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Abstract

This paper provides a first polyhedral study of the diameter constrained minimum spanning tree prob-
lem (DMSTP). We introduce a new set of inequalities, the circular-jump inequalities which strengthen
the well-known jump inequalities. These inequalities are further generalized in two ways: either by in-
creasing the number of partitions defining a jump, or by combining jumps with cutsets. Most of the
proposed new inequalities are shown to define facets of the DMSTP polytope under very mild conditions.
Currently best known lower bounds for the DMSTP are obtained from an extended formulation on a
layered graph using the concept of central nodes/edges. A subset of the new families of inequalities is
shown to be not implied by this layered graph formulation.

Keywords: Integer programming, Diameter constrained trees, Facet

1 Introduction

Given a graph G = (V,E), with n = |V | nodes and m = |E| edges, a spanning tree of G, denoted by
T = (V,ET) is a connected subgraph of G without cycles. The diameter of the graph G is the length of
the longest shortest path between any two nodes in G (in this paper we consider the length of a path to
be its number of edges). The diameter constrained minimum spanning tree problem (DMSTP) is defined as
follows: Given a graph G with edge costs ce ≥ 0, for all e ∈ E, and a diameter limit D, the goal is to identify
a minimum cost spanning tree of G whose diameter does not exceed D. The DMSTP is typically used to
model decentralized network design applications in which all nodes need to communicate with each other at
minimum cost, while making sure that certain quality of service constraints are met. Thereby, the DMSTP is
especially appropriate for networks in which node processing times dominate over the latencies on edges, so
that having fewer intermediary nodes along a communication path implies a lower delay, in general. Hence,
quality of service can be measured through the number of nodes traversed along each communication path
and diameter constraints can be used to guarantee a certain network performance with respect to availability
or reliability (see, e.g. [1, 19]).

The most successful method to solve DMSTP is based on graph concepts related with centers in trees and
sophisticated extended formulations based on layered graphs that are tailored for network design problems
with length constraints (see [12]). For some time it was not known how to describe inequalities that guarantee
the length of the paths using only edge variables. The work by Dahl [3] has made a significant contribution
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in this area by proposing the so-called jump constraints to model length-constrained paths. More recently,
a complete characterization of jump inequalities for the hop-constrained shortest path problem has been
provided by Riedl [18]. Jump constraints have been also considered in the context of the hop constrained
trees (Dahl et al. [5, 6]) and more general network design problems with hop constraints and survivability
requirements (see, e.g., Bendali et al. [2], Dahl et al. [7], Huygens et al. [13, 14]). The latter works involve
deep polyhedral studies where, among other results, these inequalities (or small adaptations obtained by
changing the right-hand side due to the survivability requirements) have been shown to be facet defining
under some mild conditions (see, e.g., Bendali et al. [2], Diarrassouba et al. [9], Huygens et al. [13]).

A generic edge-based ILP formulation In order to contextualize our study we start by introducing a
generic formulation (1)–(5) for the problem, considering undirected edge design variables xe ∈ {0, 1}, for all
e ∈ E, which indicate whether edge e is used in the solution.

min
∑
e∈E

cexe (1)

x(E(S)) ≤ |S| − 1 ∀S ⊂ V, |S| ≥ 3 (2)

x(E) = |V | − 1 (3)

x ∈ FD (4)

x ∈ {0, 1}|E| (5)

In this formulation x(M), M ⊆ E, stands for
∑

e∈M xe, and E(S) represents the edges with both
endpoints in S ⊂ V . Constraints (2) are the subtour elimination constraints, that together with equation (3)
guarantee that the obtained solution is a spanning tree. Let G(x) denote the subgraph of G induced by
the edges e ∈ E, such that xe = 1, and let PG(x)(u, v) denote a shortest path in this subgraph between

u ∈ V and v ∈ V . The set FD is defined as FD = {x ∈ {0, 1}|E| | for each u, v ∈ V, u 6= v,∃PG(x)(u, v) :
|PG(x)(u, v)| ≤ D}. Hence, FD is the set of incidence vectors such that the induced subgraph contains a
feasible path between any two nodes, i.e., a path of length at most D.

Scientific contribution and outline. In Section 2, we first recall jump inequalities and show that they do
not define facets of the DMSTP polytope which is in contrast to many other hop-constrained network design
problems. Hence, the main question addressed by the present article is how to derive an ILP formulation
in the natural space of edge-variables that relies on strong and (ideally) facet defining inequalities. We
show that this can be done by considering a new family of facet defining circular-jump inequalities which
are specific for the DMSTP. They imply the jump inequalities, and define facets of the underlying polytope
under mild conditions. So-called generalized-circular-jump inequalities are introduced in Section 3 for which
we also give conditions under which they are facet defining. In Section 4, we then show how the previously
introduced inequalities can be combined with a cutset inequality, resulting in a new valid and (in most cases)
facet defining inequality. In Section 5 we study packing-type inequalities that provide an alternative way
to define a natural space formulation for the DMSTP. Section 6 contains a theoretical comparison of the
circular-jump inequalities to the strongest formulation known from the literature. We show that they are
not implied by this layered graph formulation. Finally, conclusions are drawn in Section 7 where we also
discuss open questions that can be addressed in future research.

2 Circular-jump inequalities

In this section we first establish the dimension of the DMSTP polytope, and summarize necessary nota-
tion. We then recall the definition of jump inequalities [3], and show that, in contrast to many other
hop-constrained network design problems for which they are facet defining, this does not hold for the DM-
STP. In order to overcome this drawback, we introduce a new family of stronger circular-jump inequalities
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that ensure a valid ILP formulation in the space of edge-variables. We also provide conditions under which
these inequalities are facet defining.

Dimension of the polytope and notation Let P be the convex hull of all DMSTP feasible solutions,
i.e.,

P = conv{x ∈ {0, 1}|E| | x satisfies (2)− (4)}.

We first analyze the dimension of the DMSTP polytope, dim(P), given by the following theorem whose
proof is given in Appendix 1. Throughout this paper we assume that G is a complete graph.

Theorem 1. The following results hold:

1. For D = 2, dim(P) = n− 1.

2. For D ≥ 3, dim(P) = m− 1.

In the remainder of this article, we will consider different non-trivial partitions (J0, J1, . . . , JD+l) of the

node set V into D+ l+ 1, l ≥ 1, disjoint, nonempty subsets Ji, 0 ≤ i ≤ D+ l, i.e., V =
⋃D+l

i=0 Ji, Ji ∩Jj = ∅,
0 ≤ i < j ≤ D + l. For brevity we will also use notation [P, S] to refer to the set of edges between node sets
P, S ⊂ V , i.e., [P, S] = {{u, v} ∈ E | u ∈ P, v ∈ S}.

2.1 Jump inequalities

Jump inequalities were originally proposed by Dahl [3] in the context of the undirected hop constrained
shortest path problem. The so-called (s, t,D)-jump inequalities, used to model the constrained paths are
defined as follows: Let (J0, J1, . . . , JD+1), be a non-trivial partition of the node set V into D + 2 subsets
such that s ∈ J0 and t ∈ JD+1. The set of edges J =

⋃
0≤i<j−1≤D[Ji, Jj ] ⊂ E is a jump. The associated

jump inequality is x(J) ≥ 1. The explanation why these inequalities prevent paths with more than D edges,
is as follows (see, e.g., Dahl [3]): Suppose that there exists a solution such that it contains no edge of the
given jump J . Since the graph induced by this solution must be connected, there must exist a path starting
at a node in subset J0, passing through nodes from all subsets from J1 to JD and ending at a node in subset
JD+1. This path has length at least D + 1 and thus the solution cannot be feasible. The jump inequalities
can be adapted in a straightforward way to model constrained shortest paths in the context of the DMSTP.
Let U be the set of all possible jumps on G (regarding all possible partitions into D+ 2 nonempty subsets),
then the jump constraints for the DMSTP are defined as follows:

x(J) ≥ 1, J ∈ U . (J)

We obtain a valid formulation for the DMSTP by using these inequalities in place of FD in the generic
description (1)-(5) given above. Note that it is sufficient to consider only those jumps where |J0| = |JD+1| = 1
and that those jumps dominate the remaining ones. For the undirected shortest path problem with at most
D edges, jump inequalities can be facet defining (see, Dahl [3]). As we shall show in the next section, this
is not the case for the DMSTP.

