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Abstract This paper considers computation of Fréchet and limiting normal cones to a finite union
of polyhedra. To this aim, we introduce a new concept of normally admissible stratification which is
convenient for calculations of such cones and provide its basic properties. We further derive formulas
for the above mentioned cones and compare our approach to those already known in the literature.
Finally, we apply this approach to a class of time dependent problems and provide an illustration
on a special structure arising in delamination modeling.
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1 Introduction

In the past few decades, applied mathematicians have paid a lot of attention to optimization and
optimal control problems with various types of nonconvex constraints. In the variational geometry of
nonconvex sets, the so-called tangent (Bouligand-Severi, contingent) cone, regular (Fréchet) normal
cone and limiting (Mordukhovich) normal cone play important role in the study of optimization and
optimal control, such as optimality conditions, related constraint qualifications, stability analysis
etc., see [25] for theory in finite dimensions and [18,19] for analysis in infinite-dimensional spaces.
All cones mentioned above enjoy calculus rules that may simplify their calculations. However, in
many cases, calculus provides only approximation (inclusion) which may not be useful for further
analysis. Thus, exact computation for even trivial nonconvex set may become a very technical and
lengthy procedure.

In this paper we focus on computation of normal cones to a finite–dimensional set Γ , which is
a union of finitely many (convex) polyhedra. By polyhedron we understand a finite intersection of
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halfspaces, which is always closed and convex. Such sets naturally arise whenever a parameterized
generalized equation

0 ∈ F (u, x) +G(u, x) (1)

is considered with a continuously differentiable function F : Rd × Rn → Rm, a polyhedral multi-
function G : Rd × Rn ⇒ Rm, a parameter or control variable u and a state variable x. Defining the
solution map S : Rd ⇒ Rn associated with (1) as

S(u) = {x| 0 ∈ F (u, x) +G(u, x)},

one may intend to compute a generalized derivative of the solution map S. This is often connected
with evaluation of some of the above mentioned cones to Γ := gphG. Since G is a polyhedral
multifunction, Γ is indeed a union of a finite number of polyhedra.

The computation of a generalized derivative is useful whenever we are interested in performing
stability and sensitivity analysis of S or whenever we intend to solve a hierarchical problem con-
strained by system (1). This is the case of mathematical programs with equilibrium constraints such
as the so-called disjunctive programs [10]. The latter class of (parameterized) programs includes,
e.g., bilevel problems with linear constraints on the lower level [6], mathematical programs with
complementarity constraints [17,21] or mathematical programs with vanishing constraints [2].

Besides these particular applications, when we consider a polyhedral set C, the graph of the
normal cone mapping NC(·) in the sense of convex analysis also enjoys the same polyhedral structure,
as already observed in [23]. This is naturaly important in many aspects of variational analysis.

There has already been some attempts to provide formulas for normal cones to such sets Γ . In
[7], the authors provide formula for the limiting normal cone to gph NC , with C polyhedral, in terms
of the so-called critical cones and their polars. This special case of a union of polyhedra has also
been studied in [13]. In [12], the formula for the fully general case of a union of polyhedra has been
provided utilizing the Motzkin’s Theorem of the Alternative. There, the authors already build upon
the well-known fact that the tangent and normal cones are constant on relative interior of a face
of a polyhedral set, result that goes back to Robinson [23]. Additionally to simplified formulas for
several special cases, a formula for normal cone to a particular case of a union of non-polyhedral sets
is provided in [12]. In all the above mentioned papers, however, the resulting formulas are non-trivial
with highly growing complexity with respect to the number of faces.

In this paper, we describe an alternative procedure for computation of full graph of normal cone
mappings to Γ along with normal cones at a specific point. For this, we introduce the so-called
normally admissible stratification of a union of polyhedra in order to generalize the observation of
constant-valuedness of tangent and normal cone mappings on certain subsets of a polyhedra. Our
results can be considered as a natural generalization of [5] where formulas for tangent and normal
cones were derived for a special case of a union of polyhedra with each polyhedral set being a
subset of {R,R+,R−, {0}}n. We obtain formulas which hold as equalities without any constraint
qualification. This seems to be natural for the considered polyhedral setting. However, to the best
of our knowledge, such a result cannot be achieved by applying general calculus rules without any
additional information.

The article is organized as follows. In Section 2 we provide the definition of a normally admissible
stratification of Γ and show that such stratification always exists. Further, we derive formulas for
graphs of regular and limiting normal cones to Γ . In Section 3 we compare our procedure to those of
Dontchev and Rockafellar [7] and Henrion and Outrata [12]. Finally, in Section 4 we consider an ap-
plication arising in discretized time-dependent problems [1,4]. We provide a theoretical background,
specifying the form of normally admissible stratifications in this particular class of problems, and
illustrate the benefits of our procedure on a special case arising in delamination modeling [26].

Our notation is basically standard. We use R+,R−,R++ and R−− to denote nonnegative, non-
positive, positive and negative real numbers, respectively. For a set Ω, clΩ and rintΩ denote its
closure and relative interior, respectively, where relative interior is defined as interior with respect to
the smallest affine subspace which contains Ω. We say that Ω is relatively open if Ω = rintΩ. For a
cone A, A∗ stands for its negative polar cone, spanA and conA refer to the linear and convex conic
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hull of A, respectively. By x
Ω−→ x̄ we mean that x → x̄ with x ∈ Ω. For scalar product of x and y

we use both x>y and 〈x, y〉.
For the readers’ convenience we now state the definitions of several basic notions from modern

variational analysis. For a set-valued mapping M : Rn ⇒ Rm and some x̄ we define Painlevé-
Kuratowski upper (outer) limit by

Limsup
x→x̄

M(x) := {y ∈ Rm | ∃xk → x̄,∃yk → y with yk ∈M(xk)}.

This concept allows us to define the tangent (contingent, Bouligand-Severi) cone to Ω ⊂ Rn at x̄ as

TΩ(x̄) := Limsup

x
Ω−→x̄

Ω − x̄
t

.

For a set Ω at x̄ ∈ Ω we define the regular (Fréchet) normal cone N̂Ω(x̄) and limiting (Mordukhovich)
normal cone NΩ(x̄) to Ω as

N̂Ω(x̄) :=

{
x∗ ∈ Rn

∣∣∣∣∣ limsup

x
Ω−→x̄

〈x∗, x− x̄〉
‖ x− x̄ ‖ ≤ 0

}
= (TΩ(x̄))∗ ,

NΩ(x̄) := Limsup

x
Ω−→x̄

N̂Ω(x).

For a convex set Ω, both normal cones N̂Ω and NΩ amount to the normal cone of convex analysis
which is usually denoted by NΩ . Here, however, in order to stress out the possible generalization of
some formulas developed in this manuscript to nonconvex sets, we use N̂Ω even for convex sets Ω.

For a polyhedral set C and some x̄ ∈ C and ȳ ∈ NC(x̄), the critical cone to C at x̄ for ȳ is defined
as

KC(x̄, ȳ) := {w ∈ TC(x̄)| w>ȳ = 0}.

2 Main result

The main goal of this section is to compute N̂Γ and NΓ , where Γ ⊂ Rn is a finite union of polyhedral
sets Ωr for r = 1, . . . , R, that is

Γ =
R⋃
r=1

Ωr. (2)

In order to compute these normal cones, we will first introduce a convenient partition of Γ which
satisfies certain suitable conditions. Next, we show existence of such partition. Finally, we derive
formulas for both Fréchet and limiting normal cones to Γ .

Definition 1 We say that {Γs| s = 1, . . . , S} forms a partition of Γ if Γs are nonempty and pairwise
disjoint for all s = 1, . . . , S and ∪Ss=1Γs = Γ .

