (MOG) to
weak Pareto optimal solutions of the constrained multiobjective optimization problem (CMO). Our
proof is in the line of the proof of convergence of the steepest descent by Goudou and Munier [30]
in the case of a single (quasi-convex) objective function; it makes use of Lyapunov analysis and
Opial’s lemma.

iii) In Theorem 3.1, section 3, assuming further that H is finite dimensional, we prove the
existence of strong global solutions to (MOG). This is the more delicate part of the mathematical
analysis. We provide a constructive proof which is based on the Yosida approximation of ∂fi, and
Peano existence theorem for differential equations. The regularized equations are relevant of the
existence results which have been obtained in [6]. The difficult point is to pass to the limit on the
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regularized differential equations, as the regularization parameter goes to zero, because the vector
field which governs our dynamic is not continuous, nor monotone.

iv) In section 4, some modeling and numerical aspects are discussed for the (MOG) system. We
first consider some connections between (MOG) and modeling in cooperative games, and inverse
problems (signal/imaging processing). Then, by time discretization of (MOG), we introduce nu-
merical algorithms for nonsmooth constrained multiobjective optimization, and make the link with
the recent studies of Fliege and Svaiter [25], Grana Drummond and Svaiter [27], Bonnel, Iusem and
Svaiter [14].

We end with a conclusion and some perspectives.

1. Pareto optimality and multiobjective steepest descent

As a preliminary, let us make precise some classical notions of variational analysis. Given a
proper lower-semicontinuous convex function f : H −→ R ∪ {+∞}, its subdifferential ∂f(u) is the
closed convex subset of H defined for any u ∈ H by

∂f(u) = {p ∈ H : f(v) ≥ f(u) + 〈p, v − u〉 ∀v ∈ H} .

In the special case where f = δK is the indicator function of a nonempty closed convex set K ⊂ H,
the subdifferential of δK at u ∈ K is the normal cone to K at u, denoted NK(u). The subdifferential
operator enjoys the following additivity rule: let f and g be two proper lower-semicontinuous convex
functions such that one of them is continuous at a point belonging to the domain of the other, then

∂(f + g)(v) = ∂f(v) + ∂g(v) for all v ∈ H.

Suppose now that f is locally Lipschitz continuous. Then the subdifferential of f at u ∈ H is a
nonempty closed convex and bounded set. It is also interesting to consider the directional derivative
of f at u ∈ H in the direction d ∈ H, defined by

df(u, d) = lim
t↓0

f(u+ td)− f(u)

t
.

It is in duality with the subdifferential since df(u, d) is equal to sup{〈p, d〉 : p ∈ ∂f(u)}. Thus, in
our context, this directional derivative takes only finite values. Furthermore, for all u ∈ H, df(u, ·)
is convex and Lipschitz continuous on H.

1.1. Pareto optimality. When considering problem (CMO), which is to minimize various cost
functions on K, we seek a solution in the sense of Pareto, i.e., none of the objective functions can
be improved in value without degrading some of the other objective values. It is a cooperative
approach, the mathematical formulation is described below.

Definition 1.1. (Pareto optimality)
i) An element u ∈ K is called Pareto optimal if there does not exist v ∈ K such that fi(v) ≤ fi(u)

for all i = 1, ..., q, and fj(v) < fj(u) for one j ∈ 1, ..., q.
ii) An element u ∈ K is called weak Pareto optimal if there does not exist v ∈ K such that

fi(v) < fi(u) for all i = 1, ..., q.

We equip Rq with the order y � z ⇔ yi ≤ zi for all i = 1, ..., q, and the strict order relation
y ≺ z ⇔ yi < zi for all i = 1, ..., q. Then Pareto optimality admits an equivalent formulation:
u ∈ K is Pareto optimal iff there does not exist v ∈ K such that F (v) � F (u) and F (v) 6= F (u),
while u is a weak Pareto optimum if there does not exist v ∈ K such that F (v) ≺ F (u). These
optimality notions can be generalized by considering orders generated by convex cones (see [39]).

In the case of a single objective function f , Pareto and weak Pareto optima coincide with the
notion of global minimizer. Writing the necessary optimality condition leads to the notion of critical
point, namely NK(u) + ∂f(u) 3 0. A similar approach exists for Pareto optimality:
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Definition 1.2. Denote by Sq = {θ = (θi) ∈ Rq : 0 ≤ θi ≤ 1,
∑q

i=1 θi = 1} the unit simplex in Rq.
We say that u ∈ K is a Pareto critical point of the constrained multiobjective optimization problem
(CMO) if there exists (θi) ∈ Sq such that

(3) NK(u) +

q∑
i=1

θi∂fi(u) 3 0.

In the differentiable case, this notion has been considered by Smale in [38], Cornet in [21], see
[11], [27], [39] for recent account of this notion, and various extensions of it. It is a multiobjective
extension of the Fermat rule, and (see below) a first-order necessary optimality condition for (local)
vectorial optimization. Note that equivalent formulations of this notion can be given, thanks to
the positive homogeneity property of the formula: the condition

∑q
i=1 θi = 1 can be dropped, just

assuming the θi to be nonnegative, and at least one of them positive.
Let us respectively denote by P, Pw, and Pc the set of Pareto optima, weak Pareto optima,

and Pareto critical points. Clearly, P ⊂ Pw always holds. In the case of convex multi-objective
optimization, critical Pareto optimality is a necessary and sufficient condition for weak Pareto
optimality. Let us state it in a precise way.

Lemma 1.3. Let fi : H → R, i = 1, ..., q be convex objective functions. Then Pw = Pc. Assuming
further that the objective functions are strictly convex, then all these concepts of Pareto optimality
coincide, i.e., P = Pw = Pc.

Proof. The inclusion Pw ⊂ Pc is obtained for convex functions by a direct application of the Hahn-
Banach separation theorem (see for example [21, Proposition 1.1], [39], [11]). Let us prove the
reverse inclusion. Let u ∈ Pc. Then, u is a (global) solution of the convex minimization problem

(4) min

{
q∑
i=1

θifi(v) : v ∈ K

}
for some θi ∈ [0, 1] which are all nonnegative, and at least one of them positive. Indeed, (4) forces
u to be a weak Pareto minimum. Otherwise, there would exist some v ∈ K such that fi(v) < fi(u)
for all i = 1, ..., q, which would imply (one uses the fact that at least one of the θi is positive)∑q

i=1 θifi(v) <
∑q

i=1 θifi(u), a clear contradiction. Now suppose that the objective functions are

strictly convex, then
q∑
i=1

θifi is also strictly convex (we use again the fact that at least one of the

θi is positive), and u is its unique minimizer over K. If we assume the existence of v ∈ K such

that fi(v) ≤ fi(u) for all i = 1, ..., q, this would imply that v is also a minimizer of
q∑
i=1

θifi over K.

Hence v = u, and u is Pareto optimal. �

1.2. Multiobjective steepest descent direction. We discuss the concept of multiobjective de-
scent direction, and present a multiobjective steepest descent direction, by analogy with the case
of a single criterion. Considering the problem of minimizing a single objective f over K, we say
that d is a descent direction at u ∈ K when df(u, d) < 0, and d lies in the closed convex tangent
cone to K at u, which is defined as the polar cone of NK(u)

TK(u) := {v ∈ H : 〈v, η〉 ≤ 0 for all η ∈ NK(u)}.

Following Smale [38], let us generalize this notion of descent direction for the multiobjective opti-
mization problem (CMO).

Definition 1.4. Considering the problem (CMO), we say that d ∈ H is a multiobjective descent
direction at u ∈ K if dfi(u, d) < 0 for each i ∈ {1, ..., q}, and d ∈ TK(u).
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Remark 1.5. Define the closed convex hull of the subdifferentials at u ∈ H

Conv {∂fi(u); i = 1, ..., q} := {
q∑
i=1

θipi : pi ∈ ∂fi(u), (θi) ∈ Sq}.

To simplify the notation we just write Conv {∂fi(u)}. Then, from the dual characterization
dfi(u, d) = sup{〈p, d〉 : p ∈ ∂f(u)} and the definition of TK(u), d is a multiobjective descent
direction at u iff

〈p, d〉 < 0 and 〈η, d〉 ≤ 0 ∀p ∈ Conv {∂fi(u)} , ∀η ∈ NK(u).

It is therefore clear that no multiobjective descent direction can be found at a critical Pareto u ∈ Pc,
since this is equivalent to 0 ∈ NK(u) + Conv {∂fi(u)}.

Let us define the vector field that governs our dynamical system.

Definition 1.6. For any u ∈ K, the unique element of minimal norm of the closed convex set
−NK(u) − Conv {∂fi(u)} is called the multiobjective steepest descent direction at u. It is denoted
by

(5) s(u) :=

(
−NK(u)− Conv {∂fi(u)}

)0

.

Note that, for any u ∈ K, the set −NK(u) − Conv {∂fi(u)} is a closed convex set, as being equal
to the vectorial sum of two closed convex sets, one of them being bounded. Hence, it has a unique
element of minimal norm, and s(u) is well defined. See Theorem 1.9 for an equivalent formulation of
the multiobjective steepest descent direction that makes use of dual notions, namely the directional
derivatives of the objective functions, and the tangent cone to K. This vector field clearly satisfies
u ∈ Pc ⇔ s(u) = 0. Furthermore, for any u /∈ Pc, s(u) is a multiobjective descent direction:

Proposition 1.7. For all u ∈ K we have

(6) 〈s(u), p〉 ≤ −‖s(u)‖2 for all p ∈ Conv {∂fi(u)} .
In particular, s(u) is a multiobjective descent direction at any u ∈ K \ Pc.

The above result has a simple geometrical interpretation. Take for simplicity the unconstrained
problem, i.e., K = H and two criteria f1, f2. Then −s(u) is the orthogonal projection of the
origin on the vectorial segment [∇f1(u),∇f2(u)]. By the classical result on the sum of the angles
of a triangle, this forces the angles bewteen −s(u) and ∇fi(u), i = 1, 2 to be accute, and hence
〈s(u),∇fi(u)〉 ≤ 0. In order to prove Proposition 1.7, and in the following, we will make frequent
use of the Moreau decomposition theorem [32].

Theorem 1.8. (Moreau) Let T be a closed convex cone of a real Hilbert space H, and N be its
polar cone, i.e., N = {v ∈ H : 〈v, ξ〉 ≤ 0 for all ξ ∈ T}. Then, for all v ∈ H there exists a unique
decomposition

v = vT + vN , vT ∈ T, vN ∈ N ;

〈vT , vN 〉 = 0.