2.2 Circular-jump inequalities

Let (J0, J1, . . . , JD+1) be a non-trivial partition of V as described above. Then, CJ =
⋃

0≤i<j−1≤D[Ji, Jj ] \
[J0, JD+1] is a circular jump. Note that the difference between a circular jump CJ and a jump J is that the
former one does not contain the edges connecting the first set with the last one. Observe that, e.g., the circular
jumps defined by the partitions (J0, J1, . . . , JD+1), (J1, J2, . . . , JD+1, J0), . . . , (JD, JD+1, J0, . . . , JD−1), as
well as (J0, JD+1, JD, . . . , J1) are identical. Thus, while in a jump we have ordered subsets with a given
first subset and a given last subset, in a circular jump there is no first set neither last set and thus, the
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J0 J1 J2 J3 J4 J5

Figure 1: Circular jump CJ for a given partition (J0, J1, . . . , J5). D = 4.

designation. Figure 1 illustrates the set of edges of a circular jump for a graph with n ≥ 6 and D = 4. Let
J be the set of all circular jumps, then the corresponding circular-jump constraints are defined as follows:

x(CJ ) ≥ 1, CJ ∈ J . (cJ)

Note, that based on the previous observation when comparing a jump inequality with a circular-jump
inequality, it is clear that each jump inequality (J) is dominated by a circular-jump inequality (cJ) obtained
from the same partition. Note also that a circular-jump inequality, dominates several jump inequalities (by
choosing any subset of the circular jump to be the first set of the jump inequality and keeping the same
order for the remaining subsets).

Proposition 1. Circular-jump inequalities (cJ) are valid for the DMSTP polytope P.

Proof. Circular-jump inequalities obviously forbid paths with more than D edges. To show that these
inequalities do not cut off feasible solutions, let us assume the opposite, i.e., there exists a feasible solution
T that violates one (cJ) inequality which is specified by a partition (J̃0, J̃1, . . . , J̃D+1). Since we have seen
that jump inequalities are valid, this (cJ) inequality is violated because an edge {i0, iD+1} with i0 ∈ J̃0 and
iD+1 ∈ J̃D+1 belongs to the solution. However, since the graph induced by the solution must be connected,
there exists k, 0 < k < D+ 1 such that there is a path from node i0 to a node ik, passing though all subsets
J̃0 to J̃k and a path from node iD+1 to a node ik+1, passing through subsets J̃D+1, J̃D, J̃D−1, . . . , J̃k+1.
Since no jump edges belong to this solution, the length of this path is ≥ D + 1 and hence the solution T is
infeasible, which is a contradiction.

Hence, we obtain another valid formulation for the DMSTP by using the inequalities (cJ) in place of FD

in the generic description (1)-(5) given above. The validity of the circular-jump inequalities for the DMSTP
depends on the fact that the underlying solution is a spanning tree. Contrary to the jump inequalities (J),
they are not valid for other related problems with hop constraints such as, e.g., the hop constrained shortest
path problem. Also in contrast to the jump inequalities (J) the circular-jump inequalities (cJ) define facets
of P for D ≥ 4. Before proving this result, we observe that the DMSTP can be solved in polynomial time
for D = 2, 3. In case of D = 2, all feasible solutions are stars, and the following result characterizes the
circular-jump inequalities that are facet defining.

Theorem 2. For D = 2, circular-jump inequalities define facets of P if and only if at most one set of the
partition contains more than one node.

Proof. See Appendix 2.

In the rest of the paper we will concentrate on the more general case, when D ≥ 3. The proofs of the
following two results are given in Appendix 2.
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Theorem 3. For D = 3, circular-jump inequalities (cJ) define facets of P if two consecutive sets of the
partition contain exactly one node.

Theorem 4. For D ≥ 4, circular-jump inequalities (cJ) define facets of P.

Before showing how to generalize these inequalities (see next sections), we observe that from a given
infeasible solution we may derive several violated (cJ) inequalities. Consider a spanning tree solution with
at least one path being too long and for the moment let us assume that the length of this path is D+ 1. The
D+2 nodes of this path determine the “seeds” of the D+2 subsets in the partition defining a circular jump.
There are two intuitive strategies for assigning the remaining nodes to the subsets of the partition that have
been called path and layered approach in the context of classical jump constraints in the literature [5]. One
strategy is to assign all nodes of a subtree rooted at a seed node to the subset seeded by that node. The other
is to pick one extreme node of the path as a root of a tree that is directed away from that node. Then, the
distance of each node to the root will define its partition subset. Typically, the longest path of an infeasible
solution will be much longer than D + 1. In Section 3 we propose a more general class of circular-jump
inequalities that considers more than D+ 1 subsets (and thus allow to assign nodes of infeasible paths with
length strictly greater than D + 1 to different subsets). This generalization is based on ideas proposed by
Dahl and Gouveia [4] for generalizing the jump constraints for the hop-constrained shortest path problem.
In Section 4 we introduce further generalizations that can be viewed as combining a cutset inequality with
(generalized) circular-jump inequalities defined on a subset of nodes.

3 Generalized-circular-jump inequalities

In this section we introduce the family of generalized circular jumps that can be seen as a generalization of
circular jumps, for the case that the number of sets in a partition is larger than D + 2. Each generalized-
circular-jump inequality may have edge coefficients greater than one and inequalities defined by k + 1 sets
can be obtained through Chvátal-Gomory rounding from inequalities defined by k sets (and in particular,
inequalities with D+ 3 sets can be obtained from (cJ)). We show that generalized-circular-jump inequalities
are also facets of the DMSTP polytope. For k ∈ N, let P = (J0, J1, . . . , JD+k) be a non-trivial partition of
the node set V . Let, furthermore

C`(P ) =

D+k⋃
i=0

[Ji, J(i+`+1) mod (D+k+1)].

for each ` ∈ {1, . . . , k − 1} denote the set of edges that jump over exactly ` consecutive sets of the partition
and

Ck(P ) =

 ⋃
0≤i<j−1≤D+k−1

[Ji, Jj ]

 \ k−1⋃
`′=1

C`′(P )

be the set of edges that jump over at least k sets. Denoting by J k the set of non-trivial partitions of V into
D + k + 1 sets, the family of generalized-circular-jump inequalities (gcJ) is given as

k∑
`=1

` · x(C`(P )) ≥ k, P ∈ J k, k ∈ {1, 2, . . . , D − 1}. (gcJ)

We will use notation k-(gcJ) to refer to the subset of all (gcJ) for a particular k ∈ {1, 2, . . . , D − 1}.
Clearly, for k = 1, we obtain the standard circular-jump inequality (cJ). To give some intuition on these
inequalities, consider such an inequality with D+ 3 subsets (i.e., with k = 2). The inequality states that any
feasible solution needs to use at least one edge that jumps over two subsets or at least two edges that jump
over exactly one subset. In the general case (with right-hand side equal to any k such that 1 ≤ k ≤ D − 1)
any feasible solution has to use at least k edges that jump over exactly one subset (i.e., k edges from C1(P )),
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J0 J1 J2 J3 J4 J5 J6

Figure 2: Illustration of a generalized-circular-jump inequality for a given partition (J0, J1, . . . , J6), k = 2,
and D = 4. Solid edges above the partitions jump over at least two subsets (and thus the corresponding
variables have coefficients equal to two) while dashed edges below the partitions skip a single subset (and
the corresponding variables have coefficients of one).

or at least one edge that jumps over at least k subsets (i.e., an edge from Ck(P )), or a combination of edges
from ∪k−1`=1 C`(P ) so that in total at least k subsets are jumped over.

Figure 2 illustrates a generalized-circular-jump inequality for D = 4 and k = 2 which is formally given
as:

x(J0, J2) + 2x(J0, J3) +2x(J0, J4) + x(J0, J5)

+ x(J1, J3) +2x(J1, J4) + 2x(J1, J5) +x(J1, J6)

+x(J2, J4) + 2x(J2, J5) +2x(J2, J6)

+ x(J3, J5) +2x(J3, J6)

+x(J4, J6) ≥ 2.

As shown in the proof of the following result, the validity of generalized-circular-jump inequalities follows
from a Chvátal-Gomory rounding argument:

Proposition 2. Generalized-circular-jump inequalities (gcJ) are valid for the DMSTP polytope P.

