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Abstract

Regularized and stabilized sequential quadratic programming (SQP) methods are two
classes of methods designed to resolve the numerical and theoretical difficulties associ-
ated with ill-posed or degenerate nonlinear optimization problems. Recently, a regular-
ized SQP method has been proposed that allows convergence to points satisfying certain
second-order KKT conditions (SIAM J. Optim., 23(4):1983–2010, 2013). The method is
formulated as a regularized SQP method with an implicit safeguarding strategy based on
minimizing a bound-constrained primal-dual augmented Lagrangian. The method involves
a flexible line search along a direction formed from the solution of a regularized quadratic
programming subproblem and, when one exists, a direction of negative curvature for the
primal-dual augmented Lagrangian. With an appropriate choice of termination condition,
the method terminates in a finite number of iterations under weak assumptions on the
problem functions. Safeguarding becomes relevant only when the iterates are converging
to an infeasible stationary point of the norm of the constraint violations. Otherwise, the
method terminates with a point that either satisfies the second-order necessary conditions
for optimality, or fails to satisfy a weak second-order constraint qualification. The purpose
of this paper is to establish the conditions under which this second-order regularized SQP
algorithm is equivalent to the stabilized SQP method. It is shown that under conditions
that are no stronger than those required by conventional stabilized SQP methods, the
regularized SQP method has superlinear local convergence. The required convergence
properties are obtained by allowing a small relaxation of the optimality conditions for the
quadratic programming subproblem in the neighborhood of a solution.
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1. Introduction

This paper is concerned with computing solutions to the nonlinear optimization problem

(NP) minimize
x∈Rn

f(x) subject to c(x) = 0, x ≥ 0,

where c : Rn 7→ Rm and f : Rn 7→ R are twice-continuously differentiable. This problem format
assumes that all general inequality constraints have been converted to equalities by the use
of slack variables. Methods for solving problem (NP) are easily extended to the more general
setting with l ≤ x ≤ u.

This paper concerns the local convergence properties of the algorithm pdSQP2 proposed
by Gill, Kungurtsev and Robinson [13]. Algorithm pdSQP2 is an extension of the first-order
regularized SQP algorithm (pdSQP) of Gill and Robinson [15] that is designed to encourage
convergence to points satisfying the second-order conditions for optimality. The method is
based on the properties of the bound-constrained optimization problem:

minimize
x,y

M(x, y ; yE , µ) subject to x ≥ 0, (1.1)

where M(x, y ; yE , µ) is the primal-dual augmented Lagrangian function:

M(x, y ; yE , µ) = f(x)− c(x)TyE +
1

2µ
‖c(x)‖22 +

ν

2µ
‖c(x) + µ(y − yE)‖22, (1.2)

with ν a fixed nonnegative scalar, µ a positive penalty parameter, and yE an estimate of a
Lagrange multiplier vector y∗. Gill, Kungurtsev and Robinson [13, Theorem 1.3] show that if
µ is sufficiently small, then a primal-dual solution (x∗, y∗) of (NP) satisfying the second-order
sufficient conditions is a minimizer of M(x, y ; y∗, µ). (The value of ν is fixed throughout the
computation, and is not included as an argument of M . The choice of ν and its effect on the
properties of M are discussed in [15,31] (in particular, see Gill and Robinson [15, Table 1]).)

Algorithm pdSQP2 has an inner/outer iteration structure, with the inner iterations being
those of an active-set method for solving a quadratic programming (QP) subproblem based on
minimizing a local quadratic model of the primal-dual function (1.2) subject to the nonnega-
tivity constraints on x. The outer iteration defines the QP subproblem and performs a flexible
line search along a direction given by an approximate solution of the QP subproblem and, if
needed, an approximate direction of negative curvature for the primal-dual function M . At
the kth primal-dual iterate (xk, yk), the outer iteration involves the definition of a vector yE

k

that estimates the vector of Lagrange multipliers, and two penalty parameters µR
k and µk such

that µR
k ≤ µk, with µR

k � µk in the neighborhood of a solution. The parameter µR
k plays the

role of a small regularization parameter and is used in the definition of a local quadratic model
of M(x, y ; yE

k , µ
R
k ). The penalty parameter µk is used in the line search, where the function

M(x, y ; yE
k , µk) is used as a line-search merit function for obtaining improved estimates of

both the primal and dual variables.
With an appropriate choice of termination criteria, algorithm pdSQP2 terminates in a

finite number of iterations under weak assumptions on the problem functions. As in the
first-order case, the method is formulated as a regularized SQP method with an augmented
Lagrangian safeguarding strategy. The safeguarding becomes relevant only when the iterates
are converging to an infeasible stationary point of the norm of the constraint violations.
Otherwise, the method terminates with a point that either satisfies the second-order necessary
conditions for optimality, or fails to satisfy a weak second-order constraint qualification.
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An important property of the local quadratic model of M(x, y ; yE
k , µ

R
k ) is that the associ-

ated bound-constrained QP subproblem is equivalent to the general QP:

minimize
x,y

g(xk)
T(x− xk) + 1

2(x− xk)TH(xk, yk)(x− xk) + 1
2µ

R
k‖y‖22

subject to c(xk) + J(xk)(x− xk) + µR
k (y − yE

k ) = 0, x ≥ 0,
(1.3)

where g is the gradient of f , J is the Jacobian of c, and H is the Hessian of the Lagrangian
function. (The definition of the local quadratic model is discussed in Section 2.2.) If yE

k = yk,
the QP (1.3) is typical of those used in stabilized SQP methods (see, e.g., Hager [19], Wright [32,
33, 35], Oberlin and Wright [30], Fernández and Solodov [9], Izmailov and Solodov [23]).
Moreover, the definition of µR

k implies that the direction provided by the solution of the QP

(1.3) is anO(µR
k ) estimate of the conventional SQP direction. Stabilized SQP has been shown to

have desirable local convergence properties. In particular, superlinear convergence to primal-
dual KKT points has been shown to occur without the need for a constraint qualification. The
purpose of this paper is to establish the conditions under which the primal-dual regularized
SQP algorithm is equivalent to the stabilized SQP method. The principal contributions are
the following.

• A method is proposed for general inequality constrained optimization that has provable
global convergence to either a second-order point or an infeasible stationary point. In
the case of convergence to a second-order point, a local convergence analysis is given that
does not require the assumption of a constraint qualification or strict complementarity
condition.

• Although exact second-derivatives are used, the method does not require the solution
of an indefinite quadratic programming subproblem—a process that is known to be
NP-hard. In addition, the local convergence theory makes no assumptions about which
local solution of the QP subproblem is computed (see Kungurtsev [26, Chapter 5] for a
discussion of these issues).

• Close to the solution, the method defines iterates that are equivalent to a conventional
stabilized SQP method. This equivalence holds under conditions that are no stronger
than those required for the superlinear local convergence of a conventional stabilized
SQP method.

• Preliminary numerical results indicate that the method has strong global and local
convergence properties for both degenerate and nondegenerate problems under weak
regularity assumptions.

The method has a number of features that are not shared by conventional stabilized
methods: (a) either a first- or second-order model function is used in the line search, as
needed; (b) a flexible line search is used; (c) the regularization and penalty parameters may
increase or decrease at any iteration; (d) criteria are specified that allow the acceptance of
certain inexact solutions to the QP subproblem; and (e) a local descent step may be generated
based on allowing a small relaxation of the optimality conditions for the QP subproblem.

The remainder of the paper is organized as follows. This section concludes with a summary
of the notation and terminology. Section 2 provides details of the second-order primal-dual
regularized SQP method. The global and local convergence properties of the method are
discussed in Sections 3 and 4 respectively.
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1.1. Notation and terminology

Unless explicitly indicated otherwise, ‖ · ‖ denotes the vector two-norm or its induced matrix
norm. The inertia of a real symmetric matrix A, denoted by In(A), is the integer triple
(a+, a−, a0) giving the number of positive, negative and zero eigenvalues of A. The least
eigenvalue of a symmetric matrix A will be denoted by λmin(A). Given vectors a and b
with the same dimension, the vector with ith component aibi is denoted by a · b. Similarly,
min(a, b) is a vector with components min(ai, bi). The vectors e and ej denote, respectively,
the column vector of ones and the jth column of the identity matrix I. The dimensions of
e, ei and I are defined by the context. Given vectors x and y, the vector consisting of the
elements of x augmented by elements of y is denoted by (x, y). The ith component of a
vector labeled with a subscript will be denoted by [ · ]i, e.g., [ v ]i is the ith component of the
vector v. For a given `-vector u and index set S, the quantity [u ]S denotes the subvector of
components uj such that j ∈ S ∩ {1, 2, . . . , ` }. Similarly, if M is a symmetric `× ` matrix,
then [M ]S denotes the symmetric matrix with elements mij for i, j ∈ S ∩ {1, 2, . . . , ` }. A
local solution of problem (NP) is denoted by x∗. The vector g(x) is used to denote ∇f(x), the
gradient of f(x). The matrix J(x) denotes the m× n constraint Jacobian, which has ith row
∇ci(x)T , the gradient of the ith constraint function ci(x). The Lagrangian function associated
with (NP) is L(x, y, z) = f(x) − c(x)Ty − zTx, where y and z are m- and n-vectors of dual
variables associated with the equality constraints and bounds, respectively. The Hessian of
the Lagrangian with respect to x is denoted by H(x, y) = ∇2f(x)−

∑m
i=1 yi∇2ci(x).

Let {αj}j≥0 be a sequence of scalars, vectors or matrices and let {βj}j≥0 be a sequence
of positive scalars. If there exists a positive constant γ such that ‖αj‖ ≤ γβj , we write
αj = O

(
βj
)
. If there exists a sequence {γj} → 0 such that ‖αj‖ ≤ γjβj , we say that

αj = o(βj). If there exist positive constants γ1 and γ2 such that γ1βj ≤ ‖αj‖ ≤ γ2βj , we write
αj = Θ

(
βj
)
.

2. The Primal-Dual SQP Method

The proposed method is based on the properties of a local quadratic model of the primal-dual
function (1.2). At the kth iterate vk = (xk, yk), the model is

Qk(v ;µ) = (v − vk)T∇M(vk ; yE
k , µ) + 1

2(v − vk)TB(vk ;µ)(v − vk), (2.1)

whereB(v ;µ) ≡ B(x, y ;µ) approximates the Hessian ofM(x, y ; yE , µ). The vector∇M(vk ; yE
k , µ)

and matrix ∇2M(x, y ; yE , µ) are written in the form

∇M(x, y ; yE , µ) =

(
g(x)− J(x)T

(
π(x) + ν(π(x)− y)

)
νµ
(
y − π(x)

) )
(2.2)

and

∇2M(x, y ; yE , µ) =

(
H
(
x, π(x) + ν(π(x)− y)

)
+ 1

µ(1 + ν)J(x)TJ(x) νJ(x)T

νJ(x) νµI

)
, (2.3)

where π(x) = π(x ; yE , µ) denotes the first-order multiplier estimate

π(x ; yE , µ) = yE − 1

µ
c(x). (2.4)
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The quadratic model (2.1) is based the approximationB(v ;µ) ≡ B(x, y ;µ) ≈ ∇2M(x, y ; yE , µ)
defined by replacing H

(
x, π(x) + ν(π(x)− y)

)
by H(x, y) in the leading block of ∇2M . This

gives the matrix

B(x, y ;µ) =

H(x, y) +
1

µ
(1 + ν)J(x)TJ(x) νJ(x)T

νJ(x) νµI

 , (2.5)

which is independent of the multiplier estimate yE.
From a numerical stability perspective, it is important that every computation be per-

formed without forming the matrix B(vk ;µ) explicitly. All the relevant properties of a matrix
B of the form (2.5) may be determined from either of the matrices

H(x, y) +
1

µ
(1 + ν)J(x)TJ(x) or

(
H(x, y) J(x)T

J(x) −µI

)
.

These matrices are said to have “augmented Lagrangian form” and “regularized KKT form,”
respectively. To simplify the analysis, the formulation and analysis of the main algorithm is
given in terms of matrices in augmented Lagrangian form. However, all practical computations
are performed with the matrix in regularized KKT form. In particular, each iteration involves
the factorization of a matrix of the form

KF =

(
HF(x, y) JF(x)T

JF(x) −µR
kI

)
, (2.6)

where quantities with the suffix “F” are defined in terms of index sets that estimate the active
and free sets of primal-dual variables at a solution of problem (NP). At any nonnegative x,
the active set and free set are defined as

A(x) = {i : [x]i = 0} and F(x) = {1, 2, . . . , n+m} \ A(x), (2.7)

respectively. (The algorithm considered in this paper does not impose bounds on the dual
variables. Some implications of enforcing bounds on both the primal and dual variables are
discussed by Gill and Robinson [15].) The active set at x is estimated by the “ε-active” set

Aε(x, y, µ) =
{
i : [x]i ≤ ε, with ε = min

(
εa, max

(
µ, r(x, y)γ

) )}
, (2.8)

where µ is a positive parameter, γ (0 < γ < 1) and εa (0 < εa < 1) are fixed scalars, and the
quantity

r(x, y) = ‖
(
c(x), min

(
x, g(x)− J(x)Ty

))
‖ (2.9)

is a practical estimate of the distance of (x, y) to a first-order KKT point of problem (NP)
(see Definition 3.1). Analogous to F(x), the “ε-free” set is the complement of Aε in the set
of indices of the primal-dual variables, i.e.,

Fε(x, y, µ) = {1, 2, . . . , n+m} \ Aε(x, y, µ). (2.10)

The algorithm involves three main calculations: (i) the computation of quantities needed
for the definition of the regularization parameter µR

k and multiplier estimate yE
k ; (ii) the com-

putation of a feasible descent direction based on an approximate solution of a QP subproblem;
and (iii) the calculation of the line-search direction and the definition of an appropriate step
length using a flexible line search. A description of each of these calculations is given in the
following three sections.
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2.1. The regularization parameter and multiplier estimate

The definition of the local quadratic model for the QP subproblem depends on the values of
the regularization parameter µR

k and the vector of multiplier estimates yE
k . These values are

defined in terms of the values µR
k−1 and yE

k−1 from the previous iteration, and a scalar-vector

pair (ξ
(1)
k , uFε) that estimates the least negative eigenvalue of HFε + (1/µR

k−1)JTFεJFε , where
HFε and JFε are defined in terms of the primal variables with indices in the ε-free set, i.e., HFε
is the matrix of ε-free rows and columns of Hk = H(xk, yk), and JFε is the matrix of ε-free
columns of Jk = J(xk).

The principal calculations for (ξ
(1)
k , uFε) are defined in Algorithm 1, which computes a fea-

sible direction of negative curvature (if one exists) for the local quadratic model Qk(v ;µR
k−1).

If HFε+(1/µR
k−1)JTFεJFε is not positive semidefinite, Algorithm 1 computes a nonzero direction

uFε that satisfies

uTFε

(
HFε +

1

µR
k−1

JTFεJFε

)
uFε ≤ θλmin

(
HFε +

1

µR
k−1

JTFεJFε

)
‖uFε‖2 < 0, (2.11)

where θ is a positive scalar independent of xk. The inequality (2.11) is used to character-
ize the properties of a direction of negative curvature for the quadratic model Qk(vk ;µR

k−1)

(2.1) of the primal-dual function M , when HFε + (1/µR
k−1)JTFεJFε is not positive semidefinite

(see [13, Lemma 2.1(ii)]). The quantity uFε may be computed from several available matrix
factorizations as described in [16, Section 4]. For a theoretical analysis, it is necessary to

assume only that the uFε associated with a nonzero value of ξ
(1)
k computed in Algorithm 1

satisfies (2.11).

Algorithm 1 Curvature estimate.

