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Abstract

In this work we present a new feasible direction algorithm for solving smooth nonlinear
second-order cone programs. These problems consist of minimizing a nonlinear differen-
tiable objective function subject to some nonlinear second-order cone constraints. Given
a point interior to the feasible set defined by the nonlinear constraints, the proposed ap-
proach computes a feasible and descent direction for the objective function. The search
direction is computed by using a formulation that is similar to the algorithm FDIPA for
nonlinear programming. A line search along the search direction finds a new feasible point
that has a lower value of the objective function. Repeating this process, the algorithm
generates a feasible sequence with a monotone decrease of the objective function. Under
mild assumptions we prove that the present algorithm converge globally to stationary
points of the nonlinear second-order cone program. We test our algorithm with several
instances of robust classification of support vector machines.

Keywords: Feasible direction, second-order cone programming, interior point algo-
rithm, support vector machines.

1 Introduction

In this paper, we consider the following nonlinear second-order cone programming problem
(NSOCP): {

min
x∈Rn

f(x)

s.t. gj(x) �Kmj 0, j = 1, . . . , J,
(NSOCP)

where f : Rn → R is a continuously differentiable function, gj : Rn → Rmj , j = 1, . . . , J , are
continuously differentiable functions, and z �Kmj 0 means z ∈ Kmj . The set Km denotes the
second-order cone (SOC) (also called the Lorentz cone or ice-cream cone) of dimension m,
i.e. if m = 1, K1 denotes the set R+ of nonnegative reals and if m ≥ 2, Km := {(y1, ȳ) ∈
R × Rm−1 : ‖ȳ‖ ≤ y1}, where ‖ · ‖ denotes the Euclidean norm. Since the norm is not
differentiable at 0, this problem does not belong to the class of smooth nonlinear programs.
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On the other hand, a second-order cone can be rewritten using smooth nonconvex constraints:
Km = {y ∈ Rm : y2

2 + . . .+ y2
m ≤ y2

1, y1 ≥ 0}. However, these constraints are not qualified at
0 (see, e.g. [11, Definition 3.20]).

In recent years, linear SOCP have received considerable attention because of its wide
range of applications such as antenna array weight design, support vector machines and data
classification, combinatorial optimization, control, and robust optimization (see for instance
[1, 2, 20, 26] and references there in). It is known that Km, like Rm+ and the cone Sm+
of m × m real symmetric positive semidefinite matrices, belongs to the class of symmetric
cones to which a Jordan algebra may be associated [8]. Using this connection, interior-point
methods have been proposed for solving linear programs with SOC constraints [1, 20, 22, 28]
and software implementing those methods has been also developed, see e.g. [2, 27]. On
the other hand, linear SOCP problems are essentially a specific case of linear semidefinite
programming (SDP) problems, see e.g. [1], and hence can be efficiently solved by using an
algorithm for SDP problems. However, it is pointed out by Nesterov and Nemirovskii, see
[23], that an interior-point method (IPM) that solves the SOCP problem directly has much
better complexity than an IPM applied to the semidefinite formulation of the SOCP problem.

The study of nonlinear SOCP is much more recent than the linear one. For instance,
theoretical properties or associated reformulations have been presented in [4, 6], primal-
dual interior-point method has been studied in [29], a sequential quadratic programming
type method has been proposed in [16], an augmented Lagrangian method in [18, 19], a
semismooth Newton method without strict complementarity condition in [15] and recently a
method based on differentiable exact penalty function has been proposed in [9].

In this paper we propose an algorithm to find a stationary point of (NSOCP) by generating
a sequence {xk+1}k∈N that is interior to the feasible set of the (NSOCP), i.e. {xk+1}k∈N ⊂
int(Ω), where int(Ω) denotes the interior of the feasible set

Ω := {x ∈ Rn : gj(x) ∈ Kmj , j = 1, . . . , J}.

The sequence reduces monotonically the value of the objective function, i.e. f(xk+1) ≤ f(xk),
k ∈ N. Algorithms of this type are very useful in Engineering applications, where a feasible
point represents a feasible design and functions evaluation is in general very expensive, so that
each iteration represents a considerable amount of time. Since any point in the sequence is
feasible, the iteration can safely stopped when the objective reduction per iteration becomes
small enough. On the other hand, this approach is essential to solve problems in which the
objective function, or some of the constraints are not defined or cannot be computed by
using the available codes at infeasible points [13]. This is a typical case when one of the
variables represent quantities that are physically meaningful only in the case that some of
the constraints are satisfied.

This paper is organized as follows. Section 2 is devoted to the preliminaries and it is split
into two subsections. The first one recalls some basic notions and properties associated with
SOC, while the second one recalls the notion of feasible direction. In Section 3 the feasible
directions interior point algorithm for NSOCP is introduced and its global convergence to
stationary points is proved. In Section 4 some numerical examples are studied. Finally,
concluding remarks are given in Section 5.
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2 Preliminaries

The following notation and terminology are used throughout the paper. The superscript >
denotes transpose operator. For two matrices A and B, we define

A⊕B :=

(
A 0
0 B

)
.

The set int(Km) = {(y1, ȳ) ∈ R × Rm−1 : ‖ȳ‖ < y1} denotes the topological interior of the
closed convex self-dual cone Km. If y ∈ int(Km), we say that y �Km 0. The boundary of
Km is the set ∂Km = {y ∈ Km : y1 = ‖ȳ‖}. Let K be the Cartesian product of several
second-order cones, namely, K = Km1 × . . .×KmJ . Define g(x) := (g1(x), . . . , gJ(x)) ∈ Rm,
where gj : Rn → Rmj and y = (y1, . . . , yJ) ∈ Rm, yj ∈ Rmj , where m =

∑J
j=1mj . For any

scalar differentiable function f : Rn → R, ∇f : Rn → Rn denotes its gradient vector. For a
differentiable mapping g : Rn → Rm, Dg : Rn → L(Rn,Rm) denotes its differential mapping
defined by Dg(x)h = ∇g(x)h, for all h ∈ Rn, where ∇g(x) ∈ Rm×n denotes the Jacobian
of g at x ∈ Rn. Finally, Sm+ and Sm++ denote the sets of positive semidefinite and definite
matrices.

2.1 Algebra preliminaries

Let us recall some basic concepts and properties about the Jordan algebra associated with
the second-order cone Km with m ≥ 2 (see [8] for more details). The Jordan product of
any pair v = (v1, v̄), w = (w1, w̄) ∈ R × Rm−1 is defined by v ◦ w = (v>w, v1w̄ + w1v̄).
The bilinear mapping (v, w) 7→ v ◦ w has as the unit element e = (1, 0, . . . , 0) ∈ Rm, satisfies
〈v◦w, z〉 = 〈v, w◦z〉 for all u,w, z ∈ Rm, is commutative but not associative in general, which
is a main source of complication in the analysis of SOCP. However, ◦ is power associative,
that is, for all w ∈ Rm, wk can be unambiguously defined as wk = wp ◦ wq for any p, q ∈ N
with p + q = k. If w ∈ Km, then there exists a unique vector in Km, denoted by w1/2, such
that (w1/2)2 = w1/2 ◦ w1/2 = w.