Proof. We will prove the theorem by induction using the fact that inequalities (gcJ) are the standard circular-
jump inequalities when k = 1 as the induction starting step. Assuming that the inequalities are valid for k−1,
we will use a Chvátal-Gomory rounding argument to prove their validity for k. Let P = (J0, J1, . . . JD+k)
be the partition associated to a k-(gcJ). To derive the corresponding inequality, we consider D + k + 1
generalized-circular-jump inequalities with right-hand side equal to k − 1 associated with the following
partitions:

P1 = {J0 ∪ J1, J2, . . . JD+k}

P2 = {J0, J1 ∪ J2, J3, . . . JD+k}

. . .

PD+k = {J0, . . . , JD+k−2, JD+k−1 ∪ JD+k}

PD+k+1 = {J1, . . . , JD+k−1, JD+k ∪ J0}

Consider an edge e ∈ C`(P ). As will be shown in the following, the coefficient obtained from summing
over all D + k + 1 inequalities corresponding to partitions P1, . . . , PD+k+1 is given by

ξ` =

{
`(D + k)− 1 if ` < k,

(k − 1)(D + k + 1) if ` ≥ k.
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In the following, without loss of generality (due to circularity) we assume that e = {u, v} with u ∈ J0
and v ∈ J`+1.

For ` < k we observe that the coefficient associated to edge e is equal to ` − 1 for the inequalities
corresponding to the ` + 1 partitions P1, . . . , P`+1 and equal to ` for the inequalities associated to the
remaining D+k−` partitions P`+2, . . . , PD+k+1. Overall, we obtain (`−1)(`+1)+`·(D+k−`) = `(D+k)−1.
For ` ≥ k, the coefficient associated to edge e is equal to k−1 for the inequalities corresponding to all D+k+1
partition, also giving the claimed overall value of (k − 1)(D + k + 1).

Since the smallest coefficient is ξ1 = D + k − 1, we obtain⌈
ξ`

ξ1 + 1

⌉
=

{
` if ` < k,

k otherwise.

Finally, since the obtained right-hand side is (D + k + 1)(k − 1) we obtain the k-(gcJ) by dividing through
ξ1 + 1 and rounding up all coefficients on the left- and right-hand side, respectively.

Not only are the generalized-circular-jump inequalities valid for the DMSTP, they also define facets of
the underlying polytope. The proof of the following result can be found in Appendix 3.

Theorem 5. For D ≥ 4 and 1 ≤ k ≤ D− 2, generalized-circular-jump inequalities (gcJ) define facets of P.

4 Cut-jump inequalities

In this section, we derive new families of inequalities by associating nodes of an infeasible path of length
strictly greater than D to a (generalized) circular jump on a subset of nodes (in contrast to the complete
set of nodes), and combining them with the remaining nodes using a cutset. In these constraints, notation
x(R,S), R,S ⊆ V , stands for

∑
e∈[R,S] xe.

Proposition 3. For 1 ≤ k ≤ D − 1 let (R,S) be a non-trivial partition of the set of nodes V such that
|R| ≥ D + k + 1. Let, furthermore P = (J0, J1, . . . , JD+k) be a non-trivial partition of R into D + k + 1
sets, C`(P ), 1 ≤ ` < k, be the edge set jumping over exactly ` sets from P , Ck(P ) be the edge set jumping
over at least k sets from P , and J k(R) be the set of all such partitions of R. Then, the following cut
generalized-circular-jump inequalities

k∑
`=1

` · x(C`(P ))+kx(R,S) + kx(E(S)) ≥ k · (|S|+ 1) ,

R ⊂ V, |R| ≥ D + k + 1, S = V \R,P ∈ J k(R) (cgcJ)

are valid for the DMSTP polytope P.

Proof. To see the validity of these constraints assume that x(E(S)) = q (observe that q ≤ |S| − 1). Hence,
the subgraph induced by S is composed of |S|− q (connected) components. Each of these components needs
to be connected to R, that is x(R,S) ≥ |S| − q. If x(R,S) > |S| − q then the inequality is obviously valid.

If x(R,S) = |S| − q, then
∑k

`=1 `x(C`(P )) ≥ k must be satisfied (otherwise we will have an infeasible path
in the partition defined by R).

Theorem 6. For 4 ≤ D ≤ n − k − 2 and 1 ≤ k ≤ D − 3, cut generalized-circular-jump inequalities (cgcJ)
define facets of P.

Proof. See Appendix 4.
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5 Rounded circuit packing inequalities

For many network design problems there are two equivalent ways of expressing natural space formulations.
Either by using so-called cut inequalities that in some sense guarantee connectivity of the solutions or by
using so-called packing inequalities stating that feasible solutions cannot have more than a certain number
of edges in given subsets. One example of this is given by formulations for the spanning tree problem (see,
e.g., [15]) and the Steiner tree problem (see, e.g., [10]). Several routing problems can also be modeled in
these two ways such as, e.g., the well-known traveling salesman problem [8]. Usually, the two approaches
are shown to be equivalent (or more, precisely, to lead to formulations with equivalent LP relaxations) since
one model can be transformed into the other by using equalities that are included in the models. Up to
now, the inequalities that have been discussed for modeling “path length constraints” in the DMSTP are
cut-type inequalities. In this section, we briefly discuss a set of packing-type inequalities. These circuit
packing inequalities are given as

x(C) ≤ |C| −
⌈
|C|
D

⌉
, for all cycles C ⊂ E,D + 2 ≤ |C| ≤ |V |. (6)

We will show that using them in place of FD yields a valid DMSTP formulation and that they are related,
via equality (3), to some of the inequalities that have been discussed before.

Circuit packing constraints (6) state that for any cycle C ⊂ E with at least D + 2 edges, the number
of edges in any feasible solution is bounded from above by |C| − d|C|/De. A similar set of inequalities is
presented in Gouveia [11] for the directed hop-constrained minimum spanning tree problem (see also [17]).
Proposition 4 shows that circuit packing inequalities associated to cycles of length D + 2 are equivalent to
some of the inequalities studied in the previous section. This result will be used to show the validity of
circuit packing constraints in the general case, cf. Proposition 5. Notice, that the first part of the proof
of Proposition 5 also implies that (for complete input graphs) it suffices to consider the circuit packing
constraints associated to cycles of length D+ 2 in place of FD in order to obtain a valid formulation for the
DMSTP.

Proposition 4. Let C be a cycle in G of length D+2 such that C = {{i, i+1} mod (D+2), 0 ≤ i ≤ D+1}.
Then, a rounded circuit packing inequality induced by C corresponds to:

1. a circular-jump constraint (cJ), if |V | = D + 2.

2. a cut generalized-circular-jump constraint (cgcJ) with k = 1, if |V | > D + 2.

Proof.

1. Let V = {0, . . . , D + 1} and let CJ be the circular-jump corresponding to the partition
({0}, {1}, . . . , {D + 1}) in which each set is a single node from V following the ordering of nodes
from C. By subtracting the rounded circuit packing inequality implied by C from x(E) = |V | − 1, we
obtain a circular-jump constraint x(E)− x(C) = x(CJ ) ≥ 1.

2. For k = 1, let P = ({0}, {1}, . . . , {D + 1}) be the partition of node set R = {0, 1, . . . , D + 1} and
S = V \ R. We observe that using the same transformation as above we obtain a cut generalized-
circular-jump constraint x(E)− x(C) = x(C1(P )) + x(E(S)) + x(R,S) ≥ 1 + |S|.

Proposition 5. Replacing x ∈ FD in the generic formulation (2)–(5) by (6) gives a valid model for the
DMSTP.

Proof. We first show, that any infeasible solution is cut off by the given inequalities. Assume that there
exists an integer solution feasible to the generic model with constraints (6) instead of (4), such that, without
loss of generality, it contains a path of length D + 1. Let VC be the set of nodes of this path. Obviously
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|VC | = D + 2. By joining the first and the last node of the path with an edge, we obtain a cycle C (this is
possible, since G is complete), and for this cycle, we notice that (6) is violated. The value of the left-hand
side equals D+ 1, while the value of the right-hand side is strictly less than D+ 1, which is a contradiction.

It remains to show that inequalities (6) are valid for the DMSTP polytope P. This result will be shown by
induction over |C| using the result from Proposition 4 as start. Thus, assume that circuit-packing inequalities
are valid for all cycles of length at most |C|. Further assume, that there exists a spanning tree T = (V,ET)
of diameter at most D that violates a circuit packing inequality for a cycle C ′ ⊂ E of length |C ′| = |C|+ 1.
Thus, x(C ′) ≥ 1 + |C ′| − d|C ′|/De.