1: procedure CURVATURE ESTIMATE(xk, yk, µ
R
k−1, Jk, Hk)

2: Compute HFε and JFε as submatrices of Hk and Jk associated with Fε(xk, yk, µR
k−1);

3: if (HFε + (1/µR
k−1)JTFεJFε is positive semidefinite) then

4: ξ
(1)
k = 0; u

(1)
k = 0; w

(1)
k = 0;

5: else
6: Compute uFε 6= 0 such that (2.11) holds for some positive θ independent of xk;

7: ξ
(1)
k = − uTFε

(
HFε + (1/µR

k−1)JTFεJFε
)
uFε/‖uFε‖

2 > 0;

8: u
(1)
k = 0; [u

(1)
k ]Fε = uFε ;

9: w
(1)
k = − (1/µR

k−1)Jku
(1)
k ;

10: end if
11: s

(1)
k = (u

(1)
k , w

(1)
k );

12: return
(
s

(1)
k , ξ

(1)
k

)
;

13: end procedure

In Step 9 of Algorithm 1 the change w
(1)
k in the dual variables is computed as a function of

the change u
(1)
k in the primal variables, which ensures that the equality constraints associated

with the stabilized QP subproblem (1.3) are satisfied. This definition is sufficient to provide

a feasible direction of negative curvature s
(1)
k for the quadratic model Qk(v ;µR

k−1) (2.1) when

ξ
(1)
k > 0 (see [13, Lemma 2.1(ii)]).
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The multiplier estimate yE
k is updated to be the dual iterate yk if there is improvement in

a measure of the distance to a primal-dual second-order solution (x∗, y∗). Algorithm 5 uses
feasibility and optimality measures η(xk) and ω(xk, yk) such that

η(xk) = ‖c(xk)‖ and ω(xk, yk) = max
(∥∥min(xk, g(xk)− J(xk)

Tyk)
∥∥ , ξ(1)

k

)
, (2.12)

where the quantity ξ
(1)
k is defined by Algorithm 1. Given η(xk) and ω(xk, yk), weighted

combinations of the feasibility and optimality measures are defined as

φV (xk, yk) = η(xk) + βω(xk, yk) and φO(xk, yk) = βη(xk) + ω(xk, yk),

where β is a fixed scalar such that 0 < β � 1. The update yE
k = yk is performed if

φV (vk) ≤ 1
2φ

max
V or φO(vk) ≤ 1

2φ
max
O , (2.13)

where φmax
V and φmax

O are positive bounds that are reduced as the iterations proceed. The
point (xk, yk) is called a “V-iterate” or an “O-iterate” if it satisfies the bound on φV (vk) or
φO(vk). A “V-O iterate” is a point at which one or both of these conditions holds, and the
associated iteration (or iteration index) is called a “V-O iteration.” At a V-O iteration, the
regularization parameter is updated as

µR
k =

{
min

(
µR

0 , max
(
rk, ξ

(1)
k

)
γ
)

if max
(
rk, ξ

(1)
k

)
> 0;

1
2µ

R
k−1 otherwise,

(2.14)

where rk = r(xk, yk) is defined by (2.9). It must be emphasized that the sequence {µR
k} is not

necessarily monotonic.
If the conditions for a V-O iteration do not hold, a test is made to determine if (xk, yk) is

an approximate second-order solution of the bound-constrained problem

minimize
x,y

M(x, y ; yE
k−1, µ

R
k−1) subject to x ≥ 0. (2.15)

In particular, (xk, yk) is tested using the conditions:

‖min
(
xk,∇xM(xk, yk ; yE

k−1, µ
R
k−1)

)
‖ ≤ τk−1, (2.16a)

‖∇yM(xk, yk ; yE
k−1, µ

R
k−1)‖ ≤ τk−1µ

R
k−1, and (2.16b)

ξ
(1)
k ≤ τk−1, (2.16c)

where τk−1 is a positive tolerance. If these conditions are satisfied, then (xk, yk) is called
an “M-iterate” and the parameters are updated as in a typical conventional augmented La-
grangian method, with the multiplier estimate yE

k−1 replaced by the safeguarded value

yE
k = max

(
− ymaxe, min( yk, ymaxe )

)
(2.17)

for some large positive scalar constant ymax, and the new regularization parameter is given
by

µR
k =

{
min

(
1
2µ

R
k−1, max

(
rk, ξ

(1)
k

)
γ
)
, if max(rk, ξ

(1)
k ) > 0;

1
2µ

R
k−1, otherwise.

(2.18)
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In addition, the tolerance τk−1 is decreased by a constant factor. Conditions analogous to
(2.16) are used in the first-order method of Gill and Robinson [16], in which case numerical
experiments indicate that M-iterations occur infrequently relative to the total number of
iterations.

Finally, if neither (2.13) nor (2.16) are satisfied, then yE
k = yE

k−1 and µR
k = µR

k−1. As the
multiplier estimates and regularization parameter are fixed at their current values in this case,
(xk, yk) is called an “F-iterate”.

2.2. Computation of the descent direction

Given a primal-dual iterate vk = (xk, yk), and values of the regularization parameter µR
k and

multiplier estimate yE
k , the main calculation involves finding a primal-dual direction dk such

that ∇MT
k dk < 0. The vector dk is defined as either a “local” descent direction or “global”

descent direction. In general terms, a local descent direction is the solution of a system of
linear equations, whereas a global descent direction is the solution of a convex QP subproblem.
If certain conditions hold at the start of the step computation, the local descent direction is
computed. Additional conditions are then used to decide if the computed direction should
be used for dk. If the local descent direction is not computed, or not selected, then the QP

subproblem is solved for the global descent direction. However, if a local descent direction
is computed, the matrix factors used to define it are used to compute the first iterate of the
QP method. Both the global descent direction and local descent direction may be regarded
as being approximate solutions of a quadratic program based on minimizing the quadratic
model (2.1) subject to the bounds on x.

The global descent direction. The underlying quadratic model (2.1) is not suitable as the
QP objective function because B(vk ;µR

k ) is not positive definite in general. An indefinite QP

subproblem can have many local minima and may be unbounded. In addition, the certification
of a second-order solution of an indefinite QP is computationally intractable in certain cases.
In order to avoid these difficulties, a strictly convex QP subproblem is defined that incorporates
the most important properties of the nonconvex quadratic model (2.1). The subproblem is

minimize
v

Q̂k(v) = (v − vk)T∇M(vk ; yE
k , µ

R
k ) + 1

2(v − vk)T B̂(vk ;µR
k )(v − vk)

subject to [ v ]i ≥ 0, i = 1, 2, . . . , n,
(2.19)

where B̂(vk ;µR
k ) is the matrix

B̂(vk ;µR
k ) =

Ĥ(xk, yk) +
1

µR
k

(1 + ν)J(xk)
TJ(xk) νJ(xk)

T

νJ(xk) νµR
kI

 , (2.20)

with Ĥ(xk, yk) a modification of H(xk, yk) chosen to make B̂(vk ;µR
k ) positive definite. The

matrix B̂ is defined by a process known as “convexification” (see [16, Section 4] for details).
As discussed in the introduction to this section, in practice, the matrix B̂(vk ;µR

k ) is never
computed explicitly.

Solution of the QP subproblem. Given an initial feasible point v̂
(0)
k for problem (2.19),

active-set methods generate a feasible sequence {v̂(j)
k }j>0 such that Q̂k(v̂

(j)
k ) ≤ Q̂k(v̂

(j−1)
k )
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and v̂
(j)
k minimizes Q̂k(v) on a “working set” Wj of bound constraints. An iterate v̂

(j)
k is

optimal for (2.19) if the Lagrange multipliers for the bound constraints in the working set are
nonnegative, i.e.,

[∇Q̂k(v̂
(j)
k ) ]W = [∇M(vk ; yE

k , µ
R
k ) + B̂(vk ;µR

k )(v̂
(j)
k − vk) ]W ≥ 0, (2.21)

where the suffix “W” denotes the components of v̂
(j)
k corresponding to the bound constraints

in the working set. The first working setW0 is defined as the ε-active set Aε(xk, yk, µR
k ), which

defines the initial feasible point v̂
(0)
k as

[ v̂
(0)
k ]Aε = 0, and [ v̂

(0)
k ]Fε = [ vk ]Fε , (2.22)

where the suffices “Aε” and “Fε” refer to the components associated with the ε-active and

ε-free sets at (xk, yk). In general, v̂
(0)
k will not minimize Q̂k(v) onW0, and an estimate of v̂

(1)
k ,

is defined by solving the subproblem:

minimize
v

Q̂k(v) subject to [ v ]W = 0. (2.23)

This estimate, if feasible, is used to define v̂
(1)
k , otherwise one of the violated bounds is added

to the working set and the iteration is repeated. Eventually, the working set will include

enough bounds to define an appropriate minimizer v̂
(1)
k .

The local descent direction. A minimizer (when it exists) of the general quadratic model
Qk(v ;µR

k ) (2.1) on the ε-active set Aε(xk, yk, µR
k ) plays a vital role in the formulation of a

method with superlinear local convergence. If the matrix BFε of ε-free rows and columns of
B(vk ;µR

k ) is positive definite, then the QP subproblem

minimize
v

Qk(v ;µR
k ) subject to [ v ]Aε = 0 (2.24)

has a unique solution. Given the initial QP iterate v̂
(0)
k defined in (2.22), the solution of

subproblem (2.24) may be computed as v̂
(0)
k + ∆v̂

(0)
k , where [∆v̂

(0)
k ]Aε = 0 and [∆v̂

(0)
k ]Fε

satisfies the equations

BFε [∆v̂
(0)
k ]Fε = −[∇Qk(v̂

(0)
k ;µR

k ) ]Fε . (2.25)

If dk denotes the step from vk to the solution of (2.24), then dk = v̂
(0)
k +∆v̂

(0)
k − vk. Forming

the ε-free and ε-active components of dk gives

[ dk ]Fε = [∆v̂
(0)
k ]Fε and [ dk ]Aε = −[ vk ]Aε = −[xk ]Aε ≤ 0, (2.26)

where the last inequality follows from the feasibility of xk with respect to the bounds. Overall,
the components of dk satisfy [∇Qk(vk + dk ;µR

k ) ]Fε = [∇M(vk ; yE
k , µ

R
k ) +Bkdk ]Fε = 0.

Consider the matrix

UFε =

(
I − (1+ν)

νµRk
JFε(xk)

T

0 1
ν I

)
,

where JFε(xk) denotes the matrix of ε-free columns of J(xk). The matrix UFε is nonsingular
and can be applied to both sides of (2.25) without changing the solution. Using the definitions
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(2.26) and performing some simplification yields(
HFε(xk, yk) JFε(xk)

T

JFε(xk) −µR
kI

)(
[ pk ]Fε

−qk

)
= −

(
[ g(xk) +H(xk, yk)(x̂

(0)
k − xk)− J(xk)

Tyk ]Fε

c(xk) + J(xk)(x̂
(0)
k − xk) + µR

k (yk − yE
k )

)
,

(2.27)
where pk and qk are the vectors of primal and dual components of dk, and HFε(xk, yk) is the
matrix of ε-free rows and columns of H(xk, yk). If Aε(xk, yk, µR

k ) = A(x∗), [xk ]Aε = 0, and

yE
k = yk, then x̂

(0)
k = xk and these equations become(

HFε(xk, yk) JFε(xk)
T

JFε(xk) −µR
kI

)(
[ pk ]Fε

−qk

)
= −

(
[ g(xk)− J(xk)

Tyk ]Fε
c(xk)

)
, (2.28)

which represent the dual-regularized Newton equations for minimizing M on the ε-active set.
This property provides the motivation for the definition of a “local descent direction” in the
neighborhood of a solution. If BFε is positive definite and vk is a V-O iterate (so that yE

k = yk),
the solution of (2.24) is considered as a potential approximate solution of a QP subproblem
with objective Qk(v ;µR

k ). Given a small positive scalar tk defined below in (2.30), the local
descent direction dk is used if the conditions

vk + dk feasible, [∇Qk(vk + dk ;µR
k ) ]Aε ≥ −tke, and ∇MT

kdk < 0 (2.29)

are satisfied. The QP gradient condition of (2.29) relaxes the QP optimality condition (2.21)
and reduces the possibility of unnecessary inner iterations in the neighborhood of a solution.
As the outer iterates converge, Aε(xk, yk, µR

k ) provides an increasingly accurate estimate of the
optimal active set. Nevertheless, close to a solution, the QP multipliers associated with vari-
ables with zero multipliers at x∗ may have small negative values. The associated constraints
will be removed by the QP algorithm, only to be added again at the start of the next QP

subproblem. This inefficiency is prevented by the condition (2.29), which defines any small
negative multiplier as being optimal.

The magnitude of the feasibility parameter tk is based on the proximity measure r(xk, yk)
of (2.9), in particular,

tk = r(xk, yk)
λ, where 0 < λ < min{γ, 1− γ} < 1, (2.30)

with γ the parameter used in the definition (2.8) of the regularization parameter.

2.3. Definition of the line-search direction and step length

The line search defines a nonnegative step length αk for a direction formed from the sum of
two vectors dk and sk. The vector dk = (pk, qk) = (x̂k − xk, ŷk − yk) is a descent direction
for M(v ; yE

k , µ
R
k ) at vk. The vector sk, if nonzero, is a direction of negative curvature for the

quadratic model Qk(v ;µR
k−1). (If αk is zero, then (xk+1, yk+1) = (xk, yk) and at least one of

the parameters µR
k or yE

k are changed before the next line search.) If µR
k 6= µR

k−1, then sk is
not guaranteed to be a negative curvature direction for Qk(v ;µR

k ), which must be taken into
account in the line-search procedure. (In particular, see the use of the quantity ξRk defined in
Step 12 of Algorithm 4.)

The vector s
(1)
k = (u

(1)
k , w

(1)
k ), which is computed as a by-product of the computation

of ξ
(1)
k in Algorithm 1, is a direction of negative curvature for the approximate Hessian
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Algorithm 2 Computation of the primal-dual descent direction dk.

1: procedure DESCENT DIRECTION(xk, yk, y
E
k , µ

R
k )

2: Constants: 0 < λ < min{γ, 1− γ} < 1;
3: B = B(xk, yk ;µR

k ); Compute a positive-definite B̂ from B;
4: ∇Mk = ∇M(xk, yk ; yE

k , µ
R
k ); tk = r(xk, yk)

λ;

5: [ v̂
(0)
k ]Aε = 0; [ v̂

(0)
k ]Fε = [ vk ]Fε ;

6: if (BFε is positive definite and vk is a V-O iterate) then

7: [∆v̂
(0)
k ]Aε = 0; Solve BFε [∆v̂

(0)
k ]Fε = −[∇Qk(v̂

(0)
k ;µR

k ) ]Fε ; v̂k = v̂
(0)
k +∆v̂

(0)
k ;

8: dk = v̂k − vk;
9: if (vk + dk is feasible and ∇MT

kdk < 0 and [∇Qk(vk + dk ;µR
k ) ]Aε ≥ −tke) then

10: return dk; [local descent direction]
11: end if
12: end if
13: [∆v̂

(0)
k ]Aε = 0; Solve B̂Fε [∆v̂

(0)
k ]Fε = −[∇Q̂k(v̂

(0)
k ) ]Fε ;

14: Compute v̂
(1)
k such that v̂

(1)
k = v̂

(0)
k + α̂0∆v̂

(0)
k is feasible for some α̂0 ≥ 0;

15: Solve the convex QP (2.19) for v̂k, starting at v̂
(1)
k ;

16: dk = v̂k − vk; [global descent direction]
17: return dk;
18: end procedure

B(xk, yk ;µR
k−1). The line-search direction of negative curvature sk is a rescaled version of

s
(1)
k . The purpose of the rescaling is to give an sk that: (i) satisfies a normalization condition

based on the approximate curvature; and (ii) gives a combined vector dk+sk that is a feasible
non-ascent direction for the merit function. The direction sk is zero if no negative curvature

is detected, but sk must be nonzero if ξ
(1)
k > 0 and dk = 0 (see [13, Lemma 2.4]), which

ensures that the line-search direction is nonzero at a first-order stationary point vk at which
B(xk, yk ;µR

k−1) is not positive semidefinite.

Algorithm 3 Feasible direction of negative curvature.

1: procedure CURVATURE DIRECTION(s
(1)
k , ξ

(1)
k , xk, dk)

2: s
(2)
k =

{
−s(1)

k , if ∇M(vk ; yE
k , µ

R
k )Ts

(1)
k > 0;

s
(1)
k , otherwise;

3: pk = dk(1 :n); u
(2)
k = s

(2)
k (1 :n);

4: σk = argmaxσ≥0

{
σ : xk + pk + σu

(2)
k ≥ 0, ‖σu(2)

k ‖ ≤ max(ξ
(1)
k , ‖pk‖)

}
;

5: sk = σks
(2)
k ; [scaled curvature direction]

6: return sk;
7: end procedure

Algorithm 4 uses the flexible line search of Gill and Robinson [13], which is an augmented
Lagrangian version of the flexible line search proposed by Curtis and Nocedal [3]. Given a
primal-dual search direction ∆vk = dk+sk, and a line-search penalty parameter µ, an Armijo
condition is used to define a reduction in the function Ψk(α ;µ) = M(vk + α∆vk ; yE

k , µ) that
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is at least as good as the reduction in the line-search model function

ψk(α ;µ, ι) = Ψk(0 ;µ) + αΨ ′k(0 ;µ) + 1
2(ι− 1)α2 min

(
0, ∆vTkB(xk, yk ;µR

k−1)∆vk
)
, (2.31)

where Ψ ′k denotes the derivative with respect to α. The scalar ιk is either 1 or 2, depending
on the order of the line-search model function. The value ιk = 1 implies that ψk is an affine
function, which gives a first-order line search model. The value ιk = 2 defines a quadratic ψk
and gives a second-order line search model. The first-order line search model is used when
dk 6= 0, sk = 0, and (xk, yk) is a V-O iterate. This is crucial for the proof that the line-search
algorithm returns the unit step length in the neighborhood of a second-order solution (see
Theorem 4.2).

Just prior to the line search, the line-search penalty parameter is increased if necessary to
ensure that µk ≥ µR

k , i.e.,
µk = max(µR

k , µk). (2.32)

Given a fixed parameter γs ∈ (0, 1
2), the flexible line search attempts to compute an αk that

satisfies the modified Armijo condition

Ψk(0 ;µF
k )− Ψk(αk ;µF

k ) ≥ γs
(
ψk(0 ;µR

k , ιk)− ψk(αk ;µR
k , ιk)

)
(2.33)

for some µF
k ∈ [µR

k , µk]. The required step is found by repeatedly reducing αk by a constant
factor until either ρk(αk ;µk, ιk) ≥ γs or ρk(αk ;µR

k , ιk) ≥ γs, where

ρk(α ;µ, ι) =
(
Ψk(0 ;µ)− Ψk(α ;µ)

)
/
(
ψk(0 ;µR

k , ι)− ψk(α ;µR
k , ι)

)
.

The Armijo procedure is not executed if either dk and sk are zero (see Step 4 of Algo-

rithm 4), or if dk = 0, sk 6= 0, and ξRk ≤ γsξ
(1)
k (see Steps 12 and 13 of Algorithm 4). The

requirement that ξRk ≤ γsξ
(1)
k ensures that any nonzero direction of negative curvature for the

approximate Hessian B(vk ;µR
k−1) is a direction of negative curvature for the exact Hessian

∇2M(vk ; yE
k , µ

R
k ).