Given a vector v = (v1, v̄) ∈ R× Rm−1, the Arrow Matrix of v is

Arw(v) :=

(
v1 v̄>

v̄ v1Im−1

)
,

which can be viewed as a linear mapping from Rm to Rm. It is not hard to verify that
Arw(v)w = v ◦ w.

The spectral factorization of vectors in Rm associated with Km is, for any w = (w1, w̄) ∈
R× Rm−1, the decomposition

w = λ1(w)u1(w) + λ2(w)u2(w), (2.1)

where λi(w) and ui(w) for i = 1, 2 are the spectral values and spectral vectors of w given by

λi(w) = w1 + (−1)i‖w̄‖ and ui(w) =


1

2
(1, (−1)i

w̄

‖w̄‖
) , if w̄ 6= 0,

1

2
(1, (−1)iv̄) , if w̄ = 0,

(2.2)

with v̄ being any unit vector in Rm−1 (satisfying ‖v̄‖ = 1). If w̄ 6= 0, the decomposition is
unique. Notice that λ1(w) ≤ λ2(w). We also denote λmin(w) = λ1(w), λmax(w) = λ2(w).
Some basic properties of these definitions are summarized below (see [1, 8, 10]).
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Proposition 2.1. For any w = (w1, w̄) ∈ R× Rm−1, we have:

(a) ‖ui(w)‖ = 1√
2

and ui(w) ∈ ∂Km for i = 1, 2.

(b) u1(w) and u2(w) are orthogonal for the Jordan product: u1(w) ◦ u2(w) = 0.

(c) ui(w) is idempotent for the Jordan product: ui(w)◦ ui(w)= ui(w) for i = 1, 2.

(d) λmin(w), λmax(w) are nonnegative (resp. positive) if and only if w ∈ Km (resp. w ∈
int(Km)).

(e) The Euclidean norm of w can be represented as ‖w‖2 = 1
2(λmin(w)2 + λmax(w)2) and it

satisfies ‖w2‖ ≤
√

2‖w‖2.

(f) Arw(w) is positive semidefinite (resp. definite) if and only if w ∈ Km (resp. w ∈
int(Km)). If Arw(w) is invertible,

Arw(w)−1 =
1

det(w)

(
w1 −w̄>

−w̄ det(w)
w1

Im−1 + 1
w1
w̄w̄>

)
,

where det(w) := λmin(w)λmax(w) = w2
1 − ‖w̄‖2 denotes the determinant of w.

Any pair of vectors {u1, u2} satisfying properties (b), (c) of Proposition 2.1 and u1+u2 = e
is called a Jordan frame, which is always of the form (2.2).

The next result provides some interesting properties that will be usefull in Section 3 (see
[1, Theorem 6 and Lemma 15]).

Proposition 2.2. The following results hold:

(a) x ∈ Km if and only if 〈x, y〉 ≥ 0 holds for all y ∈ Km. Moreover, x ∈ int(Km) if and
only if 〈x, y〉 > 0 for all y ∈ Km \ {0}.

(b) For v, w ∈ Rm the following conditions are equivalent:

(i) v, w ∈ Km, and 〈v, w〉 = 0.

(ii) v, w ∈ Km, and v ◦ w = 0.

In each case, the elements v and w operator commute, that is, v = λ1u1 + λ2u2 and
w = β1u1 + β2u2, where {u1, u2} is a Jordan frame. This is equivalent to saying
Arw(v) Arw(w) = Arw(w) Arw(v).

A vector w = (w1, w̄) ∈ R × Rm−1 is said to be nonsingular if det(w) 6= 0. If w is
nonsingular, then there exists a unique v = (v1, v̄) ∈ R× Rm−1 such that w ◦ v = v ◦ w = e.
We call this v the inverse of w and denote it by w−1. Direct calculations yields w−1 =

1
w2

1−‖w̄‖2
(w1,−w̄) = 1

det(w)(tr(w)e−w), where tr(w) = λ1(w)+λ2(w) = 2w1 denotes the trace

of w.

Definition 2.1. Let v = (v1, . . . , vJ), w = (w1, . . . , wJ) and vj , wj ∈ Rmj for j = 1, . . . , J .
Then,

(a) v ◦w = (v1 ◦ w1, . . . , vJ ◦ wJ).

(b) Arw(v) = Arw(v1)⊕ . . .⊕Arw(vJ).

(c) v and w operator commute if and only if vj and wj operator commute for all j =
1, . . . , J .
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2.2 Feasible direction

Definition 2.2. The vector d ∈ Rn is a feasible direction at x ∈ Ω, if for some θ > 0 we
have x+ td ∈ Ω for all t ∈ [0, θ].

Note that any vector is a feasible direction at x ∈ int(Ω). When gj is a convex function,
with respect to the convex cone Kmj for j = 1, . . . , J ; i.e. for all x, y ∈ Rn and t ∈ [0, 1],
gj(tx+ (1− t)y) �K tgj(x) + (1− t)gj(y), a weaker condition for a vector d to be a feasible
direction is that gj(x+ θd) ∈ Kmj for some θ > 0, for all j = 1, . . . , J. In fact, because of the
convexity of gj for j ∈ {1, . . . , J} we have for any t ∈ [0, θ]:

gj(x+ td) = gj
(
t

θ
(x+ θd) +

(
1− t

θ

)
x

)
�Kmj

t

θ
gj(x+ θd) +

(
1− t

θ

)
gj(x).

The following result provides a verifiable condition to show the feasibility of a given
direction when K = Km (the case of one single cone). The extension of this result to several
cones is direct.

Proposition 2.3. Let d ∈ Rn and x ∈ Ω. Suppose that g : Rn → Rm is differentiable at x
and that g(x) ∈ ∂Km. Let α1u1 + α2u2 be the spectral decomposition of g(x).

(a) If ∇g(x)d ∈ int(Km) when g(x) = 0, or

(b) If 〈∇g(x)d, u1〉 > 0, when g(x) ∈ ∂Km \ {0},

then d is a feasible direction for the problem (NSOCP) at x.

Proof. Since g is differentiable at x, the following expansion holds

g(x+ td) = g(x) + t∇g(x)d+ o(t), with lim
t→0

o(t)

t
= 0.