First assume that there exists some l ∈ N such that |C ′| = lD+1 and notice that l ≥ 2 since |C ′| ≥ D+2
holds by definition of (6). Then, the right-hand sides of the circuit packing constraints (6) for C ′ and for a
cycle C of length |C| = |C ′| − 1 are identical. Thus, x(C ′) ≥ 1 + |C| − d|C|/De = 1 + l(D − 1). Therefore,
|C ′| − x(C ′) ≤ lD + 1 − (lD + 1 − l) = l, i.e., at most l edges of C ′ at not in T . If no path of T that lies
on C ′ has length greater than D, this is only possible if C ′ ∩ ET contains a path of length D and at least
one path of length at least D− 1. Any spanning tree containing two such paths would, however, violate the
diameter limit as connecting two such paths would always induce a path of length at least D + 1.

Hence, l ∈ N such that |C ′| = lD + 1 cannot exist which implies that the right hand sides of the
circuit packing constraints (6) associated to C ′ and a cycle containing one edge less differ by one. Let C ′ =
{{u0, u1}, {u1, u2}, . . . , {uk, u0}} and for each ui, 0 ≤ i ≤ k, C̃[ui] be the cycle of length |C ′|−1 obtained from
C ′ after removing the two edges adjacent to ui and adding the edge {ui−1, ui+1} (with appropriate modulo
calculations for indexes if i = 0 or i = k). Thus, we have x(C ′) ≥ 1+|C ′|−d|C ′|/De = 2+|C̃[ui]|−d|C̃[ui]|/De
and x(C̃[ui] \ {ui−1, ui+1}) ≤ x(C̃[ui]) ≤ |C̃[ui]| − d|C̃[ui]|/De since inequalities (6) hold by assumption for
all cycles shorter than C ′. These two inequalities imply xui−1,ui

+xui,ui+1
≥ 2, i.e., both edges of C ′ adjacent

to ui must be included in T . Repeating this calculation for each node ui, 0 ≤ i ≤ k on C ′ implies that all
edges of C ′ must be included in T which contradicts the fact that T is a spanning tree of G.

6 Theoretical comparison to the layered graph approach

As noted before, the most efficient method for solving the DMSTP is still the one given in Gouveia et al.
[12]. The underlying formulation models hop-constraints with layered graphs which we briefly recall next.
For simplicity, we discuss only the case for D even. Essentially Gouveia et al. [12] used the fact that the
DMSTP can be modeled as a special hop-constrained minimum spanning tree problem, where the root of the
tree is appropriately selected and showed that the DMSTP can be reformulated as a Steiner arborescence
problem with few additional constraints on an appropriately defined layered graph which implicitly ensures
that the diameter of a solution is at most D. For the case of D even, this graph GL = (VL, AL) is defined as
VL = {r} ∪ {ih | i ∈ V, 0 ≤ h ≤ D/2} and AL = {(ih, jh+1) | {i, j} ∈ E, 0 ≤ h ≤ D/2− 1} ∪ {(r, i0) | i ∈ V }.
Using arc decision variables aij ∈ {0, 1}, for all (i, j) ∈ A = {(i, j) | {i, j} ∈ E}, and layered arc design
variables Xh

ij ∈ {0, 1}, for all (ih−1, jh) ∈ AL, the layered-graph formulation for the DMSTP is given by

(7)–(12) where X[M ], M ⊆ AL, stands for
∑

(ih−1,jh)∈M Xh
ij .

min
∑

(i,j)∈A

cijaij (7)

s.t. X[δ−(W )] ≥ 1 ∀W ⊂ VL \ {r},∃i ∈ V : {ih | 0 ≤ h ≤ D/2} ⊆W (8)

X[δ+(r)] = 1 (9)

D/2∑
h=0

X[δ−(ih)] = 1 ∀i ∈ V (10)

aij =

D/2−1∑
h=1

Xh
ij ∀(i, j) ∈ A (11)

9



X ≥ 0, a ∈ {0, 1}|A| (12)

This model has been shown to theoretically dominate all previously proposed ones. A branch-and-cut
algorithm developed from this model is the current state-of-the-art for solving DMSTP instances to proven
optimality. Although the linear programming relaxation of (7)–(12) is integral for most of the instances
considered in [12], we show in the following that it does not imply most of the inequalities introduced in this
article.

Let vLP (LG) denote the value of the LP-relaxation of the layered graph model, and let vLP (CJ ) be the
value of the LP-relaxation of the model defined by the tree constraints (2) and (3) and the circular-jump
inequalities (cJ). The following result shows that the lower bound of the layered graph model can be as
worse as 1/2 of the bound obtained by our model involving only circular-jump inequalities.

Proposition 6. There exists DMSTP instances such that

vLP (LG)

vLP (CJ )
≤ 1

2
.

Proof. Consider a complete graph with node set V = {0, 1, . . . , 7} with edge costs cij = 0 for all 0 ≤ i ≤ 7
and j = (i + 1) mod 7, c04 = M and ce = ∞ for all the remaining edges. For D = 6 and a sufficiently
large M ∈ N, the optimal LP-solution of the layered graph model is given in Figure 3(b) and its value is
vLP (LG) = 6.5 · 0 + M/2 = M/2. Projected back in the space of x variables, this fractional solution is
shown in Figure 3(a). Let CJ be the circular jump obtained from the partition {{0}, {1}, . . . , {7}}. Then
this solution violates the corresponding circular-jump inequality since x(CJ) = 0.5 < 1. The optimal LP-
solution of the ILP model derived from the circular-jump inequalities is vLP (CJ ) = 6 · 0 + M = M , so we

obtain vLP (LG)
vLP (CJ) = 1

2 .

21
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5
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0

7

(a)

03
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23
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32
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50

63

61

73

72

r

(b)

J0 J1 J2 J3 J4 J5 J6 J7

0 1 2 3 4 5 6 7

(c)

Figure 3: (a) Optimal LP-solution of the layered graph model for D = 6 (projected back into the space of x
variables). (b) Optimal LP-solution of the layered graph model for this instance. (c) Partition showing that
this solution violates the circular jump constraints. Recall, that the edge {0, 7} between the first and the
last partition J0 and J7, respectively, is not contained in the circular jump. Dashed edges (arcs) indicate LP
values of 0.5, solid edges (arcs) of 1.

Let projx(P(LG)) be the polytope of the LP-relaxation of the layered graph formulation projected to the
natural space of undirected edge design variables. We conclude that projx(P(LG)) may contain solutions that
violate some of the inequalities introduced in this article. On the other hand, computational experiments
showed that it is not too difficult to find exemplary solutions that satisfy all natural space inequalities
proposed in this article, but are not contained in projx(P(LG)). Thus, neither of the associated polytopes
is contained in the other.
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7 Conclusions

In this article, we performed the first study of natural space formulations for the diameter constrained
minimum spanning tree problem (DMSTP) which use variables associated to undirected edges only. We
proposed different classes of inequalities generalizing the concept of jump inequalities [3], which have been
used in the literature for other problems with hop constraints. For most of the new inequalities, we showed
that they define facets of the DMSTP polytope under very mild conditions. Validity of (generalized) circular-
jump inequalities relies on the fact that the underlying problem is a spanning tree. In contrast, the idea
that led to cut-jump inequalities (i.e., jumps on subsets of nodes) does not rely on this fact. Thus, it can
possibly be used to define generalizations of the jump inequalities (instead of (generalized-) circular-jump
inequalities) for other problems as well. We believe, that the resulting “cut-jump” inequalities are worth to
be analyzed for other network design problems with length constraints. We also show that circular-jump
inequalities are not implied by current state-of-the-art ILP model based on a layered graph reformulation
[12].

