
Multistage Adaptive Robust Optimization
for the Unit Commitment Problem
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The growing uncertainty associated with the increasing penetration of wind and solar power generation has

presented new challenges to the operation of large-scale electric power systems. Motivated by these challenges,

we present a multistage adaptive robust optimization model for the most critical daily operational problem

of power systems, namely the unit commitment (UC) problem, in the situation where nodal net electricity

loads are uncertain. The proposed multistage robust UC model takes into account the time causality of

the hourly unfolding of uncertainty in the power system operation process, which we show to be relevant

when ramping capacities are limited and net loads present significant variability. To deal with large-scale

systems, we explore the idea of simplified affine policies and develop a solution method based on constraint

generation. Extensive computational experiments on the IEEE 118-bus test case and a real-world power

system with 2736 buses demonstrate that the proposed algorithm is effective in handling large-scale power

systems and that the proposed multistage robust UC model can significantly outperform the deterministic

UC and existing two-stage robust UC models in both operational cost and system reliability.

Key words : Electric energy systems, multistage robust optimization, affine policies, constraint generation.

1. Introduction

Operating large-scale electric power systems is a challenging task that requires adequate deci-

sion tools and methodologies for hedging against uncertain factors such as wind and solar power

generation, water inflows for hydroplants, electricity demand, transmission line and generator con-

tingencies, and demand response (see e.g. Gómez-Expósito et al. (2008), Conejo et al. (2010), Xie

et al. (2011)). The unit commitment (UC) problem consists in finding an on/off commitment sched-

ule and generation dispatch levels for generating units in each hour of the next day, in such a way

that the total production cost is minimized while electricity demand is met and various physical

constraints of generators and the transmission network are satisfied. This is the most critical daily
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operational problem for large-scale power systems, and it is a difficult optimization problem due

to its large scale and discrete nature. It becomes more complicated when wind power and other

renewable generation resources are available in large quantities and present significant uncertainty

in their availability. How to deal with increasing uncertainty in power systems has been identified

by the electricity industry as an urgent challenge (see Hobbs et al. (2001), Keyhani et al. (2009),

Conejo et al. (2010), Xie et al. (2011)).

Stochastic programming is an important approach that has been applied to managing uncer-

tainties in the UC problem (e.g., see Ozturk et al. (2004), Wu et al. (2007), Wang et al. (2008),

Ruiz et al. (2009a), Ruiz et al. (2009b), Tuohy et al. (2009), Constantinescu et al. (2011),Wang

et al. (2012), Papavasiliou and Oren (2013)). These models offer a notable advancement over deter-

ministic methods. However, they also present important computational challenges when dealing

with large-scale power systems. In particular, stochastic programming models require identifying

appropriate probability distributions for uncertain parameters such as load and renewable energy

generation, which might be difficult; it is also difficult to construct scenario trees that represent

high-dimensional stochastic processes; and large scenario trees often lead to computational diffi-

culties. See the work by Heitsch and Römisch (2011) for an important example on scenario tree

generation methods.

Robust optimization is an alternative paradigm for optimization under uncertainty, which has

received wide attention and has been applied in several engineering disciplines (e.g., see Ben-Tal

et al. (2009a), Bertsimas et al. (2011)). Instead of using probability distributions for uncertain

parameters, robust optimization models assume that uncertain parameters are realized as elements

of a deterministic uncertainty set. Given an uncertainty set, the problem consists of finding a solu-

tion that is feasible for any realization of the uncertain parameters in this set and also minimizes

the worst-case cost. This approach is of particular interest when accurate probability distribu-

tions are not available or when uncertain parameters present high dimensionality. Further, the

conservativeness of robust solutions can be controlled by the choice of uncertainty sets.

Several robust optimization formulations for the UC problem have been recently proposed. A

robust formulation for the contingency constrained UC problem is proposed in Street et al. (2011).

Various adaptive robust UC models dealing with demand and renewable generation uncertainty are

studied in Jiang et al. (2012), Zhao and Zeng (2012), Bertsimas et al. (2013), and Wang et al. (2013).

More specifically, Jiang et al. (2012) present a robust UC formulation including pumped-storage

hydro units under wind uncertainty. Zhao and Zeng (2012) present a formulation with demand

response under wind uncertainty. Bertsimas et al. (2013) present a security constrained robust

UC formulation with system reserve requirements under nodal net injection uncertainty, including

extensive computational experiments on a real-world power system. Wang et al. (2013) present a
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contingency constrained UC model under uncertain generator and transmission line contingencies.

Zhao and Guan (2013) present a hybrid approach that combines stochastic and robust optimization

by weighing expected cost and worst-case cost.

An essential feature of all the above stochastic and robust UC models is that they are two-stage

models, where the first-stage decision is the on/off commitment decision made in the day-ahead

electricity market, while the second-stage decision is the real-time dispatch decision for the entire

scheduling horizon. The work in Zhao et al. (2013) presents a three-stage robust UC model, which

has UC decisions in the first stage and dispatch decisions in the second stage, and then has uncertain

demand response after dispatch decisions. This decision-making structure is converted to a two-

stage robust model. The crucial assumption of two-stage models is that the second-stage decision is

made with the full knowledge of realized uncertain parameters over the entire scheduling horizon.

However, in reality, power systems are operated sequentially, where generation dispatch at each

hour can only depend on the information of realized uncertain parameters up to that hour. In other

words, dispatch decisions are non-anticipative. Two-stage stochastic and robust UC models ignore

this.

In this paper, we demonstrate the importance of considering non-anticipativity constraints in

power system operations and present a multistage adaptive robust optimization model for the

UC problem, where the commitment decisions are selected here-and-now as done in the day-

ahead electricity market, and the dispatch decision for each hour of the next day is the wait-

and-see decision respecting non-anticipativity for the sequential revelation of uncertainty. We also

address the computational challenge presented by the multistage robust UC model. To make it

computationally tractable, we consider approximation schemes with decision rules, in particular, we

use affine policies for the dispatch decisions, where generators’ dispatch levels are affine functions

of uncertain load.