The following definition of normally admissible stratification is based on the strata theory [11,
22] which was developed for general manifolds. In the polyhedral case, we may add additional as-
sumptions such as that stratas Γs are relatively open. Note that condition (3) is well–known as
the so–called frontier condition. Similar partition was proposed in [27] under the term polyhedral
subdivision with all the partition elements being closed polyhedra of the same dimension as Γ .

Definition 2 We say that {Γs| s = 1, . . . , S} forms a normally admissible stratification of Γ if it
is a partition of Γ with Γs, s = 1, . . . , S relatively open, convex and clΓs polyhedral such that the
following property holds true for all i, s = 1, . . . , S

Γs ∩ clΓi 6= ∅ =⇒ Γs ⊂ clΓi. (3)
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The term normally admissible stratification is coined in order to reflect the forthcoming Theo-
rem 1 saying that normal cones are constant with respect to this stratification in a particular sense.
Next, for a normally admissible stratification of Γ denoted by {Γs| s = 1, . . . , S} we define two index
sets which are extensively used throughout the manuscript

I(s) := {i ∈ {1, . . . , S}| Γs ∩ clΓi 6= ∅}, (4a)

Ĩ(s) := {i ∈ I(s)| @j ∈ I(s) : clΓi ( clΓj} ⊂ I(s). (4b)

Clearly, I(s) has a close connection with (3) and Ĩ(s) is composed of such indices of I(s) that
correspond to maximal elements of {clΓi| i ∈ I(s)} in the sense of subsets. We will often work with
the following alternative representations of Ĩ(s)

Ĩ(s) = {i ∈ I(s)| ∀j ∈ I(s) : clΓi ⊂ clΓj =⇒ i = j} (4c)

= {i ∈ I(s)| j ∈ I(s) ∩ I(i) =⇒ i = j}. (4d)

For a normally admissible stratification, formula (4b) is equivalent to (4c) due to [24, Theorem 6.3].
The equivalence of (4c) and (4d) follows from the fact that j ∈ I(i) is equivalent to Γi ⊂ clΓj .

Next, we provide a constructive proof of existence of a normally admissible stratification to Γ .

Lemma 1 Let Γ ⊂ Rn be a finite union of polyhedral sets. Then there exists a normally admissible
stratification of Γ .

Proof. Consider Γ in the form (2) with Ωr defined as

Ωr = {x| 〈crt , x〉 ≤ brt , t = 1, . . . , T (r)}.

We now relabel all crt to cu, u = 1, . . . , U with U =
∑R
r=1 T (r) and similarly for bu. For I, J ⊂

{1, . . . , U} define the following sets

ΩI,J :=

x
∣∣∣∣∣∣
〈cu, x〉 < bu for u ∈ I
〈cu, x〉 > bu for u ∈ J
〈cu, x〉 = bu for u ∈ {1, . . . , U} \ (I ∪ J)

 , (5)

Θ := {(I, J) | ΩI,J 6= ∅, ΩI,J ⊂ Γ } . (6)

We claim that {ΩI,J | (I, J) ∈ Θ} is a normally admissible stratification of Γ .
First, we show that {ΩI,J | (I, J) ∈ Θ} is a partition of Γ . Indeed, if we restrict ourselves to

(I, J) ∈ Θ, then ΩI,J are nonempty and pairwise disjoint by construction. Moreover, since ΩI,J ⊂ Γ ,
we have ⋃

(I,J)∈Θ

ΩI,J ⊂ Γ.

To show that the equality holds in the previous relation, choose any x ∈ Γ . By construction of sets
ΩI,J , there exists exactly one couple (I, J) such that x ∈ ΩI,J . To show that (I, J) ∈ Θ, it remains
to realize that

ΩI,J ⊂
⋂

{r| x∈Ωr}

Ωr ⊂ Γ.

Hence, we have shown that {ΩI,J | (I, J) ∈ Θ} is indeed a partition of Γ .
To prove that {ΩI,J | (I, J) ∈ Θ} is a normally admissible stratification of Γ , recall that for all

(I, J) ∈ Θ we have ΩI,J nonempty, which allows us to apply Lemma A1 to obtain that ΩI,J is
relatively open and

clΩI,J =

x
∣∣∣∣∣∣
〈cu, x〉 ≤ bu for u ∈ I
〈cu, x〉 ≥ bu for u ∈ J
〈cu, x〉 = bu for u ∈ {1, . . . , U} \ (I ∪ J)

 .

Clearly, ΩI,J is convex and clΩI,J polyhedral. Thus, it remains to show that property (3) holds.
Assume that there is some x ∈ ΩI1,J1

∩ clΩI2,J2
. This immediately means I1 ⊂ I2 and J1 ⊂ J2. But

this implies that ΩI1,J1
⊂ clΩI2,J2

, which concludes the proof.
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Fig. 1 Possible partitions of the set from Example 1. The left partition is not normally admissible while the right
one is normally admissible.

Next we show a simple example with several possible partitions of a given set, where only some
are normally admissible stratifications.

Example 1 Consider the following union of two polyhedral sets Γ =
(
R × {0}

)
∪
(
{0} × R+

)
. One

possible partition of Γ to relatively open sets is Γ = Γ1 ∪ Γ2 with

Γ1 = R× {0}, Γ2 = {0} × R++.

Since (0, 0) ∈ Γ1∩clΓ2, we have I(1) = {1, 2}. However, as (1, 0) ∈ Γ1 and (1, 0) /∈ clΓ2 condition (3)
is not satisfied for s = 1 and i = 2 and hence this partition is not normally admissible stratification.
This situation is depicted on the left–hand side of Figure 1.

To remedy the situation, one may consider the following partition Γ =
⋃4
s=1 Γ̃s with

Γ̃1 = R−− × {0}, Γ̃2 = {0} × {0}, Γ̃3 = R++ × {0}, Γ̃4 = {0} × R++,

see the right–hand side of Figure 1. It is simple to verify that this is indeed a normally admissible
stratification of Γ .

Now we present the main motivation for considering normally admissible stratification which
states that the tangent and normal cone mappings are constant with respect to a particular compo-
nent of this stratification.

Theorem 1 Consider a finite union of polyhedral sets Γ and its normally admissible stratification
{Γs| s = 1, . . . , S}. Then for any s ∈ {1, . . . , S}, i ∈ I(s) and x, y ∈ Γs we have

TclΓi(x) = TclΓi(y) and N̂clΓi(x) = N̂clΓi(y). (7)

Proof. From [24, Theorem 18.2] we know that Γs is contained in a relatively open face of clΓi, and
so the statement follows from [9, Chapter 1, Lemma 4.11].

From Theorem 1 we know that for any s and i ∈ I(s), tangent cone TclΓi(x) does not depend
on a choice of x ∈ Γs. To simplify notation, we denote this constant value by

TclΓi(Γs) := TclΓi(x0) for arbitrary x0 ∈ Γs.

In a similar way, we will use notation N̂clΓi(Γs) and NclΓi(Γs). In the sequel it will become clear
that formula (7) is the cornerstone of this paper.

In the following example we present a set and its several possible partitions. The first partition
satisfies formula (7) even though one of its components is nonconvex, meaning that this partition is
not normally admissible stratification. For the other two partitions considered, we show that neither
condition (3) nor convexity can be dropped from Definition 2 in order to satisfy Theorem 1.

Example 2 Consider Γ = Ω1 ∪ Ω2 to be union of Ω1 = [0, 3] × [0, 1] and Ω2 = [0, 2] × [1, 2]. Then,
one of the possible partitions of Γ , elements of which are relatively open and satisfy condition (3),
contains a nonconvex plane segment

Γ1 =
(

(0, 3)× (0, 1)
)
∪
(

(0, 2)× (0, 2)
)
,
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six points and six line segments, see the left–hand side of Figure 2. Since clΓ1 is nonconvex, this
partition is not normally admissible stratification. However, it is not difficult to verify that the
statement of Theorem 1 holds true. To show an example, consider s = 1. Clearly, I(1) = {1} and for
all x ∈ Γ1 we observe that TclΓ1

(x) = R2 and thus TclΓi(Γ1) is indeed well-defined for all i ∈ I(1).