This work lays down foundations for some future investigations including: i) The identification of addi-
tional valid inequalities in the natural space and their relevance for obtaining tight LP relaxation bounds;
ii) The development of efficient (heuristic) separation routines for the proposed inequalities in order to make
a corresponding branch-and-cut approach applicable to very large scale instances which cannot be treated
by the layered graph approach; iii) Derivation of a compact (layered graph?) reformulation that implies the
inequalities studied in this work. We are particularly interested in finding a compact model whose linear
programming relaxation implies the circular-jump constraints. Recall that a compact model that contains
standard s-t-jump inequalities is known from the literature [6, 12]. An appropriate mixed integer linear
programming formulation which contains jump-constraints for the DMSTP is obtained by the intersection of
hop constrained spanning trees, each with a root on a different node and such that distance from any node
to the root node is at most D (we skip this part here but refer the reader to Dahl et al. [6] and Gouveia et al.
[12] for further details). While we can show that the strongest such model does not imply the circular-jump
constraints, our attempts to provide a “similar” model implying the circular-jump constraints have failed.
iv) A better understanding of the projection of layered graph models to the natural space of design variables
(which applies to any problem that is modeled in this way, not only the DMSTP).
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Appendix 1: Dimension proofs

Proof of Theorem 1

We first show that dim(P) = n − 1 if D = 2. Recall that the set of feasible solutions to the DMSTP with
D = 2 is given by the n “stars” Si = (V,Ei) with Ei = {{i, j} | ∀j ∈ V \ {i}}, for all i ∈ V . By looking at
the matrix in which each of the incidence vectors represents its row, we easily observe that this matrix has
a full rank, which is n.
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To show that dim(P) = m− 1 holds for D ≥ 3, we first note that the dimension of the DMSTP polytope
cannot be larger than m−1 since all feasible solutions satisfy equation (3). To show that the dimension is at
least m− 1 we construct a set Ψ of m =

(
n
2

)
solutions whose edge-incidence vectors are affinely independent.

For i, j ∈ V , i < j, let Sk
i,j = (V,Ek \ {k, i}∪{i, j}), Ek = {{k, i} | ∀i ∈ V \ {k}} be the graph obtained from

the star Sk = (V,Ek) after attaching node i to node j instead of node k. Note that each graph Sk
i,j is a feasible

solution since its diameter is precisely three. To simplify notation, we will also use Si, i = 1, 2, . . . , n−1, and
Sk
k+1,j , k = 1, . . . , n − 2, to refer to the incidence vectors of the corresponding solutions. In the following,

we will also use notation (S)ij to refer to the entry of a vector S associated to edge {i, j} ∈ E.
For a complete graph with n nodes, we consider set Ψ consisting of stars Si, i = 1, 2, . . . , n − 1, and

solutions Sk
k+1,j , k = 1, . . . , n − 2, j = k + 2, . . . , n, see Table 1 for an illustration. Notice that |Ψ| =

(n−1)+
∑n−1

i=2 (n−i) =
∑n−1

i=1 i =
(
n
2

)
= m. We will prove that them−1 vectors in T = {S−S1 | S ∈ Ψ\{S1}}

illustrated in Table 2 are linearly independent. The latter result implies that the m incidence vectors in the
set Ψ are affinely independent and thus that dim(P) = m− 1 if D ≥ 3.

For k ∈ {1, 2, . . . , n−2}, define Tk ⊆ T as Tk = {(Si
i+1,j−S1) | i = 1, . . . , k, j = i+2, . . . , n}∪{(Si−S1) |

i = 2, . . . , k + 1}. From Table 2 it is easy to observe that the set of vectors in T 1 = {S1
2,i − S1 | i =

3, . . . , n} ∪ {S2 − S1} is linearly independent. We will show that linear independence of the vectors in Tk−1,
k ∈ {2, . . . , n− 2} implies linear independence of the vectors in Tk. Since Tn−2 = T , linear independence of
all vectors in T follows.

Assume that the vectors in Tk−1, k ∈ {2, . . . , n − 2} are linearly independent and consider the set of
vectors Tk = Tk−1 ∪ {Sk

k+1,j − S1 | j = k+ 1, . . . , n} ∪ {Sk+1 − S1}. We observe that (Sk
k+1,j − S1)k+1,j = 1

for each j ∈ {k + 2, . . . , n} while (S)k+1,j = 0 holds for all S ∈ Tk \ {(Sk
k+1,j − S1, Sk+1 − S1)}. Thus linear

independence of Tk−1 implies linear independence of Tk \ {Sk+1 − S1}.
It remains to show that (Sk+1−S1) cannot be expressed as a linear combination of the remaining vectors

in T k. To see that this is impossible, we focus on the entries of all vectors in T k associated to edges {1, k+1}
and {1, n} and observe that (S)1,k+1 = (S)1,n for all S ∈ T k \ {(Sk+1 − S1)}. Thus, the entries associated
to these two edges in any linear combination of vectors from T k \ {(Sk+1 − S1)} must be identical. Since
(Sk+1−S1)1,k+1 = 0 and (Sk+1−S1)1,n = −1 we conclude that it (Sk+1−S1) cannot be expressed as linear
combination of the remaining vectors from T k and, thus, that T k is linearly independent.
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J0 J1 J2 J3 JD JD+1

v0 v3 vD

Figure 4: Solution T 0,D.

Appendix 2: Facet proofs for circular-jump inequalities

Given a circular jump determined by a partition (J0, . . . , JD+1), to simplify the notation and avoid case
distinction, we refer to subsets Ji of a given jump for any i ∈ Z implicitly assuming an appropriate modulo
calculation i mod (D + 2) whenever i < 0 or i > D + 1. In general, for a partition (J0, . . . , Jp), when we
state Ji, we refer to Ji mod (p+1). Furthermore, for vi ∈ Ji, 0 ≤ i ≤ D + 1, we introduce the following
notation:

• I(vi) = {{vi, j} | j ∈ Ji, j 6= vi}, vi ∈ Ji, i.e., I(vi) is the edge set of a star containing all nodes of Ji
with center vi (“in-edges”)

• B(vi) = {{j, vi} | j ∈ Ji−1}, vi ∈ Ji, i.e., B(vi) is a set of edges connecting all nodes from Ji−1 to one
particular node vi from Ji. (“back-edges”)

• F (vi) = {{vi, j} | j ∈ Ji+1}, vi ∈ Ji, i.e., F (vi) is a set of edges connecting all nodes from Ji+1 to one
particular node vi from Ji (“forward-edges”)

Similarly, let I(Ji) =
⋃

vi∈Ji
I(vi) be all inner edges of Ji, for 0 ≤ i ≤ D + 1, and notice that edges

between two consecutive subsets Ji and Ji+1 can be represented as [Ji, Ji+1] = B(Ji+1) = F (Ji) where
B(Ji) =

⋃
vi∈Ji

B(vi) and F (Ji) =
⋃

vi∈Ji
F (vi).

Let vi ∈ Ji, 0 ≤ i ≤ D + 1, be an arbitrarily chosen node, and CJ be a given circular jump determined
by a partition (J0, . . . , JD+1). Let T p,q denote a feasible solution using exactly one jump edge {vp, vq} ∈ CJ
where q− p ≥ 2, p, q ∈ {0, . . . , D+ 1}. For example, Figure 4 illustrates a solution T 0,D that contains edges
from I(v0) ∪ F (v0) ∪ B(v3) ∪ F (vD), a path {v3, v4}, . . . , {vD−1, vD} and sets I(vi), i.e., stars centered at
each vi, i = 3, . . . , D.

Proof of Theorem 2

First note that since for D = 2 we have dim(P) = n − 1, and each feasible solution is a star, the face F
corresponding to a circular-jump inequality must contain the incidence vectors of all but one feasible solutions
to be a facet. We now show that each inequality such that all but one sets in the partition are singletons
is facet defining. Without loss of generality assume that (J0, J1, J2, J3) = ({1}, {2}, {3}, {4, . . . , n}). Then,
the corresponding circular-jump inequality is given by

x(CJ ) = x13 +

n∑
i=4

x2i ≥ 1 (13)

We observe that the support of (13) contains n − 3 edges incident to node 2 and one edge incident to any
other node i ∈ V \ {2}. Hence, each star centered at a node i 6= 2 is a feasible DMSTP solution that
satisfies (13) with equality. Thus, we have dim(P) = n− 1 affinely independent points.
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To show the converse, assume that at least two sets of partition (J0, J1, J2, J3) contain two or more
nodes. Without loss of generality (due to circularity), we assume that J3 is one of them and Ji (for some
i ∈ {0, 1, 2}) is the second one. Then, the number of edges incident to a node j ∈ J1 that are in the support
of the corresponding circular-jump inequality is at least two and thus all points corresponding to graphs with
center node j ∈ J1 cannot be contained in F . Thus, the inequality can only define a facet if |J1| = 1 holds.
Thus, J0 or J2 contains at least two nodes and there must exist a node v with two or more incident edges
that are in the support of the corresponding circular-jump inequality. Thus, all points corresponding to such
graphs cannot lie on F . Using a similar line of argument, we obtain that J0 and J1 must be singletons,
which contradicts our initial assumption.