The affinely adjustable robust optimization approach has attracted considerable attention since

the seminal paper of Ben-Tal et al. (2004). Most of the existing works focus on studying multistage

convex optimization problems with relatively simple and well-structured constraints, such as multi-

period inventory problems studied in Bertsimas et al. (2010), Goh and Sim (2011), Hadjiyiannis

et al. (2011) or multistage stochastic linear programs in Kuhn et al. (2011). These models can be

transformed to deterministic counterparts through duality theory and solved by existing algorithms

for convex programs, see e.g. Ben-Tal et al. (2009b), Kuhn et al. (2011). Another direction of

research is to extend affine policies to more general decision rules, such as in Chen et al. (2008),

Chen and Zhang (2009), and Georghiou et al. (2013).

Previous applications of affine policies for power system operations were carried out by Warring-

ton et al. (2012, 2013), who considered a stochastic optimization model for the economic dispatch
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problem with storage, where the UC binary decision is assumed to be fixed. These works have been

recently extended to incorporate binary UC decisions (Warrington et al. 2014). Another applica-

tion of affine policies for power system operations was developed by Jabr (2013) who considered

the dispatch of automatic generation control units under uncertain renewable energy outputs, with

fixed UC decisions. Our work is done independently from these works. And the crucial differences

of our approach with respect to these references include the proposal of a multistage robust UC

model with simplified affine policies, the analysis of the relationship between the multistage and

two-stage robust UC models, and the development of an algorithm based on constraint generation

that allows the efficient solution of large-scale instances of the problem under a high-dimensional

uncertainty set. An interesting analysis comparing two-stage and multistage robust formulations

is presented by Minoux (2014), for an economic dispatch problem with one bus and one generator.

However, no details on the multistage model are provided. The author also introduces the idea of

state-space representable uncertainty sets, which can be used for modeling temporal dependencies

in the uncertain parameters.

The proposed multistage robust UC problem in this paper presents several challenges that make

existing methodologies not directly applicable. In particular, the multistage robust UC model is a

large-scale mixed-integer optimization problem involving a large number of complicated constraints.

Due to the mixed-integer decisions, convex optimization based modeling and solution methods

cannot be applied. Furthermore, due to its very large scale, applying even the basic affine policies

in a straightforward way is not computationally viable and the duality-based approach leads to

reformulations with exceedingly large dimensions. To deal with these challenges, we propose new

solution ideas. More specifically, instead of using more general decision rules, we descend the com-

plexity ladder and use simplified affine policies through properly aggregating uncertain parameters

in the dependency structure of the affine policy. The resulting multistage UC formulation has a

reduced dimensionality and a structure that we can exploit. We design a solution method based

on constraint generation and employ several algorithmic improvements that make the multistage

robust UC problem efficiently solvable even for large-scale instances.

We conduct a thorough computational study with extensive numerical experiments on the per-

formance of the proposed algorithm, the quality of simplified affine policies, their worst-case and

average-case performance, and comparison with existing deterministic and two-stage robust UC

models. The computational results show that the proposed algorithm can effectively solve the

multistage robust UC model within a time frame reasonable for the day-ahead operation of large-

scale power systems. The performance of the proposed multistage robust UC model demonstrates

its ability to significantly reduce operational costs and at the same time improve system reliabil-

ity, as we show in computational experiments where we compare this approach with the existing

deterministic and two-stage robust UC models.
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The contributions of the paper can be summarized as follows.

1. This paper presents a multistage adaptive robust optimization model for the UC problem

under significant uncertainty in nodal net loads, respecting non-anticipativity in the dispatch pro-

cess. We have also proposed a new robust dispatch model utilizing the affine policy obtained from

the multistage robust UC model.

2. This paper discusses the solution concept of simplified affine policies in multistage robust

optimization and demonstrates its effectiveness in power system operations.

3. This paper proposes an efficient solution algorithm based on constraint generation with various

algorithmic improvements for solving large-scale multistage robust UC models with affine policy.

Several aspects of the algorithm are also applicable to general large-scale robust optimization

problems with mixed-integer variables.

4. This paper provides an extensive computational study of the proposed multistage robust

UC model on medium and large-scale power systems. Comparison with existing deterministic and

two-stage robust UC models demonstrates the potential of the proposed approach in reducing

operational cost, increasing system reliability, and managing system flexibility.

The remainder of the paper proceeds as follows. Section 2 presents the deterministic and two-

stage robust UC models and discusses their limitations. Section 3 proposes the multistage robust

UC model and introduces the concept of simplified affine policies. Section 4 presents a traditional

method based on duality and a constraint generation framework for solving robust optimization

problems. Section 5 proposes several algorithmic improvements. Section 6 presents a multifaceted

computational study of the performance of the proposed approach. Section 7 concludes the paper.

All the proofs, unless given in the main body of the paper, are collected in the Electronic Com-

panion.

2. Non-Causal UC models and Their Limitations

In this section, we discuss the deterministic UC and the recently developed two-stage robust

UC models. We shall call the two-stage robust UC model a non-causal UC model, because the

decisions in this model depend on future information of uncertainty and thus do not respect non-

anticipativity in the physical process of dispatching generators. We show important issues with

non-causal UC formulations. It serves as the motivation for the development of multistage robust

UC models.

