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Abstract 

This paper presents a method for finding global optima to constrained nonlinear programs via slack variables. 

The method only applies if all functions involved are of class C1 but without any further qualification on the types 

of constraints allowed; it proceeds by reformulating the given program into a bi-objective program that is then 

solved for the Nash equilibrium. A numerical example is included to demonstrate its efficacy. 
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1 Introduction 

A companion paper [14] presented a relatively ―unfettered‖ method for seeking the global solution to a 

generic program defined on the set X1  {x | C(x)  0}, where the vector C(x) is, in general, a nonlinear 

mapping from Rn to Rm, viz.: 

MP1:  n

1|)(Min RXxx
x

f  

The purpose of this paper is to contribute yet another global optimization scheme; the method—which is 

based on slack variables—is less general than that in [14] in the sense that it only applies if all the 

functions involved are of differentiability class C
1
 (at least); however, no constraint qualifications checks 

are necessary. The paper is organised as follows: §2 presents some preliminaries required later in the 

exposition; §3 presents the conceptual foundation of the proposed method and §4 outlines the requisite 

computational algorithm; a numerical example is in §5; §6 summarises and concludes the presentation; 

last but not least, the legal framework governing this publication is set forth in §7. 

2 Preliminaries 

Let   Rm be a vector of non-negative multipliers introduced into MP1 to create the Lagrange function 

L(x, λ)  f(x) – λ, C(x); at a critical point (x*, *) of the Lagrangian in which x* is solution to MP1, the 

Karush-Kuhn-Tucker (KKT) theorem asserts the following conditions as necessary [5]: 

 f(x*) – λ*, C(x*) = 0 (1a) 

 λ*, C(x*) = 0 (1b) 

 C(x*)  0 (1c) 

 λ*  0 (1d) 

And if all the functions in MP1 are convex on X1, then, subject to a qualification on the constraints, the 

conditions (1) are also sufficient. In deriving the optimality conditions above, Kuhn and Tucker used an 

auxiliary saddle-value problem based on the Lagrangian L(x, λ)—this is restated below for ease of 

reference later; the scheme in [14] for determining the global solution to MP1 proceeds by solving the 

saddle-value problem directly, using a saddle-point theorem whose proof employs a ‗non-negative 

variable lemma‘—this is also restated below; and the method proffered by this paper employs the 

‗variable endogenization‘ technique that is described in [13, 16]—its use shall be illustrated by example.  
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 THE SADDLE-VALUE PROBLEM: Given MP1 in which C(x) : Rn  Rm is a vector of (generally) non-linear functions 

and λ  Rm is a vector of non-negative multipliers, the original Kuhn-Tucker saddle-value auxiliary problem is 

to find the pair (x*, λ*) that results in a saddle value of the Lagrangian L(x, λ), i.e. the point (x*, λ*) which is 

such that, for all x  X1 and λ  0, the following holds in the case of minimization: 

 L(x*, λ)    L(x*, λ*)    L(x, λ*) (2a) 

Or the following holds in the case of maximization: 

 L(x*, λ)    L(x*, λ*)    L(x, λ*) (2b) 

 LEMMA 1 [Non-negative Variables]: Given a continuously differentiable function f () of a non-negative variable 

, the following relations are true at all points where there is an inflection or minimum point of f (): 

 Case I: 0 ; 0f ; 0,  f  (3a) 

And the following relations are true at all points where there is an inflection or maximum point of f (): 

 Case II: 0 ; 0f ; 0,  f  (3b) 

 PROOF: See [16]  

3 Global Optimization: The Slack Variable Approach 

Let }{p
0 R  denote a p-vector of non-negative slack variables that are introduced into p of the m 

inequality constraints in MP1 and for the sake of generality, assume p < m. The introduction of  normally 

entails an expansion of the decision vector by p and yields an augmented, equality-constrained program 

defined on the set X2  {(x, ) | C(x, ) = 0} in which the constraints vector C now maps Rn+ p into Rm, viz.: 

MP2:  pn

2),(|)(Min 


 RXxx

x,
f  

But if  is added using the variable endogenization technique described in [13, 16] (see also §5 below), 

then the dimension of the decision vector remains the same; the endogenization process merely changes 

the composition of the decision vector—each element xi that is ―internalized‖ by the process is replaced 

by a new element i of the slack vector. The said process also introduces a new endogenous variable z 

that is defined by a map D, and it effectively induces a ―new‖ feasible set X3  Rn that is circumscribed by 

a subset of size (m – p) of the original m constraints in MP1. If we let v–p denote a vector v whose 

dimension has decreased by p, then z and X3 may formally be stated thus: 