Proof of Theorem 3

We now show that for D = 3, circular-jump inequalities define facets of P if two consecutive sets of the
partition contain exactly one node. Without loss of generality, we assume that J0 = {v0} and J4 = {v4} are
two consecutive subsets that contain only a single node. Let H(CJ ) = {x ∈ P | x(CJ ) = 1} and assume
that H(CJ ) ⊆ G where G is the proper face of P containing all the points x ∈ P that satisfy the equality∑

e∈CJ

αexe +
∑
e 6∈CJ

βexe = ξ. (14)

We will show that (14) is necessarily a linear combination of x(CJ ) = 1 and the equation x(E) = n − 1
which implies that the considered circular-jump inequality defining the proper face H(CJ ) is facet defining
(cf. Theorem 3.6 in [16]).

For ᾱ ∈ R and β̄ ∈ R, our proof builds upon the following four results that will be shown below:

• Step 1: βu,v = β̄, for all {u, v} ∈ I(J1) ∪ I(J2) ∪ [J1, J2]

• Step 2: βu,v = β̄, for all {u, v} ∈ [J2, J3] ∪ I(J3)

• Step 3: βu,v = β̄, for all {u, v} ∈ [J0, J1] ∪ [J3, J4] ∪ [J0, J4]

• Step 4: αu,v = ᾱ, for all {u, v} ∈ CJ .

Thus, evaluating the left-hand side of (14) at any incidence vector of a solution contained in H(CJ )
yields ξ = ᾱ+ (n− 2)β̄. Finally, the desired linear combination of x(CJ ) = 1 and x(E) = n− 1 is obtained
by multiplying these two equations with ᾱ − β̄ and β̄, respectively, and summing them up to obtain the
equality (14).

Step 1: Let βv1,v2 = β̄ for some β̄ ∈ R. If |J1| = |J2| = 1 the claim holds since {v1, v2} = I(J1) ∪
I(J2) ∪ [J1, J2].
Thus, assume |J1| > 1 or |J2| > 1. If |J2| > 1, we consider the solutions T 2,4 shown in Figure 5 and T 2,4

u ,
u ∈ J2 \{v2}, obtained from T 2,4 by replacing edge {v2, u} by {v1, u}. The incidence vectors of T 2,4 and T 2,4

u

satisfy x(CJ ) = 1 and hence also equation (14). Combining the two equations obtained from (14), we obtain
βv2,u = βv1,u, for all u ∈ J2 \ {v2}. If |J1| > 1 we obtain βv1,w = βv2,w, for all w ∈ J1 \ {v1} in a similar way
by using solutions T 2,4

w , w ∈ J1 that are created from T 2,4 by replacing edge {v1, w} with {v2, w}.
These steps are repeated starting with initial solutions where different centers v′1 ∈ J1, v′1 6= v1, and

v′2 ∈ J2, v′2 6= v2, are chosen (if they exist, i.e., if the corresponding set has at least two nodes). Since,
by assumption, either |J1| > 1 or |J2| > 1, by using the fact that βv1,v2 = β̄, we obtain βu,v = β̄, for all
{u, v} ∈ I(J1) ∪ I(J2) ∪ [J1, J2].

Step 2: We first observe that βu,v = ρ, for all {u, v} ∈ [J2, J3] ∪ I(J3), can be shown using analogous
arguments as in Step 1 (initially starting with a solution where the roles of J0 and J4 as well as J1 and J3
are interchanged). Thus, if |J2| > 1, βu,v = β̄, for all {u, v} ∈ [J2, J3] ∪ I(J3) follows. Else, we obtain this
result after additionally showing that βv1,v2 = βv2,v3 . The latter follows from combining the two equations
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J0 J1 J2 J3 J4

v0 v1 v2 v3 v4

Figure 5: Solution T 2,4 with edge set E(T 2,4) = {{v0, v1}, {v1, v2}, {v2, v4}} ∪ I(v1) ∪ I(v2) ∪ F (v2).

J0 J1 J2 J3 J4

v0 v1 v2 v3 v4

Figure 6: Solution T 1,3 with edge set E(T 1,3) = {{v0, v1}, {v1, v2}, {v1, v3}, {v3, v4}} ∪ I(v1) ∪ I(v3).

obtained from equation (14) using the incidence vector of T 1,3 (see Figure 6) and the solution obtained from
T 1,3 by replacing edge {v1, v2} by {v2, v3}.

Step 3: To see that βuv = β̄, for all {u, v} ∈ [J0, J1], we consider the solution T 0,2 given in Figure 7
and observe that another feasible solution can be constructed from T 0,2 by replacing edge {v2, u} by {v0, u}
for all u ∈ J1. Since J0 = {v0} the result follows (from Step 1). Starting from a solution T 2,4 with jump edge
{v2, v4}, βuv = β̄, for all {u, v} ∈ [J3, J4], follows by analogous arguments. Finally, βv0,v4

= β̄ is obtained
by combining the two equations obtained from (14) using the incidence vectors of T 1,4 (see Figure 8) and
the solution obtained from T 1,4 by replacing edge {v0, v1} by {v0, v4} (both solutions are in H(CJ ) since
{v0, v4} is not a jump edge).

Step 4: We now show that the coefficients of all jump edges {u, v} ∈ CJ are identical, i.e., αu,v = ᾱ, for
all {u, v} ∈ CJ . Let αv0,v2

= ᾱ. Combining the equations obtained from (14) for the characteristic vectors of
T 0,2 and T 1,3, it follows that αv1,v3

= ᾱ. Replacing T 1,3 by T 2,4 or T 1,4, respectively, yields αv2,v4 = ᾱ and
αv1,v4 = ᾱ. By constructing a solution using jump edge {v0, v3} (which is easy) we also obtain αv0,v3 = ᾱ.
Finally, by varying the chosen center nodes in the different subsets, and repeating these steps we obtain
αuv = ᾱ, for all {u, v} ∈ CJ .

J0 J1 J2 J3 J4

v0 v1 v2 v3 v4

Figure 7: Solution T 0,2 with edge set E(T 0,2) = {{v0, v2}, {v0, v4}} ∪B(v2) ∪ I(v2) ∪ F (v2).
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J0 J1 J2 J3 J4

v0 v1 v2 v3 v4

Figure 8: Solution T 1,4 with edge set E(T 1,4) = {{v0, v1}, {v1, v4}} ∪ I(v1) ∪ F (v1) ∪B(v4).

Proof of Theorem 4

To see that circular-jump inequalities define facets of P for D ≥ 4, let H(CJ ) = {x ∈ P | x(CJ ) = 1} such
that H(CJ ) ⊆ G where G is the proper face of P containing all the points x ∈ P that satisfy the equality∑

e∈CJ

αexe +
∑
e6∈CJ

βexe = ξ. (15)

We will show that (15) is necessarily a linear combination of x(CJ ) = 1 and the equation x(E) = n − 1
which implies that the considered circular-jump inequality defining the proper face H(CJ ) is facet defining
(cf. Theorem 3.6 in [16]).

Our proof follows the following steps:

• Step 1: βu,v = νi, for all {u, v} ∈ I(Ji), 0 ≤ i ≤ D + 1

• Step 2: βu,v = νi, for all {u, v} ∈ [Ji−1, Ji], 0 ≤ i ≤ D + 1

• Step 3: νi−1 = νi, 0 ≤ i ≤ D + 1

• Step 4: αu,v = µ, for all {u, v} ∈ CJ

From Steps 1-4, we obtain that βu,v = ν, for all {u, v} ∈ E \CJ and αu,v = µ, for all {u, v} ∈ CJ . After
evaluating (15) at any incidence vector of a solution contained in H(CJ ), we obtain ξ = µ+(n−2)ν. Hence,
by multiplying x(CJ ) = 1 with µ− ν and x(E) = n− 1 with ν and summing up the resulting equations, we
obtain the desired linear combination to represent the equality (15).

Step 1: We show that βu,v = νi, for all {u, v} ∈ I(Ji), 0 ≤ i ≤ D + 1, whenever such edges exist, i.e., if
|Ji| > 1. We note, that if |I(Ji)| = 1, this claim obviously holds. Thus, let |I(Ji)| > 1 (that is |Ji| ≥ 3) and
consider the solution T i−4,i given in Figure 9 which is feasible and in H(CJ ) for any 0 ≤ i ≤ D+ 1. Now, let
k, l ∈ Ji, k 6= l, be two arbitrary nodes from Ji \ {vi}, and let T i−4,i

k,l be the solution in H(CJ ) obtained from

T i−4,i by replacing the edge {vi, l} by {k, l}. The incidence vectors of T i−4,i and T i−4,i
k,l satisfy x(CJ ) = 1

and hence also equation (15). After subtracting the two equations obtained from (15), we obtain βvi,l = βk,l,
for all k, l ∈ Ji \ {vi}, k 6= l.