2.1. Deterministic Unit Commitment

Consider the deterministic UC model below.

min
x,u,v,p

∑
t∈T

∑
i∈Ng

(Gix
t
i +Siu

t
i) +

∑
t∈T

∑
i∈Ng

Cip
t
i (1a)
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s.t. xti, u
t
i, v

t
i ∈ {0,1} ∀ i∈Ng, t∈ T (1b)

xti−xt−1
i = uti− vti ∀ i∈Ng, t∈ T (1c)

t+UTi−1∑
τ=t

xτi ≥UTiuti ∀ i∈Ng, t∈ {1,2, . . . , T −UTi + 1} (1d)

t+DTi−1∑
τ=t

(1−xτi )≥DTivti ∀ i∈Ng, t∈ {1,2, . . . , T −DTi + 1} (1e)

T∑
τ=t

(xτi −uti)≥ 0 ∀ i∈Ng, t∈ {T −UTi + 1, . . . , T} (1f)

T∑
τ=t

(1−xτi − vti)≥ 0 ∀ i∈Ng, t∈ {T −DTi + 1, . . . , T} (1g)

pmini xti ≤ pti ≤ pmaxi xti ∀ i∈Ng, t∈ T (1h)

−RDix
t
i−SDiv

t
i ≤ pti− pt−1

i ≤RUixt−1
i +SUiu

t
i ∀ i∈Ng, t∈ T (1i)

− fmaxl ≤αTl (Bppt−Bddt)≤ fmaxl ∀ t∈ T , l ∈Nl (1j)∑
i∈Ng

pti =
∑
j∈Nd

dtj ∀ t∈ T , (1k)

where Ng,Nd,Nl,T denote the sets of generators, nodes with net load, transmission lines, and time

periods, respectively, and Ng,Nd,Nl, T are their cardinalities; xti, u
t
i, v

t
i and pti are respectively the

on/off, start-up, shut-down, and the generation dispatch level decisions of generator i at time t;

Gi, Si,Ci are the no-load cost, start-up cost, and variable cost of generator i; DTi and UTi are

the minimum-down and minimum-up times of generator i; pmini and pmaxi are the minimum and

maximum generation levels of generator i; RDi and RUi are the ramp-down and ramp-up rates of

generator i, and SDi and SUi are the ramp rates when generator i shuts down and turns on;Bp and

Bd are the incidence matrices for generators and loads; αl and fmaxl are the generation shift factor

and the flow limit for line l, respectively; dtj is the net load at node j and time t. In this paper, nodal

net load is defined as the nodal demand minus the total renewable generation such as wind and

solar power connected to the same node, which is an uncertain quantity due to the uncertainty of

wind and solar power generation. The objective (1a) consists of minimizing the sum of commitment

costs (including no-load and start-up costs) and dispatch costs (assumed to be linear here but can

be replaced with a piecewise linear function without changing the linearity of the problem). Eq. (1c)

corresponds to start-up and shut-down constraints. Eq. (1d)-(1g) corresponds to minimum up and

down time constraints. Constraints (1h) enforce minimum and maximum generation capacity limits

when generators are on, and no generation when they are off. Constraints (1i) enforce ramping up

and down limits. Constraints (1j) enforce transmission line limits. Constraints (1k) enforce energy

balance at a system level. The model can also be extended to include reserve decisions and related
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constraints, which are omitted here for simplicity. The formulation in (1d)-(1g) follows Ostrowski

et al. (2012).

2.2. Two-stage Adaptive Robust Unit Commitment

To deal with uncertainties in the nodal net electricity loads, the following two-stage adaptive robust

UC model has been proposed (e.g. see Jiang et al. (2012), Zhao and Zeng (2012), Bertsimas et al.

(2013)):

min
x∈X

{
F (x) + max

d∈D
min

p∈Ω(x,d)
c(p)

}
, (2)

where x denotes all the commitment related binary variables (xti, u
t
i, v

t
i in the deterministic UC

model (1)), d is the vector of net load at all nodes and all time periods, p is the vector of dispatch

variables, set X is the feasible region of the commitment decisions defined by Eq. (1b)-(1g), D is the

uncertainty set of net loads, Ω(x,d) is the feasible region of the dispatch variables parameterized

by the commitment decisions and realized net load, as defined in Eq. (1h)-(1k), and

F (x) =
∑
t∈T

∑
i∈Ng

(Gix
t
i +Siu

t
i) , c(p) =

∑
t∈T

∑
i∈Ng

Cip
t
i.

In this paper, we use the following budget uncertainty set:

Dt =

{
dt = (dt1, . . . , d

t
Nd

) :
∑
j∈Nd

|dtj − d
t

j|
d̂tj

≤ Γ
√
Nd, d

t
j ∈ [d

t

j −Γd̂tj, d
t

j + Γd̂tj] ∀ j ∈Nd

}
. (3)

Notice that dtj lies in an interval centered around the nominal value d
t

j within a deviation denoted

by Γd̂tj. The budget constraint with budget Γ
√
Nd controls the size of the uncertainty set, where

Γ represents the conservativeness of the model. For Γ = 0 we have Dt = {dt}, i.e., the uncertainty

set only contains the nominal net load vector and the two-stage robust UC model (2) becomes the

deterministic UC model (1). As Γ increases, more net load vectors are contained in the uncertainty

set. The square root
√
Nd scaling is motivated by a central limit theorem type argument, where

the standard deviation of the aggregated randomness scales proportionally to the square root of

the number of random variables (see Bertsimas et al. (2013)). Robust constraints using uncertainty

set (3) also guarantees a probabilistic feasibility condition (see Chen et al. (2007)). We define

D=
∏
t∈T Dt as the uncertainty set for the net load trajectory d over the entire scheduling horizon.

With this choice, notice the separability of D over time periods, i.e., the temporal independency.

As seen from the above two-stage robust UC model, the dispatch decision p in the inner mini-

mization problem over Ω(x,d) is made with perfect knowledge of the realization of uncertain net

loads d over the entire scheduling horizon. In reality, system operators only have perfect infor-

mation about uncertain parameters that are realized up to the current operating time. The key

questions are: What is the consequence of assuming the full knowledge of nodal net loads in the

dispatch process? How to properly tackle the sequential nature of this process?
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2.3. Example that Illustrates the Limitations of Non-causal UC Models

We present a simple example to illustrate that the UC solution from the two-stage robust UC

model can lead to infeasibility in the real-time dispatch.