Moreover, vT = projT (v), and vN = projN (v).

Proof of Proposition 1.7. We introduce the notation C(u) = Conv {∂fi(u); i = 1, ..., q}. By defini-
tion, −s(u) is the projection of the origin onto the closed convex set NK(u) + C(u). Hence, using
that 0 ∈ NK(u), we have for any p ∈ C(u)

(7) 〈0− (−s(u)), p− (−s(u))〉 ≤ 0,

that is

(8) ‖s(u)‖2 + 〈s(u), p〉 ≤ 0
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which is the desired inequality. Verify now that s(u) is a multiobjective descent direction at

u ∈ K \ Pc. By definition of s(u), we can write s(u) =

(
z −NK(u)

)0

for some z ∈ −C(u). Since

TK(u) is the polar cone of NK(u), then by Moreau decomposition theorem,(
z −NK(u)

)0

= z − projNK(u)z

= projTK(u)z

which shows that s(u) ∈ TK(u), and concludes the proof. �

Now that we have established that s(u) is a multiobjective descent direction, one may wonder
why it is called the steepest descent direction. Observe first that in the case of a single differentiable
objective function f , and a constraint K, the direction s(u) at u ∈ K is given by

s(u) = (−NK(u)−∇f(u)))0,(9)

= projTK(u)(−∇f(u)).(10)

It is known that the normalized vector s(u)
‖s(u)‖ is the solution, when ∇f(u) 6= 0, of the minimization

problem
min { df(u, d) : d ∈ TK(u), ‖d‖ = 1} ,

whence the name of steepest descent direction for projTK(u)(−∇f(u)). As shown below, this steepest
descent property can be extended to the multiobjective case:

(11)
s(u)

‖s(u)‖
= argmin

{
max
i=1,...,q

dfi(u, d) : d ∈ TK(u), ‖d‖ = 1

}
.

Moreover, in the case of a single differentiable objective function, it can be easily verified that

(12) s(u) = argmin

{
1

2
‖v‖2 + df(u, d) : d ∈ TK(u)

}
,

and this further characterization will also be generalized to the multiobjective case. In addition, we
make a link between the formulations (12) and (11), by introducing a continuum of characterizations
based on the use of ‖·‖r, these two situations corresponding to r = 2, and the limiting case r = +∞.

Theorem 1.9. Let u ∈ K \ Pc. Then s(u) can be formulated in the following equivalent forms:

1. s(u) =

(
−NK(u)− Conv {∂fi(u)}

)0

(13)

2.
s(u)

‖s(u)‖
r−2
r−1

= argmin
d∈TK(u)

{
1

r
‖d‖r + max

i=1,...,q
dfi(u, d)

}
for all r ∈]1,+∞[(14)

3.
s(u)

‖s(u)‖
= argmin

v∈TK(u)
‖v‖=1

{
max
i=1,...,q

dfi(u, d)

}
.(15)

Remark 1.10. The equivalence between formulations 1. and 3. of the steepest descent direction
has been first obtained, in the finite dimensional and smooth case, by Cornet in [21, Proposition
3.1]. Formulation 2 appears in Fliege and Svaiter [25] in the smooth case, for r = 2 :

s(u) = argmin
d∈TK(u)

{
1

2
‖d‖2 + max

i=1,...,q
dfi(u, d)

}
,

but the equivalence between formulations 1. and 2. is seemingly new. The second formulation for
r 6= 2 is new, although it was stressed in [25] that 1

2‖d‖
2 could be replaced by any positive proper

l.s.c strictly convex function which is dominated by the norm around the origin. The interest of
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considering r arbitrary large is that we can see -at least formally- the third formulation as the limit
of the second when r → +∞ : r−2

r−1 tends to 1, while the function 1
r‖ · ‖

r is pointwise converging to

the indicator function of the unit ball δB(0,1)(·).

The following proof is based on duality arguments (von Neumann’s min-max theorem) which
were first introduced in the smooth differentiable case in [21]. The extension of these results to the
non-smooth case is nontrivial and requires some adjustments. In addition, the third formulation is
obtained from the second, using an epiconvergence (Γ-convergence) argument.

Proof of Theorem 1.9. In all that follows, C(u) denotes Conv{∂fi(u)}, where u is a fixed element
of K \ Pc. As a consequence, s(u) 6= 0.

Let us start by proving item 2. Because of the powered norm term, d 7→ 1
r‖d‖

r+ max
i=1,...,q

dfi(u, d) is

a coercive strictly convex function. Therefore, there exists a unique solution d̄ to the minimization
problem

(16) min
d∈TK(u)

{
1

r
‖d‖r + max

i=1,...,q
max

pi∈∂fi(u)
〈pi, d〉

}
.

Let us show that d̄ = s(u)

‖s(u)‖
r−2
r−1

. We use a duality argument which relies on the equivalent formu-

lation of (16) as the convex-concave saddle value problem

(17) min
d∈TK(u)

max
p∈C(u)

{
1

r
‖d‖r + 〈p, d〉

}
.

It is associated with the convex-concave Lagrangian function

L(d, p) =
1

r
‖d‖r + 〈p, d〉

defined on TK(u)×C(u). Since L is convex and coercive with respect to the first variable, and C(u)
is bounded, by the von Neumann’s minimax theorem (see [3, Theorem 9.7.1]) there exists p̄ ∈ C(u)
such that (d̄, p̄) is a saddle point of (17), that is

(18) inf
d∈TK(u)

L(d, p̄) = L(d̄, p̄) = sup
p∈C(u)

L(d̄, p).

For any p ∈ C(u) let us define

(19) d(p) := argmin
d∈TK(u)

{
1

r
‖d‖r + 〈p, d〉

}
.

Writing down the optimality condition for the above primal problem gives

(20) d(p) = projTK(u)

(
−p

‖d(p)‖r−2

)
,

which, by Moreau’s theorem, can be rewritten as

(21) d(p) =
1

‖d(p)‖r−2
(−p−NK(u))0 .

Observe that (d̄, p̄) being a saddle point of L implies d̄ = d(p̄). Thus we just need to prove that

d(p̄) = s(u)

‖s(u)‖
r−2
r−1

. To identify p̄, we use the dual formulation

(22) p̄ = argmax
p∈C(u)

min
d∈TK(u)

{
1

r
‖d‖r + 〈p, d〉

}
,
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which, by (19) and (20), can be rewritten as

(23) p̄ = argmax
p∈C(u)

1

r
‖d(p)‖r − ‖d(p)‖r−2〈 −p

‖d(p)‖r−2
,projTK(u)

(
−p

‖d(p)‖r−2

)
〉.

Using Moreau’s theorem, we obtain

(24) p̄ = argmax
p∈C(u)

1

r
‖d(p)‖r − ‖d(p)‖r−2‖projTK(u)

(
−p

‖d(p)‖r−2

)
‖2,

which, by (20) and r ∈]1,+∞], is equivalent to

(25) p̄ = argmin
p∈C(u)

‖d(p)‖r−1.

From (21,) we know that ‖d(p)‖r−1 = ‖ (−p−NK(u))0 ‖. Therefore, s(u) = (−p̄−NK(u))0 with

‖d(p̄)‖r−1 = ‖s(u)‖. Using again (21), we obtain d(p̄) = s(u)

‖s(u)‖
r−2
r−1

, as expected.

Let us complete the proof by proving the third characterisation. As we said in Remark 1.10,
it relies on a limit argument. Define, for any r > 1, the functions Fr : d ∈ H 7→ 1

r‖d‖
r +

max
i=1,...,q

dfi(u, d) + δTK(u)(d). It can be easily verified that the sequence (Fr)r>1 epiconverges when

r → +∞ to

F : d ∈ H 7→ δ{‖·‖≤1}(d) + max
i=1,...,q

dfi(u, d) + δTK(u)(d).

From (14) and [3, Theorem 12.1.1] we can deduce that

(26)
s(u)

‖s(u)‖
= argmin

v∈TK(u)
‖v‖≤1

{
max
i=1,...,q

dfi(u, d)

}
,

where the inequality constraint ‖v‖ ≤ 1 can be replaced by ‖v‖ = 1, since s(u)
‖s(u)‖ is a normalized

vector.
�

1.3. The Multi-Objective Gradient dynamic. Here we present and discuss the continuous
dynamic governed by the multiobjective steepest descent vector field u 7→ s(u).

In [38], Smale defined the notion of gradient process for the multiobjective optimization problem
(CMO). It is a differential equation

(27) u̇(t) = φ(u(t))

where φ : K → H is a mapping which satisfies the following properties:

(28)

{
φ(u) is a multiobjective descent direction whenever u /∈ Pc,
φ(u) = 0 if u ∈ Pc .

The interest of such a gradient process is twofold : the stationary points of the dynamic are exactly
the critical Pareto points, and as long as u(t) is not a critical Pareto point, all the objective functions
are decreasing. Clearly, from its definition and Proposition 1.7, the vector field u 7→ s(u) induces
a gradient process, defined as follows :

Definition 1.11. The dynamical system which is governed by the vector field u 7→ s(u), is called
the Multi-Objective Gradient system. Its solution trajectories t 7→ u(t) verify

(29) (MOG) u̇(t) +

(
NK(u(t)) + Conv {∂fi(u(t))}

)0

= 0.



Dynamical Pareto-optimization with nonsmooth convex objective functions 9

Remark 1.12. Instead of considering the vector field u 7→ s(u) to govern our dynamic, we could
have chosen one of the directions that appear in Theorem 1.9. In fact, each of them induces a
gradient process. From the viewpoint of the dynamic system, these directions generate the same
integral curves, with a different time scale.

In [38], the vector field φ governing the gradient process is continuous, in a finite dimensional
setting. In our context, the corresponding notions have been extended in order to cover dynamical
systems governed by a discontinuous vector field on a general Hilbert space, as the (MOG) dynamic.
In particular, instead of classical (continuously differentiable) solutions, we will consider strong
solutions (absolutely continuous on bounded time intervals), the equality (29) being satisfied almost
everywhere. Let us make precise this (see [16, Appendix] for more details):

Definition 1.13. Given T ∈ R+, a function u : [0, T ] → H is said to be absolutely continuous if
one of the following equivalent properties holds:

i) there exists an integrable function g : [0, T ]→ H such that u (t) = u (0)+
∫ t

0 g (s) ds ∀t ∈ [0, T ] ;

ii) u is continuous and its distributional derivative belongs to the Lebesgue space L1 ([0, T ] ;H);
iii) for every ε > 0, there exists η > 0 such that for any finite family of intervals Ik = (ak, bk),

Ik ∩ Ij = ∅ for k 6= j and
∑

k |bk − ak| ≤ η =⇒
∑

k ‖u (bk)− u (ak) ‖ ≤ ε.