Step 2: We first consider the case when |Ji| > 1. To see that βu,v = νi for all {u, v} ∈ [Ji−1, Ji], we again
consider the solution T i−4,i and observe that after replacing edge {vi, k} by {vi−1, k} for an arbitrary node
k ∈ Ji \ {vi} (which exists by assumption), we obtain another solution in H(CJ ). Using the two equations
obtained from (15), we obtain βvi−1,k = βvi,k = νi by using the result obtained in Step 1. Furthermore, by
changing the center of solution T i−4,i in set Ji−1 to l ∈ Ji−1 \ {vi−1} and by using the same arguments we
also obtain βl,k = βvi,k = νi, for all l ∈ Ji−1 \ {vi−1}.

In case |Ji| = 1, νi has not been defined in Step 1. Thus, we set βvi−1,vi = νi. Changing the center of
solution T i−4,i in set Ji−1 to l ∈ Ji−1 \ {vi−1} we obtain βl,vi = βvi−1,vi = νi, for all l ∈ Ji−1 \ {vi−1}.

Step 3: We show that νi−1 = νi if |Ji−1| > 1 by considering the solution T i−4,i and another solution in
H(CJ ) obtained by replacing edge {vi−1, k} by {vi, k} for an arbitrary node k ∈ Ji−1 \ {vi−1}. Using the
two equations obtained from (15), we obtain νi−1 = βvi−1,k = βvi,k = νi.
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Ji−D Ji−4 Ji−3 Ji−2 Ji−1 Ji Ji+1

vi−D vi−4 vi−3 vi−2 vi−1 vi vi+1

Figure 9: Solution T i−4,i with edge set E(T i−4,i) =
⋃i−4

j=i−D(I(vj) ∪ {{vj , vj+1}}) ∪ F (vi−4) ∪
{{vi−4, vi}, {vi−1, vi}} ∪B(vi−1) ∪ I(vi−1) ∪ I(vi) ∪ F (vi).

Ji−D+1 Ji−3 Ji−2 Ji−1 Ji Ji+1 Ji+2

vi−D+1 vi−3 vi−2 vi−1 vi vi+1 vi+2

Figure 10: Solution T i−2,i+1 with edge set E(T i−2,i+1) =
⋃i−2

j=i−D+2B(vj) ∪ I(vi−2) ∪
{{vi−2, vi+1}, {vi−1, vi}, {vi, vi+1}} ∪ I(vi) ∪ I(vi+1) ∪ F (vi+1).

For |Ji−1| = 1 we consider the solution T i−2,i+1 given in Figure 10 which is feasible and in H(CJ ) for
any D ≥ 4 and 0 ≤ i ≤ D + 1. Analogously to the previous steps, we can construct another solution in
H(CJ ) by replacing edge {vi−1, vi} by edge {vi−2, vi−1} to obtain νi = βvi−1,vi = βvi−2,vi−1

= νi−1.
Step 4: It finally remains to show that the coefficients of all jump edges are identical, i.e., αuv = µ, for

all {u, v} ∈ CJ . To show this, consider the set of solutions T̃ i,i+l (see Figure 11) showing that a solution in
H(CJ ) exists using a jump arc between Ji and Ji+l for each relevant values of i and l, i.e., 0 ≤ i ≤ D + 1,
2 ≤ l ≤ dD+1

2 e. Note that all cases with l > dD+1
2 e are included since they yield a jump over less than

dD+1
2 e sets due to circularity. By systematically comparing any two of these solutions for all possible values

of i and l and by doing this for all possible center nodes of subset Ji and Ji+l, respectively, we obtain the
desired result.

Ji−1 Ji Ji+1 Ji+l Ji+D

vi vi+l

Figure 11: Solution T̃ i,i+l, 2 ≤ l ≤ dD+1
2 e, with edge set E(T̃ i,i+l) = {{vi, vi+l} ∪ B(vi) ∪ I(vi) ∪ F (vi) ∪⋃i+l

j=i+3B(vj) ∪ I(vi+l) ∪
⋃i+D−1

j=i+l F (vj).
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Appendix 3: Facet proofs for generalized-circular-jump inequalities

Proof of Theorem 5

To see that generalized-circular-jump constraints define facets of P if D ≥ 4 and 1 ≤ k ≤ D − 2, let
P = (J0, J1, . . . , JD+k) be a non-trivial partition of V and let subsets C`(P ) ⊂ E be defined as above. Let

H(GCJ ) = {x ∈ P |
∑k

`=1 ` · x(C`(P )) = k} ⊆ G be the set of feasible points that satisfy this particular
generalized-circular-jump constraint with equality, where GCJ = ∪k`=1C`(P ) and G is the proper face of P
containing all the points x ∈ P that satisfy∑

e∈GCJ

αexe +
∑

e 6∈GCJ

βexe = ξ. (16)

We will show that (16) is necessarily a linear combination of
∑k

`=1 ` · x(C`(P )) = k and x(E) = n − 1
(cf. Theorem 3.6 in [16]).

By T i
k∗1, we denote a feasible solution that contains a chain of k consecutive jump edges from C1(P ),

starting from set Ji (see Figure 12). Similarly, T i
1∗`,(k−`)∗1 will denote a feasible solution with a chain of

jump edges starting at Ji such that the first jump edge is from C`(P ) (i.e., it jumps over ` subsets), and it
is followed by k − ` jump edges from C1(P ), see Figure 13.

Our proof follows the following steps:

• Step 1: βu,v = ν, for all {u, v} ∈ E \GCJ

• Step 2: αu,v = µ, for all {u, v} ∈ C1(P )

• Step 3: αu,v = ` · (µ− ν) + ν, for all {u, v} ∈ C`(P ), 2 ≤ ` ≤ k.

Finally, by evaluating a feasible solution from H(GCJ ) (that uses exactly one edge from Ck(P ) skipping
exactly k subsets and with n− 2 edges from E \GCJ ) in (16), we obtain ξ = k · (µ− ν) + (n− 1)ν. Hence,

by multiplying
∑k

`=1 ` · x(C`(P )) = k with µ− ν and x(E) = n− 1 by ν and summing them up, we obtain
a desired linear combination that results in equation (16).

Step 1: One can show that the coefficients of all edges e ∈ E \GCJ are the same by the same technique
used in the proof of Theorem 4 (by using slightly adapted solutions each using a single jump edge from set
Ck(P )). We therefore skip this part of the proof.

Step 2: To show that αu,v = µ, for all {u, v} ∈ C1(P ), we first observe that for any D ≥ 4, any
0 ≤ ` ≤ D + k and 2 ≤ k ≤ D − 2, we can construct a feasible solution T i

k∗1 using a sequence of k jump
edges from C1(P ) starting from a node in subset i and which are adjacent to each other, see Figure 12.

The incidence vectors of T i
k∗1 and T i+2

k∗1 satisfy
∑k

`=1 ` · x(C`(P )) = k and hence also equation (16). After
subtracting the two equations obtained from (16) for these two solutions, we obtain αvi,vi+2

= αvi+2k,vi+2(k+1)
.