Example 1. The system has 2 buses, A and B, and two periods, so T = 2. Each bus has a

conventional generator. The transmission line has a flow limit of 1 unit of power. The ramp rates

of both generators are also 1 unit of power, i.e., RUA =RDA =RA = 1, and RUB =RDB =RB = 1.

The initial generation levels of the two generators are at 12, i.e., p0
A = p0

B = 12 at t= 0.

ܣ ܤ

݂௠௔௫ ൌ 1

஺଴݌ ൌ 12, ܴ஺ ൌ 1 ஻଴݌ ൌ 12, ܴ஻ ൌ 1

݀஺௧ ݀஻௧

Figure 1 Simple two-bus system to illustrate the limitation of non-causal UC models.

The uncertainty sets for nodal net loads (dtA, d
t
B) at t= 1,2 are given as follows:

D1 =
{

(d1
A, d

1
B) = (12,12)

}
,and D2 =

{
(d2
A, d

2
B) : d2

A ∈ [10,15], d2
B ∈ [10,15], d2

A + d2
B = 25

}
.

That is, the first period loads are deterministic with power level of 12 at each bus, and the net loads

in the second period are uncertain, but the total net load is known to be 25. Denote D=D1×D2.

Claim 1. The two-stage robust UC model (2) is feasible for the system in Example 1.

Proof: Consider x2S = ((x1
A, x

1
B), (x2

A, x
2
B)) = ((1,1), (1,1)). To prove that x2S is feasible for

the two-stage robust UC model, we construct a feasible dispatch policy. In particular, for any

d= ((d1
A, d

1
B), (d2

A, d
2
B))∈D, consider the following policy:

p1
A(d) = 12 + (2/5)(d2

A− 12.5), p1
B(d) = 12− (2/5)(d2

A− 12.5), (4a)

p2
A(d) = 12.5 + (3/5)(d2

A− 12.5), p2
B(d) = 12.5− (3/5)(d2

A− 12.5). (4b)

From (4), we can see that for t= 1, p1
A(d)+p1

B(d) = 24 for all d∈D, so energy balance is respected.

By the definition of the uncertainty sets, we have p1
A(d), p1

B(d) ∈ [11,13] for all d ∈ D, so the

ramping constraints from the initial states (p0 = (12,12)) are respected. Furthermore, p1
A(d)−d1

A =

p1
A(d)− 12∈ [−1,1] for all d∈D, so transmission constraints are respected. Similarly for t= 2, we

have p2
A(d) + p2

B(d) = 25 for all d∈D, so energy balance is satisfied. Since d2
A ∈ [10,15], we can see
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that p2
A(d)− p1

A(d) = 0.5 + (1/5)(d2
A − 12.5) ∈ [0,1] and p2

B(d)− p1
B(d) = 0.5− (1/5)(d2

A − 12.5) ∈

[0,1], hence ramping constraints are respected. Finally, p2
A(d) − d2

A = 5 − (2/5)d2
A ∈ [−1,1], so

transmission constraints are respected. Therefore, p(d) given in (4) satisfies all constraints in (2),

thus x2S is feasible for the two-stage robust UC model. �

Notice that the dispatch policy (4) is non-causal, because the dispatch decision at t= 1 depends

on the uncertainty realization at t= 2. If this UC solution is implemented, the real-time dispatch

under this UC solution can be infeasible, as shown in the following result.

Claim 2. Let x∗2S be the optimal UC solution of the two-stage robust UC model for Example 1.

Under x∗2S, there does not exist any feasible dispatch policy that respects time causality, i.e. where

p1(·) does not depend on d2.

Proof Notice that x∗2S = ((x1
A, x

1
B), (x2

A, x
2
B)) = ((1,1), (1,1)) is the optimal solution of the two-

stage robust UC for the system in Example 1, since keeping both generators online is the only

candidate solution to satisfy net load.

Now consider the real-time sequential operation under this commitment decision x∗2S, where the

causal dispatch policy at t can only depend on the information available up to t. We want to show

that there does not exist any causal dispatch policy that can make the system feasible for all net

load vectors in the uncertainty set. For this, we need to show that there is no p1(d1) such that, for

all d2 ∈D2, there always exists a feasible p2(d1,d2) at t= 2.

Since d1 is fixed at (12,12), we write p1(d1) as p1 = (p1
A, p

1
B) for brevity. Notice that due to

the energy balance constraint, we must have p1
A + p1

B = 24, and due to the ramping capacity and

transmission constraints, we must have p1
A, p

1
B ∈ [11,13]. Suppose we choose p1

A ≤ 12. Then take

d2 = (15,10) from the uncertainty set D2. Due to ramping constraints, we must have p2
A ≤ 13.

However, it is impossible to satisfy energy balance at location A, because the transmission limit

is 1. Similarly, if we choose p1
A ≥ 12, the adversary can take d2 = (10,15) ∈D2, which leads to the

impossibility of satisfying net load at location B. This means that no matter what p1 we choose

to satisfy the constraints at t = 1, there always exists a d2 ∈ D2 so that the constraints at t = 2

cannot be satisfied. �

With this result, we see that the two-stage robust UC decision x∗2S can lead to infeasibility in

the real-time dispatch problem. This simple example demonstrates that when the transmission and

generation ramping capability is limited, the two-stage robust UC model can make an infeasible

problem appear to be feasible. When such a UC solution is implemented, the real-time operation

can become infeasible under uncertain parameters realized within the uncertainty set. Also notice

that, if we add expensive generators at each bus in Example 1, we can obtain a system where the

multistage robust UC model produces a UC solution under which feasible real-time dispatch is
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guaranteed, while the optimal commitment solution from the two-stage robust UC solution again

leads to infeasibility in real-time operation.

With high penetration of renewable energy resources, power systems frequently experience fast

swings in net loads, which pushes the generators toward the regime of limited ramping capability,

which motivates us to consider multistage robust UC models.