Moreover, an absolutely continuous function is differentiable almost everywhere, its derivative co-
incide with its distributional derivative almost everywhere, and one can recover the function from
its derivative u′ = g using the integration formula (i) . We can now make precise the notion of
solution for the (MOG) dynamic (recall that Sq denotes the unit simplex in Rq).

Definition 1.14. We say that u(·) is a strong global solution of (MOG) if the following properties
are satisfied:

(i) u : [0,+∞[→ H is absolutely continuous on each interval [0, T ], 0 < T < +∞;
(ii) there exists η : [0,+∞[→ H, vi : [0,+∞[→ H, θi : [0,+∞[→ [0, 1] i=1,2,...,q which satisfy

θi ∈ L∞(0,+∞;R), (θi(t)) ∈ Sq for almost all t > 0;(30)

vi ∈ L∞(0, T ;H), η ∈ L2(0, T ;H) for all T > 0 and all i = 1, 2, ..., q;(31)

η(t) ∈ NK(u(t)), vi(t) ∈ ∂fi(u(t)) for almost all t > 0;(32)

u̇(t) + η(t) +
∑
i

θi(t)vi(t) = 0 for almost all t > 0;(33)

u̇(t) + (NK(u(t)) + Conv {∂fi(u(t))})0 = 0 for almost all t > 0.(34)

Now we can establish the first qualitative properties of strong solutions of (MOG). First, we
show that trajectories satisfy a local Lipschitz continuity property. Second, as announced, we show
that the objective functions are decreasing along the trajectories.

Proposition 1.15. Let us make assumptions H0), H1). Then for any strong global solution t ∈
[0,+∞[ 7→ u(t) ∈ H of (MOG), the following properties hold:
i) Descent property: for each i = 1, ..., q, t 7→ fi(u(t)) is a nonincreasing absolutely continuous
function, and for almost all t > 0

(35)
d

dt
fi(u(t)) ≤ −‖u̇(t)‖2.

ii) Lipschitz continuity: The trajectory u is Lipschitz continuous on any finite time interval [0, T ].
If moreover it is bounded, u is Lipschitz continuous on [0,+∞[.

This Proposition is a direct consequence of Proposition 1.7 and the following generalized chain rule
from Brézis:
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Lemma 1.16. [16, Lemma 4, p.73] Let Φ : H → R ∪ {+∞} be a closed convex proper function.
Let u ∈ L2(0, T ;H) be such that u̇ ∈ L2(0, T ;H), and u(t) ∈ dom(∂Φ) for a.e. t. Assume that
there exists ξ ∈ L2(0, T ;H) such that ξ(t) ∈ ∂Φ(u(t)) for a.e. t. Then the function t 7→ Φ(u(t))
is absolutely continuous, and for every t such that u and Φ(u) are differentiable at t, and u(t) ∈
dom(∂Φ), we have

∀p ∈ ∂Φ(u(t)),
d

dt
Φ(u(t)) = 〈u̇(t), p〉.

Proof of Proposition 1.15. i) By definition of (MOG), for almost all t > 0, u̇(t) = s(u(t)) holds.
Hence, using Proposition 1.7, for any p ∈ Conv {∂fi(u(t))}

(36) ‖u̇(t)‖2 + 〈u̇(t), p〉 ≤ 0.

Moreover, for almost all t > 0, there exists vi(t) ∈ ∂fi(u(t)) with vi ∈ L2(0, T ;H). Hence taking
p = vi(t) ∈ Conv {∂fi(u(t))} in (36) yields

(37) ‖u̇(t)‖2 + 〈u̇(t), vi(t)〉 ≤ 0.

The derivation chain rule is valid in our situation, see Lemma 1.16. Hence, fi(u) is absolutely
continuous on each bounded interval [0, T ], which, by (37), gives for almost all t > 0

(38) ‖u̇(t)‖2 +
d

dt
fi(u(t)) ≤ 0.

As a consequence, d
dtfi(u(t)) ≤ 0, and for each i = 1, ..., q the function t 7→ fi(u(t)) is nonincreasing.

ii) By Definition 1.14 of a strong global solution, we can write

u̇(t) + η(t) +
∑
i

θi(t)vi(t) = 0

with η(t) ∈ NK(u(t)), vi(t) ∈ ∂fi(u(t)), (θi(t)) ∈ Sq for almost all t > 0. Let us argue on some
[0, T ]. Since ∂fi is bounded on bounded sets, and (θi(t)) ∈ Sq, we have

u̇(t) + η(t) = g(t)

with g := −
∑

i θivi ∈ L∞(0, T ;H). Taking the scalar product with u̇(t), we obtain

(39) ‖u̇(t)‖2 + 〈η(t), u̇(t)〉 = 〈g(t), u̇(t)〉 .

Note that the normal cone mapping NK is the subdifferential of δK , the indicator function of K.
Using the derivation chain rule, we have

(40) 〈η(t), u̇(t)〉 =
d

dt
δK(u(t)) = 0.

Combining (39), (40) and the Cauchy-Schwarz inequality, we obtain

‖u̇(t)‖ ≤ ‖g(t)‖.

Hence, u̇ ∈ L∞(0, T ;H), which is equivalent to the Lipschitz continuity of u. If u is bounded, just
notice that g ∈ L∞(0,+∞;H), and conclude in a similar way. �

1.4. Examples. We now illustrate the (MOG) dynamic through some simple examples in H =
R×R. They suggest that its study is nontrivial, because (MOG) is governed by a vector field that
is neither monotone, nor locally Lipschitz: without any further assumption, we cannot expect more
than the Hölder continuity of this field vector (see [6], and Example 3 below).

Example 1. Take the quadratic functions f1(x, y) = 1
2(x+1)2 + 1

2y
2 and f2(x, y) = 1

2(x−1)2 + 1
2y

2.
The corresponding Pareto set is P = Pw = [−1,+1]× {0} and the steepest descent is given by :
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(41) s(x, y) =


−(x− 1, y) if x > 1,

−(0, y) if − 1 ≤ x ≤ 1,

−(x+ 1, y) if x < −1.

Figure 1 shows some trajectories of the (MOG) dynamic. Trajectories are straight lines connecting
the starting point and its projection on P. On this example, we can observe that (MOG) is different
from the descent dynamics associated with a scalarized function αf1+f2, α > 0. It is neither related
to the descent dynamic associated to the max function f = max fi. Indeed, when starting from
some (x0, y0) with x0 > 1, the trajectory of the steepest descent for f = max fi is first oriented
toward the Pareto equilibrium (−1, 0), while the trajectory of (MOG) is oriented toward (1, 0).

x

y

0 +1−1

Figure 1

Example 2. Let f1(x, y) = 1
2x

2 and f2(x, y) = 1
2y

2. Here P = {(0, 0)} and Pw = R×{0}∪{0}×R.
The multiobjective steepest descent vector field, once computed, is:

s(x, y) = −
(

xy2

x2 + y2
,

yx2

x2 + y2

)
if (x, y) 6= (0, 0), s(0, 0) = (0, 0).

Observe that (x, y) 7→ s(x, y) is a nonlinear vector field, and it is not a gradient vector field.
Moreover, trajectories tend to move away from each other (see Figure 2), which reflects the fact
that (x, y) 7→ −s(x, y) is not a monotone operator. Indeed, for x > 0, y > 0, x 6= y

〈−s(x, y) + s(y, x), (x, y)− (y, x)〉 = −2
xy(x− y)2

x2 + y2
< 0.

0
x

y

s(x, y)

x = y

M(x, y)

Figure 2
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Example 3. Let f1(x, y) = 1
2(x2+y2) and f2(x, y) = x. The corresponding Pareto set is P = Pw =

]−∞, 0]× {0}. Once computed, we see that the steepest descent vector field is defined according
to three areas of the plane (see Figure 3):

(42) s(x, y) =


−(1, 0) if x ≥ 1,

−(x, y) if (x− 1
2)2 + y2 ≤ 1

4 ,
−1

(x−1)2+y2
(y2, y(1− x)) else.

As in the previous example, this vector field is neither linear nor a gradient vector field, or mo-
notonous. Moreover, it is not locally Lipschitz. The lack of Lipschitz continuity occurs at the
point (1, 0), where the vector field ”splits” into three parts. Figure 4 provides a simple example
of parameterized vectors uθ, vθ that converge both to (1, 0) when θ goes to zero, but such that

‖s(uθ) − s(vθ)‖ = sin(θ) and ‖uθ − vθ‖ = sin(θ) tan(θ). As a consequence, ‖s(uθ)−s(vθ)‖
‖uθ−vθ‖ ' θ

θ2
is

unbounded when θ → 0.

0

x = 1

(1, 0)

Figure 3

(0, 0) θ (1, 0)

θ

vθ
uθ

Figure 4

1.5. Related dynamics. When there is just one objective function f , since ∂f(u(t)) is a closed
convex set, the (MOG) system specializes to

u̇(t) +

(
NK(u(t)) + ∂f(u(t))

)0

= 0.

Indeed, this system is equivalent to

u̇(t) +NK(u(t)) + ∂f(u(t)) 3 0,
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because, in this case, the lazy solution property is automatically satisfied by the trajectories of the
semigroup of contractions generated by the maximal monotone operator NK+∂f , see [16, Theorem
3.1]. In particular, our existence and asymptotic analysis for (MOG) in Sections 2 and 3 extends
the well-known results for the nonsmooth gradient flow (see [16]).

This leads us to ask a natural question, which is the study of the relationship (or differences)
between (MOG) and the Multiobjective Differential Inclusion ((MDI) for short)

(43) (MDI) u̇(t) +NK(u(t)) + Conv {∂fi(u(t))} 3 0.

It appears that (MDI) enjoys a weaker form of Proposition 1.15 i) :

Proposition 1.17. Let t ∈ [0,+∞[ 7→ u(t) ∈ H be a strong global solution of (MDI) in the sense
of Definition 1.14 (except the lazy property). Then for almost all t ≥ 0, such that u(t) /∈ Pc, there
exists some i ∈ {1, · · · , q} (which depends on t) such that

d

dt
fi(u(t)) < 0.