Fig. 2 Possible partitions of the set from Example 2. The figure on the left–hand side shows the need of convexity.
The figure on the right–hand side shows a partition satisfying the result of Theorem 1 but not being normally
admissible. Note that the rectangles are considered as one set.

It is simple to find a normally admissible stratification of Γ . For example, it may consists of
two rectangles, eight line segments and seven points as depicted on the right–hand side of Figure 2.
Now we illustrate the role of condition (3) in Theorem 1. Consider any partition of Γ containing the
following sets

Γ̃1 = (0, 3)× {1}, Γ̃2 = (0, 2)× (1, 2).

Since (1, 1) ∈ Γ̃1∩cl Γ̃2, we have 2 ∈ I(1). However, it is clear that Γ̃1 6⊂ cl Γ̃2 and thus (3) is violated.
Moreover, we have

Tcl Γ̃2
((2, 1)) = R− × R+,

Tcl Γ̃2
((1, 1)) = R× R+,

even though (2, 1) ∈ Γ̃1 and (1, 1) ∈ Γ̃1. Thus, formula (7) does not hold for s = 1 and i = 2.
Next, consider a partition of Γ with

Γ̂1 = [(0, 2)× {1}] ∪ [(2, 3)× {1}],

Γ̂2 = [(0, 3)× (0, 1)] ∪ [(0, 2)× (1, 2)],

and seven points and six line segments, see the left–hand side of Figure 2. Then all the conditions for
normally admissible stratification with the exception of convexity of Γ̂1 and Γ̂2 and the polyhedrality
of cl Γ̂2 are satisfied but Theorem 1 does not hold true. Finally, observe that indeed Γ̂1 ⊂ cl Γ̂2.

We are now ready to provide the main result of this section which concerns the computation of
normal cones to finite union of polyhedra.

Theorem 2 Let Γ be a finite union of polyhedral sets and {Γs| s = 1, . . . , S} be its normally admis-
sible stratification. Then for any x ∈ Γs we have N̂Γ (x) = N̂Γ (Γs) and further

N̂Γ (Γs) =
⋂

i∈I(s)

N̂clΓi(Γs) =
⋂

i∈Ĩ(s)

N̂clΓi(Γs). (8)

Moreover, for graphs of Fréchet and limiting normal cones we have the following formulas

gph N̂Γ =

S⋃
s=1

(
Γs × N̂Γ (Γs)

)
, (9)

gph NΓ =
S⋃
s=1

(
clΓs × N̂Γ (Γs)

)
. (10)
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Proof. Fix any x ∈ Γs. Then by simple calculus we obtain

TΓ (x) = T⋃
i∈I(s) clΓi(x) =

⋃
i∈I(s)

TclΓi(x),

N̂Γ (x) =
⋂

i∈I(s)

N̂clΓi(x).

With regards to Theorem 1 we obtain the first equality in (8). The second equality in (8) follows
from the fact that Γs ⊂ clΓi ⊂ clΓj implies N̂clΓi(Γs) ⊃ N̂clΓj (Γs).

Formula (9) is a direct consequence of (8). Since gph NΓ is a closure of gph N̂Γ by definition,
equation (10) follows as well.

In some situations, computation of normal cone NΓ (x̄) only at one particular point x̄ ∈ Γ is
required instead of computation of the whole graph of the normal cone mapping. The following
corollary concerns such a case.

Corollary 1 Under assumptions of Theorem 2, for any x̄ ∈ Γ denote by s̄ the index of the unique
component Γs̄ such that x̄ ∈ Γs̄. Then

N̂Γ (x̄) = N̂Γ (Γs̄) =
⋂

i∈I(s̄)

N̂clΓi(Γs̄) =
⋂

i∈Ĩ(s̄)

N̂clΓi(Γs̄), (11)

NΓ (x̄) =
⋃

s∈I(s̄)

N̂Γ (Γs) =
⋃

s∈I(s̄)

⋂
i∈I(s)

N̂clΓi(Γs) =
⋃

s∈I(s̄)

⋂
i∈Ĩ(s)

N̂clΓi(Γs). (12)

Remark 1 Relations similar to (11) and (12), see (13) and (14) below, can be obtained by simpler
means. We present them to show the possible advantages of our approach. First, defining J(x) :=
{s|x ∈ clΓs} we observe that J(x) = I(t) where t is the unique index such that x ∈ Γt. Indeed, if
s ∈ J(x), then x ∈ clΓs, which together with assumed x ∈ Γt implies x ∈ Γt∩clΓs and thus s ∈ I(t).
On the other hand, if s ∈ I(t), then as the considered partition is normally admissible stratification,
we have x ∈ Γt ⊂ clΓs and thus s ∈ J(x), which implies the desired equality.

Formula (11) may then be derived in the following way

N̂Γ (x̄) = (T⋃
i∈J(x̄) clΓi(x̄))∗ =

 ⋃
i∈J(x̄)

TclΓi(x̄)

∗ =
⋂

i∈J(x̄)

N̂clΓi(x̄) =
⋂

i∈I(s̄)

N̂clΓi(x̄), (13)

Similarly, for a sufficiently small neighborhood X of x̄, one may obtain formula for the limiting
normal cone directly from (13) as

NΓ (x̄) =
⋃
x∈X

⋂
i∈J(x)

N̂clΓi(x). (14)

Although it is obvious that the union with respect to x ∈ X will reduce to a union with respect to a
finite number of elements, it is not entirely clear how to obtain this reduction without the concept
of a normally admissible stratification.

We conclude this section with a note that the computation of normal cones can be performed
repeatedly, by which we mean that formula (10) provides a good background for computation of
gph Ngph NΓ .

Remark 2 Consider a normally admissible stratification {Γs| s = 1, . . . , S} of Γ . It follows from
Lemma A3 that {Γt| s ∈ I(t)} is a normally admissible stratification of clΓs for any s.

Moreover, it is possible to show that

{Γs ×Dst| s = 1, . . . , S, t = 1, . . . , T (s)}

is a normally admissible stratification of gph NΓ , where {Dst| t = 1, . . . , T (s)} are suitable normally
admissible stratifications of NΓ (Γs) for s = 1, . . . , S. However, since the construction of Dst is not
entirely simple and it is not used later in the text, we omit it here.
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3 Relation to known results

This section revisits some notable results of other authors on computation of the limiting normal
cone to a union of polyhedral sets and exploits the relationship between their results and those
presented in the previous section. We firstly recall the result of Dontchev and Rockafellar in [7],
where formula for the limiting normal cone to a special case of a union of polyhedral sets was given
in terms of critical cones and then show that formulas from Corollary 1 coincide with those of
Dontchev and Rockafellar. Secondly, we summarize the results of Henrion and Outrata in [12] who
also considered a general union of polyhedral sets. Direct comparison yields that the explicit formula
derived by Henrion and Outrata can be considered as a special case of our approach. We omit a
detailed comparison with results of Červinka, Outrata and Pǐstěk in [5] due to the fact that their
results are special case of Theorem 2.

3.1 Normal cones to graph of a normal cone to a polyhedral set

To our knowledge, the first attempt to provide explicit formulas for computation of the limiting
normal cone to a union of polyhedral sets can be found in [7]. It concerns a rather special case where
Γ = gph NC ⊂ R2n with C ⊂ Rn being polyhedral. Due to polyhedrality of C, Γ is indeed a union
of finitely many polyhedral sets. Interestingly, the formula for NΓ (x̄, ȳ) was not given in [7] as a
separate result but as a part of a proof of another result. We state it in the following proposition.
Recall that KC(x, y) denotes the critical cone to C at x for y.