3. Multistage Adaptive Robust UC and Simplified Affine Policy

In this section, we first propose the multistage robust UC model and give a theoretical analysis

on the relationship between the two-stage and multistage robust UC models. Then, we introduce

affine dispatch policies and the concept of simplified affine policies.

3.1. Multistage Adaptive Robust UC Model

In the operation of power systems, the commitment decision x is made several hours before the

observations of uncertain net loads, and then the dispatch decisions are sequentially optimized in

real time with observations of realized uncertainty up to the operating hour. To faithfully model

this process, the dispatch decision pt at time t in the UC model should depend on the history of net

load d[t] , (d1, ...,dt). Based on this requirement, we formulate the following multistage adaptive

robust UC model.

min
x,u,v,p(·)

∑
t∈T

∑
i∈Ng

(Gix
t
i +Siu

t
i) + max

d∈D

∑
t∈T

∑
i∈Ng

Ci p
t
i(d

[t])

 (5a)

s.t. Constraints (1b)-(1g) for (x,u,v)

pmini xti ≤ pti(d
[t])≤ pmaxi xti ∀d∈D, i∈Ng, t∈ T (5b)

−RDix
t
i−SDiv

t
i ≤ pti(d

[t])− pt−1
i (d[t−1])≤RUixt−1

i +SUiu
t
i

∀d∈D, i∈Ng, t∈ T (5c)

− fmaxl ≤αTl (Bppt(d[t])−Bddt)≤ fmaxl ∀d∈D, t∈ T , l ∈Nl (5d)∑
i∈Ng

pti(d
[t]) =

∑
j∈Nd

dtj ∀d∈D, t∈ T . (5e)

The crucial feature of this formulation is the expression pti(d
[t]), which makes the generation of

unit i at time t a function of net load uncertainty realized up to time t, thus respecting non-

anticipativity. Constraints (5b)-(5e) enforce generation limits, ramping capacities, transmission line

capacities, and energy balance, for any realization of d∈D. Note that binary decisions x,u,v are

not adaptive, they are decided “here-and-now” before observing any uncertainty.

The multistage decision making structure of (5) can be equivalently represented in the following

nested formulation, using the separability of the uncertainty set over time periods:

min
(x,u,v)∈X

{
G>x+S>u+ max

d1∈D1
min

p1∈Ω1(x,d1,p0)

{
C>p1 + · · ·+ max

dT∈DT
min

pT∈ΩT (x,dT ,pT−1)
C>pT

}}
, (6)
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where Ωt(x,d
t,pt−1) ,

{
pt : (1h)-(1k) are satisfied ∀ i ∈ Ng

}
. Notice that the feasible region

Ωt(x,d
t,pt−1) of the dispatch decision at stage t depends on previous stage t− 1’s dispatch lev-

els pt−1 and stage t’s realized demand dt. Due to discrete decision variables and the large scale

of the formulation, numerical solution of the multistage robust UC model ((5) or (6)) presents

a major computational challenge. In the following, we first make further discussion on the rela-

tion between the two-stage and multistage models, then propose approximate decision rules and

tractable solution methods for solving the multistage robust UC model.

3.2. Discussion on Two-Stage and Multistage Robust UC Models

The key difference between the two-stage and multistage models is that the multistage robust UC

provides a causal policy pt(d[t]), which only relies on information observed up to the respective

time period when the dispatch decision is made. Clearly, the two-stage robust UC model lacks this

property. It turns out that, when the system is not constrained by its ramping capability, i.e., the

generators have enough ramping capacity to follow the rapidly varying wind, the two-stage robust

UC model is equivalent to the multistage model.

Proposition 1. Consider the two-stage robust UC (2) and the multistage robust UC (5), where

the uncertainty set is given by Eq. (3). If ramping constraints (5c) are neglected, the two-stage

robust UC (2) and the multistage robust UC (5) have the same optimal objective value and a same

optimal UC solution.

The proof follows from the fact that the dispatch component of both problems can be separated

into T non-coupled problems when there are no ramping constraints. Please see the Electronic

Companion for details.

Proposition 1 suggests that the multistage robust UC model is important precisely when the

system’s ramping capability is a limited resource, which is the case for power systems with a high

penetration of uncertain wind and solar power generation.

3.3. Affine Multistage Robust UC

To computationally solve the proposed multistage robust UC model (5), we propose to consider

approximation schemes using linear decision rules. In particular, to make the problem tractable,

we restrict the dispatch decision pt(·) to have the form of an affine function as

pti(d
[t]) =wti +

∑
j∈Nd

∑
s∈[1:t]

Witjsd
s
j , (7)
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where [1 : t] , {1, ..., t} and (wti ,Witjs) are the coefficients of the affine policy. It is important to

notice that the affine policy (7) automatically respects non-anticipativity. Using this affine dispatch

policy, the multistage robust UC model has the following form

min
x,u,v,z,w,W

∑
t∈T

∑
i∈Ng

(Gix
t
i +Siu

t
i) + z (8a)

s.t. Constraints (1b)-(1g) for (x,u,v)∑
t∈T

∑
i∈Ng

Ci

(
wti +

∑
j∈Nd

∑
s∈[1:t]

Witjsd
s
j

)
≤ z ∀d∈D (8b)

pmini xti ≤wti +
∑
j∈Nd

∑
s∈[1:t]

Witjsd
s
j ≤ pmaxi xti ∀d∈D, i∈Ng, t∈ T (8c)(

wti +
∑
j∈Nd

∑
s∈[1:t]

Witjsd
s
j

)
−
(
wt−1
i +

∑
j∈Nd

∑
s∈[1:t−1]

Wi,t−1,jsd
s
j

)
≥−RDix

t
i−SDiv

t
i

∀d∈D, i∈Ng, t∈ T (8d)(
wti +

∑
j∈Nd

∑
s∈[1:t]