Then, in the case g(x) = 0 we have g(x+ td) = t(∇g(x)d+ o(t)/t). Since ∇g(x)d ∈ int(Km)
and limt→0 o(t)/t = 0 there exists θ > 0 such that ∇g(x)d + o(t)/t ∈ Km for all t ∈ (0, θ].
Then, g(x + td) ∈ Km for all t ∈ (0, θ] and the case (a) is proven. To prove the case (b)
we note first that λ1(w) is differentiable with gradient ∇λ1(w) = 2u1(w) at w ∈ ∂Km\{0}.
In addition, the condition g(x) ∈ ∂Km \ {0} can be equivalently expressed as λ1(g(x)) =
0 and λ2(g(x)) > 0. Therefore, considering the function c(x) = λ1(g(x)) we get that if
〈∇c(x), d〉 > 0, then, d is a feasible direction at x. Consecuently, by using the chain rule we
obtain 〈∇c(x), d〉 = 〈∇λ1(g(x)),∇g(x)d〉 = 2〈u1,∇g(x)d〉 and the case (b) is proven.

3 Feasible direction interior point algorithm for NSOCP

Let L : Rn×Rm → R, with m =
∑J

j=1mj , be the Lagrangian function of problem (NSOCP)
defined by

L(x,y) = f(x)−
J∑
j=1

〈gj(x), yj〉,
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where y ∈ Rm is the Lagrange multiplier vector. Then Karush-Kuhn-Tucker (KKT) condi-
tions for the optimality problem (NSOCP) are given by

∇xL(x,y) = ∇f(x)−
J∑
j=1

∇gj(x)>yj = 0, (3.1)

〈gj(x), yj〉 = 0, j = 1, . . . , J, (3.2)

gj(x), yj ∈ Kmj , j = 1, . . . , J. (3.3)

Note that, from Proposition 2.2, Part (b), the relation (3.2) can be replaced by gj(x)◦yj = 0,
for j = 1, . . . , J . Also, the KKT conditions are necessary optimality conditions under the
constraint qualification of Assumption 3.4 below [5].

Definition 3.1. A feasible point x ∈ Ω of (NSOCP) is called a stationary point if there exist
y ∈ Rm such that the (KKT) conditions (3.1)–(3.2) are satisfied at (x,y). Additionally, if
(3.3) holds, the stationary point is called KKT point.

From now on, we suppose that the following assumptions hold true:

Assumption 3.1. There exists a real number a such that the set Ωa = {x ∈ Ω : f(x) ≤ a}
is compact and int(Ωa) 6= ∅.

Assumption 3.2. Each x ∈ int(Ωa) satisfies g(x) �K 0.

Assumption 3.3. The mappings ∇f : Rn → Rn, (∇gj)> : Rn → L(Rmj ,Rn), for j =
1, . . . , J , are Lipschitz continuous.

Assumption 3.4. (Nondegeneracy condition) Each feasible point x∗ ∈ Ωa of (NSOCP) is
nondegenerate [5, Definition 4.70], i.e.

Dg(x∗)(Rn) + Lin(TK(g(x∗))) = Rm, (3.4)

where TK(g(x∗)) is the tangent cone of K at g(x∗) in the sense of convex analysis, see [5],
and Lin(C) is the linearity space of C, i.e. the largest linear space contained in C.

3.1 The Newton-like iteration

A Newton-like iteration to solve the nonlinear system of equations (3.1)-(3.2) can be stated
as the following block matrix form(

B −∇g(x)>

Arw(y)∇g(x) Arw(g(x))

)(
xa − x
ya − y

)
= −

(
∇f(x)−∇g(x)>y

Arw(g(x))y

)
, (3.5)

where Arw(·) is meant in the direct sum sense (cf. Definition 2.1), (x,y) is the starting
(interior) point of the iteration and B ∈ Rn×n is any positive definite matrix. Typically, B
is chosen as a quasi-Newton estimate of ∇2

xL(x,y). In particular, when B = ∇2
xL(x,y), we

get the well known Newton iteration of (3.1)-(3.2). Defining da = xa− x the direction in the
primal space, then, we obtain from (3.5) the following equivalent linear system:(

B −∇g(x)>

Arw(y)∇g(x) Arw(g(x))

)(
da
ya

)
= −

(
∇f(x)

0

)
. (3.6)
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Remark 3.1. If the solution of (3.6) with x ∈ int(Ω) satisfies da = 0, then ya = 0 and hence
x is a stationary point of (NSOCP).

The next result shows that if the direction da, solution to (3.6), satisfies da 6= 0, then da
is a descent direction of the objective function.

Lemma 3.2. Let (x,y) ∈ Ω× int(K), and suppose that y and g(x) operator commute. Then,
for any positive definite matrix B, the direction da solution to the system (3.6) is a descent
direction of f .

Proof. Scalar multiplication by da on both sides of the first equality in (3.6) gives

〈Bda, da〉 − 〈ya,∇g(x)da〉 = −〈∇f(x), da〉 . (3.7)

On the other hand, as y ∈ int(K), we have that the diagonal block matrix Arw(y) is a positive
definite symmetric matrix (see Proposition 2.1(f)). Then, from the second equality in (3.6)
we get

∇g(x)da = −[Arw(y)]−1 Arw(g(x))ya. (3.8)

Since (x,y) ∈ Ω× int(Km) and g(x) and y operator commute, from Proposition 2.2, Proposi-
tion 2.1(f) and [14, Exercise 7.6.10] it follows that the diagonal block matrix Arw(y)−1 Arw(g(x))
is a positive semidefinite symmetric matrix. Hence,

−〈ya,∇g(x)da〉 =
〈
ya, [Arw(y)]−1 Arw(g(x))ya

〉
≥ 0 (3.9)

Using this inequality and the fact that B is positive definite, we get from (3.7), that da
is a descent direction of the objective function f .

This descent direction da cannot be taken as a search direction, since it is not always
a feasible direction when x is at the boundary of the feasible set. In fact, let x ∈ ∂Ω and
y ∈ int(K) such that y and g(x) operator commute. We take any j ∈ {1, . . . , J}, and let
gj(x) = λj1u

j
1 +λj2u

j
2 be the spectral decomposition of gj(x). We have the following cases: (i)

λj1 = λj2 = 0 and (ii) λj1 = 0, λj2 > 0. In the first case, we do not have a condition to ensure
that da is a feasible direction, because ∇gj(x)da = 0 (cf. (3.8)). Now, let us consider the
second case. It follows from the second equality of (3.6) that

0 =〈Arw(yj)∇gj(x)da, u
j
1〉+ 〈Arw(gj(x))yja, u

j
1〉

=〈∇gj(x)da, y
j ◦ uj1〉+ 〈yja, gj(x) ◦ uj1〉

=〈∇gj(x)da, y
j ◦ uj1〉,

where we have used Proposition 2.1(b) in the third equality. Since yj and gj(x) operator
commute, from the above equality, we deduce that 〈∇gj(x)da, u

j
1〉 = 0 (cf. Proposition 2.2

and Proposition 2.1(c)). Hence, the assumption of Proposition 2.3 is not true in the set ∂Ω.