Proposition 1 ([7], part of the proof of Theorem 2) Consider a polyhedral set C and some
x̄ ∈ C and ȳ ∈ NC(x̄). Then

N̂gph NC (x̄, ȳ) = KC(x̄, ȳ)∗ ×KC(x̄, ȳ),

Ngph NC (x̄, ȳ) =
⋃

(x,y)∈U

KC(x, y)∗ ×KC(x, y), (15)

for some sufficiently small neighborhood U of (x̄, ȳ).

The original proof of Proposition 1 by Dontchev and Rockafellar is based on the application of
the so-called Reduction Lemma, cf. [8, Lemma 2E.4]. To illuminate the relation between Proposition
1 and Corollary 1, we provide an alternative proof exploiting the properties of relatively open faces
forming a partition of a polyhedral set, see [24, Theorem 18.2]. To this end, we recall the definition
of faces of a convex set, see [16].

Definition 3 A subset F of a convex set P is called a face of P provided the following implication
holds true: if x1 and x2 belong to P and λx1 + (1 − λ)x2 ∈ F for some λ ∈ (0, 1), then x1 and x2

belong to F as well. We say that F̃ is a relatively open face of P if there exists a face F of P such
that F̃ = rintF .

Consider all nonempty faces of a polyhedral set C and let us denote them C̃s with s = 1, . . . , S.
We shall call Cs := rint C̃s relatively open faces of C. By virtue of Lemma A4 we obtain that
{Cs| s = 1, . . . , S} form a normally admissible stratification of C. Thus, Theorem 1 implies that
NC(x) has the same value for all x ∈ Cs. Following the notation developed in previous sections, let
us denote it by NC(Cs). Since NC(Cs) is also a polyhedral set, we can as well find its relatively open
faces Dst. Again, let {Dst| t = 1, . . . , T (s)} form a normally admissible stratification of NC(Cs). This
results in the following representation of Γ :

Γ := gph NC =
S⋃
s=1

T (s)⋃
t=1

Cs ×Dst.

It follows from Lemma A4 that {Cs×Dst| s = 1, . . . , S, t = 1, . . . , T (s)} forms a normally admissible
stratification of Γ .
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As a consequence, for a given pair x̄ ∈ C and ȳ ∈ NC(x̄) there is a unique couple of indices (s̄, t̄)
such that (x̄, ȳ) ∈ Cs̄×Ds̄t̄. By application of Corollary 1 to (x̄, ȳ) ∈ gph NC , we immediately obtain

N̂gph NC (x̄, ȳ) =
⋂

(i,j)∈I(s̄,t̄)

Ncl(Ci×Dij)(Cs̄ ×Ds̄t̄),

Ngph NC (x̄, ȳ) =
⋃

(s,t)∈I(s̄,t̄)

⋂
(i,j)∈I(s,t)

Ncl(Ci×Dij)(Cs ×Dst).
(16)

Since Γ is the union of finitely many polyhedral sets, only finitely many cones can be manifested
as N̂Γ (x, y) at points (x, y) ∈ Γ near (x̄, ȳ). It is not difficult to see that each of such cones corresponds
to N̂Γ (Cs, Dst) with (s, t) ∈ I(s̄, t̄). Invoking Remark 1, this establishes the correspondence of union
in (16) with union in (15). In order to show the equivalence of (15) and (16), consider a fixed pair
of indices (s, t) ∈ I(s̄, t̄) and let us simplify the intersection in (16). By elementary operations and
[25, Proposition 6.41] we obtain⋂

(i,j)∈I(s,t)

Ncl(Ci×Dij)(Cs ×Dst) =
⋂

{(i,j)| Cs⊂clCi, Dst⊂clDij}

[
NclCi(Cs)×NclDij (Dst)

]
. (17)

Note that for any i there exists an index l ∈ {1, . . . , T (i)} such that clDil = NC(Ci). This means
that for every j ∈ {1, . . . , T (i)} such that Dst ⊂ clDij we have clDij ⊂ clDil = NC(Ci). This, in
turn, implies that NclDij (Dst) ⊃ NNC(Ci)(Dst). In particular, we have⋂

(i,j)∈I(s,t)

Ncl(Ci×Dij)(Cs ×Dst) =
⋂

{i| Cs⊂clCi, Dst⊂NC(Ci)}

[
NclCi(Cs)×NNC(Ci)(Dst)

]

=

 ⋂
{i| Cs⊂clCi, Dst⊂NC(Ci)}

NclCi(Cs)

¡ ⋂
{i| Cs⊂clCi, Dst⊂NC(Ci)}

NNC(Ci)(Dst)

 . (18)

It suffices to show that both parts of the Cartesian product in (15) correspond to those of (18). To
verify that, we present the following two lemmas. Note that a result similar to the first lemma was
proved in [15, Theorem 5.2].

Lemma 2 For any x ∈ Cs and y ∈ Dst the following equality holds

K(x, y) =
⋂

{i| Cs⊂clCi, Dst⊂NC(Ci)}

NNC(Ci)(Dst). (19)

Proof. In order to verify (19), note first that for any i such that Cs ⊂ clCi and Dst ⊂ NC(Ci) we
have NC(Ci) ⊂ NC(Cs). This, in turn, yields NNC(Ci)(Dst) ⊃ NNC(Cs)(Dst). This implies that⋂

{i| Cs⊂clCi, Dst⊂NC(Ci)}

NNC(Ci)(Dst) = NNC(Cs)(Dst). (20)

Since the set NC(Cs) is a cone, from Theorem 1 and [25, Example 11.4 (b)] we obtain

NNC(Cs)(Dst) = NNC(x)(y) =
{
u ∈ (NC(x))∗

∣∣∣ u>y = 0
}

= K(x, y), (21)

which concludes the proof.

Lemma 3 For any x ∈ Cs and y ∈ Dst the following equality holds

K(x, y)∗ =
⋂

{i| Cs⊂clCi, Dst⊂NC(Ci)}

NclCi(Cs). (22)
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Proof. Recall first that due to [16, relation (42)] one has TP (x0) = con(P − x0) for any polyhedral
set P and any x0 ∈ P . This, by virtue of Theorem 1 implies

TC(Cs) = con(C − clCs). (23)

Similarly, from the definition of normal cone and Theorem 1 one has

NclCi(Cs) = {y| y>(clCi − clCs) ≤ 0} = (con(clCi − clCs))
∗.

Since the equality of two sets implies equality of their polars, to prove the desired equality (22) it is
enough to show that

K(x, y) =
⋃

{i| Cs⊂clCi, Dst⊂NC(Ci)}

con(clCi − clCs).

Suppose that u ∈ con(clCi − clCs) for some i such that Cs ⊂ clCi, Dst ⊂ NC(Ci). To show
that u ∈ K(x, y) we need to prove that u ∈ TC(Cs) and that y>u = 0. The first relation follows
immediately from (23) and the second one from the following chain of implications

y ∈ Dst ⊂ NC(Cs) =⇒ y>(C − clCs) ≤ 0

y ∈ Dst ⊂ NC(Ci) =⇒ y>(C − clCi) ≤ 0
=⇒ y>(clCs − clCi) ≤ 0.

To show the opposite inclusion, we obtain first from [16, Lemma 4] and [16, relation (44)] that
there exists an index i such that Cs ⊂ clCi and such that

K(x, y) = TclCi(Cs) = con(clCi − clCs). (24)

To finish the proof, it remains to show that Dst ⊂ NC(Ci). From (24) we immediately obtain
y>(clCi − clCs) = 0. Due to Theorem 1, K(x, y) does not depend on the particular choice of
y ∈ Dst and thus we obtain D>st(clCi − clCs) = 0. As already stated above, Dst ⊂ NC(Cs) implies
D>st(C−clCs) ≤ 0. Together, this shows that D>st(C−clCi) ≤ 0, which in turn implies Dst ⊂ NC(Ci).
This concludes the proof.