Witjsd
s
j

)
−
(
wt−1
i +

∑
j∈Nd

∑
s∈[1:t−1]

Wi,t−1,jsd
s
j

)
≤RUixt−1

i +SUiu
t
i

∀d∈D, i∈Ng, t∈ T (8e)

− fmaxl ≤
∑
m

∑
i∈Ng

αlmB
p
mi

(
wti +

∑
j∈Nd

∑
s∈[1:t]

Witjsd
s
j

)
−
∑
m

∑
j∈Nd

αlmB
d
mjd

t
j ≤ fmaxl

∀d∈D, t∈ T , l ∈Nl (8f)∑
i∈Ng

(
wti +

∑
j∈Nd

∑
s∈[1:t]

Witjsd
s
j

)
=
∑
j∈Nd

dtj ∀d∈D, t∈ T . (8g)

We have created variable z to denote the worst-case dispatch cost in constraint (8b). Constraints

(8c)-(8g) correspond to (5b)-(5e), obtained by replacing pti(d
[t]) with the affine policy (7). Note

that constraints (8b)-(8g) are robust constraints that should hold for all d ∈ D. We call (8) the

affine multistage robust UC model.

3.4. Simplified Affine Policies

In the affine policy (7), the dispatch decision pti(d
[t]) of generator i at time t depends on the entire

history of realized net load at every node and every time period up to t. This full affine dependency

requires defining a large number of Witjs variables, which can quickly lead to scalability issues in

large-scale power systems.

To make the affine multistage robust UC model (8) a practical decision tool for the operation of

large-scale power systems, we introduce further restrictions on the affine policy form. In particular,

we consider affine policies with simplified structures by limiting the degrees of freedom in Witjs.

There are several ways to do this: we can restrict pt(·) to only depend on the most recently revealed

information at time t, rather than on the whole history; we can partition time periods into peak-

load, medium-load, and low-load periods and assume affine policies in each period have the same
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form; we can also partition the transmission network into zones and make generators’ dispatch

policies depend on the aggregated load in each zone. We use the following two very simple policies:

pti(d
[t]) =wti +Wi

∑
j∈Nd

dtj ∀i∈Ng, t∈ T (9)

pti(d
[t]) =wti +Wit

∑
j∈Nd

dtj ∀i∈Ng, t∈ T . (10)

We call (9) the Wi-policy, where the coefficients Wi of the affine policy only depend on generators

but not on time, and the dispatch level of each generator at time t depends on the total load in the

system at time t. Eq. (10) presents a finer policy, which we call the Wit-policy, where the coefficients

Wit of the affine policy can change over time. Surprisingly, it will be shown that these two very

simplified affine policies are already quite powerful and produce close-to-optimal performance for

the multistage robust UC model. We also want to remark that a static policy, i.e. pti(d
[t]) =wti , is

the simplest (and trivial) form of an affine policy, however, with this choice it becomes impossible

to satisfy energy balance equality over all net load vectors in the uncertainty set. This shows that

the simpler but not the simplest affine policies work and the non-trivial affine dependence in the

dispatch policy is very important.

4. Basic Algorithmic Framework

In this section, we discuss basic solution methods for the affine multistage robust UC problem (8).

We first discuss the traditional approach using duality theory and point out its limitation in solving

large-scale robust optimization problems. Then, we present a constraint generation framework as

the basis for further algorithmic improvements developed in this paper. Then, we close this section

with some discussion.

4.1. Duality-Based Approach

The robust constraints in (8b)-(8f) have the following structure:

c(W )>d≤ h(x,u,v,w, z) ∀d∈D, (11)

where c(W ) and h(x,u,v,w, z) are affine functions of the respective decision variables. To simplify

notations, we write (11) as c>d ≤ h for all d ∈ D. This robust constraint can be reformulated

by using linear programming duality. In particular, (11) is equivalent to maxd∈D c
>d ≤ h. Since

the uncertainty set D is a polytope, the maximization problem always attains a finite optimum,

therefore, the maximization problem can be replaced by the dual minimization problem. Thus,

(11) is equivalent to minπ∈Π(c) b
>π ≤ h, where b comes from the definition of D and Π(c) is a

polyhedron that depends on c. With this, (11) is further equivalent to the existence of π ∈Π(c) such
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that b>π ≤ h. In this way, (11) is reformulated as a finite number of linear constraints involving

dual variables. This duality-based approach is general and widely used in reformulating robust

constraints, see the book by Ben-Tal et al. (2009a). For our problem, the deterministic counterpart

of (11) with uncertainty set (3) is given below.

Proposition 2. The robust constraint c>d=
∑

t∈T
∑

j∈Nd
ctjd

t
j ≤ h ∀d ∈D, where D is given by

(3), is equivalent to the existence of a vector of dual variables π that satisfies the following linear

constraints:

∑
t∈T

∑
j∈Nd

[
d
t

jπ
1
jt− d

t

jπ
2
jt + (Γd̂tj − d

t

j)π
3
jt + (Γd̂tj + d

t

j)π
4
jt

]
+
∑
t∈T

Γ
√
Ndπ

5
t ≤ h (12a)

π1
jt−π2

jt−π3
jt +π4

jt = ctj ∀ j ∈Nd, t∈ T (12b)

− d̂tjπ1
jt− d̂tjπ2

jt +π5
t = 0 ∀ j ∈Nd, t∈ T (12c)

π1
jt, π

2
jt, π

3
jt, π

4
jt, π

5
t ≥ 0 ∀ j ∈Nd, t∈ T . (12d)

Each robust constraint in (8b)-(8f) can be replaced by a set of equivalent deterministic constraints

defined in (12a)-(12d) for the corresponding c and h. Notice that we need to introduce a respective

vector π of dual variables for each of these robust constraints. The size of the resulting MIP

reformulation is very large. In the affine multistage robust UC (8), there are 1 + 2T (2Ng +Nl)

robust constraints, each requiring a vector π of dimension up to (4Nd + 1)T if the Witjs-policy is

used or (4Nd + 1) if the Wit-policy is used. Table 1 shows the number of variables required in the

respective MIPs. Even with the Wi-policy or Wit-policy, the resulting MIP is too large to solve

for moderate-sized power systems. For example, for a 2736-bus test case considered in Section 6,

using the Wit-policy under this method would lead to more than 250 million π-variables. We need

a solution method that is more scalable.