Systematical repetition with solutions using different central nodes in sets Ji, Ji+2, . . . , Ji+2k, and Ji+2(k+1)

yields αuv = αst, u ∈ Ji, v ∈ Ji+2, s ∈ Ji+2k, t ∈ Ji+2(k+1), 0 ≤ i ≤ D + k. If D + k is even (and thus
the number of subsets is odd), we obtain αuv = µ, for all {u, v} ∈ C1(P ) by performing the previous steps
for any i ∈ {0, 1, . . . , D + k}. If D + k is odd, after considering each 0 ≤ i ≤ D + k, we obtain αuv = µ1,
for all {u, v} ∈ C1(P ) and u ∈ Ji with i mod 2 = 0 and αuv = µ2, for all {u, v} ∈ C1(P ) and u ∈ Ji with
i mod 2 = 1. By inserting the characteristic vectors of T 1

k∗1 and T 2
k∗1 into (16) and subtracting the results

from each other we obtain kµ1 = kµ2 and hence, µ1 = µ2 = µ follows.
Step 3: We first consider jump edges {u, v} ∈ C`(P ) for 1 ≤ ` < k, i.e., those that skip precisely `

subsets. Observe first that coefficients for all e ∈ C`(P ) are the same, say α` for all ` = 1, . . . , k, where
α1 = µ. This can be easily seen by comparing two different solutions that use one jump edge from C`(P )
and k−` edges from C1(P ). Consider now a feasible solution T i

1∗`,(k−`)∗1 from H(GCJ ) using one jump edge

from C`(P ) skipping exactly ` subsets (2 ≤ ` < k) and k − ` jump edges from C1(P ) skipping one subset
(see Figure 13). Subtracting the two equations obtained from (16) for solutions T i

1∗`,(k−`)∗1 and T i
k∗1 (using

k edges from C1(P )) we obtain α` = ` · (µ− ν) + ν, for all {u, v} ∈ C`(P ), 1 ≤ ` < k.
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Ji−1 Ji Ji+1 Ji+2 Ji+2k JD+k+i−1

vi vi+2 vi+2k

Figure 12: Solution T i
k∗1 with edge set E(T i

k∗1) =
⋃k−1

j=0 ({{vi+2j , vi+2j+2}}∪I(vi+2j)∪B(vi+2j))∪I(vi+2k)∪
B(vi+2k) ∪

⋃D+k+i−2
j=i+2k F (vj).

Ji−b`/2c Ji Ji+b`/2c Ji+`+1 Ji+2k+1−` JD+k+i−b`/2c

Figure 13: Solution T i
1∗`,(k−`)∗1 with edge set E(T i

1∗`,(k−`)∗1) = {{vi, vi+`+1}} ∪ I(vi)∪
⋃k−`

j=0(I(vi+`+2j+1)∪
B(vi+`+2j+1)) ∪

⋃i
j=i−b`/2c+1B(vj) ∪

⋃i+`
j=i+b`/2c+2B(vj) ∪

⋃i+b`/2c−1
j=i F (vj) ∪

⋃D+k+i−b`/2c−1
j=i+2k+1−` F (vj).

We also observe that the same argument suffices to show that αuv = k · (µ − ν) + ν for all edges
{u, v} ∈ Ck(P ) that skip precisely k subsets. To see that this equation also holds for those edges skipping
more than k subsets, we observe that for each {u, v} ∈ Ck(P ), we can create a solution in H(GCJ ), see
Figure 14. This exemplary solution is denoted by T i

1∗`, where, due to circularity, it is sufficient to consider
values of ` such that k ≤ ` ≤ dD+k

2 e. We observe that T i
1∗` is a feasible solution, that contains two paths

of length b`/2c left and right from vi and similarly, a path of length d`/2e left of vi+`+1 and a path of
length at most D − b`/2c − 1 on the right. Thus, the longest path in such constructed solution does not
exceed D. Finally, the incidence vectors of T i

1∗` and a solution using k edges from C1(P ) (e.g., T i
k∗1) satisfy∑k

`=1 ` · x(C`(P )) = k and hence also equation (16). After subtracting the associated equations obtained
from (16), we obtain the desired result.

Ji−b`/2c Ji Ji+b`/2c Ji+b`/2c+1 Ji+`+1 JD+k+i−b`/2c

Figure 14: Solution T i
1∗` with edge set E(T i

1∗`) = {{vi, vi+`+1}} ∪ I(vi) ∪ I(vi+`+1) ∪
⋃i

j=i−b`/2c+1B(vj) ∪⋃i+`+1
j=i+b`/2c+2B(vj) ∪

⋃i+b`/2c−1
j=i F (vj) ∪

⋃D+k+i−b`/2c−1
j=i+`+1 F (vj).
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Appendix 4: Facet proof for cut generalized-circular-jump inequal-
ities

Proof of Theorem 6

To show that cut generalized-circular-jump inequalities (cgcJ) define facets of P for 4 ≤ D ≤ n−k−2, 1 ≤ k ≤
D−3, let (R,S), |R| ≥ D+k+1, be a non-trivial partition of the set of nodes V , P = (J0, J1, . . . , JD+k) be a
non-trivial partition of R, let subsets C`(P ) ⊂ E be defined as above, GCJ = ∪k`=1C`(P ), let H(GCJ , S) =

{x ∈ P |
∑k

`=1 ` · x(C`(P )) + k · x(R,S) + k · x(E(S)) = k · (|S|+ 1)} and let H(GCJ , S) ⊆ G, where G is the
proper face of P containing all the points x ∈ P that satisfy∑

e∈GCJ

αexe +
∑

e∈E(R)\GCJ

βexe +
∑

e∈[R,S]

γexe +
∑

e∈E(S)

δexe = ξ. (17)

We will show that (17) is necessarily a linear combination of
∑k

`=1 ` · x(C`(P )) + k · x(R,S) + k · x(E(S)) =
k · (|S|+ 1) and x(E) = n− 1 (cf. Theorem 3.6 from [16]).

Our proof follows the following steps:

• Step 1: γu,v = µ′, for all {u, v} ∈ [R,S] and δu,v = µ′, for all {u, v} ∈ E(S)

• Step 2: βu,v = ν, for all {u, v} ∈ E(R)\GCJ , αu,v = µ, for all {u, v} ∈ C1(P ), and αu,v = `·(µ−ν)+ν,
for all {u, v} ∈ C`(P ), 2 ≤ ` ≤ k

• Step 3: µ′ = k · (µ− ν) + ν

Evaluating a solution from H(GCJ , S) which consists of one edge from Ck(P ), |S| edges from [R,S]
and n − 2 − |S| edges from E(R) \ GCJ , we conclude that ξ = (k(µ − ν) + ν)(|S| + 1) + (n − 2 − |S|)ν =

k(µ−ν)(|S|+ 1) + (n−1)ν. Hence, by multiplying
∑k

`=1 ` ·x(C`(P )) +k ·x(R,S) +k ·x(E(S)) = k · (|S|+ 1)
with µ−ν and x(E) = n−1 by ν and summing them up, we obtain a desired linear combination that results
in equation (17).

Step 1: We will first show that γvi,u = δvs,u for vi ∈ Ji, vs ∈ S, and for all u ∈ S \ {vs}. Consider the
solution in H(GCJ , S) given in Figure 15. Another solution in H(GCJ , S) is constructed by replacing edge
{vs, u} by {vi, u} for some u ∈ S \ {vs}. Combining the equations obtained from (17) for these solutions,
we obtain γvi,u = δvs,u for vi ∈ Ji, vs ∈ S, and for all u ∈ S \ {vs}. Repeating the same procedure using
each v ∈ S as initial center of S (i.e., taking the role of vs), we obtain γu,v = µ′, for all {u, v} ∈ E(S), and
by varying the center of Ji we also obtain γu,v = µ′, for all u ∈ Ji, for all v ∈ S. Finally, repetition for
i = 0, 1, . . . D + k, yields γu,v = µ′, for all {u, v} ∈ [R,S] and δu,v = µ′, for all {u, v} ∈ E(S).

Step 2: Using the result of Step 1, these relations can be shown by repeating the necessary steps from
the proof of Theorem 5 while directly connecting all nodes from S to a non-leaf node from R incident to at
least one jump edge. Since it is easy to see that such a node always exists we skip the details.

Step 3: To show that µ′ = k · (µ − ν) + ν consider the solution in H(GCJ , S) given in Figure 15
and observe that {vi, vi+k+2} ∈ Ck(P ) and that for 1 ≤ k ≤ D − 3 (which is true by assumption of the
theorem), another feasible solution from H(GCJ , S) is obtained by replacing jump edge {vi, vi+k+2} by edge
{vs, vi+k+2}. The result follows by comparing the equations obtained from (17) for these solutions.
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J0 Ji J2i J2i+1 Ji+k+2 JD+k

vi vi+k+2

S
vs

Figure 15: A feasible solution for D ≥ 4, 2 ≤ k ≤ D − 3, dk/2e ≤ i ≤ bD/2c, with edge set

{{vi, vs}, {vi, vi+k+2}}∪I(vs)∪I(vi)∪I(vi+k+2)∪
⋃i

j=1B(vj)∪
⋃i+k+2

j=2i+2B(vj)∪
⋃2i−1

j=i F (vj)∪
⋃D+k−1

j=i+k+2 F (vj).
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