Summarizing this special case, the relatively open faces of polyhedral sets appear to be a suitable
choice for normally admissible stratifications. In such a case one can enjoy special properties of faces
of polyhedral sets and relations to tangent an critical cones.

In the following subsection, we revisit another previously developed representation of normal
cones for the general case considered in Section 2.

3.2 Relation to a union of polyhedral sets

In [12], the authors studied the case of a union of general polyhedral sets. Apart from providing
explicit formulas for values of limiting normal cone at a point, the authors in [12] also focused on
several special cases of polyhedral sets, such as finite union of halfspaces and finite union of orthants.
In this subsection, we briefly summarize their main result concerning the case of a union of R
polyhedral sets, for details see [12, Section 6].

Consider Γ as in (2). For x ∈ Γ denote the set of active components by

I(x) = {r ∈ {1, . . . , R}|x ∈ Ωr}.

Fix any x̄ ∈ Γ and let us denote by ∆r the polyhedral cones ∆r := TΩr (x̄). Then for ∆ :=
⋃
r∈I(x̄)∆r

one has
NΓ (x̄) = N∆(0).

Now, for all r ∈ I(x), consider the explicit description of the polyhedral cones ∆r

∆r = {x | 〈crt , x〉 ≤ 0, t = 1, . . . , T (r)} .
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Note that we will work with tangent and normal cones to ∆r at 0 and that all constraints are active
at this point. For I ⊂ I(x̄) define the following index set

JI =

{�
r∈I{1, . . . , T (r)} if I 6= ∅,

{∅} if I = ∅,

which adopts the convention that J∅ contains one element, an empty (zero-dimensional) vector.
For any integer vectors Ic = (in1 , . . . , inL) and J = (Jn1 , . . . , JnL) ∈ JIc put

ΓJI =

{
x

∣∣∣∣ 〈crt , x〉 ≤ 0, t = 1, . . . , T (r), r ∈ I〈
crJr , x

〉
> 0, r ∈ Ic

}
.

Then
NΓ (x̄) =

⋃
∅6=I⊂I(x̄)

⋃
J∈JIc

⋃
x∈ΓJI

⋂
k∈I

N̂∆k(x), (25)

and for each x ∈ ΓJI and r ∈ I there exist exactly one subsets Jx,r ⊂ {1, . . . , T (r)} such that

〈crt , x〉 = 0 ∀t ∈ Jx,r, r ∈ I,
〈crt , x〉 < 0 ∀t ∈ {1, . . . , T (r)} \ Jx,r, r ∈ I,
〈crJr , x〉 > 0 ∀r ∈ Ic.

(26)

For such x and fixed k we have N̂∆k(x) = con{ckt | t ∈ Jx,k}. For any subset J =
�
r∈I Jr ⊂ JI, put

RJ ,JI := con{{crJr | r ∈ Ic} ∪ {−crt | r ∈ I, t ∈ {1, . . . , nr} \ Jr}},

SJI := span{crt | r ∈ I, t ∈ Jr},

and
AJI := {J ⊂ JI|RJ ,JI ∩ SJI = {0}}. (27)

Applying Motzkin’s Theorem, solvability of systems of conditions (26) can be represented by elements
of AJI .

Proposition 2 Under the notation above, the limiting normal cone to a finite union of polyhedral
sets calculates as

NΓ (x̄) =
⋃

∅6=I⊂I(x̄)

⋃
J∈JIc

⋃
J∈AJI

⋂
k∈I

con{ckj | j ∈ Jk}. (28)

We will now compare the results of Proposition 2 to our results in Theorem 2. From direct
comparison of sets defined by conditions (26) with sets ΩI,J defined in (5), it follows that elements
of AJI , which represent only the nonempty sets given by conditions (26), correspond to relatively
open sets that form one particular normally admissible stratification of Γ . In fact, this is exactly the
partition constructed in the proof of Lemma 1. Thus, it is not difficult to see that

⋂
k∈I con{ckj |j ∈ Jk}

in (28) corresponds to
⋂
i∈Ĩ(s) N̂clΓi(Γs) in (12) via (8). Similarly

⋃
∅6=I⊂I(x̄)

⋃
J∈JIc

⋃
J∈AJI

in (28)

corresponds to
⋃
i∈I(s̄) in (12).

Taking into account that there might exist other normally admissible stratifications of Γ with less
components, we have managed to generalize the approach from [12] by considering a larger family
of possible partitions instead of the particular one considered in [12]. On top of that, we are able to
provide the corresponding result for the whole graph of NΓ .

By means of the following example we show the differences in both approaches. These differences
will become even clearer in Section 4 where we present an example in which a suitable choice of a
normally admissible stratification plays a crucial role.

Example 3 Consider Γ ⊂ R2 to be a union of R different rays emanating from a common point
x̄ ∈ R2. One can easily find a normally admissible stratification of Γ which consists of R + 1 sets.
For such a normally admissible stratification, the application of Corollary 1 is straightforward and
the number of elements in union (12) grows linearly in R. On the other hand, it is clear that direct
application of Proposition 2 results in exponential growth of the number of elements in union (28).
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4 Application to time dependent problems

In this section we will investigate a special structure of set Γ , which may arise during a discretization
of time dependent problems [1,4]. To give a short introduction, consider the following differential
inclusion with given initial condition

ẋ(t) ∈ Λ(t, x(t)), t ∈ [0, T ] a.e.

x(0) = x0,
(29)

where [0, T ] is time interval, x : [0, T ] → RK is the state variable, Λ : [0, T ] × RK ⇒ RK is a
multifunction and x0 ∈ RK is an initial point.

After performing a discretization of (29), we may obtain the following set of discretized feasible
solutions to problem (29)

Γ :=
{
x ∈ RKN | xn ∈ Λn(xn−1), n = 1, . . . , N

}
. (30)

Here, we consider x = (x1, . . . , xN ) ∈ RKN to be the discretization of the state variable x(·) and for
notational simplicity, we identify the initial point x0 from (29) with x0 from (30). Moreover, K ∈ N
is the dimension of the state variable xn and N ∈ N denotes the number of time discretization steps.
Finally, Λn : RK ⇒ RK for n = 1, . . . , N are multifunctions.

The main goal of this section is to use particular structure of Γ defined by (30) and simplify the
formula for gph NΓ from Theorem 2. To be able to do so, we will need the following assumption

Λn is a polyhedral multifunction for n = 1, . . . , N, (31)

where a polyhedral multifunction is a multifunction which graph is a finite union of polyhedral sets.
We recall that there is a unique correspondence between multifunctions S : Rp ⇒ Rq and sets
A ⊂ Rp+q via graph operator

A = gphS := {(x, y) ∈ Rp × Rq | y ∈ S(x)} .

Moreover, in this section, we will often work with a closure of multifunction S : Rp ⇒ Rq, which is
denoted by clS : Rp ⇒ Rq and defined via its graph by gph clS = cl gphS.

4.1 Theoretical background

In this subsection, we will provide a theoretical background for computation of gph NΓ where Γ
is given by (30). In particular, we will express normally admissible stratification of Γ in terms of
normally admissible stratifications of gphΛn and based on these partitions, we will provide a formula
for computation of a normal cone to Γ based on normal cones to elements of partitions of gphΛn.

Observe that under assumption (31), application of Lemma 1 yields a normally admissible strat-
ification {Ani ⊂ R2K | i = 1, . . . ,M(n)} of gphΛn for all n = 1, . . . , N . Due to unique correspon-
dence between multifunctions and their graphs, this is equivalent to existence of multifunctions
Λni : RK ⇒ RK with gphΛni = Ani such that {gphΛni | i = 1, . . . ,M(n)} is a normally admissible
stratification of gphΛn. Further, for s ∈ {1, . . . ,M(n)} we denote by In(s) ⊂ {1, . . . ,M(n)} and
Ĩn(s) ⊂ In(s) index sets (4) associated with this stratification.