Once αk has been found, the penalty parameter for the next iteration is updated as

µk+1 =

µk, if ρk(αk ;µk, ιk) ≥ γs, or dk = sk = 0, or αk = 0;

max
(

1
2µk, µ

R
k

)
, otherwise.

(2.34)

The aim is to decrease the penalty parameter only when the merit function defined with µk
is not sufficiently reduced by the trial step.

2.4. Algorithm summary

The regularized second-order SQP algorithm is given in Algorithm 5. Two termination criteria
are defined in terms of a positive stopping tolerance τstop. The first test is applied at the
beginning of an iteration and determines if the primal-dual pair (xk, yk) is an approximate
second-order KKT point. In this case, the algorithm is terminated if

r(xk, yk) ≤ τstop, ξ
(1)
k ≤ τstop, and µR

k−1 ≤ τstop. (2.35)

The second test is applied after the definition of the parameters (yE
k , µR

k ) and determines if
an infeasible xk approximately minimizes ‖c(x)‖ subject to x ≥ 0. If the following conditions
hold:

min
(
‖c(xk)‖, τstop

)
> µR

k , ‖min
(
xk, J(xk)

Tc(xk)
)
‖ ≤ τstop, and xk an M-iterate, (2.36)
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Algorithm 4 Flexible line search.

1: procedure SEARCH(dk, sk, y
E
k , µk, µ

R
k , µ

R
k−1, ιk)

2: Constant: γs ∈ (0, 1
2);

3: Compute ∇M = ∇M(xk, yk ; yE
k , µ

R
k ).

4: if sk = 0 and dk = 0 then
5: αk = 1;
6: else if (dk 6= 0 or ∇MTsk < 0 or µR

k = µR
k−1) then

7: αk = 1;
8: while ρk(αk ;µR

k , ιk) < γs and ρk(αk ;µk, ιk) < γs do
9: αk = 1

2αk;
10: end while
11: else [dk = 0, sk 6= 0, ξ

(1)
k > 0]

12: ξRk = − sTk∇2M(vk ; yE
k , µ

R
k )sk/‖uk‖2; [by definition, sk = (uk, wk)]

13: if ξRk > γsξ
(1)
k then

14: αk = 1;
15: while ρk(αk ;µR

k , ιk) < γs and ρk(αk ;µk, ιk) < γs do
16: αk = 1

2α;
17: end while
18: else
19: αk = 0;
20: end if
21: end if
22: return αk ≥ 0
23: end procedure

then the iterations are terminated and xk is regarded as an infeasible stationary point of the
constraint violations.

3. Global Convergence

This section concerns the global convergence of the sequence {(xk, yk)} generated by Algo-
rithm 5. The purpose is to establish that the use of a local descent direction in the neighbor-
hood of a solution does not invalidate the global convergence results of Gill, Kungurtsev and
Robinson [13].

Definition 3.1. (First- and second-order KKT points for problem (NP)) A vector x∗

is a first-order KKT point if there exists a vector y∗ such that r(x∗, y∗) = ‖
(
c(x∗),min

(
x∗, g(x∗)−

J(x∗)Ty∗
))
‖ = 0. If, in addition, (x∗, y∗) satisfies the condition dTH(x∗, y∗)d ≥ 0 for all d

such that J(x∗)d = 0, with di = 0 for i ∈ A(x∗), then (x∗, y∗) is a second-order KKT point.

In general, the Lagrange multiplier at a KKT point is not unique, and the set of Lagrange
multiplier vectors is given by

Y(x∗) = {y ∈ Rm : (x∗, y) satisfies r(x∗, y) = 0}. (3.1)

As in [13], the proof of global convergence requires the following assumptions.
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Algorithm 5 Second-order primal-dual SQP algorithm.

1: procedure PDSQP2(x1, y1)
2: Constants: {τstop, γs} ⊂ (0, 1

2), 0 < γ < 1, and {kmax, ν} ⊂ (0,∞);
3: Choose yE

0 ∈ Rm, {τ0, φ
max
V , φmax

O } ⊂ (0,∞), and 0 < µR
0 ≤ µ1 <∞;

4: for k = 1 : kmax do
5: Compute the ε-free set Fε(xk, yk, µR

k−1) given by (2.10);
6: Jk = J(xk); Hk = H(xk, yk);

7:
(
s

(1)
k , ξ

(1)
k

)
= CURVATURE(xk, yk, µ

R
k−1, Jk, Hk); [Algorithm 1]

8: Compute r(xk, yk) from (2.9);
9: if (termination criterion (2.35) holds) then

10: return the approximate second-order KKT point (xk, yk);
11: end if
12: if (φV (xk, yk) ≤ 1

2φ
max
V ) then [V-iterate]

13: φmax
V = 1

2φ
max
V ; yE

k = yk; τk = τk−1;
14: Set µR

k as in (2.14);
15: else if (φO(xk, yk) ≤ 1

2φ
max
O ) then [O-iterate]

16: φmax
O = 1

2φ
max
O ; yE

k = yk; τk = τk−1;
17: Set µR

k as in (2.14);
18: else if ((xk, yk) satisfies (2.16a)–(2.16c)) then [M-iterate]
19: Set yE

k as in (2.17); τk = 1
2τk−1;

20: Set µR
k as in (2.18);

21: else [F-iterate]
22: yE

k = yE
k−1; τk = τk−1; µR

k = µR
k−1;

23: end if
24: if (termination criterion (2.36) holds) then
25: exit with the approximate infeasible stationary point xk.
26: end if
27: dk = DESCENT DIRECTION(xk, yk, y

E
k , µ

R
k ); [Algorithm 2]

28: sk = CURVATURE DIRECTION(s
(1)
k , ξ

(1)
k , xk, dk); [Algorithm 3]

29: if (dk 6= 0 and sk = 0 and (xk, yk) is a V-O iterate) then
30: ιk = 1;
31: else
32: ιk = 2;
33: end if
34: µk = max(µR

k , µk); αk = SEARCH(dk, sk, y
E
k , µk, µ

R
k , µ

R
k−1, ιk); [Algorithm 4]

35: Set µk+1 as in (2.34);
36: vk+1 = (xk+1, yk+1) = vk + αkdk + αksk;
37: end for
38: end procedure
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Assumption 3.1. The sequence of matrices {Ĥ(xk, yk)}k≥0 is chosen to satisfy

‖Ĥ(xk, yk)‖ ≤ Ĥmax and λmin

(
Ĥ(xk, yk) +

1

µR
k

J(xk)
TJ(xk)

)
≥ λmin,

for some positive Ĥmax and λmin, and all k ≥ 0.

Assumption 3.2. The functions f and c are twice continuously differentiable.

Assumption 3.3. The sequence {xk}k≥0 is contained in a compact set.

The statement of each of the results established below refers to the original proof given
by Gill, Kungurtsev and Robinson [13].

Lemma 3.1. ( [13, Lemma 2.5]) Let dk and sk be the vectors computed at the kth iteration
of Algorithm 5.

(i) If dk = 0, then

(a) min(xk, g(xk)− J(xk)
T yk) = 0 and π(xk, y

E
k , µ

R
k ) = yk;

(b) if (xk, yk) is a V-O iterate, then r(xk, yk) = 0;

(c) if (xk, yk) is an M-iterate such that ‖yk‖∞ ≤ ymax, then r(xk, yk) = 0.

(ii) If dk = sk = 0, then ξ
(1)
k = 0, (xk, yk) is not an F-iterate, and µR

k < µR
k−1.

Proof. If dk = 0 then ∇M(vk ; yE
k , µ

R
k )Tdk = 0 so that the conditions of Step 9 in Algorithm 2

for the early termination of the strictly convex QP (2.19) are not satisfied. This implies that
dk is computed from Step 16, which makes it identical to the step used in [13, Lemma 2.5].

Gill, Kungurtsev and Robinson [13, Lemma 2.6] establishes the main properties of the
flexible line search and line-search penalty parameter update. In particular, it is shown that
the line search is guaranteed to terminate finitely. The next result indicates that the same
properties hold for Algorithm 5.

Lemma 3.2. ( [13, Lemma 2.6]) If Assumption 3.1 is satisfied, then the following hold:

(i) The while-loops given by Steps 8 and 15 of Algorithm 4 terminate with a positive αk.

(ii) If µk < µk−1 for some k ≥ 1, then either the while loop given by Step 8 or the while loop
given by Step 15 of Algorithm 4 was executed.

(iii) If αk = 0, then (xk, yk) is not an F-iterate.

Proof. Part (ii) follows from (2.34), and part (iii) concerns the properties of a global descent
direction and thus follows directly from [13, Lemma 2.6]. It remains to establish part (i).
As the step computation in Algorithm 5 is the same as that in [13] when a global descent
direction is computed, it may be assumed for the remainder of the proof that dk is a local
descent direction. It then follows that Step 9 of Algorithm 2 gives ∇M(vk ; yE

k , µ
R
k )Tdk < 0,
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and ∆vk is a descent direction for M(vk ; yE
k , µ

R
k ). In particular, ∆vk is nonzero and the proof

of part (i) follows exactly as in [13, Subcase 1 of Case 1 in Lemma 2.6].

The following simple argument may be used to show that the proof of [13, Theorem 3.1]
applies for Algorithm 5. The theorem establishes a number of results that hold under the
assumption that (xk, yk) is an F-iterate for all k sufficiently large. However, in this situation,
(xk, yk) cannot be a V-O iterate and dk must be a global descent direction. Since the definition
of a global descent direction is identical to the descent direction used in [13], it follows that [13,
Theorem 3.1] holds for Algorithm 5.

All the auxiliary results needed for the global convergence proof given in [13] have now
been established. The global convergence result, which is a combination of [13, Theorems 3.10
and 3.11] is stated below. The statement involves three constraint qualifications: the constant
positive generator constraint qualification (CPGCQ); the Mangasarian-Fromovitz constraint
qualification (MFCQ); and the weak constant rank condition (WCRC). Definitions of these
constraint qualifications may be found, for example, in [13, Definitions 3.4–3.6].

Theorem 3.1. Let Assumptions 3.1–3.3 hold. For the sequence {(xk, yk)} of primal-dual
iterates generated by Algorithm 5, define the set

S = { k : (xk, yk) is a V-O iterate }. (3.2)

Then, one of the following cases (A) or (B) holds.

(A): The set S is infinite, in which case the following results hold.

(1) There exists a subsequence S1 ⊆ S and a vector x∗ such that limk∈S1 xk = x∗.

(2) Either x∗ fails to satisfy the CPGCQ, or x∗ is a first-order KKT point for prob-
lem (NP).

(3) If x∗ is a first-order KKT point for problem (NP), then the following hold.

(a) If the MFCQ holds at x∗, then the sequence {yk}k∈S1 is bounded, and every
limit point y∗ defines a first-order KKT pair (x∗, y∗) for problem (NP).

(b) If the MFCQ and WCRC hold at x∗, then (x∗, y∗) is a second-order KKT point.

(B): The set S is finite, in which case the set of M-iterate indices is infinite, and every limit
point x∗ of {xk}k∈M satisfies c(x∗) 6= 0 and is a KKT-point for the feasibility problem
of minimizing ‖c(x)‖ subject to x ≥ 0.

The next section focuses on the local convergence properties of sequences that converge
to first- or second-order KKT points of problem (NP), i.e., to points considered in Case (A)
of Theorem 3.1. An analysis of the rate of convergence associated with sequences converging
to locally infeasible points (i.e., sequences considered in Case (B)) is beyond the scope of this
paper (see, e.g., [2, 10,27]).

4. Local Convergence

The local convergence analysis involves second-order sufficient conditions defined in terms of
the set of strongly-active variables

A+(x, y) = {i : [ g(x)− J(x)Ty ]i > 0}, (4.1)
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and the set of weakly-active variables

A0(x, y) = {i : [ g(x)− J(x)Ty ]i = 0}. (4.2)

Definition 4.1. (Second-order sufficient conditions (SOSC)) A primal-dual pair (x∗, y∗)
satisfies the second-order sufficient optimality conditions for problem (NP) if it is a first-order
KKT pair, i.e., r(x∗, y∗) = 0, and

dTH(x∗, y∗)d > 0 for all d ∈ C(x∗, y∗) \ {0}, (4.3)

where C(x∗, y∗) is the critical cone C(x∗, y∗) = null
(
J(x∗)

)
∩ CM(x∗, y∗), with

CM(x∗, y∗) = {d : di = 0 for i ∈ A+(x∗, y∗), di ≥ 0 for i ∈ A0(x
∗, y∗) }.

The local convergence analysis requires the next assumption, which strengthens Assump-
tion 3.2.

Assumption 4.1. The functions f(x) and c(x) are twice Lipschitz-continuously differen-
tiable.

The following assumption is made concerning the iterates generated by the algorithm.

Assumption 4.2.

(i) The index set S of V-O iterates defined in (3.2) is infinite, and there exists a subsequence
S∗ ⊆ S, such that limk∈S∗(xk, yk) = (x∗, y∗), with (x∗, y∗) a first-order KKT pair;

(ii) there exists a compact set Λ(x∗) ⊆ Y(x∗) such that y∗ belongs to the (nonempty) interior
of Λ(x∗) relative to Y(x∗); and

(iii) (x∗, y) satisfies the SOSC of Definition 4.1 for every y ∈ Λ(x∗).

It follows from Theorem 3.1 that if infeasible stationary points are avoided, then the
feasible case (A) applies. In this situation, the set S of V-O iterates is infinite and there
exists a limit point x∗. Moreover, if the MFCQ and WCRC hold at x∗ (which, together, imply
the CPGCQ), then there exists a limit point y∗ of {yk}k∈S such that the pair (x∗, y∗) is a
second-order KKT point. Consequently, the key part of Assumption 4.2 is the existence of the
compact set Λ(x∗), which guarantees that the closest point in Y(x∗) to every element yk of
the subsequence {yk} satisfying limk→∞ yk = y∗ is also in Λ(x∗) for k sufficiently large. This
is equivalent to there being a set K, open relative to Y(x∗), such that y∗ ∈ K and K ⊂ Λ(x∗).
This, in turn, is equivalent to the assumption that the affine hulls of Λ(x∗) and Y(x∗) are
identical with y∗ in the relative interior of Λ(x∗).

The compactness of the set Λ(x∗) in Assumption 4.2 implies the existence of a vector y∗P (y)
that minimizes the distance from y to the set Λ(x∗), i.e.,

y∗P (y) ∈ Argmin
ȳ∈Λ(x∗)

‖y − ȳ‖. (4.4)

The existence of a vector y∗P (y) implies that the distance δ(x, y) of any primal-dual point (x, y)
to the primal-dual solution set V(x∗) = {x∗} × Λ(x∗) associated with x∗, may be written in
the form

δ(x, y) = min
(x̄,ȳ)∈V(x∗)

‖(x− x̄, y − ȳ)‖ = ‖(x− x∗, y − y∗P (y))‖. (4.5)

The pair
(
x∗, y∗P (y)

)
satisfies the second-order sufficient conditions as a result of Assump-

tion 4.2.
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Lemma 4.1. ( [35, Theorem 3.2]) If Assumptions 4.1 and 4.2 hold, then there exists a
constant κ ≡ κ(Λ(x∗)) such that

r(xk, yk) ∈
[
δ(xk, yk)/κ, δ(xk, yk)κ

]
for all k ∈ S∗ sufficiently large.

Proof. Under the assumptions used here, the result follows from Theorem 3.2 of Wright [35],
where Results A.2 and A.1 of the Appendix are used to establish that the exact and estimated
distance of (xk, yk) to the primal-dual solution set used in [35] are equivalent up to a scalar
to the definitions of δ(xk, yk) and r(xk, yk) defined here.

The principal steps of the local convergence analysis are summarized as follows. First, the
properties of iterates with indices k ∈ S∗ ⊆ S are considered. It is shown that for some k ∈ S∗
sufficiently large, the following results hold.

(a) The active set at x∗ is identified correctly by the ε-active set, and the direction sk of
negative curvature is zero.

(b) A local descent direction dk is computed, and the conditions in Step 9 of Algorithm 2 are
satisfied, i.e., the local descent direction is selected for the line search.

(c) The unit step is accepted by the flexible line-search Algorithm 4, and the variables active
at x∗ are the same as those active at xk+1.

The next step is to show that if (a)–(c) hold, then (xk+1, yk+1) is a V-iterate. This implies that
the arguments may be repeated at xk+1, and all iterates must be in S∗ for k sufficiently large.
The final step is to show that the iterates of Algorithm 5 are identical to those generated by
a stabilized SQP method for which superlinear convergence has been established.

The first result shows that for k ∈ S∗ sufficiently large, the set Aε correctly estimates the
active set at the solution x∗. Moreover, for these iterations, the search direction does not
include a contribution from the direction of negative curvature.

Lemma 4.2. If Assumption 4.2 applies, then the following results hold for all k ∈ S∗ ⊆ S
sufficiently large.

(i) The first-order proximity measure r(x, y) converges to zero, i.e., limk∈S r(xk, yk) = 0.

(ii) The ε-active sets satisfy Aε(xk, yk, µR
k−1) = Aε(xk, yk, µR

k ) = A(x∗).

(iii) The ε-free sets satisfy Fε(xk, yk, µR
k−1) = Fε(xk, yk, µR

k ) = F(x∗).

(iv) The matrix HF(xk, yk)+(1/µR
k−1)JF(xk)

TJF(xk) is positive definite, where the suffix “F”
denotes the components corresponding to the index set F(x∗). Moreover, Algorithm 1

gives s
(1)
k = 0 and ξ

(1)
k = 0.