 }{p
0 R  (4a) 

 z  D(x–p, )  Z  Rp (4b) 

 X3  {(x–p, ) | (C–p(x–p, ) ≥ 0)} (4c) 

And the effective search space for MP2 is thus: 

 X4  {(x–p, ) | (C–p(x–p, ) ≥ 0)  (z  D(x–p, )  Z)  ( }{p
0 R )}  Rn (5) 

Following the introduction of —even in cases where this is done without ‗variable endogenization‘—the 

objective function f effectively becomes an implicit function of the slack variables. One may appreciate 

this by considering the variation in f arising from a variation in the k-th slack variable; by Taylor‘s 

theorem and the chain rule of differentiation, a first-order approximation of the said variation is: 
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The variation in (6) has two components: (i) a ―direct gradient‖ effect (represented by the first term) that 

is transmitted directly via variables (indexed by i) that are common to f and the k-th constraint; and (ii) an 

―indirect gradient‖ effect that transmits changes in the k-th constraint to f via the other variables and 

equations indexed by m and n in the constraint system. The method presented below assumes problems in 

which at least one of these transmission mechanisms is present. 

Accordingly, the search space for MP2 needs to be circumscribed even further because the optimal 

solution on X4 is required to meet the optimality conditions asserted by LEMMA 1, purely by virtue of  being 

non-negative. To that end, a practical way forward is to create a conjunction of X4 and part of the criteria 

in LEMMA 1; if we let G : Rn  Rp denote the gradient of f with respect to , then a more appropriate feasible 

set for MP2 is as follows:
1
 

 X5  {(x–p, ) | (C–p(x–p, ) ≥ 0)  (z  D(x–p, )  Z  Rp)  (G(x–p, )  0)  ( }{p
0 R )}  Rn (7) 

Thus, a final reformulation of the original M-program in terms of the slack vector , the endogenous 

vector z and the reduced decision vector x–p may simply be stated as: 

MP3:  n

5),(|),(Min R


X
p-p-

x,
xxf  

The decentralized-cum-coordination scheme for solving MP1 presented in [14] may also be applied to MP3. 

This is so because of an analogy that one may draw between the KKT criteria for MP1, and the optimality 

criteria comprising LEMMA 1; the said analogy allows one to formulate, as in [14], an auxiliary saddle-value 

problem and prove a sufficiency theorem upon which to base the decentralized algorithm—the supporting 

argument proceeds as follows. 

 Assume a slack p-vector has been introduced by endogenization and consider a ―Lagrangian‖ of the form: 

 S(x–p, )  f(x–p, ) – , G(x–p, )  

The pseudo-Lagrangian S(x–p, ) shall hereafter be called the ‗Slack Saddle Function‘ (SSF), for want of a 

better term. The inspiration for proposing the SSF comes from an analogy that one may draw between the KKT 

optimality conditions pertaining to MP1, and those pertaining to the partial function f (, ), given that  is non-

negative and therefore LEMMA 1 applies, viz.: 

 λ  0    0 (8a) 

 C(x)  0  G(x–p, )  0 (8b) 

 λ, C(x) = 0  , G(x–p, ) = 0 (8c) 

 By appending  to the reduced vector x–p, one may define a new decision vector , viz.: 

     Rn  with   ´  (x–p´ | ´) 

And at this point, a useful comprehension aid is to notionally separate the  that appears inside the functions f 

and G from the one that is outside—the ―copy‖ of  outside of f and G may be viewed as playing a role similar 

to the normal Lagrange multiplier λ, and the ―copy‖ inside f and G may be regarded simply as a component of 

the decision vector . With this devise and  thus defined, the relations on the right-hand side in (8) assume an 

identical structure to the standard KKT conditions on the left-hand side, and naturally one is lead to pose the 

following saddle point problem and propose a sufficiency theorem similar to that in [14] which is based on the 

normal Lagrangian, viz.:  

                                                           
1 The orthogonality criterion , G = 0 has been left out for now with the implicit assumption that this will be satisfied at the solution since it 

comprises the coordinating mechanism (see §4). 
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 THE SSF SADDLE-VALUE PROBLEM: Consider the program MP3. Given the gradient G() of f with respect to , 

and assuming  is feasible,2 find the pair (*, *) that results in a saddle-value for S(, ) for all   , 

and   , i.e.: 

 S(*, )    S(*, *)    S(, *) (9) 

 THEOREM 1: If the pair (*, *) is a solution to the saddle-value problem in (9), then * is the global 

solution of MP3. 