Now, we consider the following sets

Γi := Γi1...iN :=
{
x ∈ RKN |xn ∈ Λnin(xn−1), n = 1, . . . , N

}
(32)

for i := (i1, . . . , iN ) with in ∈ {1, . . . ,M(n)}. Defining

Θ :=

{
i ∈

N¡

n=1

{1, . . . ,M(n)}

∣∣∣∣∣ Γi 6= ∅
}
, (33)

we show that {Γi| i ∈ Θ} forms a normally admissible stratification of Γ . To this end we develop a
series of lemmas which allow us to express properties of Γ in terms of properties of Λn.
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Lemma 4 For i ∈ Θ we have

clΓi =
{
x ∈ RKN |xn ∈ (clΛnin)(xn−1), n = 1, . . . , N

}
. (34)

Proof. Denote the right–hand side of (34) by G. Directly from the definition of closure of a mul-
tifunction we have clΓi ⊂ G. To prove the opposite inclusion, consider some x ∈ G. Since i ∈ Θ,
there exists some y ∈ Γi, which means that y0 = x0 and (yn−1, yn) ∈ gphΛnin for n = 1, . . . , N .
Since gphΛnin is convex and relatively open due to definition of normally admissible stratification,
by virtue of Lemma A2 we obtain for k ∈ N and n = 1 . . . , N the following formula(

1

k
yn−1 +

(
1− 1

k

)
xn−1,

1

k
yn +

(
1− 1

k

)
xn

)
∈ gphΛnin .

Defining zkn := 1
kyn +

(
1− 1

k

)
xn and zk := (zk1 , . . . , z

k
N ) we have zk ∈ Γi and zk → x, which finishes

the proof.

Lemma 5 For s ∈ Θ and index sets I(s) and Ĩ(s) defined by (4), it holds that

I(s) = {i ∈ Θ | in ∈ In(sn), n = 1, . . . , N } , (35a)

Ĩ(s) = {i ∈ I(s) | ∀j ∈ I(s) : jn ∈ In(in), n = 1, . . . , N =⇒ i = j } , (35b)

where index sets In(sn) are associated to a normally admissible stratifications of gphΛn for n =
1, . . . , N . Moreover, for any i ∈ I(s) condition (3) holds true.

Proof. First, take any i ∈ I(s). From the definition of I(s) this is equivalent to Γs ∩ clΓi 6= ∅, which
implies i ∈ Θ. For contradiction assume that there is some n such that in /∈ In(sn). This means that
gphΛnsn ∩ gph clΛnin = ∅. Using Lemma 4 this further implies that Γs ∩ clΓi = ∅, which concludes
the contradiction.

Now, take any i ∈ Θ such that in ∈ In(sn) for all n = 1, . . . , N . Due to definition of In(s) this
implies gphΛnsn ∩ gph clΛnin 6= ∅ for all n. By condition (3) for stratification of gphΛn this implies
gphΛnsn ⊂ gph clΛnin for all n. Invoking Lemma 4, we have Γs ⊂ clΓi. Firstly, this implies that
Γs ∩ clΓi = Γs 6= ∅ proving (35a), and secondly it also means that property (3) holds true as well.

Formula (35b) then follows directly from (35a) and (4d).

Lemma 6 {Γi| i ∈ Θ} forms a normally admissible stratification of Γ .

Proof. Observe first that due to definition of Θ we have Γ = ∪i∈ΘΓi and that all Γi are nonempty.
Since {gphΛnj | j ∈ {1, . . . ,M(n)}} is a normally admissible stratification of gphΛn, it follows that
Γi are pairwise disjoint. Hence we have shown that {Γi| i ∈ Θ} is indeed a partition of Γ .

To prove that this partition is a normally admissible stratification of Γ , it remains to show that
Γi are relatively open and convex, clΓi are polyhedral and that property (3) holds. Since Γi can be
written as an intersection of N relatively open convex sets, it is relatively open and convex as well.
Similarly, as clΓi is an intersection of N polyhedral sets due to Lemma 4, it is polyhedral. Finally,
condition (3) follows directly from Lemma 5 and so the proof has been finished.

The following theorem proposes a convenient formula for computation of N̂clΓi(Γs). This formula
is presented purely in terms of individual Λn and not the original Γ . The consequences of this theorem
will be later seen in Section 4.2.

Theorem 3 Assume that Γ is defined via (30) and that assumption (31) is satisfied. Assume more-
over that {gphΛni | i = 1, . . . ,M(n)} forms a normally admissible stratification of gphΛn for all
n = 1, . . . , N . Then for any s ∈ Θ and i ∈ I(s) we have

N̂clΓi(Γs) =


 p1 + q1

...
pN + qN

 ∈ RKN

∣∣∣∣∣∣∣
(
pn−1

qn

)
∈ N̂cl gphΛnin

(gphΛnsn), n = 1, . . . , N

pN = 0

 .
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Proof. The set clΓi can be by virtue of Lemma 4 written as multivalued inverse F−1(Ωi), where

F (x) :=



x0

x1

x1

x2

...

xN−1

xN


, Ωi :=



cl gphΛ1
i1

cl gphΛ2
i2

...

cl gphΛNiN


.

Now, consider some x̄ ∈ Γs ⊂ clΓi and define x̄0 = x0. Since F is affine linear function and Ωi is
a polyhedral set, multifunction Si(p) := {x| p+ F (x) ∈ Ωi} is calm at (0, x̄). Then [14, Proposition
3.4] implies that NclΓi(x̄) ⊂ (∇F (x̄))>NΩi(F (x̄)). But since Ωi is convex, it is regular, and thus
[25, Theorem 6.14] implies that

N̂clΓi(x̄) = (∇F (x̄))>N̂Ωi(F (x̄)), (36)

Plugging in the original data, we observe that x∗ ∈ N̂clΓi(x̄) if and only if for every n = 1, . . . , N
there exist some multipliers pn−1, qn ∈ RK with(

pn−1

qn

)
∈ N̂cl gphΛnin

(x̄n−1, x̄n), n = 1, . . . , N,

such that equations x∗n = pn + qn hold for n = 1, . . . , N with pN := 0. But this is equivalent to the
stated result by virtue of Lemma 5, Lemma 6 and Theorem 1.

The previous result may be used directly to calculate gph N̂Γ and gph NΓ , and N̂Γ (x̄) for x̄ ∈ Γ ,
using Theorem 2 and Corollary 1, respectively. We note that I(s) can be computed in a convenient
way due to Lemma 5.

Remark 3 Even though we were able to express I(s) in terms of In(sn) in Lemma 5 and similarly
N̂clΓi in terms of N̂cl gphΛnin

in Theorem 3, we are convinced that it is not possible to derive a similar

formula for N̂Γ . In this remark we show that the following intuitive formula

N̂Γ (Γs) =


 p1 + q1

...
pN + qN

 ∈ RKN

∣∣∣∣∣∣∣
(
pn−1

qn

)
∈ N̂gphΛn(gphΛnsn), n = 1, . . . , N

pN = 0

 (37)

does not hold true. This is closely connected with violation of the so–called intersection property
[10, Definition 9] for (36), which says that⋂

i∈I(s)

(∇F (x̄))>N̂Ωi(F (x̄)) = (∇F (x̄))>
⋂

i∈I(s)

N̂Ωi(F (x̄)).