To obtain a feasible direction, we add a positive vector in the right side of the second
equality of (3.6). Consider ρ > 0 and the following linear system:(

B −∇g(x)>

Arw(y)∇g(x) Arw(g(x))

)(
d
ŷ

)
=

(
−∇f(x)
ρy

)
. (3.10)

The following result shows that d, solution to the above system, is a feasible direction.
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Lemma 3.3. Let (x,y) ∈ Ω × int(K). Suppose that y and g(x) operator commute. Then,
the solution d to (3.10) is a feasible direction at x.

Proof. Under Assumption 3.1 the case x ∈ int(Ω) is trivial since in that point any direction
is feasible. Consider x ∈ ∂Ω. In order to prove that d is a feasible direction, we show that
d satisfies the conditions of Proposition 2.3. We take any j ∈ {1, . . . , J}, and let us consider
gj(x) = λ1(gj(x))uj1 +λ2(gj(x))uj2 the spectral decomposition of gj(x). Since x ∈ ∂Ω we have

the following cases: (i) λj1 = λj2 = 0 and (ii) λj1 = 0, λj2 > 0. If case (i) holds, then, from the
second equality of (3.10), we have

Arw(yj)∇gj(x)d = ρyj ,

hence ∇gj(x)d = ρ Arw(yj)−1yj = ρe, consecuently, ∇gj(x)d ∈ int(Kmj ).

In the case (ii), scalar multiplication of both sides of the j−th equation of second equality
of (3.10) by uj1 implies that

〈∇gj(x)d, uj1〉 = 〈∇gj(x)d, yj ◦ uj1〉 = ρ〈yj , uj1〉 =
ρ

2
, (3.11)

where we have used Proposition 2.1, parts (a), (b) and (c), and Proposition 2.2. Hence, in
both cases, Proposition 2.3 implies that d is a feasible direction.

The feasible direction d is not necessarily a descent direction for all ρ > 0, since the
addition of a positive vector in the right side of the second equality of (3.6) produces the
effect of deflecting da into the feasible region and this deflection of da grows with ρ. To ensure
that the vector d be a descent direction, we need to impose a convenient upper bound on ρ.
This bound is obtained by imposing the following condition (see [13]):

〈d,∇f(x)〉 ≤ ξ〈da,∇f(x)〉, ξ ∈ (0, 1). (3.12)

Clearly, (3.12) implies that d is a descent direction at x whenever da be also a descent
direction.

3.2 Algorithm FDIPA for solving NSOCP

The algorithm proposed to solve the problem (NSOCP) is the following:

Algorithm FDIPA-NSOCP: Choose the parameters ξ, η, ν ∈ (0, 1) and ϕ > 0.

Step 0: Start with initial x0 ∈ int(Ωa), y0 ∈ int(K) such that operator commutes with
g(x0), and B0 ∈ Sn++. Set k = 0.

Step 1: Computation of the search direction.

(i) Compute dka and yka by solving the linear system(
Bk −∇g(xk)>

Arw(yk)∇g(xk) Arw(g(xk))

)(
dka
yka

)
=

(
−∇f(xk)

0

)
. (3.13)

If dka = 0, stop.
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(ii) Compute dkb and ykb by solving the linear system(
Bk −∇g(xk)>

Arw(yk)∇g(xk) Arw(g(xk))

)(
dkb
ykb

)
=

(
0
yk

)
. (3.14)

(iii) If 〈dkb ,∇f(xk)〉 > 0, set

ρk = min

{
ϕ‖dka‖2, (ξ − 1)

〈dka,∇f(xk)〉
〈dkb ,∇f(xk)〉

}
.

Otherwise, set

ρk = ϕ‖dka‖2.

(iv) Compute

dk = dka + ρkdkb and ŷk = yka + ρkykb .

Step 2: (Armijo line search): compute tk as the first number of the sequence {1, ν, ν2, . . .}
satisfying

f(xk + tkdk) ≤ f(xk) + tkη∇f(xk)>dk, and

g(xk + tkdk) �K 0.

Step 3: Updates. Set xk+1 = xk+ tkdk. Define yk+1 ∈ int(K), such that operator commutes
with g(xk+1), and Bk+1 ∈ Sn++.

Replace k by k + 1 and go to Step 1.

For the sake of simplicity, global convergence of FDIPA-NSOCP is proven considering
one simple second-order cone, i.e. K = Km. In addition, the updating rules are required to
satisfy the following assumptions:

Assumption 3.5. There exist σ1, σ2 > 0 such that

σ1‖d‖2 ≤ d>Bd ≤ σ2‖d‖2, for all d ∈ Rn.

Assumption 3.6. There exist cI , cS > 0 such that cIe � yj � cSe, for j = 1, . . . , J .

The following result shows that the linear systems defined in Step 1 always have a unique
solution.

Lemma 3.4. Let B be a positive definite symmetric matrix, x ∈ Ω and y ∈ int(Km). Suppose
that g(x) and y operator commute. Then, the matrix

M(x, y,B) =

(
B −∇g(x)>

Arw(y)∇g(x) Arw(g(x))

)
,

is nonsingular.
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Proof. To prove that M(x, y,B) is nonsingular, it is enough to show that the homogeneous
system (

B −∇g(x)>

Arw(y)∇g(x) Arw(g(x))

)(
d
ŷ

)
=

(
0
0

)
. (3.15)

has the unique solution (d, ŷ) = (0, 0). It follows from the first equation of (3.15) that

d>Bd− ŷ>∇g(x)d = 0.

Since Arw(y) ∈ Sm++, it follows from the second equation of (3.15) that

ŷ>∇g(x)d = −ŷ>Arw−1(y) Arw(g(x))ŷ.