(v) In Algorithm 2, the matrix BFε(xk, yk ;µR
k ) is positive definite, and a local descent direc-

tion is computed.

(vi) The feasible direction of negative curvature sk computed in Algorithm 3 is zero.
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Proof. A point (xk, yk) is designated as a V-O iterate if the optimality and feasibility measures
satisfy condition (2.13). In this case yk is set to yE

k , and φmax
V or φmax

O are decreased by a
fixed factor. If follows that on the infinite set S of V-O iterates, the condition (2.13) must
hold infinitely often and at least one of the functions φV (vk) or φO(vk) must go to zero. The
definitions of φV (vk) and φO(vk) in terms of the feasibility and optimality measures η(xk)
and ω(xk, yk) implies that limk∈S η(xk) = 0 and limk∈S ω(xk, yk) = 0. The definition (2.9) of
r(xk, yk) implies that limk∈S r(xk, yk) = 0, which proves part (i). Since r(xk, yk) goes to zero,
part 2 of [13, Theorem 3.2] gives

lim
k∈S

max
(
µR
k−1, r(xk, yk)

γ
)

= lim
k∈S

max
(
µR
k , r(xk, yk)

γ
)

= 0.

Combining these limits with the definition (2.8) of the ε-active set gives Aε(xk, yk, µR
k−1) ⊆

A(x∗) and Aε(xk, yk, µR
k ) ⊆ A(x∗) for k ∈ S sufficiently large.

The reverse inclusion is established by using the definition of the ε-active set (2.8) and the
inequalities

max
(
µR
k−1, r(xk, yk)

γ
)
≥ r(xk, yk)γ and max

(
µR
k , r(xk, yk)

γ
)
≥ r(xk, yk)γ ,

to imply that the set Aγ(xk, yk) =
{
i : xi ≤ r(xk, yk)γ

}
satisfies Aγ(xk, yk) ⊆ Aε(xk, yk, µR

k−1)
and Aγ(xk, yk) ⊆ Aε(xk, yk, µR

k ) for k ∈ S sufficiently large. The set Aγ(xk, yk) is an active-set
estimator that is equivalent (in the sense of Result A.2) to the active-set estimator used by
Wright [35], and Facchinei, Fischer, and Kanzow [8]. This equivalence allows the application
of Theorem 3.3 of [35] to obtain the inclusions

A(x∗) ⊆ Aγ(xk, yk) ⊆ Aε(xk, yk, µR
k−1) and A(x∗) ⊆ Aγ(xk, yk) ⊆ Aε(xk, yk, µR

k ),

which completes the proof of part (ii).
Part (iii) follows directly from (ii) and the definition of the ε-free set in (2.10). For the

proof of (iv) it is assumed that k ∈ S∗ ⊆ S is sufficiently large that (ii) and (iii) hold. From
Assumption 4.2, (x∗, y∗) satisfies the SOSC and consequently, dTH(x∗, y∗)d > 0 for all d 6= 0
such that J(x∗)d = 0 and di = 0 for every i ∈ A(x∗), i.e., dTFHF(x∗, y∗)dF > 0 for all dF 6= 0
satisfying JF(x∗)dF = 0, where the suffix “F” denotes quantities associated with indices in
F(x∗). Under this assumption, [19, Lemma 3] and [13, part (2) of Theorem 3.2] imply that
HFε(xk, yk) + (1/µR

k−1)JFε(xk)
TJFε(xk) is positive definite for all k ∈ S∗ sufficiently large. If

this matrix is positive definite, the test of Step 3 of Algorithm 1 is satisfied, giving s
(1)
k = 0

and ξ
(1)
k = 0, as required.

As {µR
k} → 0 (see [13, part (2) of Theorem 3.2]), a similar argument to that used to

establish (iv) may be used to show that HFε(xk, yk)+(1/µR
k )JFε(xk)

TJFε(xk) is positive definite
for all k ∈ S∗ sufficiently large. This is equivalent to the matrix BFε(xk, yk ;µR

k ) being positive
definite for the same values of k (see Lemma 2.2 of Gill and Robinson [16]). As BFε(xk, yk ;µR

k )
is positive definite and k ∈ S∗ ⊆ S, the conditions of Step 6 of Algorithm 2 are satisfied, and
a local descent direction is computed, which proves part (v).

Finally, part (iv) implies that s
(1)
k = 0, and the definition of Steps 2–5 of Algorithm 3 gives

sk = 0, which proves part (vi).

The next result shows that the search direction dk is nonzero for every k ∈ S∗ ⊆ S
sufficiently large.
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Lemma 4.3. For all k ∈ S∗ ⊆ S sufficiently large, either dk 6= 0 or (xk, yk) = (x∗, y∗).

Proof. The result holds trivially if dk 6= 0 for all k ∈ S∗ sufficiently large. Assume without
loss of generality that there exists an infinite sequence S2 ⊆ S∗ such that dk = 0 for all
k ∈ S2. Parts (ii) and (vi) of Lemma 4.2 imply that Aε(xk, yk, µR

k ) = A(x∗) and sk = 0 for all
k ∈ S2 sufficiently large. Every k ∈ S2 is a V-O-iterate and there must exist an index k2 ∈ S2

sufficiently large that

dk2 = sk2 = 0, (xk2+1, yk2+1) = (xk2 , yk2), yE
k2 = yk2 , and Aε(xk2 , yk2 , µ

R
k2) = A(x∗). (4.6)

As dk2 = 0, parts (ia) and (ib) of Lemma 3.1 give r(xk2 , yk2) = 0 and (xk2 , yk2) is a first-order
KKT point for problem (NP) and for the problem of minimizing M(x, y ; yE

k2
, µR

k2
) subject

to x ≥ 0. From (4.6) it must hold that r(xk2+1, yk2+1) = 0, and parts (iii) and (iv) of

Lemma 4.2 and the definition of (s
(1)
k2+1, ξ

(1)
k2+1) in Algorithm 1 give s

(1)
k2+1 = 0 and ξ

(1)
k2+1 = 0.

It follows that φV (xk2+1, yk2+1) = 0, and k2 + 1 is a V-iterate from condition (2.13). As
a result, yE

k2+1 = yE
k2

and µR
k2+1 = 1

2µ
R
k2

, which implies that (xk2+1, yk2+1) = (xk2 , yk2) is
not only a first-order KKT point for problem (NP), but also a first-order solution of the
problem of minimizing M(x, y ; yE

k2+1, µ
R
k2+1) subject to x ≥ 0. In particular, it must hold

that dk2+1 = 0, and sk2+1 = 0 because ξ
(1)
k2+1 = 0 (see Algorithm 2). Similarly, it must hold

that Aε(xk2+1, yk2+1, µ
R
k2+1) = A(x∗).

This argument may be repeated at every (xk, yk) such that k ≥ k2 + 1, and it must hold
that (xk, yk) = (x̄, ȳ) for some (x̄, ȳ), and that Aε(xk, yk, µR

k ) = A(x∗) for every k ≥ k2. It
then follows from Assumption 4.2 that (x̄, ȳ) = (x∗, y∗), which completes the proof.

For a local convergence analysis, Lemma 4.3 implies that there is no loss of generality in
making the following assumption.

Assumption 4.3. The direction dk is nonzero for all k ∈ S∗ ⊆ S sufficiently large.

Lemma 4.4. If Assumption 4.3 holds, then µR
k = r(xk, yk)

γ > 0 for all k ∈ S∗ ⊆ S sufficiently
large.

Proof. Part (iv) of Lemma 4.2 gives ξ
(1)
k = 0 for all k ∈ S∗ ⊆ S sufficiently large. In

addition, r(xk, yk) must be nonzero, otherwise the definition of r(xk, yk) would imply that
c(xk) = 0, yE

k = yk (because k ∈ S), π(xk, y
E
k , µ

R
k ) = yk, ∇yM(xk, yk ; yE

k , µ
R
k ) = 0, and

min
(
xk,∇xM(xk, yk ; yE

k , µ
R
k )
)

= 0. In other words, if r(xk, yk) is zero, then (xk, yk) satisfies
the first-order conditions for a minimizer of M(x, y ; yE

k , µ
R
k ) subject to x ≥ 0. This implies

that there is no nonzero descent direction at (xk, yk), which contradicts Assumption 4.3. It

follows that r(xk, yk) is nonzero. The values ξ
(1)
k = 0 and r(xk, yk) > 0 in the definition of µR

k

in (2.14), and part (i) of Lemma 4.2 imply that µR
k = r(xk, yk)

γ for γ ∈ (0, 1) and k ∈ S∗ ⊆ S
sufficiently large.

Much of the local convergence analysis involves establishing that, in the limit, Algorithm 5
computes and accepts the local descent direction at every iteration. The next lemma concerns
the properties of the equality-constrained subproblem for the local descent direction.

Lemma 4.5. If vk = (xk, yk) is a point at which the conditions for the calculation of a local
descent direction are satisfied, then the following results hold.
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(i) The bound-constrained problem (2.24) for the local descent direction is equivalent to the
stabilized QP subproblem

minimize
x,y

g(xk)
T(x− xk) + 1

2(x− xk)TH(xk, yk)(x− xk) + 1
2µ

R
k‖y‖2

subject to c(xk) + J(xk)(x− xk) + µR
k (y − yk) = 0, ETAεx = 0,

(4.7)

where EAε is the matrix of columns of the identity matrix with indices in Aε.

(ii) If dk = (pk, qk) denotes the local descent direction, and zk = g(xk) − J(xk)
Tyk, then

the optimal solution to (4.7) may be written as (xk + pk, yk + qk, [ zk ]Aε + wk), where
(pk, qk, wk) satisfy the nonsingular equationsH(xk, yk) J(xk)

T EAε
J(xk) −µR

kI 0
ETAε 0 0

 pk
−qk
−wk

 = −

g(xk)− J(xk)
Tyk − zpk

c(xk)
[xk ]Aε

 , (4.8)

with zpk = EAεE
T
Aεzk, i.e., the projection of zk onto the null space of ETAε.

Proof. Part (i) follows from the specialization of Result 2.1 of Gill and Robinson [15] to
the equality-constraint case. The equations of part (ii) are then the optimality conditions
associated with (4.7). It remains to show that the equations are nonsingular. The vector
(pk, qk) is the unique solution of (4.7) if the primal-dual Hessian of problem (4.7) is positive
definite on the null-space of the constraints, which in this case is the set of vectors satisfying
J(xk)p+ µR

kq = 0 and ETAεp = 0. This corresponds to the requirement that(
pFε
q

)T (
HFε(xk, yk) 0

0 µR
kI

)(
pFε
q

)
= pTFεHFε(xk, yk)pFε +

1

µR
k

pTFεJFε(xk)
TJFε(xk)pFε > 0.

Lemma 2.2 of Gill and Robinson [15] establishes that HFε(xk, yk) + (1/µR
k )JF(xk)

TJFε(xk) is
positive definite if BFε is positive definite, which is one of the conditions that must be satisfied
for a local descent direction to be computed.

The next lemma establishes that two of the three conditions for the acceptance of the local
descent direction are satisfied for all k ∈ S∗ sufficiently large (see Step 9 of Algorithm 2).

Lemma 4.6. Let Assumptions 3.1, 4.1–4.3 hold. For all k ∈ S∗ ⊆ S sufficiently large, a local
descent direction dk = (pk, qk) is computed that satisfies the following inequalities:

(i) max{‖pk‖, ‖qk‖} = O
(
δ(xk, yk)

)
; and

(ii) xk + pk ≥ 0, [∇Qk(vk + dk ;µR
k ) ]Aε ≥ −tke, where tk is the positive feasibility param-

eter (2.30), and “Aε” denotes the vector of components with indices in the ε-active set
Aε(xk, yk, µR

k ).

Proof. Lemma 4.5 implies that the local descent direction (pk, qk) satisfies the equationsH(xk, yk) J(xk)
T EAε

J(xk) −µR
kI 0

ETAε 0 0

 pk
−qk
−wk

 = −

g(xk)− J(xk)
Tyk − zpk

c(xk)
[xk ]Aε

 , (4.9)
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where [ zk ]Aε+wk is the vector of multipliers for the constraints ETAεx = 0 of problem (4.7). Let
µ̃k denote the scalar µ̃(xk, yk, zk) = ‖(g(xk)− J(xk)

Tyk − zpk, c(xk), [xk ]Aε)‖1. The equations
(4.9) constitute a perturbation of the linear systemH(xk, yk) J(xk)

T EAε
J(xk) −µ̃kI 0
ETAε 0 −µ̃kI

 p̃k
−q̃k
−w̃k

 = −

g(xk)− J(xk)
Tyk − zpk

c(xk)
[xk ]Aε

 , (4.10)

which characterize the optimality conditions for the stabilized SQP subproblem associated
with the equality constrained problem

minimize
x

f(x) subject to c(x) = 0, and [x ]Aε = ETAεx = 0. (4.11)

The matrix of (4.10) is nonsingular and the equations have a unique solution (see Izmailov
and Solodov [24, Lemma 2]). In addition, it follows from Wright [35, Lemma 4.1], Result A.3
and Lemma 4.1 that the unique solution of (4.10) satisfies

‖(p̃k, q̃k)‖ ≤ ‖(p̃k, q̃k, w̃k)‖ = O(µ̃k) = O
(
δ(xk, yk)

)
= O

(
r(xk, yk)

)
. (4.12)

The underlying quadratic program associated with (4.9) satisfies the second-order sufficient
conditions for optimality. Under this condition, Izmailov [21, Theorem 2.3]) establishes the
Lipschitz error bound for the perturbed solutions as

‖(pk − p̃k, qk − q̃k)‖ ≤ ‖(pk − p̃k, qk − q̃k, wk − w̃k)‖ = O(‖µ̃kw̃k +
(
µR
k − µ̃k

)
(qk − q̃k)‖).

Lemma 4.4 gives µR
k = r(xk, yk)

γ for γ ∈ (0, 1). It then follows from Result A.3 the bound
(4.12) and Lemma 4.1 that

‖(pk − p̃k, qk − q̃k)‖ = O
(
δ(xk, yk) + r(xk, yk)

γ‖qk − q̃k‖
)
. (4.13)

The triangle inequality and the bounds (4.13) and (4.12) imply the existence of constants κ1

and κ2 that satisfy

‖pk‖+ ‖qk‖ ≤ ‖pk − p̃k‖+ ‖qk − q̃k‖+ ‖p̃k‖+ ‖q̃k‖ (4.14)

≤ κ1δ(xk, yk) + κ2r(xk, yk)
γ‖qk − q̃k‖. (4.15)

Part (i) of Lemma 4.2 implies that 1 − κ2r(xk, yk)
γ ≥ 1

2 for k ∈ S∗ sufficiently large. This
inequality may be used to derive the bound

‖pk − p̃k‖+ 1
2‖qk − q̃k‖+ ‖p̃k‖+ ‖q̃k‖

≤ ‖pk − p̃k‖+
(
1− κ2r(xk, yk)

γ
)
‖qk − q̃k‖+ ‖p̃k‖+ ‖q̃k‖.

This upper bound may be simplified using the bound on ‖pk − p̃k‖+ ‖qk − q̃k‖+ ‖p̃k‖+ ‖q̃k‖
from (4.14)–(4.15), giving

‖pk − p̃k‖+ 1
2‖qk − q̃k‖+ ‖p̃k‖+ ‖q̃k‖ ≤ κ1δ(xk, yk).

The quantity 1
2(‖pk‖+ ‖qk‖) may be bounded using similar arguments used to give (4.14). In

this case,

1
2(‖pk‖+ ‖qk‖) ≤ ‖pk − p̃k‖+ 1

2‖qk − q̃k‖+ ‖p̃k‖+ ‖q̃k‖ ≤ κ1δ(xk, yk),
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which implies that max{‖pk‖, ‖qk‖} = O
(
δ(xk, yk)

)
, which proves part (i).

The second inequality to be established for part (ii) may be written in the equivalent
form [∇Mk +Bkdk ]Aε ≥ −tke, where ∇Mk = ∇M(vk ; yE

k , µ
R
k ) and Bk = B(vk, µ

R
k ). The proof

requires estimates of the components of the vector [∇Mk+Bkdk ]Aε . After some simplification,
the substitution of the quantities Bk, ∇Mk and dk = (pk, qk), together with the identity
J(xk)pk + µR

kqk = −c(xk) from (4.9) give

[∇Mk +Bkdk ]Aε =
[
zk +

1

µR
k

J(xk)
Tc(xk) +H(xk, yk)pk +

1

µR
k

J(xk)
TJ(xk)pk

]
Aε
, (4.16)

where zk = g(xk) − J(xk)
T yk. The first part of the proof involves the estimation of a lower

bound on the vector zk + (1/µR
k )J(xk)

T c(xk). The definition of y∗P (·) and the fact that (x∗, y∗)
is a first-order KKT pair for problem (NP) implies that the vector g(x∗) − J(x∗)Ty∗P (yk) is
nonnegative, with

−[ zk ]i = −[ g(xk)− J(xk)
Tyk ]i ≤ −

[
g(xk)− J(xk)

Tyk −
(
g(x∗)− J(x∗)Ty∗P (yk)

)]
i

≤ −[ g(xk)− J(xk)
Tyk + J(xk)

Ty∗P (yk)− J(xk)
Ty∗P (yk)− g(x∗) + J(x∗)Ty∗P (yk) ]i.