 PROOF: The style of proof is similar to that in the true Lagrangian case in [14]—it also merely relies on the 

properties of the inner product function and proceeds as follows. 

Let * denote a critical point of the SSF and consider the left-hand inequality in the saddle-value 

problem of (9); that inequality implies a maximization process of S(*, ) with respect to    for a 

quasi-constant * (whose character is yet to be determined), and the said relation may be simplified as 

follows: 

 S(*, )  S(*, *) (10a) 

 f(*)  –  , G(*)  f(*)  –  *, G(*) (10b) 

 –  , G(*)  –  *, G(*) (10c) 

 , G(*)  0 (10d) 

The right-hand side of (10d) follows directly from the complementary slackness condition in (8c), since 

* is a critical point by assumption. But if (10d) is to hold for all , then the inner product on the left-

hand side has to be non-negative; and since   0 by design, we therefore require conditions on * that 

ensure that G(*)  0; the said conditions obtain if and only if * is an element of the collection of points 

that satisfy LEMMA 1, and this of course is consistent with the quest for a solution to the SSF saddle-value 

problem. Furthermore, since the term , G(*) contributes negatively to the value of S(*, ) for all * 

such that G(*)  0, it follows that the assumed critical point * is actually the maximizer of the SSF 

because, by (8c), it is only at  = * when the said term subtracts nothing from S(*, ). 

Now consider the right-hand inequality in (9); that inequality implies a minimization process of the 

saddle function S(*, ) with respect to    for a fixed * and simplifies as follows: 

 S(*, *)  S(, *) (11a) 

 f(*)  –  *, G(*)  f()  –  *, G() (11b) 

 f(*)  –  f()  – *, G() (11c) 

 f()  –  f(*)  *, G() (11d) 

But for all vectors  that potentially satisfy LEMMA 1, we have that G()  0 and therefore *, G()  0, 

since *  0 by definition. Consequently, if the inequality in (11d) is to hold for all   , then f(*) 

must evaluate onto the left side of f() on the real line, and this criterion is fulfilled if and only if * is 

the global minimizer of f on   

Closing Remarks. It‘s worth reiterating that the method described here is less general than its ―true-

Lagrangian‖ counterpart described in [14], in the sense that it only applies when all functions involved are 

continuously differentiable; in addition, it is also not always easy to implement in the absence of an 

automatic method for evaluating the gradient G(). However, no constraint qualification tests are 

necessary, and the same decentralisation-cum-coordination numerical technique presented in [14] to solve 

MP1 to global optimality may also be used for the SSF case as well. This is explained next.  

                                                           
2 In terms of items defined previously, feasibility implies (C–p()  0)  (D()  Z) 



Global Optimization via Slack Variables [rev. 3] 
Technical Report RD-16-2013 

 

 

Copyright  1997 – 2015: Apex Research Ltd  

5 

 

4 Computation: The Decentralization-cum-Coordination Method 

THEOREM 1 affords a method for computing the global solution to MP1 via MP3. Although the method only 

applies when all functions involved are of differentiability class C
1
, there is no need for a qualification on 

the type of constraints allowed. For simplicity of notation, assume the vector x is already in reduced form; 

then the computational method proposed may be summarised thus: 

Step 1: Given MP1, introduce slack variables, preferably by endogenization (if at all possible), to produce MP3 

Step 2: Evaluate the gradient G() and the ‗Slack Saddle Function‘ S(, *); state the requisite saddle-value problem 

in accordance with LEMMA 1 and ―unpack‖ it into its two constituent inequalities, viz.: 

 S(*, )    S(*, *)    S(, *)    {S(*, )    S(*, *)}  {S(*, *)    S(, *)} (12) 

Step 3: Restate the two constituent inequalities in (12) as optimization problems, viz.: 

 S(*, )    S(*, *)    Max {S(*, )} with respect to  (13a) 

 S(*, *)    S(, *)    Min {S(, *)} with respect to  (13b) 

Step 4: Introduce constraints on the decision variables in (13) in accordance with MP3 and LEMMA 1, viz.: 

  0 =  )G( };{),(Max p
*0*  


 RS  (14a) 

  0 =  )G( ;),(Min n 


** RS  (14b) 

Step 5: Solve the bi-objective problem in (14) using an appropriate solution concept and numerical method. Note that 

unlike the method of [14], the sub-program (14a) cannot be ―reduced‖ to a search over a subset of the integers. 