Since (x, y) ∈ Ω× int(Km) and g(x) and y operator commute, from Proposition 2.2, Propo-
sition 2.1(f) and [14, Exercise 7.6.10] it follows that Arw(y)−1 Arw(g(x)) ∈ Sm+ . From both
equalities above we conclude that d>Bd ≤ 0 and therefore d = 0, because B is a positive
definite symmetric matrix. Since d = 0, we obtain from (3.15) that

∇g(x)>ŷ = 0, (3.16)

Arw(g(x))ŷ = 0. (3.17)

On the other hand, since x ∈ Ω, we have the following cases: (i) g(x) ∈ int(Km), (ii) g(x) = 0
and (iii) g(x) ∈ ∂Km \ {0}. If the case (i) holds, then Arw(g(x)) ∈ Sm++ and therefore ŷ = 0
from (3.17). Suppose that case (ii) holds. In this case, the tangent cone is TKm(g(x)) = {0}.
By using Assumption 3.4, we get that the linear application ∇g(x) : Rn → Rm is onto. Thus,
(3.16) implies that ŷ = 0. Finally, suppose that case (iii) holds and that g(x) has the
following spectral decomposition g(x) = α1u1 + α2u2. Hence, it follows that α1 = 0, and
α2 > 0. Additionally,

〈ŷ2, g(x)〉 = 〈ŷ ◦ ŷ, g(x)〉 = 〈ŷ, g(x) ◦ ŷ〉 = 0.

This implies that ŷ2 and g(x) operator commute (cf. Proposition 2.2), because ŷ2 ∈ Km (see
[1, page 17]). From this, it follows that ŷ2 has the following form ŷ2 = λu1 with λ > 0. Then,
ŷ =
√
λu1. Note that in that case, the tangent cone is TKm(g(x)) = {z : z>u1 = 0} (see [1,

page. 30]), therefore, relation (3.4) implies the existence of z1, z2 ∈ Rn, with z2 ∈ TKm(g(x))
such that

z>1 ∇g(x)>ŷ + z>2 ŷ = ‖ŷ‖2. (3.18)

Replacing (3.16) in (3.18) and since z>2 ŷ =
√
λ(z>2 u1) = 0, we get ŷ = 0.

Remark 3.5. It follows from the above lemma that the maps (x, y,B) 7→ (da, ya) and
(x, y,B) 7→ (db, yb) given by(

B −∇g(x)>

Arw(y)∇g(x) Arw(g(x))

)(
da db
ya yb

)
=

(
∇f(x) 0

0 y

)
, (3.19)

are continuous. Hence, (dka, y
k
a) and (dkb , y

k
b ) of FDIPA-NSOCP are well defined. In addition,

from (3.7), (3.9) and Assumption 3.5 we have 〈da,∇f(x)〉 ≤ −σ1‖da‖2.

10



Remark 3.6. Following the same analysis of [13], we deduce that the updating rule for ρ
satisfies

ϕ0‖da‖2 ≤ ρ ≤ ϕ‖da‖2, (3.20)

for some ϕ0 > 0. We can also see that the map (x, y,B) 7→ ρ is continuous. In fact, the map
(x, y,B) 7→ ϕ‖da‖2 is continuous everywhere, and ρ is taken as ρ = (ξ−1)〈da,∇f(x)〉/〈db,∇f(x)〉
only at points where 〈db,∇f(x)〉 > 0 and (ξ − 1)〈da,∇f(x)〉/〈db,∇f(x)〉 ≤ ϕ‖da‖2, i.e., at
points (x, y,B) where

〈db,∇f(x)〉 ≥ (ξ − 1)〈da,∇f(x)〉
ϕ‖da‖2

≥ −(ξ − 1)σ1

ϕ
> 0.

Lemma 3.7. The map (x, y,B) 7→ (d, ŷ) of Step 1(iv) of the algorithm FDIPA-NSOCP is
continuous. In addition, the search direction d constitutes a continuous descent direction field
satisfying 〈d,∇f(x)〉 ≤ ξ〈da,∇f(x)〉 ≤ −ξσ1‖da‖2 at each point x ∈ Ω.

Proof. By Remarks 3.5 and 3.6 the map (x, y,B) 7→ (d, ŷ) is continuous since d = da + ρdb
and ŷ = ya + ρyb. It follows from Step 1(iii) of FDIPA-NSOCP that

〈d,∇f(x)〉 ≤
{
ξ〈da,∇f(x)〉, if 〈db,∇f(x)〉 > 0,
〈da,∇f(x)〉, otherwise.

Then, 〈d,∇f(x)〉 ≤ ξ〈da,∇f(x)〉 ≤ −ξσ1‖da‖2 at each point x ∈ Ω (cf. Remark 3.5). Hence
d is a descent direction at x.

The following result extends the given in [13, Proposition 4.1]:

Lemma 3.8. Let Φ: Rn → Rm be a continuously differentiable function. Suppose that each
gradient ∇Φi : Rn → Rn is Lipschitz continuous in the convex open set U ⊂ Rn. Then, if
x, y ∈ U , there exists κ > 0 such that

〈Φ(y)− Φ(x)−∇Φ(x)(y − x), z〉 ≥ −κ‖y − x‖2‖z‖, ∀z ∈ Rm.

Proof. By using the multivariate mean value theorem, we get

Φ(y) = Φ(x) +A(y − x),

where the i-th row of A ∈ Rm×n is given by ∇Φi(x + ξi(y − x)) for some ξi ∈ (0, 1). Then,
for all z ∈ Rm we have

〈Φ(y)− Φ(x)−∇Φ(x)(y − x), z〉 ≥ −‖(A−∇Φ(x))(y − x)‖‖z‖
≥ −‖A−∇Φ(x)‖‖y − x‖‖z‖

≥ −
m∑
i=1

‖∇Φi(x+ ξi(y − x))−∇Φi(x)‖‖y − x‖‖z‖

≥ −
m∑
i=1

Liξi‖y − x‖2‖z‖,

where we have used the Cauchy-Schwarz inequality in the first inequality and the Lipschitz
condition (with Li > 0 the Lipschitz constant) in the fourth one. Taking κ =

∑m
i=1 Liξi, the

result follows.
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The following result show that the search direction of the present algorithm constitutes
an uniformly feasible directions field.

Lemma 3.9. There exists a map (x, y,B) 7→ τ , which is continuous at each point (x, y,B)
where d 6= 0, and satisfies τ > 0 and both conditions in Step 2 of algorithm FDIPA-NSOCP
for any t ∈ [0, τ ].

Proof. The existence of τf > 0 such that the first condition holds for any t ∈ [0, τf ] is proven
in [13, Lemma 4.4]. For the second condition, we will prove that for any (x, y,B) there exists
τg(x, y,B) > 0 such that

〈g(x+ td), z〉 > 0, ∀t ∈ [0, τg], ∀z ∈ Km, ‖z‖ = 1. (3.21)

Since Assumption 3.3 holds, it follows from Lemma 3.8 that there exists κ > 0 such that

〈g(x+ td), z〉 ≥ 〈g(x), z〉+ t〈∇g(x)d, z〉 − κt2‖d‖2, ∀z ∈ Km, ‖z‖ = 1 .