From Assumptions 4.1–4.2, ‖J(xk)‖ is bounded independently of k and the functions g and
J are Lipschitz continuous. It follows that there exist positive constants κ3, κ4, and κ5 such
that

−[ zk ]i ≤ κ3‖xk − x∗‖+ κ4‖yk − y∗P (yk)‖ ≤ κ5δ(xk, yk), (4.17)

where the last inequality follows from the definition (4.5) of δ(xk, yk). As the sequence of
iterates satisfies limk∈S∗(xk.yk) = (x∗, y∗) and limk∈S∗ y

∗
P (yk) = y∗, for k ∈ S∗ sufficiently

large, the assumptions needed for Lemma 4.1 apply, and

−[ zk ]i ≤ κ5δ(xk, yk) ≤ κ6r(xk, yk) (4.18)

for some positive constant κ6. The inequality (4.18), the definition of r(xk, yk), and the result
µR
k = r(xk, yk)

γ of Lemma 4.4 imply that there exists a positive constant κ7 such that[
zk +

1

µR
k

J(xk)
Tc(xk)

]
i
≥ −κ6r(xk, yk)−

‖J(xk)‖1r(xk, yk)
r(xk, yk)γ

= −κ6r(xk, yk)− ‖J(xk)‖1r(xk, yk)1−γ

≥ −κ7r(xk, yk)
1−γ ≥ −1

2r(xk, yk)
λ, (4.19)

for all i, and every k ∈ S∗ sufficiently large, where the last inequality follows from the as-
sumption 0 < λ < min{γ, 1− γ} < 1.

The second term of (4.16) may be bounded in a similar way using the definition µR
k =

r(xk, yk)
γ and the bound on ‖pk‖ from part (i). The assumption that H(xk, yk) and J(xk)

are bounded, the estimate δ(xk, yk) = O(r(xk, yk)) of Lemma 4.1, and the definition of
Aε(xk, yk, µR

k ) give[
H(xk, yk)pk + (1/µR

k )J(xk)
TJ(xk)pk

]
i

= O
(
r(xk, yk)

1−γ) ≤ 1
2r(xk, yk)

λ,

for all k ∈ S∗ sufficiently large. A combination of (4.16), (4.19) and (4.20) yields

[∇Mk +Bkdk ]Aε ≥
[
zk +

1

µR
k

J(xk)
Tc(xk)

]
Aε
−
∥∥∥[H(xk, yk)pk +

1

µR
k

J(xk)
TJ(xk)pk

]
Aε

∥∥∥
∞
e

≥ −r(xk, yk)λe = −tke,
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for all k ∈ S∗ sufficiently large, which proves the second result of part (ii).
The first result of Lemma 4.2(iii) implies that F(xk, yk, µ

R
k ) = F(x∗) for k ∈ S∗ sufficiently

large. If the limit limk∈S∗ [xk ]Fε = [x∗ ]F > 0 is used in conjunction with the definition
[xk + pk ]Aε = 0, and the estimate ‖[ pk ]Fε‖ = ‖[ pk ]F‖ = O

(
δ(xk, yk)

)
of part (i), it follows

that xk + pk ≥ 0 for k ∈ S∗ sufficiently large, as required.

Part (ii) of Lemma 4.6 implies that two of the three conditions needed for the acceptance of
the local descent direction are satisfied. It remains to show that the third condition ∇MT

k dk <
0 holds. The next technical result establishes some properties of the local descent direction.

Lemma 4.7. Let Assumptions 3.1, 4.1–4.3 hold. For all k ∈ S∗ ⊆ S sufficiently large, a local
descent direction dk = (pk, qk) is computed such that (x̂k, ŷk) = (xk + pk, yk + qk) satisfies

δ(x̂k, ŷk) = ‖x̂k − x∗‖+ ‖ŷk − y∗P (ŷk)‖ = O
(
δ(xk, yk)

1+γ
)
, (4.20)

with y∗P (·) defined in (4.4).

Proof. The proof utilizes a result of Izmailov [21, Theorem 2.3] that provides a bound on the
change in the solution of a problem perturbed by a quantity ε. If the second-order sufficient
conditions hold at a primal-dual solution (x∗, y∗) of a problem P , then the primal-dual solution
(x̃, ỹ) of a perturbed problem P (ε) satisfies

‖x̃− x∗‖+ inf
y∈Y(x∗)

‖ỹ − y‖ = O(‖ε‖). (4.21)

For the purposes of this theorem, the unperturbed problem is an equality-constrained variant
of problem (NP) for which the optimal active set has been identified. Parts (ii) and (iii)
of Lemma 4.2 imply that A(x∗) = Aε(xk, yk, µR

k ), and F(x∗) = Fε(xk, yk, µR
k ) for k ∈ S∗

sufficiently large. Let EA denote the matrix of columns of the identity matrix with indices in
A(x∗). At any iteration with k ∈ S∗, consider the perturbed problem

minimize
x

f(x) + xTε
(1)
k subject to c(x) + ε

(2)
k = 0, ETAx = 0, (4.22)

where ε
(1)
k and ε

(2)
k are perturbation vectors such that εk =

(
ε

(1)
k , ε

(2)
k

)
with

εk =

(
ε

(1)
k

ε
(2)
k

)
=

(
g(xk)− J(xk)

Tŷk − (g(x̂k)− J(x̂k)
T ŷk) +H(xk, yk)(x̂k − xk)

c(xk) + J(xk)(x̂k − xk)− c(x̂k) + µR
k (ŷk − yE

k )

)
. (4.23)

The following simple argument may be used to show that the perturbations go to zero as k →
∞ for k ∈ S∗. Part (i) of Lemma 4.6 implies that limk∈S∗(x̂k−xk, ŷk−yk) = limk∈S∗(pk, qk) = 0
for k ∈ S∗ sufficiently large. Moreover, as limk∈S∗(xk, yk) = (x∗, y∗) and yE

k = yk for k ∈ S∗,
it must hold that limk∈S∗ εk = 0.

The proof of (4.20) is based on applying the bound (4.21) for the values (x̃, ỹ) = (x̂k, ŷk).
In this case, under Assumption 4.2, it holds that

δ(x̂k, ŷk) = ‖x̂k − x∗‖+ ‖ŷk − y∗P (ŷk)‖ = ‖x̂k − x∗‖+ inf
y∈Λ(x∗)

‖ŷk − y‖ = O(‖εk‖).

Three results must be established in order to apply this result. First, (x∗, y∗) must satisfy
the second-order sufficient conditions for the equality-constrained problem (4.22) with εk = 0.
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Second, (x̂k, ŷk) must be an optimal solution for the perturbed problem (4.22) with pertur-
bation (4.23). Third, the perturbation (4.23) must be bounded in terms of δ(xk, yk).

For the first part it must be shown that (x∗, y∗) satisfies the second-order sufficient condi-
tions for problem (4.22) with no perturbation. The first-order KKT conditions for (4.22) are

g(x)− J(x)Ty + ε
(1)
k − EAzA = 0, c(x) + ε

(2)
k = 0, and ETAx = 0. (4.24)

If εk = 0 then (x∗, y∗) satisfies these conditions, which implies that the primal-dual pair
(x∗, y∗) is a first-order KKT point. The second-order conditions for problem (NP) imply that
pTH(x∗, y∗)p > 0 for all p such that J(x∗)p = 0 and pi = 0 for every i ∈ A(x∗). These
conditions also apply for problem (4.22) when εk = 0, which imply that (x∗, y∗) satisfies the
second-order sufficient conditions for the unperturbed problem.

Next, it must be shown that (x̂k, ŷk) is an optimal solution for the problem (4.22) with
perturbation (4.23). By definition, the point (x̂k, ŷk) satisfies the optimality conditions for
the equality-constrained problem (2.24). If yE

k = yk, then these conditions are

g(xk) +H(xk, yk)(x̂k − xk)− J(xk)
Tyk − EAzA = 0,

c(xk) + J(xk)(x̂k − xk) + µR
k (ŷk − yk) = 0, and ETA x̂k = 0,

(4.25)

where zA = [ zk ]A with zk = g(xk) − J(xk)
T yk (cf. (4.9)). These identities may be used to

show that (x̂k, ŷk) satisfies the optimality conditions (4.24) with εk defined as in (4.23).

It remains to bound the perturbation norm ‖εk‖ from (4.23). The Taylor-series expan-
sions of g(x̂k) = g(xk + pk) and J(x̂k) = J(xk + pk), together with the assumption that
{∇2ci(xk)}k∈S∗ is bounded, give

g(xk)− g(xk + pk) +H(xk, yk)pk − (J(xk)− J(xk + pk))
T ŷk

=

m∑
i=1

[ ŷk − yk ]i∇2ci(xk)pk +O(‖pk‖2) = O
(
‖pk‖‖ŷk − yk‖) +O(‖pk‖2

)
, (4.26)

which bounds the norm of the first block of (4.23).
Three properties of the iterates are needed to bound the norm of the second block. First, a

Taylor-series expansion of c(xk+pk) gives c(xk)−c(xk+pk)+J(xk)pk = O(‖pk‖2). Second, as
S∗ contains only V-O iteration indices, the updating rule for yE

k in Algorithm 5 gives yE
k = yk

for all k ∈ S∗. Third, Lemma 4.4 gives µR
k = r(xk, yk)

γ , which implies that µR
k‖ŷk − yk‖ =

r(xk, yk)
γ‖ŷk − yk‖. The combination of these results gives

‖εk‖ = O(‖pk‖2) +O(‖pk‖‖ŷk − yk‖) +O(r(xk, yk)
γ‖ŷk − yk‖).

Writing qk = ŷk − yk and using the results r(xk, yk) = O(δ(xk, yk)) (from Lemma 4.1), and
max{‖pk‖, ‖qk‖} = O

(
δ(xk, yk)

)
(from Lemma 4.6(i)), and the definition 0 < γ < 1, gives

‖εk‖ = O
(
δ(xk, yk)

2 + δ(xk, yk)
1+γ
)

= O
(
δ(xk, yk)

1+γ
)
,

which gives the required bound (4.20).

The next step is to show that the final condition required for the acceptance of the local
descent direction computed in Step 8 of Algorithm 2 is satisfied, i.e., that the local descent
direction is a descent direction for the merit function. The proof of this result requires the
following lemma.
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Lemma 4.8. For every k ∈ S∗ ⊆ S it holds that

(i) ‖yk − πk‖ = O
(
‖c(xk)‖/µR

k

)
; and

(ii) ‖∇2M(vk ; yE
k , µ

R
k )−Bk‖ = O

(
‖c(xk)‖/µR

k

)
,

where πk = π(xk ; yE
k , µ

R
k ). Moreover, if Assumption 3.3 holds, then limk∈S∗ ‖yk−πk‖ = 0 and

limk∈S∗ ‖∇2M(vk ; yE
k , µ

R
k )−Bk‖ = 0.

Proof. As yk = yE
k for all k ∈ S∗ ⊆ S, the definition of πk gives ‖yk−πk‖ = ‖c(xk)‖/µR

k . This
estimate in conjunction with the definitions of ∇2M and B imply that part (ii) also holds.

Lemma 4.4 and part (i) of Lemma 4.2 give limk∈S∗ r(xk, yk) = 0, with µR
k = r(xk, yk)

γ and
1− γ > 0 for all k ∈ S∗ ⊆ S sufficiently large. These results may be combined to give

0 ≤ lim
k∈S∗

‖c(xk)‖
µR
k

≤ lim
k∈S∗

r(xk, yk)

µR
k

= lim
k∈S∗

r(xk, yk)

r(xk, yk)γ
= lim

k∈S∗
r(xk, yk)

1−γ = 0.

It follows from (i) that limk∈S∗ ‖yk − πk‖ = 0. Moreover, the assumption that {∇2ci(xk)}k∈S∗
is bounded gives limk∈S∗ ‖∇2M(vk ; yE

k , µ
R
k )−Bk‖ = 0, as required.

It remains to show that the final acceptance condition is satisfied.

Lemma 4.9. Let Assumptions 3.1, 4.1–4.3 hold. For any σ̄ satisfying 0 < σ̄ < 1, and all
k ∈ S∗ ⊆ S sufficiently large, a local descent direction dk = (pk, qk) is computed that satisfies

∇M(vk ; yE
k , µ

R
k )Tdk ≤ −σ̄dTkBkdk − c̄‖dk‖2 and ∇M(vk ; yE

k , µ
R
k )Tdk < 0, (4.27)

for some positive constant c̄. In particular, dk is a strict descent direction for M(v ; yE
k , µ

R
k )

at vk.

Proof. Throughout the proof, the quantities ∇M(xk, yk ; yE
k , µ

R
k ) and B(xk, yk ;µR

k ) are de-
noted by ∇Mk and Bk, respectively. In addition, it is assumed that k ∈ S∗ ⊆ S is suffi-
ciently large that parts (ii) and (iii) of Lemma 4.2 hold; i.e., Aε(xk, yk, µR

k ) = A(x∗), and
Fε(xk, yk, µR

k ) = F(x∗). With this assumption, [Bk ]A, [Bk ]F and [Bk ]A,F denote the rows
and columns of the matrix Bk associated with the index sets A(x∗) and F(x∗).

The definition of dk from (2.26) gives the identity [∇Mk+Bkdk ]F = 0, which, in partitioned
form, is

[Bk ]F [ dk ]F + [Bk ]TA,F [ dk ]A = −[∇Mk ]F . (4.28)

Similarly, the scalar dTkBkdk may be written in the form

dTkBkdk = [ dk ]TF [Bk ]F [ dk ]F + (2[Bk ]A,F [ dk ]F + [Bk ]A[ dk ]A)T [ dk ]A. (4.29)

Combining (4.28) and (4.29) yields

−[∇Mk ]TF [ dk ]F = dTkBkdk − ([Bk ]A,F [ dk ]F + [Bk ]A[ dk ]A)T [ dk ]A

= dTkBkdk − [Bkdk ]TA[ dk ]A, (4.30)

which implies that, for any σ̄ satisfying 0 < σ̄ < 1, it must hold that

∇MT
kdk + σ̄dTkBkdk = (σ̄ − 1)dTkBkdk + [Bkdk ]TA[ dk ]A + [∇Mk ]TA[ dk ]A. (4.31)
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The proof involves constructing a bound on each of the terms of the right-hand side of this
identity. These bounds are characterized in terms of the index sets A+(x∗, y∗) and A0(x

∗, y∗)
defined in (4.1) and (4.2), together with the set F0(x∗, y∗) = A0(x

∗, y∗) ∪ F(x∗, y∗). In what
follows, [Bk ]A+

and [Bk ]F0 denote the matrices of rows and columns of Bk associated with
the index sets A+ and F0, with similar definitions for [Bk ]A0

and [Bk ]A+,F0 , etc. The index

sets F0 and A+ define a partition of {1, 2, . . . , n + m}, and dTkBkdk may be partitioned
analogous to (4.29) as

dTkBkdk = [ dk ]TF0 [Bk ]F0 [ dk ]F0 + ([Bk ]A+
[ dk ]A+

+ 2[Bk ]A+,F0 [ dk ]F0)T [ dk ]A+
. (4.32)

The second-order sufficient conditions given in Definition 4.1, [13, Theorem 1.3 and part 2
of Theorem 3.2], together with a continuity argument imply that, for all k ∈ S∗ sufficiently
large, Bk is uniformly positive definite when restricted to the set C = {(p, q) ∈ Rn+m : pA+

=

0 and pA0
≥ 0}. The relation (−d)TBk(−d) = dTBkd implies that if d satisfies dA0

≤ 0 and
dA+

= 0, then dTBkd > 0. For the particular vector d = (0, [ dk ]A0
, [ dk ]F) = (0, [ dk ]F0), for

which [ dk ]A0
≤ 0, it must be the case that

[ dk ]TF0 [Bk ]F0 [ dk ]F0 ≥ κ1‖[ dk ]F0‖
2, for some κ1 ∈ (0, 1), (4.33)

and all k ∈ S∗ sufficiently large. This inequality provides a bound on the first term on the
right-hand side of (4.32). An estimate of the second and third terms may be determined using
a bound on the magnitude of the components of [Bkdk ]A, where, by definition,

[Bkdk ]A+
=
[(
H(xk, yk) +

1

µR
k

(1 + ν)J(xk)
TJ(xk)

)
pk + νJ(xk)

Tqk

]
A+

.

For k ∈ S∗ sufficiently large, Lemma 4.4 implies that µR
k = r(xk, yk)

γ . In addition, as
‖H(xk, yk)‖ and ‖J(xk)‖ are bounded on S, it follows from the bounds on ‖pk‖ and ‖qk‖
given by Lemma 4.6(i), and the equivalence r(xk, yk) = Θ

(
δ(xk, yk)

)
of Lemma 4.1, that the

magnitude of the components of [Bkdk ]A+
are estimated by

‖[Bkdk ]A+
‖ = O(r(xk, yk)

1−γ) = O(δ(xk, yk)
1−γ). (4.34)

A similar argument gives the bound∣∣([Bk ]A+
[ dk ]A+

+ 2[Bk ]A+,F0 [ dk ]F0
)
T [ dk ]A+

∣∣ = O(δ(xk, yk)
1−γ ‖[ dk ]A+

‖). (4.35)

The application of the bound (4.33) and estimate (4.35) to (4.32) gives

−dTkBkdk ≤ −κ1‖[ dk ]F0‖
2 + κ2δ(xk, yk)

1−γ‖[ dk ]A+
‖, (4.36)

for some positive κ2 independent of k, which serves to bound (σ̄− 1)dTkBkdk, the first term of
the right-hand side of (4.31).