Proof. Since u is a strong solution of (MDI), there exists η : [0,+∞[→ H, vi : [0,+∞[→ H,
θi : [0,+∞[→ [0, 1] i = 1, 2, ..., q which satisfy

θi ∈ L∞(0,+∞;R), (θi(t)) ∈ Sq for almost all t > 0;

vi ∈ L∞(0, T ;H), η ∈ L2(0, T ;H) for all T > 0 and all i = 1, 2, ..., q;

η(t) ∈ NK(u(t)), vi(t) ∈ ∂fi(u(t)) for almost all t > 0;

u̇(t) + η(t) +
∑
i

θi(t)vi(t) = 0 for almost all t > 0;

Taking the scalar product of the above equation with u̇(t), we obtain

(44) ‖u̇(t)‖2 + 〈η(t), u̇(t)〉+
∑
i

θi(t) 〈vi(t), u̇(t)〉 = 0.

The derivation chain rule is valid in our situation, see Lemma 1.16. Hence, fi(u) is absolutely
continuous on each bounded interval [0, T ], which gives, for almost all t > 0

(45)
d

dt
fi(u(t)) = 〈vi(t), u̇(t)〉 .

By a similar argument using the indicator function δK of K (recall (40)) we have

(46) 0 =
d

dt
δK(u(t)) = 〈η(t), u̇(t)〉 .

Combining (44) with (45), (46), we obtain

(47) ‖u̇(t)‖2 +
∑
i

θi(t)
d

dt
fi(u(t)) ≤ 0.

Since u(t) /∈ Pc, we have u̇(t) 6= 0. Hence

(48)
∑
i

θi(t)
d

dt
fi(u(t)) < 0.

Since (θi(t)) ∈ Sq, this clearly implies that at least one of the derivatives d
dtfi(u(t)) is negative. �

Remark 1.18. Proposition 1.17 tells us that, for any trajectory of (MDI), for almost all t > 0,
at least one of the objective functions decreases. We will illustrate this on a few examples, and
highlight the fact that, by contrast, for (MOG) trajectories, they are all decreasing.

a) Consider the steepest descent dynamic associated to one of the objective functions, say fi, i
being fixed. Clearly, ∂fi(u) ⊂ Conv {∂fj(u)}, and the corresponding trajectories are solutions of
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(MDI). The strategy consisting in taking care of only one objective function fi, clearly leads to
Pareto equilibria, but fails in general to improve all the objective functions.

b) The scalarization approach consists in taking a constant convex combination of the objective

functions fθ =
q∑
i=1

θifi, with θ ∈ Sq. The sum rule for continuous convex functions gives, for any

u ∈ H

(49) ∂fθ(u) =

q∑
i=1

θi∂fi(u),

and clearly ∂fθ(u) ⊂ Conv {∂fi(u)}. By Bruck’s theorem [19], any orbit of the generalized gradient
flow generated by ∂fθ converges to a minimizer of fθ, which, by Lemma 1.3, is a weak Pareto
optimal point. But, in general, this approach fails to improve all the objective functions. Take for
instance in Example 1 any θ = (λ, (1− λ)) for λ ∈]0, 1]. When starting from (1, 0), the trajectory
goes straight to (1− 2λ, 0) by decreasing f1 but increasing f2.

c) Consider the steepest descent dynamic associated to the function f = maxi fi. This dynamic
has some similarities with (MOG), but it is different. As a supremum of a finite number of con-
vex continuous functions, f is still convex continuous. The classical subdifferential rule for the
supremum of convex functions, see for example [12, Theorem 18.5], gives (in our setting)

(50) ∂f(u) = Conv {∂fi(u) : i ∈ I(u)}

where I(u) = {i ∈ I : fi(u) = f(u)} is the set of the active indices at u. Clearly ∂f(u) ⊂
Conv {∂fi(u)}. As a consequence, the trajectories of the steepest descent for f = max fi are
also solutions of (MDI). But, in general, they fail to satisfy that all the objective functions are
decreasing. Take for instance Example 1: when starting from some (x0, y0) with x0 > y0 > 1, along
the trajectory f2 is first decreasing, until the current point reaches the projection of (1, 0) on the
line segment joining (x0, y0) to (−1, 0), then it is increasing.

d) As shown by the above examples, (MDI) provides diversity, an interesting feature for evolu-
tionary processes, and generating the whole Pareto set, see [18].

2. Asymptotic convergence to a weak Pareto minimum

In this section, we study the asymptotic behavior (as t→ +∞) of the strong global solutions of
(MOG). We take for granted their existence, this question being examined into detail in section 3.
In order to prove the weak convergence of the trajectories of (MOG), we use the classical Opial’s
lemma [33]. We recall its statement in its continuous form, and give a short proof of it:

Lemma 2.1. Let S be a non empty subset of H, and u : [0,+∞[→ H a map. Assume that

(i) for every z ∈ S, lim
t→+∞

‖u(t)− z‖ exists;

(ii) every weak sequential cluster point of the map u belongs to S.

Then

w − lim
t→+∞

u(t) = u∞ exists, for some element u∞ ∈ S.

Proof. By (i) and S 6= ∅, the trajectory u is bounded in H. In order to obtain its weak convergence,
we just need to prove that the trajectory has a unique weak sequential cluster point. Let u(t1n) ⇀ z1

and u(t2n) ⇀ z2, with t1n → +∞, and t2n → +∞. By (ii), z1 ∈ S, and z2 ∈ S. By (i), it follows that
limt→+∞ ‖u(t)− z1‖ and limt→+∞ ‖u(t)− z2‖ exist. Hence, limt→+∞(‖u(t)− z1‖2 − ‖u(t)− z2‖2)
exists. Developing and simplifying this last expression, we deduce that

lim
t→+∞

〈
u(t), z2 − z1

〉
exists.
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Hence

lim
n→+∞

〈
u(t1n), z2 − z1

〉
= lim

n→+∞

〈
u(t2n), z2 − z1

〉
,

which gives ‖z2 − z1‖2 = 0, and hence z2 = z1. �

We can now state our main convergence result.

Theorem 2.2. Let us make assumptions H0), H1), H2). Then for any strong global solution
t ∈ [0,+∞[7→ u(t) ∈ H of (MOG), the following properties hold:
i) Finite energy property:

(51)

∫ +∞

0
‖u̇(t)‖2dt < +∞.

ii) Weak convergence: Assume that the trajectory t ∈ [0,+∞[ 7→ u(t) ∈ H is bounded in H. Then
u(t) converges weakly in H as t→ +∞ to a weak Pareto optimum.

Remark 2.3. a) Since each function t 7→ fi(u(t)) is nonincreasing (see Proposition 1.15), a natural
condition insuring that the trajectory remains bounded is that one of the functions fi has bounded
sublevel sets (see also Remark 2.5).
b) Similarly, if one of the functions fi has relatively compact sublevel sets (inf-compactness prop-
erty), then the trajectory is relatively compact, and hence converges strongly in H. It is an
interesting (open) question to find other conditions on the data (fi and K) which provide strong
convergence of trajectories, and extend the well-known conditions in the case of a single criterion.

Proof. From Proposition 1.15 and by integrating (35), along with the fact that fi is bounded from
below on K, we obtain

(52)

∫ +∞

0
‖u̇(t)‖2dt ≤ fi(u(0))− infKfi.

This proves items i).
Let us now prove the weak convergence of any bounded trajectory u of the (MOG) system. To

that end we use Opial’s Lemma 2.1 with

(53) S =

{
v ∈ K : ∀i = 1, ..., q fi(v) ≤ inf

t≥0
fi(u(t))

}
.

Functions fi are convex continuous, and hence lower semicontinuous for the weak topology of H.
As well, the closed convex set K is closed for the weak topology of H. The trajectory t ∈ [0,+∞[7→
u(t) ∈ H has been assumed to be bounded in H. As a consequence, every weak sequential cluster
point of the trajectory belongs to S, which is a closed convex non empty subset of H.
i) Take z ∈ S and set, for any t ≥ 0

(54) hz(t) =
1

2
‖u(t)− z‖2.

We have

(55) ḣz(t) = 〈u̇(t), u(t)− z〉 .

Since u is a solution of (MOG), for almost all t > 0 there exists

(56) η(t) ∈ NK(u(t)), and vi(t) ∈ ∂fi(u(t)), (θi(t)) ∈ Sq

such that,

(57) u̇(t) +

q∑
i=1

θi(t)vi(t) + η(t) = 0.
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By combining (55) and (57) we obtain

(58) ḣz(t) +

q∑
i=1

θi(t) 〈vi(t), u(t)− z〉+ 〈η(t), u(t)− z〉 = 0.

On the one hand, since η(t) ∈ NK(u(t)) and z ∈ K
(59) 〈η(t), u(t)− z〉 ≥ 0.

On the other hand, the convex subdifferential inequality at u(t), and vi(t) ∈ ∂fi(u(t)) gives

(60) fi(z) ≥ fi(u(t)) + 〈vi(t), z − u(t)〉 .
Since z ∈ S we have fi(z) ≤ fi(u(t)), which gives

(61) 〈vi(t), z − u(t)〉 ≤ 0.

As a consequence

(62)

q∑
i=1

θi(t) 〈vi(t), u(t)− z〉 ≥ 0.

Combining (58) with (59) and (62) we obtain

(63) ḣz(t) ≤ 0.

Hence, hz is a nonincreasing function, which proves item i) of Opial’s Lemma 2.1.
Let us verify item ii) of Opial’s Lemma 2.1. Let w− limu(tn) = z for some sequence tn → +∞.

Since u(tn) ∈ K and K is a closed convex subset of H, we have z ∈ K. Moreover

inf
t≥0

fi(u(t)) = lim
t→+∞

fi(u(t))(64)

= lim
n→+∞

fi(u(tn))(65)

≥ fi(z)(66)

where the last inequality follows from the fact that fi is convex continuous, and hence lower
semicontinuous for the weak topology of H. This being true for each i = 1, ..., q we conclude that
z ∈ S. The two conditions of Opial’s Lemma 2.1 are satisfied, which gives the weak convergence of
each bounded trajectory of the (MOG) dynamic. Set

(67) u(t) ⇀ u∞ weakly in H, as t→ +∞,
and show that u∞ is a Pareto critical point, and hence a weak Pareto optimum (Lemma 1.3). The
finite energy property (51) ∫ +∞

0
‖u̇(t)‖2dt < +∞

implies

(68) liminfesst→+∞‖u̇(t)‖ = 0.