Indeed, consider the following example with N = 2, K = 2,

gphΛ1 = [R× R× {0} × R−−]
⋃

[R× R× {0} × {0}]
⋃ {

(a, b, c, d) ∈ R4 | c ∈ R−−, d = −c
}
,

gphΛ2 = [R−− × {0} × R× R]
⋃

[{0} × {0} × R× R]
⋃ {

(a, b, c, d) ∈ R4 | a ∈ R++, b = −a
}

and initial point x0 = (0, 0). Then one observes that Γ = {0} × {0} ×R×R and thus for any x̄ ∈ Γ
we have NΓ (x̄) = R×R×{0}× {0}. On the other hand, the right–hand side of formula (37) results
in R+ × R+ × {0} × {0} and thus (37) does not hold true.
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4.2 Example

Consider set

Γ :=
{

(y, z) ∈ RN × RN
∣∣ zn ∈ N[0,yn−1](yn), n = 1, . . . , N

}
(38)

with y0 = 1. Such set arises in delamination modeling [26] where variable yn ∈ [0, 1] signifies the
delamination level of an adhesive. Specifically, yn = 1 corresponds to a situation where the adhesive
is not damaged while yn = 0 corresponds to a complete delamination. Due to the definition of normal
cone, we see that (38) contains a hidden constraint 0 ≤ yn ≤ yn−1, meaning that a glue cannot heal
back to its original state y0. When considering optimal control or parameter identification in such
model, it is advantageous to compute gph NΓ , see [3].

We are not able to use the standard results of variational analysis to compute NΓ (ȳ, z̄). Since
the set [0, yn−1] depends on y, we would have to introduce first additional variables. For example, it
is possible to rewrite

zn ∈ N[0,yn−1](yn)

into the following system

zn = z+
n + z−n ,

z+
n ∈ N(−∞,0](yn − yn−1),

z−n ∈ N[0,∞)(yn).

However, Mangasarian–Fromovitz constraint qualification is not satisfied for this case if ȳn−1 = ȳn =
0, and thus results such [25, Theorem 6.14] or [20] cannot be used. Considering this reformulation,
it would be possible to use calculus rules with calmness constraint qualification [14] leading only to
an inclusion instead of equality.

For these reasons, we will compute gph NΓ with Γ defined in (38) using Theorem 2 and Theorem
3. We consider x = (y, z) and rewrite zn ∈ N[0,yn−1](yn) equivalently as (yn, zn) ∈ Λn(yn−1, zn−1) =⋃8
j=1 Λ

n
j (yn−1, zn−1) with initial condition (y0, z0) = (1, 0) and Λni , i = 1, . . . , 8, being defined via

respective graphs as follows

gphΛn1 =
{

(ỹ, z̃, y, z) ∈ R4 | ỹ ∈ R++, z̃ ∈ R, y = ỹ, z ∈ R++

}
,

gphΛn2 =
{

(ỹ, z̃, y, 0) ∈ R4 | ỹ ∈ R++, z̃ ∈ R, y = ỹ
}
,

gphΛn3 =
{

(ỹ, z̃, y, 0) ∈ R4 | ỹ ∈ R++, z̃ ∈ R, y ∈ (0, ỹ)
}
,

gphΛn4 = R++ × R× {0} × {0},
gphΛn5 = R++ × R× {0} × R−−,
gphΛn6 = {0} × R× {0} × R−−,
gphΛn7 = {0} × R× {0} × {0},
gphΛn8 = {0} × R× {0} × R++.

(39)

Then, {gphΛnj | j = 1, . . . , 8} forms a normally admissible stratification of gphΛn for all n = 1, . . . , N ,
see Figure 3.

Next, directly from (4), we obtain for all n = 1, . . . , N

In(1) = {1}
, In(2) = {1, 2, 3},
In(3) = {3},
In(4) = {3, 4, 5},

In(5) = {5},
In(6) = {5, 6},
In(7) = {1, . . . , 8},
In(8) = {1, 8}.

(40)

To construct normally admissible stratification of Γ , we need to characterize Θ given by (33).
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ỹ

y

1, 2

3

4, 56, 7, 8

z̃

z

1, 8

2, 3, 4, 7

5, 6

Fig. 3 Partition of gphΛn from (39).

Lemma 7 Setting i0 = 1, it holds that

Θ =

{
(i1, . . . , iN ) ∈ {1, . . . , 8}N

∣∣∣∣∣ in−1 ∈ {1, 2, 3} =⇒ in ∈ {1, 2, 3, 4, 5}
in−1 ∈ {4, 5, 6, 7, 8} =⇒ in ∈ {6, 7, 8}

}
. (41)

Proof. Denote the right–hand side of (41) by A. If i ∈ Θ, then there exists some (y, z) ∈ Γi. If
in−1 ∈ {1, 2, 3}, then we have yn−1 > 0, which immediately implies in ∈ {1, 2, 3, 4, 5}. If in−1 ∈
{4, 5, 6, 7, 8}, then yn = 0 and thus in ∈ {6, 7, 8}. Hence Θ ⊂ A.

To finish the proof, consider now any i ∈ A and define y coordinatewise as follows

yn =


yn−1 if in ∈ {1, 2},
1
2yn−1 if in = 3,
0 if in ∈ {4, 5, 6, 7, 8},

with y0 = 1. Then it is not difficult to find z such that (y, z) ∈ Γi, and thus i ∈ Θ, which completes
the proof.

Now we have enough information to compute gph NΓ using Theorem 3. For simplicity, we will
compute NΓ (ȳ, z̄) for two given points (ȳ, z̄). The first one is rather simple and will be computed
thoroughly, while for the second one we show only the first stage of the computation.

Example 4 Consider Γ defined in (38) with N = 5, ȳ = (1, 0.5, 0, 0, 0) and z̄ = (1, 0, 0, 1,−1). First,
we realize that s̄ = (1, 3, 4, 8, 6), where s̄ ∈ Θ is the unique index such that (ȳ, z̄) ∈ Γs̄. Employing
(40), we realize that

I1(s̄1) = {1}, I2(s̄2) = {3}, I3(s̄3) = {3, 4, 5}, I4(s̄4) = {1, 8} and I5(s̄5) = {5, 6}.

Then, denoting i = (1, 3, 3, 1, 5), j = (1, 3, 4, 8, 6) and k = (1, 3, 5, 8, 6), Lemma 5 together with
formula (41) yields

I(s̄) = {i, j, k},
I(i) = Ĩ(i) = {i},
I(j) = {i, j, k}, Ĩ(j) = {i, k},
I(k) = Ĩ(k) = {k}.

Thus, invoking formula (12) we have

NΓ (ȳ, z̄) = N̂clΓi(Γi) ∪
[
N̂clΓi(Γj) ∩ N̂clΓk(Γj)

]
∪ N̂clΓk(Γk).
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Each of the regular normal cones in this formula can be computed via application of Theorem 3 with
the use of the following regular normal cones, n = 1, . . . , 5,

N̂cl gphΛn1
(gphΛn1 ) =

{
(α̃, 0, α, 0) ∈ R4 | α̃ ∈ R, α = −α̃

}
,

N̂cl gphΛn3
(gphΛn3 ) = {0} × {0} × {0} × R,

N̂cl gphΛn3
(gphΛn4 ) = {0} × {0} × R− × R,

N̂cl gphΛn5
(gphΛn4 ) = {0} × {0} × R× R+,

N̂cl gphΛn5
(gphΛn5 ) = {0} × {0} × R× {0},

N̂cl gphΛn5
(gphΛn6 ) = R− × {0} × R× {0},

N̂cl gphΛn6
(gphΛn6 ) = R× {0} × R× {0},

N̂cl gphΛn1
(gphΛn8 ) =

{
(α̃, 0, α, 0) ∈ R4 | α̃ ∈ R, α ≤ −α̃

}
,

N̂cl gphΛn8
(gphΛn8 ) = R× {0} × R× {0}.