The second and third terms of (4.31) are estimated by bounding components from the
index set A+. The estimate (4.34) gives

[Bkdk ]TA+
[ dk ]A+

≤ κ3δ(xk, yk)
1−γ‖[ dk ]A+

‖, for some κ3 ∈ (0, 1). (4.37)

A Taylor-series expansion of ∇M(vk ; yE , µR
k ) at yE = yE

k (= yk) gives

∇Mk = ∇M(vk ; y∗ + (yk − y∗), µR
k ) = ∇M(vk ; y∗, µR

k ) +O(‖yk − y∗‖). (4.38)
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A Taylor-series expansion of the inner product [∇M(v ; y∗, µR
k ) ]TA+

[ dk ]A+
at v = v∗ gives

[∇M(vk ; y∗, µR
k ) ]TA+

[ dk ]A+
= [ dk ]TA+

[∇M(v∗ + (vk − v∗) ; y∗, µR
k ) ]A+

= [ dk ]TA+
[∇M(v∗ ; y∗, µR

k ) ]A+
+O

( 1

µR
k

‖[ dk ]A+
‖ ‖vk − v∗‖

)
.

In order to bound the last term on the right-hand side, we substitute the value µR
k = r(xk, yk)

γ

implied by Lemma 4.4, and apply the estimate r(xk, yk) = Θ
(
δ(xk, yk)

)
from Lemma 4.1. If

the resulting value is used with the value ‖[ dk ]A+
‖ = O(‖dk‖) = O(δ(xk, yk)) of Lemma 4.6(i),

then

[∇M(vk ; y∗, µR
k ) ]TA+

[ dk ]A+
= [ dk ]TA+

[∇M(v∗ ; y∗, µR
k ) ]A+

+O
(
δ(xk, yk)

1−γ‖vk − v∗‖
)
.

This estimate can be combined with (4.38) to obtain

[∇Mk ]TA+
[ dk ]A+

= [ dk ]TA+
[∇M(v∗ ; y∗, µR

k ) ]A+

+O(δ(xk, yk)
1−γ‖vk − v∗‖) +O(‖[ dk ]A+

‖ ‖yk − y∗‖). (4.39)

As v∗ = (x∗, y∗) is a primal-dual KKT pair for problem (NP), it follows from the definition of
A+ that [∇M(v∗ ; y∗, µR

k ) ]A+
= [ g(x∗) − J(x∗)Ty∗ ]A+ > 0. Combining this with [ dk ]A+

≤ 0
from (2.26) yields

[∇M(v∗ ; y∗, µR
k ) ]TA+

[ dk ]A+
≤ −κ4‖[ dk ]A+

‖ for some positive κ4. (4.40)

As γ < 1, the limit δ(xk, yk)→ 0 and estimates (4.39)–(4.40) imply that

[∇Mk ]TA+
[ dk ]A+

≤ −1
2κ4‖[ dk ]A+

‖ for k ∈ S∗ sufficiently large.

The combination of this inequality with (4.37) gives

[Bkdk ]TA+
[ dk ]A+

+ [∇Mk ]TA+
[ dk ]A+

≤ κ3δ(xk, yk)
1−γ‖[ dk ]A+

‖ − 1
2κ4‖[ dk ]A+

‖, (4.41)

for all k ∈ S∗ sufficiently large.

Finally, consider the last two terms of (4.31) associated with the set A0. As k ∈ S,
it holds that yE

k = yk and πk = π(xk ; yE
k , µ

R
k ) = yk − c(xk)/µR

k . Let ỹk denote the vector
ỹk = πk + ν(πk − yk) = yk − (1 + ν)c(xk)/µ

R
k . The definitions of ∇Mk and Bk, together with

the primal-dual partition of dk give

[∇Mk +Bkdk ]A0

= [ g(xk)− J(xk)
T ỹk +H(xk, yk)pk +

1

µR
k

(1 + ν)J(xk)
TJ(xk)pk + νJ(xk)

Tqk ]A0

= [ g(xk)− J(xk)
T ỹk +H(xk, yk)pk −

1

µR
k

(1 + ν)J(xk)
Tc(xk)− J(xk)

Tqk ]A0

= [ g(xk)− J(xk)
T yk +H(xk, yk)pk − J(xk)

Tqk ]A0
.

(4.42)

It follows from (4.42) and a Taylor-series expansion with respect to x of g(x)−J(x)T(yk + qk)
that

[∇Mk +Bkdk ]A0
=
[
g(xk + pk)− J(xk + pk)

T(yk + qk) + o(‖(pk, qk)‖)
]
A0

=
[
g(x̂k)− J(x̂k)

Tŷk + o(‖(pk, qk)‖)
]
A0
, (4.43)
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where (x̂k, ŷk) = (xk + pk, yk + qk). The definition of r(x, y) and part (ii) of Lemma 4.6 give

r(x̂k, ŷk) ≥
∣∣min

(
[ x̂k ]i, [ g(x̂k)− J(x̂k)

Tŷk ]i
)∣∣

=
∣∣min(0, [ g(x̂k)− J(x̂k)

Tŷk ]i)
∣∣, for all i ∈ A0. (4.44)

There are two possible cases for each i ∈ A0, depending on the sign of [ g(x̂k) − J(x̂k)
Tŷk ]i.

If [ g(x̂k) − J(x̂k)
Tŷk ]i ≥ 0, then the property that [ dk ]i ≤ 0 for every i ∈ A implies that

[ g(x̂k) − J(x̂k)
Tŷk ]i[ dk ]i ≤ 0. The expression for [∇Mk + Bkdk ]i[ dk ]i from (4.43), and the

result that ‖(pk, qk)‖ = O
(
δ(xk, yk)

)
from Lemma 4.6(i) gives

[∇Mk +Bkdk ]i[ dk ]i =
[
g(x̂k)− J(x̂k)

Tŷk
]
i
[ dk ]i + o(‖(pk, qk)‖)[ dk ]i

= o
(
δ(xk, yk)

)∣∣[ dk ]i
∣∣.

Alternatively, if i ∈ A0 and [ g(x̂k)− J(x̂k)
Tŷk ]i < 0, then [∇Mk +Bkdk ]i[ dk ]i satisfies

[∇Mk +Bkdk ]i[ dk ]i = [ g(x̂k)− J(x̂k)
Tŷk + o(‖(pk, qk)‖) ]i[ dk ]i

≤ r(x̂k, ŷk)
∣∣[ dk ]i

∣∣+ o
(
δ(xk, yk)

)∣∣[ dk ]i
∣∣ (

(4.44) and Lemma 4.6(i)
)

≤ κδ(x̂k, ŷk)
∣∣[ dk ]i

∣∣+ o
(
δ(xk, yk)

)∣∣[ dk ]i
∣∣ (

Lemma 4.1
)

= O
(
δ(xk, yk)

1+γ
)
|[ dk ]i|+ o

(
δ(xk, yk)

)∣∣[ dk ]i
∣∣ (

Lemma 4.7
)

= o
(
δ(xk, yk)

)∣∣[ dk ]i
∣∣.

A combination of the two cases provides the estimate

[∇Mk +Bkdk ]TA0
[ dk ]A0

≤ o
(
δ(xk, yk)

)
‖[ dk ]A0

‖. (4.45)

It now follows from (4.31), (4.36), (4.41), (4.45), and limk∈S∗ dk = 0 that there exist positive
constants κ5, κ6, and κ7 such that

∇MT
kdk + σ̄dTkBkdk

≤ −κ5‖[ dk ]F0‖
2 + κ6δ(xk, yk)

1−γ‖[ dk ]A+
‖ − κ7‖[ dk ]A+

‖+ o
(
δ(xk, yk)

)
‖[ dk ]A0

‖.

As limk∈S∗ δ(xk, yk) = 0, it must hold that κ6δ(xk, yk)
1−γ ≤ 1

2κ7 for all k ∈ S∗ sufficiently
large, which gives

∇MT
kdk + σ̄dTkBkdk ≤ −κ5‖[ dk ]F0‖

2 − 1
2κ7‖[ dk ]A+

‖+ o
(
δ(xk, yk)

)
‖[ dk ]A0

‖. (4.46)

The next step of the proof is to show that the right-hand side of the inequality (4.46) is
bounded above by a positive multiple of −‖dk‖2. Consider the sequence vpk =

(
x∗, y∗P (ŷk)

)
,

where y∗P (·) is given by (4.4) and satisfies the second-order sufficient conditions for all k. The
triangle inequality and substitution of v̂k for vk + dk yields

‖vk − v
p
k‖ = ‖vk + dk − v

p
k − dk‖ = ‖v̂k − v

p
k − dk‖ ≤ ‖v̂k − v

p
k‖+ ‖dk‖. (4.47)

By definition, ‖v̂k − vpk‖ = δ(x̂k, ŷk), and the estimate δ(x̂k, ŷk) = o
(
δ(xk, yk)

)
given by

Lemma 4.7 implies that δ(x̂k, ŷk) ≤ 1
2δ(xk, yk) for k sufficiently large. In addition, the defini-

tion of δ(xk, yk) is such that δ(xk, yk) ≤ ‖vk − v
p
k‖. If these inequalities are used to estimate

‖dk‖ in (4.47), then

−‖dk‖ ≤ ‖v̂k − v
p
k‖ − ‖vk − v

p
k‖ ≤ −

1
2δ(xk, yk). (4.48)
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Consider the inequality (4.46). Suppose that k is sufficiently large that κ5‖[ dk ]F0‖ ≤
1
4κ7.

Standard norm inequalities applied in conjunction with the estimates ‖dk‖ ≤ ‖[ dk ]F0‖ +
‖[ dk ]A+

‖, ‖[ dk ]A0
‖ ≤ ‖[ dk ]F0‖, and ‖dk‖ ≥

1
2δ(xk, yk) from (4.48), give

− κ5‖[ dk ]F0‖
2 − 1

2κ7‖[ dk ]A+
‖+ o

(
δ(xk, yk)

)
‖[ dk ]A0

‖
≤ −κ5‖[ dk ]F0‖

2 − 1
4κ7‖[ dk ]A+

‖ − 1
2κ5‖[ dk ]F0‖ ‖[ dk ]A+

‖+ o
(
δ(xk, yk)

)
‖[ dk ]A0

‖
≤ −1

2κ5‖[ dk ]F0‖
2 − 1

4κ7‖[ dk ]A+
‖ − 1

2κ5‖dk‖ ‖[ dk ]F0‖+ o
(
δ(xk, yk)

)
‖[ dk ]A0

‖
≤ −1

4κ7‖[ dk ]A+
‖ − 1

2κ5‖[ dk ]F0‖
2 − 1

4κ5δ(xk, yk) ‖[ dk ]F0‖+ o
(
δ(xk, yk)

)
‖[ dk ]A0

‖
≤ −1

4κ7‖[ dk ]A+
‖ − 1

2κ5‖[ dk ]F0‖
2 − 1

4κ5δ(xk, yk) ‖[ dk ]A0
‖+ o

(
δ(xk, yk)

)
‖[ dk ]A0

‖
≤ −1

4κ7‖[ dk ]A+
‖ − 1

2κ5‖[ dk ]F0‖
2

≤ −1
4κ7‖[ dk ]A+

‖2 − 1
2κ5‖[ dk ]F0‖

2.

These inequalities, when used with (4.46), imply that

∇MT
kdk+σ̄dTkBkdk ≤ −κ5‖[ dk ]F0‖

2− 1
2κ7‖[ dk ]A+

‖+o
(
δ(xk, yk)

)
‖[ dk ]A0

‖ ≤ −c̄ ‖dk‖2, (4.49)

with c̄ = min{1
4κ7,

1
2κ5}. This establishes the first part of (4.27).

To prove the second part of (4.27), the bounds on ∇MT
kdk + σ̄dTkBkdk and dTkBkdk given

by (4.46) and (4.36) imply that

∇MT
kdk = ∇MT

kdk + σ̄dTkBkdk − σ̄dTkBkdk
≤ −κ5‖[ dk ]F0‖

2 − 1
2κ7‖[ dk ]A+

‖+ o
(
δ(xk, yk)

)
‖[ dk ]A0

‖
− σ̄κ1‖[ dk ]F0‖

2 + σ̄κ2δ(xk, yk)
1−γ‖[ dk ]A+

‖. (4.50)

As limk∈S∗ dk = 0, there is an index k sufficiently large that σ̄κ2δ(xk, yk)
1−γ ≤ 1

4κ7, and the
bound (4.50) may be written in the form

∇MT
kdk ≤ −(κ5 + σ̄κ1)‖[ dk ]F0‖

2 − 1
4κ7‖[ dk ]A+

‖+ o
(
δ(xk, yk)

)
‖[ dk ]A0

‖, (4.51)

which is the inequality (4.46) with different positive constants. If the argument used to derive
(4.49) is repeated for the inequality (4.51), it follows that there is a positive constant ĉ such
that ∇MT

kdk ≤ −ĉ ‖dk‖2. From Assumption 4.3, dk is nonzero, which implies that dk is a
strict descent direction for M(v ; yE

k , µ
R
k ) at vk.

Lemma 4.9 establishes that the last of the three conditions (2.29) needed for the acceptance
of the local descent direction dk holds for all k ∈ S∗ sufficiently large.

Theorem 4.1. For all k ∈ S∗ ⊆ S sufficiently large, it holds that:

(i) a local descent direction dk = (pk, qk) is computed in Step 8 of Algorithm 2;

(ii) vk + dk is feasible, [∇Qk(vk + dk ;µR
k ) ]Aε ≥ −tke, and ∇MT

kdk < 0, i.e., the conditions
in Step 9 of Algorithm 2 are satisfied; and

(iii) Aε(xk, yk, µR
k ) = A(x∗) = A(xk + pk).
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Proof. Part (i) follows from Lemma 4.6. Part (ii) follows from Lemmas 4.6(ii) and 4.9. It re-
mains to prove part (iii). The equality Aε(xk, yk, µR

k ) = A(x∗) is established in Lemma 4.2(ii).
Suppose that i ∈ A(x∗) = Aε(xk, yk, µR

k ). The definition of dk in Steps 7–8 of Algorithm 2
implies that [xk + pk ]i = 0, which gives i ∈ A(xk + pk). For the reverse inclusion, sup-
pose that i /∈ A(x∗), i.e., x∗i > 0. In this case, the assumption that limk∈S∗ xk = x∗

implies that [xk ]i ≥ 1
2x
∗
i for all k ∈ S∗ sufficiently large. Part (i) of Lemma 4.6 gives

max{‖pk‖, ‖qk‖} = O
(
δ(xk, yk)

)
, and the assumption limk∈S∗(xk, yk) = (x∗, y∗) implies that

limk∈S∗ δ(xk, yk) = 0. It follows that limk∈S∗ pk = 0, with [xk + pk ]i ≥ 1
2x
∗
i + [ pk ]i ≥ 1

3x
∗
i > 0

for all k ∈ S∗ sufficiently large, which means that i /∈ A(xk + pk). This completes the proof.

The next result shows that the flexible line search returns the unit step length for all
k ∈ S∗ sufficiently large.

Theorem 4.2. If Assumptions 4.1 and 4.2 hold, then αk = 1 for all k ∈ S∗ ⊆ S sufficiently
large.

Proof. Throughout the proof, the quantitiesM(v ; yE
k , µ

R
k ),∇M(v ; yE

k , µ
R
k ), and∇2M(vk ; yE

k , µ
R
k )

are denoted by M(v), ∇M(v), and ∇2Mk. Assumption 4.3 and part (vi) of Lemma 4.2 imply
that the first-order line-search model is used for all k ∈ S∗ ⊆ S sufficiently large, i.e., the
quantity ιk is set to one in Algorithm 5. A Taylor-series expansion of M(vk + dk) gives

M(vk + dk) = M(vk) +∇M(vk)
Tdk + 1

2d
T
k∇2Mkdk +O

( 1

µR
k

‖dk‖3
)

= M(vk) +∇M(vk)
Tdk + 1

2d
T
k∇2Mkdk +O

(
δ(xk, yk)

1−γ‖dk‖2
)
,

where the bound on the last term follows from the sequence of estimates

(1/µR
k )‖dk‖ = r(xk, yk)

−γ‖dk‖ = O
(
δ(xk, yk)

−γ)‖dk‖ = O
(
δ(xk, yk)

1−γ)
derived in Lemmas 4.4, 4.1, and 4.6(i).

Let the scalar σ̄ of Lemma 4.9 be defined so that (1 − γs)σ̄ = 1
2 , where γs (0 < γs <

1
2)

is the parameter used for the modified Armijo condition (2.33) in the flexible line search of
Algorithm 4. With this definition, σ̄ satisfies 0 < σ̄ < 1, and the application of Lemma 4.9
with σ̄ = 1

2(1− γs)−1 gives

M(vk + dk)−M(vk)− γs∇M(vk)
Tdk

= (1− γs)∇M(vk)
Tdk + 1

2d
T
k∇2Mkdk +O

(
δ(xk, yk)

1−γ‖dk‖2
)

≤ [1
2 − (1− γs)σ̄]dTkBkdk − (1− γs)c̄ ‖dk‖2 + 1

2‖∇
2Mk −Bk‖ ‖dk‖2 +O

(
δ(xk, yk)

1−γ‖dk‖2
)

= −(1− γs)c̄ ‖dk‖2 + 1
2‖∇

2Mk −Bk‖ ‖dk‖2 +O
(
δ(xk, yk)

1−γ‖dk‖2
)
,

for all k ∈ S∗ sufficiently large. The global convergence property of Assumption 4.2(i) implies
that limk∈S∗ δ(xk, yk) = 0, which gives limk∈S∗ dk = 0 from part (i) of Lemma 4.6. In addition,
Lemma 4.8 implies that limk∈S∗ ‖∇2Mk−Bk‖ = 0. The combination of these results gives the
estimate

M(vk + dk)−M(vk)− γs∇M(vk)
Tdk ≤ −(1− γs)c̄ ‖dk‖2 + o(‖dk‖2) < 0,
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for all k ∈ S∗ sufficiently large. The fact that αk = 1 for all k ∈ S∗ sufficiently large follows
from the previous displayed inequality, dk 6= 0, sk = 0 (see Lemma 4.2(vi)), ιk = 1, and the
structure of the line-search procedure given by Algorithm 4.