Since relations (32) and (33) are satisfied for almost all t > 0, (68) implies the existence of a
sequence tn → +∞ such that

u̇(tn)→ 0 strongly in H(69)

− u̇(tn) ∈ NK(u(tn)) + Conv {∂fi(u(tn))} for each n ∈ N.(70)

Moreover by (67)

(71) u(tn) ⇀ u∞ weakly in H.
We conclude using (69), (70), (71), and the following lemma which establishes a closure property
for the operator NK(·) + Conv {∂fi(·)}. �
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Lemma 2.4. Under assumptions H0), H1), the multi-application

H ⇒ H
u 7−→ NK(u) + Conv {∂fi(u)}

is demiclosed, i.e., its graph is sequentially closed for the weak−H× strong−H topology.

Proof. Let (un, wn) be a sequence in the graph of NK+C where C(u) = Conv {∂fi(u)}. Suppose that
un converges weakly to ū ∈ K, that wn converges strongly to w̄, and prove that w̄ ∈ NK(ū) +C(ū).
For each n ∈ N, there exists qn ∈ NK(un), pi,n ∈ ∂fi(un), λi,n ∈ [0, 1], i = 1, ..., q, such that

(72) wn = qn +

q∑
i=1

λi,npi,n and

q∑
i=1

λi,n = 1.

For each n, (λi,n)i=1,...,q belongs to the unit simplex in Rq, which is a compact set. Hence we can
extract a subsequence (still noted (λi,n) to simplify the notation) such that, for each i = 1, ..., q

(73) λi,n → λ̄i,

with

(74) 0 ≤ λ̄i ≤ 1,

q∑
i=1

λ̄i = 1.

Noticing that the functions fi are convex continuous, thanks to the Moreau-Rockafellar additivity
rule for the subdifferential of a sum of convex functions, we can rewrite (72) as follows

(75) wn ∈ ∂

(
δK +

q∑
i=1

λi,nfi

)
(un),

where δK is the indicator function of K. Equivalently, for any ξ ∈ H

(76)

q∑
i=1

λi,nfi(ξ) + δK(ξ) ≥
q∑
i=1

λi,nfi(un) + δK(un) + 〈wn, ξ − un〉 .

Let us pass to the lower limit in (76). By using (73), the lower semicontinuity property of the fi
and δK for the weak topology of H (K is closed convex and hence weakly closed), and the weak
(resp. strong) convergence of un (resp. wn), we obtain

(77)

q∑
i=1

λ̄ifi(ξ) + δK(ξ) ≥
q∑
i=1

λ̄ifi(ū) + δK(ū) + 〈w̄, ξ − ū〉 .

In the above limit process, we use the fact that the functions fi are finitely valued (otherwise we
would face the delicate question concerning the product 0×∞). Using again the Moreau-Rockafellar
additivity rule, we equivalently obtain

w̄ ∈
q∑
i=1

λ̄i∂fi(ū) +NK(ū),

which, with (74), expresses that (ū, w̄) is in the graph of NK + C. �

Remark 2.5. Suppose that there exists an ideal solution z̄ to (CMO). Then, for any solution
trajectory of (MOG), z̄ ∈ S, where S has been defined in (53). Following the proof of Theorem 2.2,
the function hz̄(·) = 1

2‖u(·)− z̄‖2 is nonincreasing. Thus, in that case, any trajectory of (MOG) is
bounded. We recover the fact that, in the case of a single convex objective function, the trajectories
of the steepest descent equation are bounded iff the solution set is not empty.
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3. Existence of strong global solutions

In this section, it is assumed that H = Rd is a finite dimensional Euclidean space. This is because
our proof of the existence of solutions to the (MOG) dynamic is based on the Peano theorem,
and not on the Cauchy-Lipschitz. It is likely that the proof can be adapted to the case of infinite
dimension by making ad hoc assumption on the data (as inf-compactness). This is an interesting
topic for further studies, particularly involving applications to PDEs. Our approach is based on
the regularization of the non-smooth functions fi by the Moreau-Yosida approximation. This ap-
proximation brings us back to the situation studied in [6], which considers the case of differentiable
functions.

3.1. Statement of the result.

Theorem 3.1. Let H be a finite dimensional Hilbert space. Let us make assumptions H0), H1),
H2). Then, for any initial data u0 ∈ K, there exists a strong global solution u : [0,+∞[→ H of
(MOG) system (2), which satisfies u(0) = u0.

Remark 3.2. In Theorem 3.1, for any u0 ∈ K, we claim the existence of a strong global solution
u : [0,+∞[→ H of (MOG) system, satisfying the Cauchy data u(0) = u0. By definition of a strong
solution, u is absolutely continuous on any finite time interval [0, T ], but from Proposition 1.15 we
know it is moreover Lipschitz continuous.

In the above theorem, we only claim existence. Without further assumptions, uniqueness is not
guaranteed. Indeed, the following proof of existence relies on Peano, not Cauchy-Lipschitz theorem.
Before entering the proof of existence, we will briefly discuss the question of uniqueness which
remains an open question.

Remark 3.3. In the unconstrained case, and for convex differentiable objective functions, illus-
trative examples of the (MOG) dynamic were given in Section 1.4. In these elementary situations,
we have been able to explicitely compute the vector field v 7→ s(v). We observed that it can be
Lipschitz continuous (Example 1 and 2) or only Hölder continuous (Example 3). This naturally
raises the following question: in the unconstrained case, and for differentiable objective functions,
what are the assumptions ensuring that the vector field v 7→ s(v) is Lipschitz continuous (recall
that it is Hölder continuous, see [6])? This is clearly a key property for uniqueness for (MOG).

The end of this section is devoted to the proof of Theorem 3.1, which is quite technical. To
make reading easier, the proof has been divided into several stages. First of all, let us bring some
additional results to [6], which concern the smooth case, and which will be useful for our study.

3.2. The smooth case, complements. Let us suppose that the fi are convex differentiable
functions. Following [6], for any u0 ∈ K, there exists a strong global solution u : [0,+∞[→ H of
the Cauchy problem

(78)

u̇(t) +

(
NK(u(t)) + Conv {∇fi(u(t))}

)0

= 0,

u(0) = u0.

The concept of solution u is as follows.
(i) u : [0,+∞[→ H is absolutely continuous on each interval [0, T ], 0 < T < +∞;
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(ii) there exists η : [0,+∞[→ H and w : [0,+∞[→ H which satisfy

η ∈ L2(0, T ;H), w ∈ L∞(0, T ;H) for all T > 0;(79)

η(t) ∈ NK(u(t)), w(t) ∈ Conv {∇fi(u(t))} for almost all t > 0;(80)

η(t) + w(t) =

(
NK(u(t)) + Conv {∇fi(u(t))})

)0

for almost all t > 0;(81)

u̇(t) + η(t) + w(t) = 0 for almost all t > 0.(82)

Let us make precise (80).

Lemma 3.4. Let u be a solution of (78), and η, w the associated functions satisfying (79)-(80)-
(81)-(82). Then w(t) ∈ Conv {∇fi(u(t))} can be written as follows:

(83) w(t) =
∑
i

θi(t)∇fi(u(t))

with θi ∈ L∞(0,+∞), i = 1, 2, ..., q, and for almost all t > 0, (θi(t)) ∈ Sq.

Proof. From (81) we see that for almost all t > 0

(84) w(t) = projC(u(t))(−η(t)),

where C(u(t)) = Conv {∇fi(u(t))}. Equivalently, w(t) =
∑

i θi(t)∇fi(u(t)) for any θ(t) = (θi(t))
such that

(85) θ(t) ∈ argmin {j(t, θ) : θ ∈ Rq}

where

(86) j(t, θ) = ‖η(t) +
∑
i

θi∇fi(u(t))‖+ δSq(θ),

where δSq is the indicator function of Sq. The crucial point is to prove that we can take the
θi(t) measurable. Since j : [0,+∞[×Rq → R ∪ {+∞} is a positive (convex) normal integrand,
the mapping t 7→ argminj(t, ·) is measurable, and hence admits a measurable selection t 7→ θ(t),
see [37, Corollary 14.6; Theorem 14.37]. Hence, we can write w(t) =

∑
i θi(t)∇fi(u(t)), with θi

measurable, and θ(t) ∈ Sq. Since θi is bounded, we have

w(t) =
∑
i

θi(t)∇fi(u(t)) and θi ∈ L∞(0,+∞), θ(t) ∈ Sq a.e. t > 0.

�

Let us now return to our setting involving non-smooth objective functions fi.

3.3. Approximate equations. The main difficulty comes from the discontinuity of the vector
field which governs the (MOG) dynamic (2). As a main ingredient of our approach, we use the
Moreau-Yosida approximation of the convex functions fi (equivalently the Yosida approximation
of the maximal monotone operators ∂fi), i = 1, ..., q. This regularization method is widely used
in nonsmooth convex analysis, see [1], [10], [12], [16], [42] for a detailed presentation. Its main
properties are summarized in the following statement.

Proposition 3.5. Let Φ : H → R∪{+∞} be a closed convex proper function. The Moreau-Yosida
approximation of index λ > 0 of Φ is the function Φλ : H → R which is defined for all v ∈ H by

(87) Φλ(v) = inf

{
Φ(ξ) +

1

2λ
‖v − ξ‖2 : ξ ∈ H

}
.
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(1) The infimum in (87) is attained at a unique point Jλv ∈ H, which satisfies

Φλ(v) = Φ(Jλv) +
1

2λ
‖v − Jλv‖2;(88)

Jλv + λ∂Φ(Jλv) 3 v.(89)

Jλ = (I+λ∂Φ)−1 : H → H is everywhere defined and nonexpansive. It is called the resolvent
of index λ of A = ∂Φ.

(2) Φλ is convex, and continuously differentiable. Its gradient at v ∈ H is equal to

(90) ∇Φλ(v) =
1

λ
(v − Jλv).

(3) The operator Aλ = ∇Φλ = 1
λ(I − Jλ) is called the Yosida approximation of index λ of the

maximal monotone operator A = ∂Φ. It is Lipschitz continuous with Lipschitz constant 1
λ .

(4) For any v ∈ domA, ‖Aλv‖ ≤ ‖A0(v)‖, (A0(v) is the element of minimal norm of A(v)).
(5) For any v ∈ H, Φλ(v) ↑ Φ(v) as λ ↓ 0.

We are going to adapt to our situation the classical proof of the existence of strong solutions to
evolution equations governed by subdifferentials of convex lower semicontinuous functions, see [16].
For each λ > 0, we set fi,λ = (fi)λ the Moreau-Yosida approximation of index λ of fi. We consider
the Cauchy problem which is obtained by replacing each ∂fi by its Yosida approximation ∇fi,λ,
in (MOG). So doing, we are in the situation studied in [6], which treats the case of differentiable
objective functions. Precisely, by [6, Theorem 3.5], for each λ > 0 there exists of a strong global
solution uλ : [0,+∞[→ H of the Cauchy problem

(91) (MOG)λ

u̇λ(t) +

(
NK(uλ(t)) + Conv {∇fi,λ(uλ(t))}

)0

= 0,

uλ(0) = u0.