 

Multi-objective solution concepts are explained fully in [15]. And as argued in the companion paper [14, 

footnote 4]: (i) the ‗Nash equilibrium‘ is the more appropriate solution in this case; (ii) to compute the 

Nash equilibrium, one may use a decentralization-cum-coordination approach that is evidently suggested 

by the saddle-value problem itself and its optimization reformulation in (14). But numerical experience 

suggests that the search for the equilibrium point is likely to be erratic unless extra coordinating 

mechanisms are added to supplement that inherent in the Nash solution concept itself. 

The Fischer-Burmeister function [3] affords one such a coordinator—it is defined by equation (15) 

and characterized by the relations in (16): 

 )ba(ba)b ,a( 22  ; a  0; b  0 (15) 

 (a > 0)  (b = 0)    (a, b) = 0 (16a) 

 (a = 0)  (b > 0)    (a, b) = 0 (16b) 

 (a = 0)  (b = 0)    (a, b) = 0 (16c) 

Note that the conjunctions on left are exactly those in Case I of LEMMA 1 when ‗a‘ replaced by an element of 

the gradient vector G and ‗b‘ replaced by the corresponding element of the slack vector . One way of 

implementing the coordination mechanism proper is to evaluate (at iteration k) each candidate solution 

(k, k) using the relations in (15) and according to the criterion: ‗the closer (k, k) is to zero, the better‘ 

A second technique that helps prevent erratic algorithmic behaviour is to restrict the slack variables 

to closed intervals with finite endpoints—as opposed to the half-line [0, )—using interval arithmetic 

methods [9]. This is relatively easy to implement when endogenous z-variables are present: for example, 

given the endogenous equation z1 = 400 – x1 – 1 with x1  [10, 1000], z1  [10, 1000] and 1  [0, ), 

the net natural interval extension pertaining to the slack variable 1 is (see Step 8 and/or Step 9 in §5): 

 1  [–1600, 380]  [0, )  = [0, 380]   
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5 Numerical Example 

MP4:  
321 xxx=Min x

x
f  

 Subject to: 0)xx(0025.01 64   (i) 

  0)xxx(0025.01 475   (ii) 

  0)xx(01.01 58   (iii) 

  0333.83333x100x33252.833xx 1461   (iv) 

  0x1250xxx1250xx 442572   (v) 

  0x2500xx1250000xx 55383   (vi) 

  ]10000,100[x1   

  3,2],10000,1000[x i  i ; 

  8...,,4],1000,10[x i  i  

 

I. Pre-Processing: Introducing Slacks via Variable Endogenization 

Step 1: Create a ‗connexion matrix‘—previously known as the ‗incidence matrix‘—that indicates the presence or 

absence of each variable per constraint, viz.: 

Table 1: Original connexion matrix of the constraints 

 

CONSTRAINT NO x1 x2 x3 x4 x5 x6 x7 x8 

i         

ii         

iii         

iv         

v         

vi         

 

Step 2:  Manipulate the connexion matrix by swapping columns and / or rows so as to form an echelon of rows.3 

For the variables that constitute the slopping edge of the echelon (indicated by the red tick  in Table 2 

below), it is imperative that the equations that follow from the introduction of slacks are easily 

manipulated to make the ―edge variables‖ the subjects of the said equations. Introduce sequentially 

numbered z-variables into the matrix—which will form the subjects of the endogenous equations—in 

such a way as to avoid circular definitions, viz.: 

Table 2: Connexion matrix in ‗row echelon‘ form 

 

CONSTRAINT NO x4 x5 x6 x7 x8 x1 x2 x3  

i         z1 

ii         z2 

iii         z3 

iv         z4 

v         z5 

vi         z6 

  

                                                           
3 Note that such manipulations of the connexion matrix do not alter the search space at all: swapping rows corresponds to changing the order 

in which the constraints are presented; and swapping columns corresponds to changing the sequence of terms in each affected function. 
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Step 3: Into the ―edge constraints‖ (which in this particular case just happens to be all the original constraints), 

introduce the slack variables 1, 2, 3, 4, 5 and 6 respectively and define endogenous z-equations 

using the ―edge variables‖, viz.: 