Table 1 Number of variables in the MIPs obtained directly using the duality-based approach.

Policy structure Wi Wit Witjs

Binary variables 3NgT 3NgT 3NgT
(w,W )-variables NgT +Ng 2NgT NgT +NdNgT (T + 1)/2
π-variables 8Nd(2Ng +Nl)T 8Nd(2Ng +Nl)T 4Nd(2Ng +Nl)T (T + 1)

4.2. Constraint Generation

Since the constraints in the affine multistage robust UC model have the form of (11), where the left-

hand side is a linear function in d and the uncertainty set D is a polytope, each robust constraint
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is equivalent to an enumeration of the finitely many extreme points of the uncertainty set, in the

following form:

c>d≤ h ∀d∈ ext(D), (13)

where ext(D) = {d∗1, ..., d∗N} is the set of extreme points of D (see Ben-Tal et al. (2009b)). This

applies to every robust inequality in the affine multistage robust UC model. Furthermore, the

energy balance equality constraints in the affine multistage robust UC model can be reformulated

using the full-dimensionality of the uncertainty sets (equivalently, the existence of an interior point).

Proposition 3. For a full-dimensional uncertainty set D, the robust energy balance equation (8g)

of the Wi-policy and Wit-policy is equivalent to the following equalities

Wi-Policy:
∑
i∈Ng

wti = 0,
∑
i∈Ng

Wi = 1 ∀t∈ T (14)

Wit-Policy:
∑
i∈Ng

wti = 0,
∑
i∈Ng

Wit = 1 ∀t∈ T . (15)

With the above observations, we can reformulate the multistage affine robust UC model (8) in

the following compact form:

min
y∈Y

f(y) (16a)

s.t. gk(y,d)≤ 0 ∀d∈ ext(D), ∀k ∈ {1, . . . ,K}, (16b)

where y= (x,u,v,w,W , z) includes all decision variables in (8), the objective f(y) represents (8a),

and the set Y in (16a) is defined by (1b)-(1g) and (14) or (15) according to the policy structure

used. Constraints (16b) represent (8b)-(8f), where gk(y,d) is a bilinear function in y and d, and

K = 1 + 2T (2Ng +Nl) in (16b) is the total number of robust constraints.

This reformulation suggests a constraint generation framework. It starts with an initial set of

extreme points for each robust constraint, and at each iteration, finds the worst-case scenario d

for each robust constraint that achieves the highest constraint violation and adds it to the master

problem, which is defined as

(MP ) min
y∈Y

f(y)

s.t. gk(y,d)≤ 0 ∀d∈Dk, ∀k ∈ {1, ...,K},
(17)

where Dk ⊆ ext(D) is the list of extreme points that are identified from the constraint generation

procedure for each robust constraint k in (16b). The constraint generation framework is outlined

in Algorithm 1.
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Algorithm 1 Constraint generation

1: Start with some initial Dk for all k ∈ {1, ...,K}

2: repeat

3: y′← optimal solution of the Master Problem (17).

4: for all k ∈ {1, ...,K} do

5: dk← argmaxd∈D gk(y′,d)

6: If gk(y′,dk)> 0 let Dk←Dk ∪{dk}

7: end for

8: until gk(y′,dk)≤ 0 for all k ∈ {1, ...,K}

9: output: y′ is an optimal solution to (16)

Proposition 4. The constraint generation algorithm presented in Algorithm 1 for solving the

affine multistage robust UC problem (8) with uncertainty sets defined in (3) converges to the global

optimum or reports infeasibility in a finite number of steps.

Proof: The finite convergence follows from the fact that the uncertainty sets in (3) are bounded

polyhedrons with a finite number of extreme points. �

4.3. Discussion

The constraint generation framework of Algorithm 1 can be also viewed as an embodiment of the

cutting-plane method. A similar framework has been used in solving infinitely constrained opti-

mization problems (see e.g. Blankenship and Falk (1976)). Fischetti and Monaci (2012) studied the

computational performance of a similar cutting-plane algorithm for solving static robust integer

and linear programs with uncertainty in the constraint coefficients and using budgeted uncertainty

sets. They find that the cutting-plane algorithm is more efficient than the duality-based approach

for solving uncertain linear programs, and is less efficient when the problem involves integer deci-

sions. Recently, Bertsimas et al. (2014) extended this comparison to different types of uncertainty

sets including ellipsoidal uncertainty sets and explored different algorithmic strategies. Similar

conclusions are reached. Bertsimas and Georghiou (2014) presented a solution method based on

constraint generation for adaptive optimization problems with a specific type of decision rule that

can handle adaptive integer variables. Despite these interesting works, the computational study

of solving large-scale multistage robust optimization problems with mixed-integer decisions still

seems to be at an early stage.

In comparison to the above mentioned works, the affine multistage robust UC problem has

some special characteristics such as high dimensionality in the numbers of continuous and integer

variables and constraints, and also specific structures that can be exploited. Another point worth
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making is that the constraint generation framework of Algorithm 1 is equivalent to applying a

Benders decomposition procedure to the MIP obtained with the duality-based approach, i.e., the

feasibility cut generated through Benders decomposition on the dual system is equivalent to the

primal constraint generated by constraint generation. As we will show in our experiments, the

duality-based approach fails to solve even moderate sized problems with the simplest affine policy

structure due to the scalability issue. Constraint generation, or the cutting-plane method, becomes

necessary to handle this problem. However, a direct implementation of Algorithm 1 also has limited

success. Exploiting the special structure of the affine multistage robust UC model is crucial to

devise an efficient constraint generation method.