Then, for any point (x, y,B) such that da 6= 0 we can define τg(x, y,B) as

τg := inf
z∈Km,‖z‖=1

〈∇g(x)d, z〉+
√
〈∇g(x)d, z〉2 + 4κ‖d‖2〈g(x), z〉

κ‖d‖2
. (3.22)

Note that the infimum is positive, since the expression is continuous with respect to z,
it is positive when 〈g(x), z〉 > 0 and when 〈g(x), z〉 = 0 we have g(x) = λ2(g(x))u2 ∈ ∂Km,
z = u1 ∈ Km, and from (3.11) and Remark 3.6 we have 〈∇g(x)d, z〉 ≥ ρ/2 ≥ ϕ0‖da‖2.

Remark 3.10. Taking into account Lemmas 3.7 and 3.9, we deduce that the line search of
Step 2 in Algorithm (FDIPA-NSOCP) completes successfully. Hence, the algorithm FDIPA-
NSOCP is well defined.

Theorem 3.11. (Global convergence of Algorithm FDIPA-NSOCP) Let x0 ∈ Ωa. Then, any
accumulation point of the sequence {xk}k∈N is a stationary point of Problem (NSOCP).

Proof. By Remark 3.10 a sequence {xk}k∈N is computed by Algorithm (FDIPA-NSOCP),
satisfying both conditions in Step 2 of Algorithm (FDIPA-NSOCP), so that {xk}k∈N ⊂ Ω
and f(xk+1) ≤ f(xk) for each k ∈ N. Then {xk}k∈N ⊂ Ωa and since Ωa is compact, {xk}k∈N
has an accumulation point x∗ ∈ Ωa.

By Assumptions 3.5 and 3.6, {Bk}k∈N and {yk}k∈N are bounded. Then, by Remark 3.5
{dka}k∈N, {dkb}k∈N, {yka}k∈N and {ykb }k∈N are bounded. Since 1 ≥ tk ≥ 0 the sequence {tk}k∈N
is also bounded. Then, the sequence {(xk, Bk, yk, dka, d

k
b , y

k
a , y

k
b , t

k)}k∈N is bounded and has an

accumulation point (x∗, B∗, y∗, d∗a, d
∗
b , y
∗
a, y
∗
b , t
∗). Let {(xki , Bki , yki , dkia , d

ki
b , y

ki
a , y

ki
b , t

ki)}i∈N
be a convergent subsequence. If d∗a = 0, then taking the limit of (3.13) as ki → ∞, we
have that x∗ is a stationary point for the Lagrange multiplier y∗a. The other case will imply
a contradiction. In effect, if d∗a 6= 0, then by Lemma 3.7 the limit d∗ of {dki}i∈N satisfies
〈d∗,∇f(x∗)〉 ≤ −ξσ1‖d∗a‖2 < 0, so that d∗ 6= 0. By Lemma 3.9 we have t∗ > 0 (a step size
tki ≥ τ̂ will be accepted in the line search for any 0 < τ̂ < ντ(x∗, y∗, B∗) and every large
enough ki). However, since f(xk)k∈N is bounded and monotone, it converges to f(x∗). Then

f(x∗) = lim
i→∞

f(xki+1)

≤ lim
i→∞

f(xki) + tkiη∇f(xki)>dki

= f(x∗) + t∗η∇f(x∗)>d∗

≤ f(x∗)− t∗ηξσi‖d∗a‖2 ,
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which constitutes a contradiction.

3.3 Problems with equality constraints

Let us consider now the (NSOCP) problem with nonlinear equality constraints:
min
x∈Rn

f(x)

s.t. gj(x) �Kmj 0, j = 1, . . . , J,
h(x) = 0,

(NSOCP)

where h : Rm → Rp is a differentiable nonlinear function. In this case Algorithm FDIPA-
NSOCP can be modified following the ideas presented in [13, Section 6]. The main modifi-
cations are related to:

1. The feasible set Ω, which is now defined as

Ω := {x ∈ Rn : gj(x) ∈ Kmj , j = 1, . . . , J, h(x) ≥ 0}.

2. The potential function: since a given point in Ω could be infeasible with respect to the
equality constraints, its objective value could actually be lower than the optimal value
attained in the set of the fully feasible points. The algorithm should then be able to
increase the objective function when necessary and a potential function must be used
for monitoring the convergence. Following [13], the potential function is defined as:

φc(x) := f(x) +

p∑
j=1

ci|hi(x)|.

where c ∈ Rp is a vector of parameters.

3. The search direction: in this case the Lagrangian L : Rn × Rm × Rp → R and the
optimality conditions are given by

L(x,y, µ) = f(x)−
J∑
j=1

〈gj(x), yj〉 − 〈h(x), µ〉,

and

∇xL(x,y, µ) = ∇f(x)−
J∑
j=1

∇gj(x)>yj −∇h(x)>µ = 0, (3.23)

〈gj(x), yj〉 = 0, j = 1, . . . , J, (3.24)

gj(x), yj ∈ Kmj , j = 1, . . . , J, (3.25)

h(x) = 0. (3.26)

So that the quasi-Newton direction and the direction of deflection are B −∇g(x)> −∇h(x)>

Arw(y)∇g(x) Arw(g(x)) 0
∇h(x) 0 0

da db
ya yb
µa µb

 =

∇f(x) 0
0 y

−h(x) 1

 . (3.27)
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In consequence, based on this ideas the algorithm is the following:

Algorithm FDIPA-NSOCP: Choose the parameters ξ, η, ν ∈ (0, 1) and ϕ > 0.

Step 0: Start with initial x0 ∈ int(Ωa), y0 ∈ int(K) such that operator commutes with
g(x0), B0 ∈ Sn++, µ0 ∈ Rp and c > 0. Set k = 0.

Step 1: Computation of the search direction.

(i) Compute dka, yka and µka by solving the linear system Bk −∇g(xk)> −∇h(xk)
Arw(yk)∇g(xk) Arw(g(xk)) 0
∇h(xk) 0 0

dkayka
µka

 =

−∇f(xk)
0

−h(xk)

 .

If dka = 0, stop.

(ii) Compute dkb and ykb by solving the linear system Bk −∇g(xk)> −∇h(xk)
Arw(yk)∇g(xk) Arw(g(xk)) 0
∇h(xk) 0 0

dkbykb
µkb

 =

 0
yk

1

 .

(iii) If ci < 1.2(µka)i, then set ci = 2(µka)i.

(iv) If 〈dkb ,∇φc(xk)〉 > 0, set

ρk = min

{
ϕ‖dka‖2, (ξ − 1)

〈dka,∇φc(xk)〉
〈dkb ,∇φc(xk)〉

}
.

Otherwise, set

ρk = ϕ‖dka‖2.

(v) Compute

dk = dka + ρkdkb , ŷk = yka + ρkykb and µ̂k = µka + ρkµkb

Step 2: (Armijo line search): compute tk as the first number of the sequence {1, ν, ν2, . . .}
satisfying

φc(x
k + tkdk) ≤ φc(xk) + tkη∇φc(xk)>dk, and

g(xk + tkdk) �K 0.