The next theorem shows that, for k sufficiently large, the properties established in Lem-
mas 4.1–4.9 and Theorems 4.1–4.2 hold for every k, not just those in the set S∗ ⊆ S.

Theorem 4.3. For any positive ε sufficiently small, and any ρ such that 1 < ρ < 1+γ, there
exists a V-iteration index kV = kV (ε) such that the following results hold for every k ≥ kV :

(i) ‖(xk − x∗, yk − y∗)‖ ≤ ε;

(ii) δ(xk+1, yk+1) ≤ δ(xk, yk)ρ;

(iii) k is a V-iterate; and

(iv) the results of Lemmas 4.1–4.9 and Theorems 4.1–4.2 hold.

Proof. Let the positive scalar ε be sufficiently small that the results of Lemmas 4.1–4.9 and
Theorems 4.1–4.2 hold for every V-O iterate (xk, yk) satisfying ‖(xk − x∗, yk − y∗)‖ ≤ ε. (The
proof of (iv) establishes that these results hold for every k sufficiently large.)

Let (xk, yk) be a primal-dual iterate with k ∈ S∗. Theorem 4.1 implies that the unit
step is accepted in the line search, in which case (xk+1, yk+1) = (xk + pk, yk + qk). Let κ be
the positive scalar defined in Lemma 4.1. Similarly, let c1 (c1 > 0) and c2 (c2 ≥ 1) denote
constants such that

max{‖xk+1 − xk‖, ‖yk+1 − yk‖} ≤ c1δ(xk, yk), and δ(xk+1, yk+1) ≤ c2δ(xk, yk)
1+γ . (4.52)

(The existence of c1 and c2 is implied by the results of Lemmas 4.6(i) and 4.7.)
If ρ is any scalar satisfying 1 < ρ < 1 + γ, let kV = kV (ε) be an index in S∗ ⊆ S that is

sufficiently large that (xkV , ykV ) is a V-iterate and satisfies the conditions

max { ‖xkV − x
∗‖, ‖ykV − y

∗‖, 2c1δV , 2c1δ
ρ
V /(1− δρV ) } ≤ 1

4ε, and (4.53)

max
{

2κρ+2δρ−1
V /β, c2δ

1+γ−ρ
V , δρV

}
≤ 1, (4.54)

where δV = δ(xkV , ykV ), and β (0 < β < 1) is the weight used in the definitions of φV (x, y)
and φV (x, y). The following argument shows that an index κV satisfying these conditions
must exist. As limk∈S∗(xk, yk) = (x∗, y∗), it must hold that the optimality and feasibility
measures (2.12) give limk∈S∗ φV (xk, yk) = 0 and limk∈S∗ φO(xk, yk) = 0. As Assumption 4.2(i)
implies that there are infinitely many V-O-iterates, and the condition φV (vk) ≤ 1

2φ
max
V for a

V-iteration is checked before the condition for an O-iteration, then there must be infinitely
many V -iterates. In addition, as limk∈S∗ δ(xk, yk) = 0, there must be an index k = kV such
that δV = δ(xk, yk) is sufficiently small to give (4.53) and (4.54).

An inductive argument is used to prove that parts (i)–(iv) hold for all k ≥ kV . The base
case is k = kV . The definition of kV implies that k = kV is a V-iteration index, and it follows
trivially that part (iii) holds. Moreover, the assumption (4.53) and standard norm inequalities
yield

‖(xkV − x
∗, ykV − y

∗)‖ ≤ ‖xkV − x
∗‖+ ‖ykV − y

∗‖ ≤ 1
4ε+ 1

4ε < ε, (4.55)
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which establishes part (i) for k = kV . It follows immediately from (4.55) and the choice of
ε that part (iv) holds for k = kV . As part (iv) holds for k = kV , (4.52), and (4.54) may be
combined to give

δ(xkV +1, ykV +1) ≤ c2δ
1+γ
V = c2δ

1+γ−ρ
V δρV ≤ δρV ,

which establishes part (ii) for k = kV . This completes the base case k = kV .
The inductive hypothesis is that (i)–(iv) hold for every iterate k such that kV ≤ k ≤

kV + j − 1. Under this hypothesis, it must be shown (i)–(iv) hold for k = kV + j. For (i),
standard norm inequalities give∥∥∥∥(xkV +j − x∗

ykV +j − y∗
)∥∥∥∥ ≤ ‖xkV +j − x∗‖+ ‖ykV +j − y∗‖

=
∥∥∥ j−1∑
l=0

(xkV +l+1 − xkV +l) + xkV − x
∗
∥∥∥+

∥∥∥ j−1∑
l=0

(ykV +l+1 − ykV +l) + ykV − y
∗
∥∥∥

≤
j−1∑
l=0

(
‖xkV +l+1 − xkV +l‖+ ‖ykV +l+1 − ykV +l‖

)
+ ‖xkV − x

∗‖+ ‖ykV − y
∗‖

≤ 2c1

j−1∑
l=0

δ(xkV +l, ykV +l) + 1
2ε,

where the first inequality of (4.52) has been used to bound each of the terms in the summation,
and the term ‖xkV − x∗‖ + ‖ykV − y∗‖ is estimated by (4.55). It follows from the inductive
hypothesis for part (ii) and (4.53) that∥∥∥∥(xkV +j − x∗

ykV +j − y∗
)∥∥∥∥ = 2c1

[
δV +

j−1∑
i=1

δiρV

]
+ 1

2ε < 2c1

[
δV +

δρV
1− δρV

]
+ 1

2ε ≤ ε,

which establishes that part (i) holds for k = kV + j.
The next stage of the proof involves establishing that part (iii) holds for k = kV + j. For

all k ≥ kV , it holds that ξ
(1)
k = 0 and the feasibility measure φV satisfies

βr(xk, yk) ≤ φV (xk, yk) = η(xk) + βω(xk, yk) ≤ 2r(xk, yk) ≤ 2κδ(xk, yk),

where the last inequality follows from Lemma 4.1. Applying these inequalities at (xkV +j , ykV +j),
together with Lemma 4.1 and the induction assumption (ii) at (xkV +j−1, ykV +j−1), gives

φV (xkV +j , ykV +j) ≤ 2κδ(xkV +j , ykV +j) ≤ 2κδ(xkV +j−1, ykV +j−1)ρ

≤ 2κρ+1r(xkV +j−1, ykV +j−1)ρ

= 2κρ+1r(xkV +j−1, ykV +j−1)ρ−1r(xkV +j−1, ykV +j−1)

≤ (2κρ+1/β)r(xkV +j−1, ykV +j−1)ρ−1φV (xkV +j−1, ykV +j−1). (4.56)

If φmax
V,k denotes the value of the bound φmax

V of (2.13) at the start of iteration k, then
the assumption that (xkV +j−1, ykV +j−1) is a V-iterate implies that φV (xkV +j−1, ykV +j−1) ≤
1
2φ

max
V,kV +j−1. This allows the bound (4.56) to be extended so that

φV (xkV +j , ykV +j) ≤ (κρ+1/β)r(xkV +j−1, ykV +j−1)ρ−1φmax
V,kV +j−1

≤ (κρ+2/β)δ(xkV +j−1, ykV +j−1)ρ−1φmax
V,kV +j−1

≤ (κρ+2δρ−1
V /β)φmax

V,kV +j−1 ≤ 1
2φ

max
V,kV +j−1.



5. Numerical Experiments 34

The final inequality, which follows from (4.54), implies that kV + j is a V-iterate. This
establishes that part (iii) holds for k = kV + j, as required. Part (iv) then follows immediately
from the choice of ε and the fact that (i) and (iii) hold at k = kV + j.

It remains to show that (ii) holds for k = kV + j. It follows from the bound (4.54) and
definition of ρ (ρ > 1), that

c2(δjρV )1+γ−ρ ≤ c2δ
ρ(1+γ−ρ)
V ≤ c2δ

1+γ−ρ
V ≤ 1. (4.57)

This inequality, in conjunction with the induction hypotheses of parts (ii) and (iv), and
Lemma 4.7, give

δ(xkV +j+1, ykV +j+1) ≤ c2δ(xkV +j , ykV +j)
1+γ = c2δ(xkV +j , ykV +j)

1+γ−ρδ(xkV +j , ykV +j)
ρ

≤ c2(δjρV )1+γ−ρδ(xkV +j , ykV +j)
ρ ≤ δ(xkV +j , ykV +j)

ρ,

which shows that part (ii) holds for k = kV + j. This completes the induction proof.

It remains to establish the rate of convergence of the primal-dual iterates to (x∗, y∗). The
proof is based on showing that the iterates of Algorithm 5 are equivalent to those of a stabilized
SQP method for which superlinear convergence has been established.

Theorem 4.4. If Assumptions 4.1 and 4.2 are satisfied, then limk→∞(xk, yk) = (x∗, y∗) and
the convergence rate is superlinear.

Proof. Since ε > 0 was arbitrary in Theorem 4.3, it follows that limk→∞(xk, yk) = (x∗, y∗).
It remains to show that the convergence rate is superlinear. Theorem 4.3(iii) shows that the
iterates generated by the algorithm are all V-iterates for k sufficiently large. Moreover, Theo-
rem 4.3(iv) implies that Lemmas 4.1–4.9 and Theorems 4.1–4.2 hold for all k sufficiently large
(not just for k ∈ S∗ ⊆ S). It follows that for all k sufficiently large: (a) µR

k = r(xk, yk)
γ

(from Lemma 4.4); (b) A(x∗) = A(xk) = Aε(xk, yk, µR
k ) (from Lemma 4.2(ii)); and (c)

(xk+1, yk+1) = (xk + pk, yk + qk) with every direction (pk, qk) a local descent direction (from
Theorems 4.2 and 4.1(i)–(iii)). The combination of these results gives [xk ]A = 0 for all k
sufficiently large, where the suffix “A” denotes the components with indices in the optimal
active set A(x∗). It follows that the sequence (xk, yk) is identical to the sequence generated
by a conventional stabilized SQP method applied to the equality-constrained problem (4.11),
i.e., the iterates correspond to performing a conventional stabilized SQP method on problem
(NP) having correctly estimated the active set (the associated stabilized QP subproblem is
defined in the statement of Lemma 4.5). The superlinear rate convergence of the iterates now
follows, for example, from [24, Theorem 1].

5. Numerical Experiments

This section describes an implementation of algorithm pdSQP2 and includes the results of some
numerical experiments that are designed to validate the algorithm. Section 5.1 provides the
details of a preliminary Matlab implementation. Section 5.2 includes the results of testing
pdSQP2 on the Hock-Schittkowski suite of test problems, which is a commonly used set of
problems for assessing the overall performance of a method. Finally, Section 5.3 focuses on
the performance of pdSQP2 on problems that exhibit various forms of degeneracy.
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5.1. Implementation details

The numerical experiments were performed using a preliminary implementation of pdSQP2

written in Matlab [28]. The control parameter values and their initial values are specified
in Table 1. If pdSQP2 did not converge within kmax = 1000 iterations, then it was considered
to have failed. The tests used to terminate the algorithm at an approximate solution or an
infeasible stationary point are given by (2.35) and (2.36), respectively.

Table 1: Control parameter and initial values required by algorithm pdSQP2.

Parameter Value Parameter Value Parameter Value

ν 1.0 µR
0 1.0e-4 τstop 1.0e-6

εa 1.0e-6 µ1 1.0 β 1.0e-5

γ 0.5 γs 1.0e-3 λ 0.2

ymax 1.0e+6 θ 1.0e-5 τ0 1.0

kmax 1000 φmax
V , φmax

O 1.0e+3

All the results included in this paper are from a variant of pdSQP2 that does not test
for a direction of negative curvature until a first-order stationary point is located. Both
the global and local convergence analysis remains valid for this version. Other aspects of
the implementation that require discussion are the definition of the QP Hessian matrix and
the computation of the direction of negative curvature (when one exists). The positive-
definite Hessian of the bound-constrained QP problem (2.19) is obtained by using a form
of pre-convexification. Specifically, the positive-definite matrix Ĥ of (2.20) has the form
Ĥ(xk, yk) = H(xk, yk) + Ek + Dk for some positive-semidefinite matrix Ek and positive-
semidefinite diagonal matrix Dk, as described in [16, Section 4]. If the matrix formed from
the ε-free rows and columns of B is positive definite (see (2.5)), then Ek is zero, in which
case, the Newton equations (2.28) are not modified. The calculation of the matrix Ek is based
on an LBLT factorization of a matrix in regularized KKT form (see (2.6)). The factorization

also provides the direction of negative curvature u
(1)
k required by Algorithm 1 (see, e.g.,

Forsgren [11], Forsgren and Gill [12], and Kungurtsev [26, Chapter 9]). The unique minimizer
of the strictly convex QP is found using a Matlab implementation of the inertia-controlling
QP solver by Gill and Wong [17]. The QP solver is called only when a local descent direction
is required (see Algorithm 2).

5.2. Performance on the Hock-Schittkowski test problems

This section concerns the performance of pdSQP2 relative to the first-derivative SQP solver
SNOPT7 [14] on a subset of the Hock-Schittkowski [20] test problems from the CUTEst [18]
test collection. The problems HS85 and HS87 were omitted from the test set because they are
nonsmooth and violate the basic assumptions required by both pdSQP2 and SNOPT7.

Figure 1 depicts the performance profiles associated with the number of function eval-
uations needed by SNOPT7 and pdSQP2. Performance profiles were proposed by Dolan and
Moré [5] to provide a visual comparison of the relative performance of two or more algo-
rithms on a set of problems. The graph associated with pdSQP2 passes (roughly) through the
point (3, 0.97), which implies that on 97% of the problems, the number of function evalua-
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tions required by pdSQP2 was less than 23 times the number of function evaluations required by
SNOPT7.
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Function evaluations on 114 HS Problems

Figure 1: Performance profile for the num-
ber of function evaluations on the set of Hock-
Schittkowski problems.

It follows that the algorithm with a higher
value on the vertical axis may be considered
the more efficient algorithm, while the algo-
rithm on top at the far right may be consid-
ered more reliable.

Figure 1 suggests that, with respect to
function evaluations, pdSQP2 is more effi-
cient than SNOPT7 but less reliable. This
is to be expected because SNOPT7 has been
developed, tested, and maintained continu-
ously for more than 20 years. Nonetheless,
the profile provides some numerical support
for the global and local convergence theory.
It is likely that a more sophisticated imple-
mentation that includes a better tuning of
algorithm parameters will improve the ef-
ficiency and reliability of pdSQP2. In par-
ticular, almost all of the Hock-Schittkowski
problems requiring more function evalua-
tions than SNOPT7 involve a significant num-
ber of iterations in which convexification is required. Further research on efficient convexifi-
cation methods is likely to have a significant impact on both robustness and efficiency.

5.3. Performance on degenerate problems

The convergence theory of Section 4 implies that pdSQP2 is locally superlinearly convergent
under relatively weak assumptions that do not include a constraint qualification. This sec-
tion concerns an investigation of the observed numerical rate of convergence on a number of
degenerate problems.

5.3.1. Degenerate CUTEst problems

The local rate of convergence of algorithm pdSQP2 was investigated for a set of degenerate
problems from the CUTEst [18] test set. In particular, 84 problems were identified for which
the active-constraint Jacobian is numerically rank deficient at the computed solution. In
addition, 56 problems have at least one negligible multiplier associated with a variable on
its bound. In this case, a multiplier is considered as being negligible if it is less than τstop

in absolute value. A zero multiplier associated with an active constraint implies that the
property of strict complementarity does not hold. A total of 26 problems were identified that
fail both the linear independence constraint qualification (LICQ) and strict complementarity.

For these degenerate problems, the order of convergence was estimated by the quantity

EOC = log r(xkf , ykf )/ log r(xkf−1, ykf−1), (5.1)

where kf denotes the final computed iterate. The results are given in Table 2. The column
with heading “Last is global” contains the statistics for problems for which the final search
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direction is a global descent direction. The column marked “Last is local” gives the statistics
for problems for which the final direction is a local descent direction. Column headed “Last
two are local” contains the statistics for problems for which the final two descent steps are
local descent directions. The values in parentheses indicate the number of problems that sat-
isfy the weak second-order sufficient optimality conditions, i.e., the Hessian of the Lagrangian
is positive definite on the null space of the active constraint Jacobian matrix. In the imple-
mentation considered here, this property is considered to hold if the smallest eigenvalue of
ZTHFεZ is greater than τstop, where the columns of Z form a basis for the null space of JFε .

Table 2: The estimated order of convergence for algorithm pdSQP2 on the degenerate CUTEst
test problems

Last is global Last is local Last two are local Total

Problems not satisfying the LICQ

1.25 < EOC 20 (7) 16 (12) 33 (31) 69 (50)

1.1 < EOC ≤ 1.25 3 (3) 1 (1) 6 (6) 10 (10)

EOC ≤ 1.1 3 (2) 0 (0) 2 (2) 5 (4)

Problems not satisfying strict complementarity

1.25 < EOC 17 (6) 4 (2) 16 (16) 37 (24)

1.1 < EOC ≤ 1.25 4 (4) 0 (0) 3 (3) 7 (7)

EOC ≤ 1.1 9 (7) 1 (0) 2 (1) 12 (8)

Problems not satisfying strict complementarity and the LICQ

1.25 < EOC 11 (3) 4 (2) 6 (6) 21 (11)

1.1 < EOC ≤ 1.25 2 (2) 0 (0) 2 (2) 4 (4)

EOC ≤ 1.1 1 (1) 0 (0) 0 (0) 1 (1)

Table 2 shows that if the LICQ does not hold, but strict complementarity does, then local
descent steps are computed in the final stages and they contribute to the superlinear rate of
convergence. Moreover, superlinear convergence is typical even when the local descent step
is not computed. This observation is consistent with [26, Chapter 8], which shows that the
iterates generated by the algorithm pdSQP of Gill and Robinson [15] converge superlinearly
when the second-order sufficient conditions for optimality hold in conjunction with the prop-
erty of strict complementarity. In contrast, on those problems for which pdSQP2 converges to
a solution at which strict complementarity fails, the results indicate that linear convergence
is just as likely as superlinear convergence.