 
1461 x400xz   (17a) 

 
25472 xx400xz   (17b) 

 
3583 x100xz   (17c) 

 ]100z[]333.83333x33252.833[xz 14414   (17d) 

 ]xz[]x1250x1250[xz 4245525   (17e) 

 ]xz[]x25001250000[xz 535636   (17f) 

Step 4: For convenience, rename the variables as follows: 

Table 3: Variable replacement table 

 

OLD NAME x1 x2 x3 x4 x5 x6 x7 x8 

Intermediate  z4 z5 z6 - - z1 z2 z3 

NEW NAME z4 z5 z6 x1 x2 z1 z2 z3 

Step 5: Restate the original M-program using the ―new‖ variables from Step 4, viz.: 

  Given: 
111 x400z   (18a) 

 
2212 xx400z   (18b) 

 
323 x100z   (18c) 

 ]100z[]333.83333x33252.833[z 1144   (18d) 

 ]xz[]x1250x1250[z 121255   (18e) 

 ]xz[]x25001250000[z 23266   (18f) 

  
654 zzz=Min x

x
f  

 Subject to: 2,1],1000,10[x i  i ; 

 3,2,1],1000,10[z i  i ; 

 ]10000,100[z4  ; 

 6,5],10000,1000[z i  i . 

Step 6: In accordance with LEMMA 1, the gradient vector f  g(x, z, ) may be used to place further 

constraints on the evolution of the slack variable vector , and in this case the gradient vector is easy to 

derive, viz.: 

 2

11411 )100z/()333.83333x33252.833(g  f  (19a) 

 2

1212522 )xz/()x1250x1250(g  f  (19b) 

 2

232633 )xz/()x25001250000(g  f  (19c) 

 )100z(1g 144  f  (19a) 

 )xz(1g 1255  f  (19b) 

 )xz(1g 2366  f  (19c) 
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Step 7: Since the original program is a minimization problem, the gradient is required to be non-negative in 

accordance with Case I of LEMMA 1; and ignoring the complementary slackness condition for now (see 

footnote 1), the final program may be stated thus: 

 Given: 
111 x400z    

 
2212 xx400z    

 
323 x100z    

 ]100z[]333.83333x33252.833[z 1144    

 ]xz[]x1250x1250[z 121255    

 ]xz[]x25001250000[z 23266    

  
654 zzz=Min x

x
f  

 Subject to: g(x, z, )  0; 

 2,1],1000,10[x i  i ; 

 3,2,1],1000,10[z i  i ; 

 ]10000,100[z4  ; 

 6,5],10000,1000[z i  i  

 
 R  

Step 8: Append the vector  to the remaining (i.e. ―un-internalized‖) components of the original decision vector x 

to create a new vector, (say) : 

 ),,,,,,x,x( 65432121   

Use interval arithmetic methods to compute proper set-bounds for at least some of the slack variables 

using the endogenous z-equations. For example, from equation (18a), we have that: 

 1 = 400 – (x1 + z1) (20a) 

 x1  [10, 1000] (20b)  

 z1  [10, 1000] (20c)  

 1  [0, ) (20d) 

By elementary interval arithmetic [9], it can shown that the natural interval extension of the right-hand 

side of (20a) evaluates to the set [–1600, 380]. Therefore, if the equality in (20a) is to hold under all 

circumstances, then we must have that: 

 1  [–1600, 380]  [0, )  = [0, 380] (20e) 

An alternative or additional approach—which is only possible where the solution algorithm is such that 

components of  are determined sequentially—is to code the bounds in a dynamic fashion as follows. 

Step 9: Let [v] denote the interval pertaining to the variable, ‗v‘; then from equation (18a), we have that: 

 [a, b] = 400 – ( x1 + [z1] ) (21a) 

 x1 = a ―known‖ scalar  (21b)  

 [z1] = [10, 1000] (21c)  

 1  [a, b]  [0, ) (21d) 

Alternatively, since (20e) accounts for all possible values of x1, instead of (21d) one could also write: 

 1  [a, b]  [0, 380] (21e) 
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II. GENO Output 