Step 3: Updates. Set xk+1 = xk+ tkdk. Define yk+1 ∈ int(K), such that operator commutes
with g(xk+1), and Bk+1 ∈ Sn++.

Replace k by k + 1 and go to Step 1.
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4 Implementation and numerical results

4.1 About the numerical implementation

The implementation of updating rules for Bk and yk satisfying Assumptions 3.5–3.6 (see p. 9)
are of main importance to obtain a reasonably efficient algorithm for practical applications.
In some specific convex problems the use of the Hessian matrix could both guarantee the
validity of Assumption 3.5 as well as quick convergence to the stationary point. However,
in general nonlinear problems the Hessian matrix is not positive definite, and computation
of second order derivatives is usually too expensive in terms of number of operations and
computation time in most engineering applications. In these cases the use of quasi-Newton
rules is a standard approach that provides positive definite matrices from the knowledge
of just the first order derivatives. For example, the BFGS formula with the Han-Powell
modification reads as (see e.g. [21, Section 14.7]):

Bk+1 = Bk − Bkpk(pk)>Bk

(pk)>Bkpk
+
rk(rk)>

(pk)>rk
,

where

pk = xk+1 − xk ,
rk = θkqk + (1− θk)Bkpk ,

qk = ∇xL(xk+1, yk+1)−∇xL(xk, yk+1) ,

θk =


1 if (pk)>qk ≥ (0.2)(pk)>Bkpk ,

(0.8)(pk)>Bkpk

(pk)>Bkpk − (pk)>qk
if (pk)>qk < (0.2)(pk)>Bkpk .

The initial value B0 = I can be used. Restarting the method using Bk = I every ` steps,
with ` ≤ n, is necessary since the BFGS rule cannot ensure satisfaction of Assumption 3.5
at all iterations. The first step after restarting can be viewed as a spacer step that ensures
convergence of the whole process, see [21, Section 7.10].

In the case of the Lagrange multipliers, the updating rule must provide the multiplier
yk+1 such that operator commutes with g(xk+1) and satisfies Assumption 3.6. The main
idea here is to modify the solution yka as less as possible. Let λ1u1 + λ2u2 be the spectral
decomposition of g(xk+1). The multiplier yk+1 operator commutes with g(xk+1) if and only
if it belongs to the linear subspace generated by u1 and u2. If we call ỹ to the projection of
yka in this subspace, then its spectral decomposition ỹ = ỹ1u1 + ỹ2u2 satisfy the inequalities
cIe � ỹ � cSe if and only if cI ≤ ỹi ≤ cS , i = 1, 2. If this last inequalities are not satisfied
by ỹ, then we proceed to project ỹ into the convex region {y : cIe � y � cSe}. The proposed
updating rules are:

yk+1 := yk+1
1 u1 + yk+1

2 u2 ,

where

yk+1
i := max{cI ,min{cS , ỹi}} i = 1, 2 ,

ỹi := 2〈yka , ui〉 i = 1, 2 .
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4.2 Numerical results

In this section we discuss some numerical results on specific instance of class of SOCP:
robust classification by hyperplanes under data uncertainty (see formulation (4.3) below),
and a nonlinear convex SOCP taken from [12] (see formulation (4.4) below). Our goal is to
show how our algorithm FDIPA-NSOCP works in practice and verify the theoretical results
obtained in the last section. The first formulation was chosen because it can be formulated
as a linear SOCP. This allows us to compare our results with those obtained by SeDuMi 1.21
toolbox for MATLAB, which implements a primal-dual interior point method for solving
LSOCPs (see [27]). The second one shows the behavior of the algorithm when we use a
highly nonlinear differentiable objective function.

The algorithm was implemented in MATLAB 7.8, Release 2009b and the numerical ex-
periments were performed on a personal computer with an Intel Core 2 Duo CPU 2.20GHz
processor and 4GB of RAM, running Microsoft Windows 7 Home Premium.

The set of values of the parameters in our experiments were taken as follows:

ϕ = 1, ξ = 0.7, η = 0.5, ν = 0.7, cI = 10−9, cS = 109,

and the stopping rule as ‖dka‖ ≤ 10−6.

4.2.1 Support vector machines under uncertainty

Let us consider the following general binary classification problem: from some training data
points in Rn, each of which belongs to one of two classes, the goal is to determine some way
of deciding which class new data points will be in. Suppose that the training data consists
of two sets of points whose elements are labeled by either 1 or -1 to indicate the class they
belong to. If there exists a strictly separating (n − 1)-dimensional hyperplane between the
two data sets, namely H(w, b) = {x ∈ Rn : w>x − b = 0}, then the standard Support
Vector Machine (SVM) approach is based on constructing a linear classifier according to the
function f(x) = sgn(w>x − b), where sgn(·) denotes the sign function. As there might be
many hyperplanes that classify the data, in order to minimize misclassification one picks the
hyperplane which maximizes the separation (margin) between the two classes, so that the
distance from the hyperplane to the nearest data point is maximized. In fact, if we have a
set T = {(x1, y1), . . . , (xm, ym)} of m training data points in Rn × {−1, 1}, the maximum-
margin hyperplane problem can be formulated as the following Quadratic Programming (QP)
optimization problem [7]:

min
w,b

1

2
‖w‖2

s.t. yi(w
>xi − b) ≥ 1, i = 1, . . . ,m.

(4.1)

If this problem is feasible then we say that the training data set T is linearly separable. The
linear equations w>x−b = 1 and w>x−b = −1 describe the so-called supporting hyperplanes.

Suppose that X1 and X2 are random vector variables that generate samples of the positive
and negative classes respectively. In order to construct a maximum margin linear classifier
such that the false-negative and false-positive error rates do not exceed η1 ∈ (0, 1) and η2 ∈
(0, 1) respectively, Nath and Bhattacharyya [25] suggested consider the following Quadratic
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Chance-Constrained Programming (QCCP) problem:

min
w,b

1

2
‖w‖2

s.t. Prob{w>X1 − b < 0} ≤ η1,

Prob{w>X2 − b > 0} ≤ η2.

(4.2)

In other words, we require that the random variable Xi lies on the correct side of the hy-
perplane with probability greater than 1 − ηi for i = 1, 2. Assume that for i = 1, 2 we only
know the mean µi ∈ Rn and covariance matrix Σi ∈ Rn×n of the random vector Xi. In this
case, for each i = 1, 2 we want to be able to classify correctly, up to the rate ηi, even for the
worst distribution in the class of distributions which have common mean and covariance, i.e.
Xi ∼ (µi,Σi), replacing the probability constraints in (4.2) with their robust counterparts

sup
X1∼(µ1,Σ1)

Prob{w>X1 − b ≤ −1} ≤ η1, sup
X2∼(µ2,Σ2)

Prob{w>X2 − b ≥ 1} ≤ η2.