5.3.2. The degenerate problems of Mostafa, Vicente, and Wright

In [29], Mostafa, Vicente and Wright analyze the performance of a stabilized SQP algorithm
proposed by Wright [34] that estimates the weakly and strongly active multipliers. The
authors demonstrate that the algorithm is robust in general and converges rapidly on a speci-
fied collection of 12 degenerate problems that includes some of the original Hock-Schittkowski
problems; several Hock-Schittkowski problems modified to include redundant constraints; and
several problems drawn from the literature (see the reference [29] for additional details). All
12 problems have either a rank-deficient Jacobian or at least one weakly active multiplier at
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the solution.
Algorithm pdSQP2 was tested on ten of the twelve problems that could be coded directly

or obtained from other sources. Of the ten cases, pdSQP2 converges superlinearly on seven
problems, converges linearly on two problems, and fails to converge on one problem. These
results appear to be similar to those obtained by Mostafa, Vicente and Wright using their
code sSQPa [29].

5.3.3. Degenerate MPECs

Mathematical programs with equilibium constraints (MPECs) are optimization problems that
have variational inequalities as constraints. Various reformulations of MPECs as nonlinear
programs (see, e.g., Baumrucker, Renfro and Biegler [1]) include complementarity constraints
that do not satisfy either the LICQ or the MFCQ. This feature is generally recognized as
the main source of difficulty for conventional nonlinear solvers. In the case of pdSQP2, the
violation of the MFCQ implies that Theorem 3.1 cannot be used to guarantee the existence
of limit points of the sequence of dual variables. As a consequence, the primal-dual iterates
computed by pdSQP2 may never enter a region of superlinear convergence. Nonetheless, as
MPECs constitute an important and challenging class of problems, this section includes results
from pdSQP2 on a large set of MPECs.

Figure 2 gives the performance profiles that compare the number of function evaluations re-
quired by pdSQP2 and SNOPT7 on a set of 86 MPECs obtained from Sven Leyffer at the Argonne
National Laboratory. Many of these problems are included in the MPECLib library [4], which is
a large and varied collection of MPECs from both theoretical and practical test models. As in
the previous section, the performance profiles indicate that SNOPT7 is more robust than pdSQP2

overall. Nevertheless, pdSQP2 is substantially faster than SNOPT7 in a significant number of
cases.
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Figure 2: Performance profile for the number of
function evaluations on the set of MPEC problems.

This suggests that the stabilized SQP

subproblem encourages fast local con-
vergence on this type of degenerate
problem.

As discussed above, the theoretical
results of Section 4 do not guarantee
that the primal-dual iterates will enter
a region in which local descent steps are
used. In order to study this possibil-
ity, Table 3 gives the EOC rates defined
in (5.1) for all of the MPEC problems.
The results indicate that, as predicted
by the theory, the last search direction
is a global descent direction in 23 cases.
Nonetheless, 20 of these cases still con-
verge at a superlinear rate. By compar-
ison, of the 55 problems for which the
last direction is a local descent direc-
tion, superlinear convergence occurs in
52 cases.



6. Conclusions 39

Table 3: The estimated order of convergence for pdSQP2 on the MPEC test set.

Last is global Last is local Last two are local Total

1.25 < EOC 18 (9) 17 (17) 31 (31) 66 (57)

1.1 < EOC ≤ 1.25 2 (2) 1 (1) 3 (3) 6 (6)

EOC ≤ 1.1 3 (2) 2 (2) 1 (1) 6 (5)

5.3.4. Degenerate problems from the DEGEN test set

In a series of numerical tests, Izmailov and Solodov [22, 23] demonstrate that Newton-like
algorithms such as SQP or inexact SQP methods tend to generate dual iterates that converge
to critical multipliers, when they exist. Critical multipliers are those multipliers y ∈ Y(x∗) for
which the regularized KKT matrix (2.6) is singular at x∗ (cf. (2.28)). This is significant because
dual convergence to critical multipliers will result in a linear rate of convergence [23]. However,
Izmailov [23] shows that an implementation of a conventional stabilized SQP algorithm is less
likely to exhibit this behavior, although poor performance can still occur in a small number
of cases. This has motivated the use of stabilized SQP subproblems as a way of accelerating
local convergence in the presence of critical multipliers. However, such algorithms have had
mixed results in practice (see, e.g., Izmailov [25]). The purpose of this section is to use a
subset of the DEGEN test set to investigate the performance of pdSQP2 on problems with
critical multipliers. The subset of problems consists of those considered by Izmailov [22], and
Izmailov and Solodov [23].

The estimated order of convergence (EOC) (cf. (5.1)) for these problems are given in
Table 4. The results are separated based on the following properties: (i) no critical multipliers
exist; (ii) critical multipliers exist but the limit point y∗ is not critical; and (iii) the limit point
y∗ is critical. The problem summaries indicate which optimal multipliers (if any) are critical. If
the final multiplier estimate is within 10−3 of a critical multiplier, the multiplier is designated
as critical.

Table 4: The estimated order of convergence of algorithm pdSQP2 on the DEGEN test set.

EOC > 1.25 1.25 ≥ EOC > 1.1 EOC ≤ 1.1

No critical multipliers exist 36 9 6

Critical multipliers exist but y∗ is not critical 9 1 2

The limit point y∗ is critical 6 29 11

6. Conclusions

This paper considers the formulation, analysis and numerical performance of a stabilized
SQP method introduced by Gill, Kungurtsev and Robinson [13]. The method appears to
constitute the first algorithm with provable convergence to second-order points as well as
a superlinear rate of convergence. The method is formulated as a regularized SQP method
with an implicit safeguarding strategy based on minimizing a bound-constrained primal-dual
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augmented Lagrangian. The method involves a flexible line search along a direction formed
from an approximate solution of a regularized quadratic programming subproblem and, when
one exists, a direction of negative curvature for the primal-dual augmented Lagrangian. With
an appropriate choice of termination condition, the method terminates in a finite number of
iterations under weak assumptions on the problem functions. Safeguarding becomes relevant
only when the iterates are converging to an infeasible stationary point of the norm of the
constraint violations. Otherwise, the method terminates with a point that either satisfies
the second-order necessary conditions for optimality, or fails to satisfy a weak second-order
constraint qualification. In the former case, superlinear local convergence is established by
using an approximate solution of the stabilized QP subproblem that guarantees that the
optimal active set, once correctly identified, remains active regardless of the presence of weakly
active multipliers. It is shown that the method has superlinear local convergence under the
assumption that limit points become close to a solution set containing multipliers satisfying
the second-order sufficient conditions for optimality. This rate of convergence is obtained
without the need to solve an indefinite QP subproblem, or impose restrictions on which local
minimizer of the QP is found. For example, it is not necessary to compute the QP solution
closest to the current solution estimate.

Numerical results on a variety of problems indicate that the method performs relatively
well compared to a state-of-the-art SQP method. Superlinear convergence is typical, even for
problems that do not satisfy standard constraint qualifications. Results are more mixed for
problems that do not satisfy the property of strict complementarity.

The proposed method is based on the beneficial properties of dual regularization, which
implies that it is necessary to assume a second-order sufficient condition that rules out the pos-
sibility of critical multipliers at the solution. Future research will focus on the development of
primal regularization techniques that allow superlinear convergence when critical multipliers
are present. For a local algorithm framework based on primal regularization, see Facchinei,
Fischer and Herrich [6, 7].
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A. Properties of Problem Perturbations

Several of the theorems discussed in Section 4 involve the relationship between the proximity
measure r(x, y), and the quantities η(x, y) and η̄(x, y) defined by Wright [35] (and also defined
below). Throughout the discussion, the scaled closed interval [αα`, α αu] defined in terms of
the positive scalars α`, αu and scale factor α, will denoted by [α`, αu] · α.

A.1. Inequality-constraint form

The original results apply to an optimization problem with all inequality constraints. The
all-inequality form of problem (NP) is

minimize
x∈Rn

f(x)

subject to c(x) ≥ 0, −c(x) ≥ 0, x ≥ 0.
(A.1)

Given multipliers y for problem (NP), the multipliers for the nonnegativity constraints x ≥ 0
are g(x)− J(x)Ty and are denoted by z(x, y).

Consider the primal-dual solution set Vz(x∗) for problem (A.1). It follows that Vz(x∗) =
V(x∗)×Z(x∗), where

V(x∗) = {x∗} × Λ(x∗) and Z(x∗) = {z : g(x∗)− J(x∗)T y, for some y ∈ Λ(x∗)}

The distance to optimality for the problem (A.1) is

dist
(
(x, y, z),Vz(x∗)

)
= min

(x̄,ȳ,z̄)∈Vz(x∗)
‖(x− x̄, y − ȳ, z − z̄)‖

= min
(x̄,ȳ)∈V(x∗)

‖(x− x̄, y − ȳ, z(x, y)− (g(x̄)− J(x̄)T ȳ))‖.

Result A.1. If dist
(
(x, y, z),Vz(x∗)

)
denotes the distance to optimality for the problem (NP)

written in all-inequality form, then δ(x, y) = Θ
(

dist((x, y, z),Vz(x∗))
)
.

Proof. Let y∗P (y) denote the vector that minimizes the distance from y to the compact set
Λ(x∗) (see (4.4)). Consider the quantity

δ(x, y) =
∥∥(x− x∗, y − y∗P (y), z(x, y)− z(x∗, y∗P (y))

)∥∥ .
The components of the vector (x− x∗, y − y∗P (y)) used to define δ(x, y) form the first n + m
components of δ(x, y), which implies that δ(x, y) ≤ δ(x, y). For the upper bound, the Lipschitz
continuity of J and g, together with the boundedness of y∗P (y) and J(x) imply that

‖z(x, y)− z(x∗, y∗P (y))‖ = ‖g(x)− J(x)Ty − g(x∗) + J(x∗)Ty∗P (y)‖
≤ Lg‖x− x∗‖+ ‖J(x)T(y − y∗P (y))‖+ ‖(J(x)− J(x∗))Ty∗P (y)‖
≤ Lg‖x− x∗‖+ CJ‖y − y∗P (y)‖+ L2Cy‖x− x∗‖
≤ Caδ(x, y).

(A.2)

It follows that δ(x, y) ≤ δ(x, y) +‖z(x, y)− z(x∗, y∗P (y))‖ ≤ (1 +Ca)δ(x, y), which implies that
δ(x, y) = Θ

(
δ(x, y)

)
, and, equivalently, δ(x, y) = Θ

(
δ(x, y)

)
.
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The proof is complete if it can be shown that δ(x, y) = Θ
(

dist((x, y, z),Vz(x∗))
)
. The

definitions of dist((x, y, z),Vz) and δ(x, y) imply that dist((x, y, z),Vz(x∗)) ≤ δ(x, y). More-
over, δ(x, y) = dist((x, y),V(x∗)) ≤ dist((x, y, z),Vz(x∗)) because there is no third com-
ponent in the definition of δ(x, y). As δ(x, y) = Θ

(
δ(x, y)

)
, it must hold that δ(x, y) =

Θ
(

dist((x, y, z),Vz(x∗))
)
, as required.

Let η̄(x, y, zA) be the practical estimate of dist
(
(x, y, z),Vz(x∗)

)
given by

η(x, y) = ‖(v1, v2, v3, v4)‖1,

where v1 = g(x) − J(x)Ty − z(x, y), v2 = min(x, z(x, y)), v3 = min(c(x),max(y, 0)), and
v4 = min(−c(x),max(−y, 0)). Wright [35] shows that

η(x, y) ∈ [1/κ, κ] · dist
(
(x, y, z),Vz(x∗)

)
for all (x, y) sufficiently close to (x∗, y∗).

Result A.2. Consider the function η(x, y) = ‖(v1, v2, v3, v4)‖1, where v1 = g(x) − J(x)Ty −
z(x, y), v2 = min(x, z(x, y)), v3 = min(c(x),max(y, 0)), and v4 = min(−c(x),max(−y, 0)).
The quantity η(x, y) defines a measure of the quality of (x, y) as an approximate solution of
problem (NP) defined in all-inequality form and satisfies r(x, y) = Θ

(
η(x, y)

)
.

Proof. It will be established that η(x, y) = Θ
(
r(x, y)

)
. The vector v1 is zero by definition.

The vector v2 is min(x, g(x)− J(x)Ty), which is the second part of r(x, y).
If ci(x) < 0 and yi ≥ 0 then min(ci(x),max(yi, 0)) = ci(x) and min(−ci(x),max(−yi, 0)) =

0. If ci(x) < 0 and yi ≤ 0 then min(ci(x),max(yi, 0)) = ci(x) and min(−ci(x),max(−yi, 0)) =
min(|ci(x)|, |yi|). If ci(x) > 0 and yi ≥ 0 then min(ci(x),max(yi, 0)) = min(|ci(x)|, |yi|) and
min(−ci(x),max(−yi, 0)) = −ci(x). If ci(x) > 0 and yi ≤ 0 then min(ci(x),max(yi, 0)) = 0
and min(−ci(x),max(−yi, 0)) = −ci(x).

It follows that for every i, one or the other of the vectors v3 or v4 has a component
equal to |ci(x)| and hence η(x, y) ≥ r(x, y). In addition, v3 or v4 may have a term that is
min(|ci(x)|, |yi|) ≤ |ci(x)|, and so η(x, y) ≤ 2r(x, y). It follows that η(x, y) = Θ

(
r(x, y)

)
, as

required.

A.2. Equality-constraint form

Any solution x∗ of problem (NP) is also a solution of the problem

minimize
x

f(x) subject to c(x) = 0, and [x ]A = ETAx = 0. (A.3)

Furthermore, any primal-dual solution (x∗, y∗) of problem (NP) must satisfy the SOSC for
(A.3) because the conditions for problem (NP) imply that pTH(x∗, y∗)p > 0 for all p such that
J(x∗)p = 0 and pi = 0 for every i ∈ A(x∗). The primal-dual solution set Uz(x∗) for problem
(A.3) has the form Uz(x∗) = U(x∗)×Z(x∗), where

U(x∗) = {x∗} × Λ(x∗) and Z(x∗) = {zA : zA = [ g(x∗)− J(x∗)Ty ]A, for some y ∈ Λ(x∗)}.
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Let y and zA denote estimates of the multipliers for the constraints c(x) = 0 and ETAx = 0.
Let δ̄(x, y, zA) be the distance of (x, y, zA) to a solution of (A.3), i.e.,

dist(x, y, zA,Uz(x∗)) = min
(x̄,ȳ,z̄A)∈Uz(x∗)

‖(x− x̄, y − ȳ, zA − z̄A)‖

= min
(x̄,ȳ)∈U(x∗)

‖(x− x̄, y − ȳ, [ g(x)− J(x)Ty − (g(x̄)− J(x̄)Tȳ) ]A)‖

= min
ȳ∈Λ(x∗)

‖(x− x∗, y − ȳ, [ g(x)− J(x)Ty − (g(x∗)− J(x∗)Tȳ) ]A)‖,

where Λ(x∗) is the compact subset of the set of optimal multipliers corresponding to x∗ for
problem (NP).

Let µ̃(x, y, zA) be the estimate of dist(x, y, zA,Uz(x∗)) given by

µ̃(x, y, zA) =

∥∥∥∥∥∥
g(x)− J(x)Ty − EAzA

c(x)
xA

∥∥∥∥∥∥ =

∥∥∥∥∥∥∥∥


[ g(x)− J(x)Ty ]A − zA
[ g(x)− J(x)Ty ]F

c(x)
xA


∥∥∥∥∥∥∥∥

1

. (A.4)

Wright [35] uses the notation η̄(x, y, zA) = µ̃(x, y, zA) and shows that for all (x, y) suffi-
ciently close to (x∗, y∗), the estimate µ̃(x, y, zA) satisfies

µ̃(x, y, zA) ∈ [1/κ, κ] · dist(x, y, zA,Uz(x∗)), (A.5)

where κ = κ(Uz(x∗)) is a constant.

Result A.3. For all (x, y) sufficiently close to (x∗, y∗), the estimate µ̃(x, y, zA) = ‖(g(x) −
J(x)Ty − EAzA, c(x), xA)‖1 satisfies µ̃(x, y, zA) = O(δ(x, y)).

Proof. For all (x, y) sufficiently close to (x∗, y∗), the definition of dist(x, y, zA,Uz(x∗)) and
the Lipschitz continuity of g and J imply that

dist(x, y, zA,Uz(x∗)) ≤ δ(x, y) + ‖[ g(x)− J(x)Ty − (g(x∗)− J(x∗)Ty∗P (y)) ]A‖
≤ δ(x, y) + ‖g(x)− J(x)Ty − (g(x∗)− J(x∗)Ty∗P (y))‖
≤ δ(x, y) + Caδ(x, y),

for some bounded constant Ca (cf. (A.2)). The result now follows from (A.5).
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