 Generation Time4 
 Number (sec) Objective 1 Objective 2 

 0 0.0000 -3138.60174223 3138.60174223 

 10 1.3590 -7049.15048902 7049.15048902 

 20 1.3600 -7049.24802053 7049.24802053 

 30 1.3430 -7049.24802053 7049.24802053 

 40 1.3440 -7049.24802053 7049.24802053 

 50 1.3440 -7049.24802053 7049.24802053 

 60 1.3280 -7049.24802053 7049.24802053 

 70 1.3750 -7049.24802053 7049.24802053 

 80 1.3590 -7049.24802053 7049.24802053 

 90 1.3750 -7049.24802053 7049.24802053 

  100 1.3130 -7049.24802053 7049.24802053 
 

 Optimal (Reduced) Decision Vector: x*  =  (182.01769976, 295.60117370) T 

 Optimal Slack Variable Vector: *  =  (0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000) T 

 Optimal Endogenous Vector: z*  =  (217.9823005, 286.4165263, 395.6011731, 579.306683, 1359.9706661, 5109.9706714) T 

 Optimal Objective Function Value: f (*) = 7049.24802053 

 Average execution time per 10 generations: 1.3500 seconds 

 Overall execution time on 100 generations: 13.5000 seconds 

 Approximate time to first optimum (8th decimal place accuracy): 2.7000 seconds 
 

 

III. General Remarks  

This is a real engineering problem whose aim is to optimize the performance of a heat exchanger. The problem was 

first tackled using the geometric programming method by Avriel & Williams [1], and it has been subjected to various 

other optimization techniques ever since—two of the latest efforts being Azad & Fernandes [2], and Pinter [10]. It 

features in the comparative study in [7], as well as in [7] and [11], and the best known solution up until then (i.e., 

circa, 2001) remained that reported by Hock & Schittkowski [4], namely, 

 f (x*) = 7049.330923, which is located at:  

 x* = (579.3167, 1359.943, 5110.071, 182.0174, 295.5985, 217.9799, 286.4162, 395.5979)
T
 

But this has since been superseded: at f (*) = 7049.24802053, the GENO solution reported above—which was first 

found by an earlier version of the solver using a different solution method [12]—is better than the Hock-Schittkowski 

solution; all six constraints are active at the solution (as evidenced by the value of *). Azad & Fernandes [2] report a 

solution of similar quality, at least up to the third decimal place; but the ‗Lipschitz Global Optimizer‘ [10] returns a 

solution of lower quality valued 7049.720652. 

6 Summary and Conclusions 

This paper has presented a new method for finding global optima to constrained nonlinear programs; the 

method is akin to one reported earlier but less general in the sense that it only applies when all the functions 

involved are of class C
1
 (at least). The method is anchored on a sufficiency theorem derived from a pseudo-

Lagrangian saddle-value problem associated with the given nonlinear program; it involves a reformulation the 

given program into a bi-objective program that is then solved for the Nash equilibrium. 

A real practical engineering problem concerning the optimal operating conditions of a heat exchanger 

has been presented to illustrate the efficacy of the method; its numerical solution by the solver GENO is the 

best known so far—it provides a benchmark against which other algorithms may be assessed. 

  

                                                           
4 The execution times pertain to a C++ version of GENO running under Windows 8.1 on a Laptop machine with the following hardware 

specs: AMD A4-5000 APU Processor, 1.5GHz, 4GB RAM. The mating population was of size 30. 
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7 Legalities 

I. Licence and Trademarks 

Except for the trademark items mentioned below, this work is licensed under the Creative Commons Attribution-

NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit this page;5 to override 

specific prohibitions of the governing licence,6 submit a formal request to the author at: ike_siwale@hotmail.com  

 

 

 

GENOTM is a trademark of Apex Research Ltd 

Copyright © 1997-2015 

All Rights Reserved Worldwide 

 

GAUSSTM is a trademark of Aptech Systems Inc. 

Copyright © 1983-2015 

All Rights Reserved Worldwide 

 

II. Disclaimer 

This document contains proprietary material created by Apex Research Ltd which is subject to further verification and 

change without notice; however, Apex Research Ltd is under no obligation to provide an updated version. 

Furthermore, Apex Research Ltd does not make any expressed or implied warranty— including the warranties of 

merchantability and fitness for a particular purpose—as to the accuracy or completeness of the methods described 

herein; accordingly, Apex Research Ltd accepts no liability for any damages that may occur from use. 

 

  

                                                           
5 http://creativecommons.org/licenses/by-nc-sa/4.0/ 

6 http://creativecommons.org/licenses/by-nc-sa/4.0/legalcode  

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
mailto:ike_siwale@hotmail.com
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
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