By Lemma 3.4 and (82), there exists θi,λ ∈ L∞(0,+∞), and ηλ ∈ L2(0, T ;H) for all T > 0, such
that, for almost all t > 0

(92) u̇λ(t) +

q∑
i=1

θi,λ(t)∇fi,λ(uλ(t)) + ηλ(t) = 0,

and

(93) ηλ(t) ∈ NK(uλ(t)), (θi,λ(t)) ∈ Sq.

3.4. Estimations on the sequence (uλ). Let us establish bounds for the net (uλ)λ, which are
independent of λ. Let us make a similar argument to that used in Theorem 2.2, just replacing fi
by fi,λ. We obtain

(94)

∫ +∞

0
‖u̇λ(t)‖2dt ≤ fi,λ(u0)− infHfi,λ.

Then notice that fi,λ(u0) ≤ fi(u0), and infH fi,λ = infH fi. Hence

(95)

∫ +∞

0
‖u̇λ(t)‖2dt ≤ fi(u0)− inf

H
fi,

and

(96) sup
λ

∫ +∞

0
‖u̇λ(t)‖2dt < +∞.
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From

(97) uλ(t) = u0 +

∫ t

0
u̇λ(τ)dτ,

and Cauchy-Schwarz inequality, we obtain

(98) ‖uλ(t)‖ ≤ ‖u0‖+
√
t

(∫ t

0
‖u̇λ(τ)‖2dτ

) 1
2

.

Combining (96) with (98) we deduce that, for any T > 0

(99) sup
λ
‖uλ‖L∞([0,T ];H) < +∞.

Let us now consider the gradients terms ∇fi,λ(uλ) which appear in (92). By Proposition 3.5, item
4., for any v ∈ H, λ > 0, and i = 1, 2, ..., q

(100) ‖∇fi,λ(v)‖ ≤ ‖ (∂fi)
0 (v)‖.

Combining (99) with (100), and using assumption H1), which tells us that fi is a convex continuous
function whose subdifferential ∂fi is bounded on bounded sets, we obtain that, for any T > 0

(101) sup
λ
‖∇fi,λ(uλ)‖L∞([0,T ];H) < +∞.

3.5. Passing to the limit (λ → 0). As we have already pointed out, the difficulty comes from
the discontinuous nature of the multivalued operators ∂fi and NK , and hence of the vector field
which governs the differential equation (2). Indeed, we are going to use the monotonicity property
of these operators, and the demiclosedness property (closedness for the strong × weak product
topology) of their graphs in the associated functional spaces.

By (96), (99), the generalized sequence (uλ) is uniformly bounded and equi-continuous on [0, T ].
Since H is finite dimensional, we deduce from Ascoli’s theorem that, for any 0 < T < +∞, the
generalized sequence (uλ) is relatively compact for the uniform convergence topology on [0, T ].
Thus, by a diagonal argument (we keep the notation (uλ) for simplicity), we obtain the existence
of u ∈ C([0,+∞[;H), and vi, η ∈ L2

loc(0,+∞;H), θi ∈ L∞(0,+∞) such that, for any 0 < T < +∞,

uλ → u strong− C(0, T ;H)(102)

u̇λ ⇀ u̇ weak− L2(0, T ;H)(103)

∇fi,λ(uλ) ⇀ vi σ(L∞(0, T ;H), L1(0, T ;H))(104)

θi,λ ⇀ θi σ(L∞(0, T ), L1(0, T ))(105)

ηλ ⇀ η weak− L2(0, T ;H).(106)

The last statement comes from the following observation: by (92)

(107) ηλ(t) = −u̇λ(t)−
q∑
i=1

θi,λ(t)∇fi,λ(uλ(t)),

which implies that the net (ηλ) remains bounded in L2(0, T ;H) for any T > 0.
Let us complete this list with the convergence of the net (fi,λ(uλ)).

Lemma 3.6. The following convergence result holds: for any 0 < T < +∞

(108) fi,λ(uλ)→ fi(u) uniformly on [0, T ] as λ→ 0.
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Proof. Let us fix T > 0, and work on the bounded interval [0, T ]. Let us write the triangle inequality

(109) |fi,λ(uλ)− fi(u)| ≤ |fi,λ(uλ)− fi,λ(u)|+ |fi,λ(u)− fi(u)|.

On the one hand, by the Mean value theorem, (100), and (102)

|fi,λ(uλ(t))− fi,λ(u(t))| ≤

(
sup

ξ∈[uλ(t),u(t)]
‖∇fi,λ(ξ)‖

)
‖uλ(t)− u(t)‖(110)

≤

(
sup

ξ∈[uλ(t),u(t)]
‖ (∂fi)

0 (ξ)‖

)
‖uλ(t)− u(t)‖(111)

≤ C‖uλ(t)− u(t)‖,(112)

and hence,

(113) fi,λ(uλ)− fi,λ(u)→ 0 uniformly on [0, T ] as λ→ 0.

On the other hand, the net (fi,λ(u))λ is equi-continuous. This results from the following inequalities

| d
dt
fi,λ(u(t))| = | 〈∇fi,λ(u(t)), u̇(t)〉 |(114)

≤ ‖ (∂fi(u(t)))0 ‖‖u̇(t)‖(115)

≤ C‖u̇(t)‖,(116)

and

|fi,λ(u(t))− fi,λ(u(s))| ≤
∫ t

s
| d
dτ
fi,λ(u(τ))|dτ(117)

≤
√
t− s

(∫ T

0
| d
dτ
fi,λ(u(τ))|2dτ

) 1
2

(118)

≤ C
√
t− s

(∫ T

0
‖u̇(τ)‖2dτ

) 1
2

.(119)

Hence, the net (fi,λ(u))λ is equi-continuous. Since it converges pointwise to fi(u), by Ascoli Theo-
rem, we obtain

(120) fi,λ(u)− fi(u)→ 0 uniformly on [0, T ] as λ→ 0.

Combining (109), (113), (120), we obtain (108). �

Technically, the most difficult point is to pass to the limit in (92) on the product of the two
weakly converging sequences (θi,λ) and (∇fi,λ(uλ)). In order to circumvent this difficulty, we use a
variational argument based on the convex differential inequality: for any ξ ∈ L∞(0, T ;H),

(121)

q∑
i=1

θi,λ(t)fi,λ(ξ(t)) ≥
q∑
i=1

θi,λ(t)fi,λ(uλ(t)) +

〈
q∑
i=1

θi,λ(t)∇fi,λ(uλ(t)), ξ(t)− uλ(t)

〉
.

After integration on [0, T ], we obtain∫ T

0

q∑
i=1

θi,λ(t)fi,λ(ξ(t))dt ≥
∫ T

0

q∑
i=1

θi,λ(t)fi,λ(uλ(t))dt(122)

+

∫ T

0

〈
q∑
i=1

θi,λ(t)∇fi,λ(uλ(t)), ξ(t)− uλ(t)

〉
dt.(123)
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By (92),
∑q

i=1 θi,λ(t)∇fi,λ(uλ(t)) = −u̇λ(t)− ηλ(t). Replacing in (122)-(123), we obtain∫ T

0

q∑
i=1

θi,λ(t)fi,λ(ξ(t))dt ≥
∫ T

0

q∑
i=1

θi,λ(t)fi,λ(uλ(t))dt(124)

+

∫ T

0
〈−u̇λ(t)− ηλ(t), ξ(t)− uλ(t)〉 dt.(125)

Since fi,λ(ξ(t)) ≤ fi(ξ(t)), and θi,λ(t) ≥ 0, we obtain∫ T

0

q∑
i=1

θi,λ(t)fi(ξ(t))dt ≥
∫ T

0

q∑
i=1

θi,λ(t)fi,λ(uλ(t))dt(126)

+

∫ T

0
〈−u̇λ(t)− ηλ(t), ξ(t)− uλ(t)〉 dt.(127)

For any ξ ∈ L∞(0, T ;H), since fi is continuous and bounded on bounded sets (assumption H1)),
we have fi(ξ(·)) ∈ L∞(0, T ). Moreover θi,λ ⇀ θi for the topology σ(L∞(0, T ), L1(0, T )). Therefore,
by passing to the limit on the left member of (126), we obtain

lim
λ

∫ T

0

q∑
i=1

θi,λ(t)fi(ξ(t))dt =

∫ T

0

q∑
i=1

θi(t)fi(ξ(t))dt.

Let us now pass to the limit on the right member of (126)-(127). For the first term, we use
Lemma 3.6. For the second term, we notice that this expression involves duality products of nets
which are respectively converging for the strong and weak topologies of a duality pairing. More
precisely u̇λ + ηλ converges weakly in L2(0, T ;H) to u̇ + η, and ξ − uλ converges uniformly, and
hence strongly in L2(0, T ;H) to ξ − u. Hence, by passing to the limit as λ goes to zero, we obtain∫ T

0

q∑
i=1

θi(t)fi(ξ(t))dt ≥
∫ T

0

q∑
i=1

θi(t)fi(u(t))dt(128)

+

∫ T

0
〈−u̇(t)− η(t), ξ(t)− u(t)〉 dt.

Let us interpret this inequality in the duality pairing bewteen the functional spaces L∞(0, T ;H)
and L1(0, T ;H) ⊂ (L∞(0, T ;H))∗. For this, introduce I, the integral functional on L∞(0, T ;H)
which is defined by

(129) I(ξ) =

∫ T

0

q∑
i=1

θi(t)fi(ξ(t))dt.

We observe that I : L∞(0, T ;H)→ R is convex and continuous on L∞(0, T ;H). Hence, inequality
(128) can be rewritten as

(130) −u̇− η ∈ ∂I(u).

According to the duality theorem of Rockafellar for convex functional integrals, see [36, Theorem
4], for almost all t > 0

−u̇(t)− η(t) ∈ ∂

(
q∑
i=1

θi(t)fi

)
(u(t))(131)

=

q∑
i=1

∂ (θi(t)fi) (u(t)),(132)
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where the last equality comes from the additivity rule for the subdifferential of the sum of convex
continuous functions on Rq. Indeed we need to prove a slighter more precise result:

−u̇(t)− η(t) =

q∑
i=1

θi(t)vi(t)

with measurable functions vi ∈ L∞(0, T ;H) such that

(133) vi(t) ∈ ∂fi(u(t)) for almost all t > 0.