Thanks to an appropriate application of the multivariate Chebyshev inequality [17, Lemma
1], this worst distribution approach leads to the following QSOCP, which is a deterministic
formulation of (4.2) (see [25] for all details):

min
w,b

1

2
‖w‖2

s.t. w>µ1 − b ≥ 1 + κ1‖S>1 w‖,
b− w>µ2 ≥ 1 + κ2‖S>2 w‖,

(4.3)

where Σi = SiS
>
i (for instance, Cholesky factorization) for i = 1, 2, and ηi and κi are related

via the formula κi =
√

1−ηi
ηi
.

The numerical algorithm presented here requires an initial feasible point. This point
can be found depending on the nature of the problem. In order to obtain an initial point
of formulation (4.3) for applied FDIPA-NSOCP algorithm, we solve the following auxiliary
conic optimization problem:

min
w,b,ζ

ζ

s.t.w>µ1 − b ≥ 1− ζ + κ1‖S>1 w‖,
b− w>µ2 ≥ 1− ζ + κ2‖S>2 w‖,
− ζ + ζ∗ ≥ 0,

where ζ∗ ∈ R is a constant. The reasoning behind this choice is based on [24, Example 6.1].
Next, we describe three benchmark data sets that will be used in order to solve numer-

ically the formulation (4.3). More information on these data sets can be found in the UCI
Repository [3].

• Wisconsin Breast Cancer (WBC): This data set contains m = 569 observations
of tissue samples (212 diagnosed as malignant and 357 diagnosed as benign tumors)
described by n = 30 continuous features, computed from a digitized image of a fine
needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei
present in the image, such as the perimeter, the area, the symmetry, and the number
of concave portions of the contour.
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• Pima Indians Diabetes (DIA): The Pima Indians Diabetes data set presents n =
8 features and m = 768 instances (500 tested negative for diabetes and 268 tested
positive). All patients are females at least 21 years old of Pima Indian heritage. The
features include age, number of times pregnant, diastolic blood pressure and body mass
index, among others.

• German Credit (GC): This data set presents m = 1000 granted loans, 700 good
and 300 bad payers in terms of repayment, described by n = 24 attributes. The
variables include loan information (amount, duration, and purpose), credit history,
personal information (sex, marital status, number of years in present employment) and
other variables to assess financial capacity and willingness to pay (properties, telephone,
among others).

Tables 1, 2 and 3 report the results of our experiments and provide some comparisons
with SeDuMi. In these tables, the first and second columns show the error rates, the third
and fifth columns show the number of iterations when Bk is the identity matrix I and Bk

use the BFGS rule, respectively, the fourth and sixth columns report the CPU time by using
our implementation in MATLAB, the seventh and eighth columns provide the value of the
objective function at the output solution obtained by FDIPA-NSOCP algorithm, and the
optimal value given by SeDuMi. Finally, the last column shows the CPU time required by
SeDuMi toolbox using its default configuration.

Table 1: Numerical comparisons with SeDuMi applied to Wisconsin Breast cancer data set:
Benigno vs Malignant.

B = I B =approx. Hessian

η1 η2 # CPU # CPU valfdipa valsdm CPU time
iter. Time iter. Time SeDuMi

0.1 0.9 51 11”.18 23 05”.96 32.995793 32.995793 1”.04
0.1 0.7 50 12”.09 21 05”.69 115.094729 115.094729 1”.23
0.3 0.7 134 38”.18 20 05”.11 14.741665 14.741665 0”.79
0.5 0.7 107 26”.31 20 05”.16 8.903124 8.903124 0”.90

Table 2: Numerical comparisons with SeDuMi applied to Pima Indian Diabetes data set.
B = I B =approx. Hessian

η1 η2 # CPU # CPU valfdipa valsdm CPU time
iter. Time iter. Time SeDuMi

0.9 0.9 22 07”.81 31 11”.83 169.389431 169.389431 1”.04
0.9 0.8 21 07”.50 30 10”.96 302.246324 302.246323 0”.82
0.9 0.7 19 06”.54 19 06”.83 608.031244 608.031242 0”.93
0.7 0.9 22 07”.89 22 07”.79 619.895090 619.895087 1”.23
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Table 3: Numerical comparisons with SeDuMi applied to German Credit data set.
B = I B =approx. Hessian

η1 η2 # CPU # CPU valfdipa valsdm CPU time
iter. Time iter. Time SeDuMi

0.6 0.9 43 28”.45 19 12”.01 150.850277 150.850277 0”.49
0.7 0.8 37 25”.00 19 16”.13 232.590326 232.590326 0”.33
0.8 0.8 49 32”.34 20 12”.37 60.153169 60.153169 0”.45
0.9 0.7 50 34”.60 17 10”.57 64.901024 64.901024 0”.47

4.2.2 Nonlinear convex SOCP

Let us consider the following nonlinear convex SOCP [12]:

min
z

exp(z1 − z3) + 3(2z1 − z2)4 +
√

1 + (3z2 + 5z3)2

s.t.

(
4 6 3
−1 7 −5

)
z +

(
−1
2

)
∈ K2, z ∈ K3.

(4.4)

In the following Table we list the numerical results obtained when we apply FDIPA Algorithm
for solving this test problem from several starting points (see [24]). In this table, the first
column provide the starting point, the second and fifth columns show the number of iterations
when Bk is the identity matrix I and Bk use the BFGS rule, respectively, the third and
sixth columns provide the value of the objective function at the output solution obtained by
FDIPA-NSOCP algorithm, and the fourth and eighth columns report the CPU time by using
our implementation in MATLAB.

Table 4: Numerical results of Problem (4.4).
B = I B = aprox. Hessian

z0 # fend CPU # fend CPU
iter. Time iter. Time

(1.8860,−0.1890,−0.4081)> 25 2.597575 0.27” 21 2.597577 0.35”
(4.3425, 0.0875,−0.2332)> 32 2.597575 0.61” 28 2.597575 0.44”

(4.6972,−0.4294,−1.3931)> 31 2.597575 0.65” 38 2.597575 0.84”
(3.2266,−0.7353,−1.5477)> 31 2.597575 0.17” 29 2.597575 0.37”

(3.7282, 0.2875, 0.2737)> 30 2.597575 0.59” 28 2.597575 0.37”

5 Concluding remarks

We have proposed an algorithm to solve smooth nonlinear SOCP problems. Then, we have
obtained theoretical results about convergence. Finally, we have applied our method to robust
classification problems obtaining encouraging numerical results.
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