This results in

NΓ (ȳ, z̄) = ∪t∈R


R× {0}
{0} × R
{t} × R
{−t} × {0}
R× {0}


⋃
∪s∈R


R× {0}
{0} × R

(−∞, s]× R
(−∞,−s]× {0}

R× {0}


⋂

R× {0}
{0} × R
R× R+

R× {0}
R× {0}



⋃

R× {0}
{0} × R
R× {0}
R× {0}
R× {0}



= ∪t∈R


R× {0}
{0} × R
{t} × R
{−t} × {0}
R× {0}


⋃
∪s∈R


R× {0}
{0} × R

(−∞, s]× R+

(−∞,−s]× {0}
R× {0}


⋃

R× {0}
{0} × R
R× {0}
R× {0}
R× {0}

 . (42)

Example 5 In the setting of Example 4 we consider ȳ = (1, 0.5, 0, 0, 0) and z̄ = (1, 0, 0, 0, 1). Then
we have s̄ = (1, 3, 4, 7, 8) and

I(s̄) =

i ∈ {1, . . . , 8}
N

∣∣∣∣∣∣∣∣∣∣
i1 = 1, i2 = 3, i3 ∈ {3, 4, 5}
i3 = 3 =⇒ i4 ∈ {1, 2, 3, 4, 5}
i3 ∈ {4, 5} =⇒ i4 ∈ {4, 5, 6, 7, 8}
i4 ∈ {1, 2, 3} =⇒ i5 = 1
i4 ∈ {4, 5, 6, 7, 8} =⇒ i5 = 8

 .

It is not difficult to verify that I(s̄) contains 15 elements and hence we will have to consider a union
with respect to 15 elements in (12). Then it would be necessary to compute Ĩ(s) for every s ∈ I(s̄)
using Lemma 5, which would, however, in most cases amount to only one or two elements.

Finally, in the light of Example 4 and especially Example 5 we present another comparison of
our approach with the theory developed in [12]; a comparison which was already slightly touched in
Example 3.

Remark 4 Consider set Γ defined in (38) and let us show that even though the approach developed
in this paper is not simple, it could be more applicable than the approach developed in [12]. There
it is necessary to compute TΓ (ȳ, z̄) first, which, due to our best knowledge, cannot be tackled by
standard calculus rules because of the same reasons as described earlier in this subsection. Even
though it is possible to derive formula for TΓ (ȳ, z̄) directly from the definition, it is not a simple
task.
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Consider now the same point (ȳ, z̄) as in Example 4. With the notation of Section 3.2 it is possible
to show that |I(x̄, ȳ)| = 2 with

∆1 =
⋃
t∈R+


{0} × R
R× {0}
{t} × {0}
{t} × R
{0} × R

 , ∆2 =


{0} × R
R× {0}
{0} × R−
{0} × R
{0} × R

 .
Now, we show that a direct application of Proposition 2 can be rather cumbersome. It is clear that the
first union in (28) will be performed with respect to three elements. Since each ∆i can be described
as an intersection of 11 halfspaces, the any fixed I for expressing the second and third union in (28),
one has to check 121 combinations of sets RJ ,JI and SJI , leading together to necessity of solving 363
systems of linear equations (27). The number is so high because the majority of this systems will
have some solution apart from 0 and thus the set AJI will contain lesser number of elements. Note
that in Example 4 we need to compute only union of 3 elements. The situation would become more
difficult, or possibly intractable should we consider (ȳ, z̄) as in Example 5.

Another approach to compute the desired normal cone is to realize that ∆1 and ∆2 differ only
at components y3, z3 and y4, and so we obtain from [12, Proposition 3.1] that

NΓ (x̄, ȳ) = R× {0} × {0} × R×Ω × {0} × R× {0},

where

Ω = bdΘ∗1
⋃

(Θ∗1 ∩Θ∗2)
⋃

bdΘ∗2 , (43)

Θ1 = {(y3, 0, y4)| y3 ∈ R+, y4 = y3} ,
Θ2 = {0} × R− × {0}.

After computing the polars to Θ1 and Θ2, it becomes clear that the three elements of unions in (42)
and (43) do correspond.

Finally, we would like to point out that non-regular points (such as ȳn = ȳn−1 > 0 and z̄n > 0)
fit well into our approach, while in [12] these points considerably increase the number of halfplanes
defining ∆i.

Conclusion

In this paper, we have proposed a new approach for computation of Fréchet and limiting normal
cones to a set which can be expressed as a finite union of convex polyhedra. Moreover, we have
compared our results to several selected known results, and applied the proposed approach to the
case of time dependent problems.

We believe that, based on Remark 2, our approach can be used to derive stability conditions for
general bilevel programs where the constraints on the lower level amount to a polyhedral set. In this
way, results of [5] dealing with MPCCs might be generalized. This, however, goes beyond the scope
of this paper.

A Auxiliary lemmas

Lemma A1 Consider continuous functions gi : Rn → R, i = 1, . . . , I and affine linear hj : Rn → R, j = 1, . . . , J
and define the following set

A = {x| gi(x) < 0, hj(x) = 0, i = 1, . . . , I, j = 1, . . . , J}.

Then A is relatively open. Moreover, if gi are convex for all i = 1, . . . , I and A is nonempty, then

clA = {x| gi(x) ≤ 0, hj(x) = 0, i = 1, . . . , I, j = 1, . . . , J}. (44)
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Proof. Since gi are continuous, A1 := {x| gi(x) < 0, i = 1, . . . , I} is an open set. As hj are affine linear, we know
that A2 := {x|hj(x) = 0, j = 1, . . . , J} is an affine subspace. Thus, A = A1 ∩A2 is relatively open.

To prove the second result, denote the right–hand side of (44) by B. Clearly, we have clA ⊂ B without any
additional assumptions. To show the opposite inclusion, consider any x ∈ B. Since A is nonempty, there exists x̄
such that gi(x̄) < 0 and hj(x̄) = 0. Due to the assumptions, we know that xn := (1− 1

n
)x+ 1

n
x̄ ∈ A and xn → x,

which finishes the proof.

Lemma A2 Assume that A ⊂ Rn is convex and relatively open and consider some x ∈ A and y ∈ clA. Then for
all λ ∈ (0, 1) we have λx+ (1− λ)y ∈ A.

Proof. The statement is a direct consequence of [24, Theorem 6.1].

Lemma A3 Consider a normally admissible stratification {Γs| s = 1, . . . , S} of Γ and some S ⊂ {1, . . . , S}. Then⋂
s∈S

clΓs =
⋃

{t| S⊂I(t)}
Γt. (45)

Proof. Assume that x ∈ clΓs for all s ∈ S. Then there exists some t such that x ∈ Γt. But this means that
x ∈ Γt ∩ clΓs for all s ∈ S and thus s ∈ I(t) for all s ∈ S, meaning that S ⊂ I(t).

On the other hand, consider any t such that S ⊂ I(t). Then for any s ∈ S, we have s ∈ S ⊂ I(t), and thus
Γt ⊂ clΓs, which finishes the proof.

Lemma A4 For a polyhedral set C consider its all nonempty relatively open faces Cs with s = 1, . . . , S. Then
{Cs| s = 1, . . . , S} forms a normally admissible stratification of C.

Proof. Since all properties of Definition 2 apart from formula (3) obviously hold, it remains to verify this formula.
Consider thus some Cs and Ci such that Cs ∩ clCi 6= ∅. Since we can write

C = {x| 〈ct, x〉 ≤ bt, t = 1, . . . , T},
Cs = {x| 〈ct, x〉 < bt, t ∈ T11, 〈ct, x〉 = bt, t ∈ T12},

clCi = {x| 〈ct, x〉 ≤ bt, t ∈ T21, 〈ct, x〉 = bt, t ∈ T22},

where Tj1∩Tj2 = ∅ and Tj1∪Tj2 = {1, . . . , T} for j = 1, 2 and since there is some x ∈ Cs∩clCi, we have T11 ⊂ T21

and thus Cs ⊂ clCi, which finishes the proof.

References

1. Acary, V., Brogliato, B.: Numerical Methods for Nonsmooth Dynamical Systems, vol. 35. Springer (2008)
2. Achtziger, W., Kanzow, C.: Mathematical programs with vanishing constraints: Optimality conditions and

constraint qualifications. Mathematical Programming (114), 69–99 (2008)
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