This can be proved by a precise analysis of the duality theorem from [36]. Since it is quite technical,
the proof is stated in Lemma 3.7, at the end of this section. Assuming this result, we obtain by
combination with (130) that

(134) u̇(t) + η(t) +
∑
i

θi(t)vi(t) = 0 for almost all t > 0,

with

θi ∈ L∞(0,+∞;R), vi ∈ L∞(0, T ;H), η ∈ L2(0, T ;H), for all T > 0, and all i = 1, 2, ..., q;(135)

(θi(t)) ∈ Sq and vi(t) ∈ ∂fi(u(t)) for almost all t > 0;(136)

On the other hand, from uλ → u strong−C(0, T ;H), ηλ ⇀ η weak−L2(0, T ;H), ηλ(t) ∈ NK(uλ(t)),
and from the demi-closedness property of the extension to L2(0, T ;H) of the maximal monotone
normal cone mapping (NK is the subdifferential of the indicator function fo K), we obtain

(137) η(t) ∈ NK(u(t)).

Thus

(138) u̇(t) +NK(u(t)) + Conv {∂fi(u(t))} 3 0.

3.6. Lazy solution. Let us complete the proof of Theorem 3.1 by showing that u is a lazy solution
of the differential inclusion (138). Let us start from the lazy solution property satisfied by the
approximate solutions uλ

(139) −u̇λ(t) =

(
NK(uλ(t)) + Conv {∇fi,λ(uλ(t))}

)0

.

By the obtuse angle property, since 0 ∈ NK(uλ(t)) we have

(140)

〈
u̇λ(t), u̇λ(t) +

q∑
i=1

θi(t)∇fi,λ(uλ(t))

〉
≤ 0,

for all θi ∈ L∞(0,+∞), i = 1, 2, ..., q that satisfy (θi(t)) ∈ Sq. After developing, and using the
classical derivation chain rule, we obtain

(141) ‖u̇λ(t)‖2 +

q∑
i=1

θi(t)
d

dt
fi,λ(uλ(t)) ≤ 0.

In order to pass to the limit on (141), take α a nonnegative test function (a function of t which is
regular, and with compact support in ]0, T [). After multiplication of (141) by α, and integration
on [0, T ], we obtain

(142)

∫ T

0
α(t)‖u̇λ(t)‖2dt+

q∑
i=1

∫ T

0
α(t)θi(t)

d

dt
fi,λ(uλ(t))dt ≤ 0.
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The convex function v 7→
∫ T

0 α(t)‖v(t)‖2dt is continuous on L2(0, T ;H), and hence lower semicon-

tinuous for the weak topology of L2(0, T ;H). Since u̇λ ⇀ u̇ weakly in L2(0, T ;H), we have

(143)

∫ T

0
α(t)‖u̇(t)‖2dt ≤ lim inf

∫ T

0
α(t)‖u̇λ(t)‖2dt.

In order to pass to the limit on the second term of (142), we use a density argument. First
assume that the θi are Lipschitz continuous on bounded sets. Since fi,λ(uλ) and αθi are absolutely
continuous functions of a real variable, their product is still absolutely continuous (see [17, Corollary
VIII.9]), and integration by part formula is valid. Hence

(144)

q∑
i=1

∫ T

0
α(t)θi(t)

d

dt
fi,λ(uλ(t))dt = −

q∑
i=1

∫ T

0

d

dt
(αθi)(t)fi,λ(uλ(t))dt.

By Lemma 3.6,

fi,λ(uλ)→ fi(u) uniformly on [0, T ], as λ→ 0.

Moreover d
dt(αθi) ∈ L

∞(0, T ;R). Thus, as λ→ 0

(145)

q∑
i=1

∫ T

0

d

dt
(αθi)(t)fi,λ(uλ(t))dt→

q∑
i=1

∫ T

0

d

dt
(αθi)(t)fi(u(t))dt.

Since fi(u) is absolutely continuous, using again integration by part formula

(146) −
q∑
i=1

∫ T

0

d

dt
(αθi)(t)fi(u(t))dt =

q∑
i=1

∫ T

0
α(t)θi(t)

d

dt
fi(u(t))dt.

From (144), (145), and (146) we obtain

(147)

q∑
i=1

∫ T

0
α(t)θi(t)

d

dt
fi,λ(uλ(t))dt→

q∑
i=1

∫ T

0
α(t)θi(t)

d

dt
fi(u(t))dt.

Combining (142), (143), and (147) we obtain, for θi that satisfy (θi(t)) ∈ Sq, and are Lipschitz
continuous on bounded sets,

(148)

∫ T

0
α(t)‖u̇(t)‖2dt+

q∑
i=1

∫ T

0
α(t)θi(t)

d

dt
fi(u(t))dt ≤ 0.

Let us show that, by density, (148) can be extended to arbitrary θi ∈ L∞(0,+∞;R) that satisfy
(θi(t)) ∈ Sq. Given such functions (θi)i=1,...,q, by regularization by convolution, we can find a
sequence of regular functions θi,n ∈ C∞(0,+∞), such that

(149) θi,n → θi a.e t ∈ (0,+∞) when n goes to +∞.

Let T : Rq → Rq be the projection onto the unit simplex Sq ⊂ Rq. T is a nonexpansive mapping.
By (149), and θ(t) = (θi(t))i ∈ Sq for almost all t > 0, we see that T ◦ θn is Lipschitz continuous
on any interval [0, T ], and satisfies, for almost all t > 0

T ◦ θn(t) ∈ Sq,(150)

(T ◦ θn)i(t)→ θi(t) for almost all t > 0.(151)

By (148), for each n ∈ N, we have

(152)

∫ T

0
α(t)‖u̇(t)‖2dt+

q∑
i=1

∫ T

0
α(t)(T ◦ θn)i(t)

d

dt
fi(u(t))dt ≤ 0.
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On the other hand, by Lemma 1.16, for any ξ ∈ L2(0, T ;H) such that ξ(t) ∈ ∂fi(u(t)) (there exists
such elements, for example take vi obtained in (136)), we have

(153)
d

dt
fi(u(t)) = 〈u̇(t), ξ(t)〉,

and d
dtfi(u) is integrable on [0, T ] (t 7→ fi(u(t)) is absolutely continuous on [0, T ]). From (151), by

applying Fatou’s lemma, (note that d
dtfi(u) ∈ L1([0, T ]), which allows us to reduce to the case of

non-negative functions), we obtain

(154)

q∑
i=1

∫ T

0
α(t)θi(t)

d

dt
fi(u(t))dt ≤ lim inf

n

q∑
i=1

∫ T

0
α(t)(T ◦ θn)i(t)

d

dt
fi(u(t))dt.

From (152) and (154) we deduce that

(155)

∫ T

0
α(t)‖u̇(t)‖2dt+

q∑
i=1

∫ T

0
α(t)θi(t)

d

dt
fi(u(t))dt ≤ 0.

Since α is an arbitrary positive test function, we deduce from (155) that

(156) ‖u̇(t)‖2 +

q∑
i=1

θi(t)
d

dt
fi(u(t))dt ≤ 0.

Take arbitrary η ∈ L2(0, T ;H), ξi ∈ L2(0, T ;H) i = 1, ..., q, such that η(t) ∈ NK(u(t)), ξi(t) ∈
∂fi(u(t)) for almost all t > 0. Since u(t) ∈ K, we have u̇(t) ∈ TK(u(t)), and since η(t) ∈ NK(u(t))

(157) 〈u̇(t), η(t)〉 ≤ 0.

Combining (153), (156), and (157) we obtain

(158) ‖u̇(t)‖2 + 〈u̇(t), η(t)〉+

q∑
i=1

θi(t) 〈u̇(t), ξi(t)〉 ≤ 0.

Equivalently, for any z(t) ∈ NK(u(t)) + Conv {∂fi(u(t))}
(159) 〈0− (−u̇(t)), z(t)− u̇(t)〉 ≤ 0.

Combining this property with (138) we obtain

u̇(t) +

(
NK(u(t)) + Conv {∂fi(u(t))}

)0

= 0 for almost all t > 0,

which ends the proof.

Lemma 3.7. Let I : L∞(0, T ;H) −→ R be defined by I(ξ) =
∫ T

0

∑q
i=1 θi(t)fi(ξ(t))dt, with θi ∈

L∞(0, T ;H) for i = 1, ..., q, and (θi(t)) ∈ Sq for almost all t > 0. Let ξ ∈ L∞(0, T ;H) and
z ∈ L1(0, T ;H) such that z ∈ ∂I(ξ). Then for all i = 1, ..., q there exists vi ∈ L∞(0, T ;H) such that

for almost all t > 0, vi(t) ∈ ∂fi(ξ(t)), and z(t) =

q∑
i=1

θi(t)vi(t).

Proof. By the Fenchel extremality relation,

(160) z ∈ ∂I(ξ)⇔ I(ξ) + I∗(z)− 〈ξ, z〉(L∞(0,T ;H),L1(0,T ;H)) = 0.

By [36, Theorem 2], we have

I∗(z) =

∫ T

0

(
q∑
i=1

θi(t)fi

)∗
(z(t))dt.



Dynamical Pareto-optimization with nonsmooth convex objective functions 27

Let us analyze this last expression. Since the fi are convex continuous functions, their conjugate
are coercive functions, and(

q∑
i=1

θi(t)fi

)∗
(z(t)) = min

(
q∑
i=1

(θi(t)fi)
∗ (zi) :

∑
i

zi = z(t)

)
.

The same measurable selection argument as the one used in Lemma 3.4 gives the existence of
measurable functions zi(·) such that

(161)

(
q∑
i=1

θi(t)fi

)∗
(z(t)) =

q∑
i=1

(θi(t)fi)
∗ (zi(t)) with

∑
i

zi(t) = z(t).

Returning to (160) we obtain

z ∈ ∂I(ξ)⇔
∫ T

0

q∑
i=1

(θi(t)fi(ξ(t)) + (θi(t)fi)
∗ (zi(t)))dt−

∫ T

0
〈ξ(t), z(t)〉 dt = 0(162)

⇔
∫ T

0

q∑
i=1

(θi(t)fi) (ξ(t)) + (θi(t)fi)
∗ (zi(t))− 〈ξ(t), zi(t)〉 dt = 0.

Since each of the elements of this last sum expression is nonnegative, we deduce that, for each
i = 1, 2, ..., q, and for almost all t > 0

θi(t)fi(ξ(t)) + (θi(t)fi)
∗ (zi(t))− 〈ξ(t), zi(t)〉 = 0.

Equivalently zi(t) ∈ ∂ (θi(t)fi) (ξ(t)). Let us now verify that

∂ (θi(t)fi) (u(t)) = θi(t)∂fi(u(t)).

Take some z̃i ∈ L∞(0, T ;H) such that z̃i(t) ∈ ∂fi(ξ(t)) for almost all t > 0, (there exists such
element, take for example z̃i(t) = (∂fi)

0(ξ(t))). We have

(163) zi(t) = θi(t)vi(t) for almost all t > 0,

where

(164) vi(t) =

{
z(t)
θi(t)

if θi(t) > 0,

z̃i(t) if θi(t) = 0.

Moreover vi is measurable, and vi(t) ∈ ∂fi(ξ(t)) for almost all t > 0. By continuity of fi, we
conclude that vi ∈ L∞(0, T ;H). �

4. Some modeling and numerical aspects, perspectives

4.1. Cooperative games. In this section, we consider some modeling aspects concerning the
multiobjective steepest descent for cooperative games. This completes [6], where was considered
the smooth case. Indeed, for applications, it is quite useful to consider objective functions which
are not differentiable (like the ‖ · ‖1 norm for sparse optimization).

Let us consider q agents (consumers, social actors, deciders,...). The agent i acts on a decision
space Hi, and takes decision vi ∈ Hi, i = 1, 2, ..., q. Let K be a given closed subset of H =
H1×H2× ...×Hq, which reflects the limitation of ressources, and/or various constraints. Feasible
decisions v ∈ H satisfy

v = (v1, v2, ..., vq) ∈ K.
Each agent i has a disutility (loss) function fi : H → R which associates to each feasible decision
v ∈ K the scalar fi(v). The game in normal form is given by the triplet (H,K, (fi)i=1,...q). The
(MOG) dynamic has been designed in order to satisfy some desirable properties with respect to
Pareto equilibration: each trajectory t 7→ u(t) of (MOG) satisfies

i) for each i = 1, 2, ..., q, t 7→ fi(u(t)) is nonincreasing (Theorem 2.2, item i));
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ii) u(t) converges to a Pareto critical point as t→ +∞ (Theorem 2.2, item iii));
Let us make some futher observations:
iii) In (MOG) dynamic there is no a priori or a posteriori scalarization of the original vector

optimization problem. Neither ordering information nor weighting factors for the different objective
functions are assumed to be known. The scalarization is done dynamically, endogenously ((MOG)
is an autonomous dynamical system). Taking into account the worst directional derivative (indeed,
in view of minimization, it is the greatest), can make progress all agents, and gives to (MOG)
system robustness (minimization in the worst case), and good convergence properties. When it is
no longer possible to make progress all the agents, the process stops at a weak Pareto optimal point.
It is a natural question whether it is possible to reach a Pareto optimum. Indeed, it depends on
the willingness of the agents to cooperate more or less. After reaching a weak Pareto optimum, a
natural way is to consider the coalition involving agents that can further enhance their performance.
Then we can consider the (MOG) dynamics involving these agents. An additional constraint must
be added which states that the performance of the agents who stay at rest is not damaged.

iv) The choice of the metric on the space H plays a fundamental role in the definition of the
gradient-like system (MOG). The metric reflects the friction and inertia that are attached to the
changes in dynamical decision processes, see [2], [7], for an account on the notion of costs to change
(changing a routine...). The definition of (MOG) involves local notions (subdifferentials of the fi,
and tangent cone to K) which corresponds to the modeling of myopic agents.

v) A central question in Pareto optimization is obtaining a Pareto optimum with desirable
properties. A major advantage of the dynamic gradient approach is that we don’t need to know the
whole Pareto front. The weak Pareto equilibrium finally reached is not too far from the starting
point of the dynamics (see Figures 1 and 2), making the process realistic in engineering and human
sciences. Moreover, one can select a Pareto optimum which is not too far from a desirable state ud by
using an auxiliary asymptotic hierarchical procedure (see [4] and references therein). For example,
according to the method of Tikhonov regularization, we can consider ε(t) → 0 as t → +∞, with∫∞

0 ε(t)dt = +∞, and the following dynamics

u̇(t) +

(
NK(u(t)) + Conv {∂fi(u(t)) + ε(t)(u(t)− ud)}

)0

= 0.

It is a (time)-multiscaled nonautonomous dynamic, an interesting subject for further research.
vi) Hybrid methods combine gradient methods (fast, with low computational cost, but local)

with evolutionary computation methods (global, but with high computational cost). They have
proved to be efficient for the minimization of a single objective function. It would be interesting
to develop the same type of idea in order to reach the whole Pareto set, see [15], [18] for some first
results in this direction.

4.2. Inverse problems. As a model situation, let us consider the computation of sparse solutions
for underdetermined systems of equations. It is an important problem in signal compression and
statistics (see [24, 40]). It leads to the following nonsmooth convex minimization problem

min{‖Ax− b‖22 + α‖x‖1 : x ∈ K ⊂ Rn}

where ‖Ax − b‖22 is a least squares data fitting term, and ‖x‖1 forces sparsity. There is numerical
evidence that a careful weighting of these two terms is important for the effectiveness of the method.
Usually it is done by experimental trials. It would be of great interest to develop a numerical method
based on a multiobjective optimization approach (with f1(x) = ‖Ax−b‖22 and f2(x) = ‖x‖1), where
the weighting is done automatically, while giving more weight to the lower term. Indeed, this is
what the (MOG) dynamic does.
All these considerations naturally lead us to consider discretized, algorithmic versions of the method.
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4.3. Numerical descent methods for nonsmooth multiobjective optimization. In the un-
constrained case, an explicit discretization of (MOG) provides an algorithm of the form:

(165) At step k, compute uk+1 = uk + λkdk,

where dk = s(uk) is the multiobjective steepest descent direction at uk, and λk is some nonnegative
steplength. If we have a constraint K, we can approach s(uk) by replacing the tangent cone TK(uk)

with C−uk
µk

(for some small µk) in (14). This leads to :

uk+1 = uk + λkdk,(166)

where dk = argmin
d∈C−uk

{
1

2µk
‖d‖2 + max

i=1,...,q
max

pi∈∂fi(u)
〈pi, d〉

}
.(167)

Note that the algorithms given in (165) and (166) are equivalent when K = H and µk ≡ µ.
These algorithms have been studied in [25], [27] (unconstrained case), in [29] (constrained case)
in a finite-dimensional setting, and assuming that the objective functions are C1 (not necessarily
convex). As a distinctive feature of these algorithms, the steplength λk is computed by an Armijo-
like rule (to secure a descent property), and directions dk are computed approximatively (with a
given tolerance). They lead to the following results:

(1) If µk ≡ µ, then any accumulation point is a critical Pareto point.
(2) If the objective functions are convex, and if µk = αk

max
i=1,...,q

‖∇fi(uk)‖ with αk ∈ `2 \ `1, then any

bounded sequence converges to a weak Pareto optimal point.

It appears that these algorithms, which are obtained -at least formally- by the explicit discretiza-
tion in time of (MOG), share common properties with our continuous dynamic (descent property,
convergence to weak Pareto optimal points). It would be interesting to justify mathematically that
the continuous and discrete dynamic systems have the same asymptotic behavior, as it was estab-
lished in the case of a single objective (see [34]). Another challenging aspect of these algorithms
is the effective computation of dk. For instance, in the unconstrained case, we need to solve the
minimization problem (13), which can be done by applying a Gauss-Seidel-like method to

(168) minimize
Λ = (λ1, ..., λq) ∈ Sq

(p1, ..., pq) ∈ Hq

1

2
‖

q∑
i=1

λipi‖2 + δSp(Λ) +

q∑
i=1

δ∂fi(uk)(pi).

Problem (14) is also well suited for primal-dual methods, and perhaps other methods could be
examined and compared. To our knowledge, this work has never been done, and is a subject for
further study.

More recently, a trust-region method for unconstrained multiobjective problems involving smooth
functions has been developed in [41], which uses the norm of the multiobjective steepest descent
vector as a generalized marginal function. In [26, 28], a Newton method for unconstrained strongly
convex vector optimization has been developed, with a local superlinear convergence result. Instead
of taking dk as a descent direction computed from first-order quadratic models as in (14), the authors
use second-order quadratic models to define a multiobjective Newton direction as:

(169) dk = argmin
d∈H

{
max
i=1,...,q

〈∇fi(uk), d〉+
1

2
〈∇2fi(uk)d, d〉

}
.

As in Theorem 1.9, they show that this discrete dynamic corresponds to the classical Newton’s
method applied to a weighted combination of the objective functions, but with an endogenous
scalarization. In other words, at each step, the algorithm provides (θki ) ∈ Sq such that

(170) dk = −

(
q∑
i=1

θki∇2fi(uk)

)−1( q∑
i=1

θki∇fi(uk)

)
.
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See also [35] for second-order models built with a BFGS scheme, to avoid the direct computation of
the Hessian. These works suggests the existence of corresponding continuous Newton-like dynamics
(see for example [8] in the case of a single objective).

5. Conclusion, perspectives

In this paper, we have shown some remarkable properties of the multiobjective steepest descent
direction, and of the dynamical system which is governed by the corresponding vector field: along
each trajectory, all the objective functions are decreasing, and there is convergence to a weak
Pareto minimum. Working in a general Hilbert space, and with convex continuous functions (not
necessarily differentiable) allows us to cover a wide range of applications. However, there are
many issues to be resolved. Among the most challenging, let us mention the uniqueness of the
solution, for a given Cauchy data, and the dynamical properties of the weighting coefficients. The
natural link between the (MOG) dynamic and the theory of gradient flows naturally suggests to
study the dynamics for semi-algebraic functions, on the basis of Kurdyka-Lojasiewicz inequality.
Obtening rapid methods based on an analysis of second order in time (inertial aspects), or space
(Newton-like methods) is important both from the numerical, and modeling point of view. It would
be also interesting to consider interior point methods. Some modeling aspects in game theory,
economics, and inverse problems, have been considered in the previous sections. They are still
largely unexplored. All these results suggest that there is a broad class of continuous dynamics that
contains (MOG), and having similary properties with respect to Pareto equilibration. Enriching
this class of dynamics can be useful for numerical purpose, and for understanding the complex
interactions in Pareto equilibration (coalitions, negotiation, bargaining, dealing with uncertainty,
changes in the environment, psychological aspects). These are interesting topics for further research.
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doctorat d’état, Université Paris IX Dauphine (1981).
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