5. Algorithmic Improvements

The constraint generation framework summarized in Algorithm 1 is still not efficient enough to

handle large-scale problems. However, it does provide a basis for further algorithmic improvements,

which proves to be critical in making the large-scale affine multistage robust UC model efficiently

solvable. In the following, we develop an efficient procedure for the separation problem, an effective

initialization for the master problem, a method to reduce the number of MIPs solved in the algo-

rithm, and formulations to fully exploit the special structure of the Wi-policy and Wit-policy. We

would also like to remark that the constraint generation framework with the proposed algorithmic

improvements are not restricted to solving the robust UC problem, but can be applied to solve

general multistage robust optimization problems with affine policies.

5.1. Efficient Separation Procedure

The separation procedure in the constraint generation algorithm involves solving the problem

max
d∈D

gk(y,d) (18)

for each robust constraint k in (8), in each iteration of the master problem. Thus, it is important to

solve it as fast as possible. We can exploit two special structures of (18). First, as discussed above,

gk(y,d) is a linear function in d for any fixed y. Second, the structure of the budgeted uncertainty

set (3) allows us to solve the separation problem (18) by a simple sorting procedure, as we show

below.

Proposition 5. Consider the separation problem maxd∈D c
>d, where the uncertainty set D is

defined in (3). An optimal solution for this problem is given by (dsj)
∗ = d

s

j + Γd̂sj(u
s
j)
∗ for each

s∈ T , where (usj)
∗ is obtained by the following procedure: let {|csσ(j) d̂

s
σ(j)|}j∈Nd

be a non-increasing
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ordering of {|csj d̂sj |}j∈Nd
, where σ(·) determines the indices of the non-increasing order, and (usj)

∗

is given as follows:

(usσ(j))
∗ =


sign(csσ(j)) if σ(j)≤ b

√
Ndc,

(
√
Nd−b

√
Ndc) · sign(csσ(j)) if σ(j) = b

√
Ndc+ 1,

0 if σ(j)≥ b
√
Ndc+ 2,

where sign(x) = 1 if x≥ 0 and −1 otherwise.

5.2. Initialization with Specific Uncertainty Scenarios

The constraint generation approach consists of iteratively finding extreme points of the uncertainty

sets for each robust constraint until all robust constraints are satisfied. If there are extreme points

that we believe to be strong candidates for being violated at some point in the constraint generation

procedure, it would be useful to add them in the beginning.

Consider the vector dmax that achieves the maximum total net load in each time period, i.e.,

each component of dmax is defined as

dtmax ∈ argmaxd∈D
∑
j∈Nd

dtj ∀ t∈ T . (19)

This net load vector is clearly an important scenario in the uncertainty set for determining the

worst-case dispatch costs. Thus, to speed up the constraint generation algorithm, we add dmax to

Dk in the worst-case dispatch cost constraint (8b).

Similarly, we consider the minimum total net load dmin ∈D for (8b), which is defined as

dtmin ∈ argmind∈D
∑
j∈Nd

dtj ∀ t∈ T . (20)

We can also add dmin and dmax to Dk for every k representing the generation upper and lower

bound constraints (8c).

For robust ramping constraints (8d) and (8e), consider the following scenarios for each t:

dminmax(t) =
(
d1
min, ...,d

t−1
min,d

t
max, ...,d

T
max

)
, (21)

dmaxmin(t) =
(
d1
max, ...,d

t−1
max,d

t
min, ...,d

T
min

)
, (22)

which are the net loads with the largest up or down variations at period t. At initialization, we

add dmin, dmax, dminmax(t), dmaxmin(t) to Dk for every k representing the ramping constraints

(8d)-(8e) at time t.
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5.3. Complete Characterization for the Wit-Policy

The initialization technique in Section 5.2 is applicable to any affine policy. However, it has a very

important consequence for the Wit-policy. Essentially, the robust constraints for generation limits

and ramping can be completely characterized by a few uncertainty scenarios identified above, when

using the Wit-policy. The computational benefit is huge.

Recall that the Wit-policy is described as pti(d) =wti +Wit

∑
j∈Nd

dtj. When using the Wit-policy

structure or any simpler policy such as the Wi-policy, generation output constraints (8c) and

ramping constraints (8d)-(8e) are exactly equivalent to only considering the respective d’s identified

in (19)-(22), as we show below.

Proposition 6. Under the Wit-policy or any simpler policy, and using the uncertainty set in (3),

the following statements hold:

(i) The robust constraints on generation limits (8c) are equivalent to the ones with the uncer-

tainty set D replaced by the finite set {dtmin,d
t
max}, where dmin and dmax are defined in (20) and

(19), respectively.

(ii) The robust constraints on ramping limits (8d)-(8e) at time t are equivalent to the ones

with the uncertainty set D replaced by the finite set {dmin,dmax,dminmax(t),dmaxmin(t)}, where

dminmax(t) and dmaxmin(t) are defined in (21) and (22), respectively.

In the proof for ramping constraints we use the fact that the uncertainty set, given in (3), is

separable over time periods.

This result implies that if we use the Wit-policy or any simpler policy such as the Wi-policy,

the robust constraints corresponding to generation output limits and ramping capacities can be

pre-computed before starting the constraint generation process. The only robust constraints left

to deal with using constraint generation are the worst-case dispatch cost constraint (8b) and the

transmission constraints (8f). This saves a tremendous amount of time checking feasibility and

generating violated constraints. The overall convergence time of the constraint generation algorithm

is significantly reduced.

5.4. Generating Multiple Cuts to the Master Problem

The difficulty in solving the affine multistage robust UC lies in finding all the necessary uncertainty

scenarios d’s for each robust constraint. This can lead to the undesired situation of solving the

master problem (17) many times, which itself is a MIP with a large number of constraints. To

strengthen the master problem, we employ a procedure that generates constraints by keeping all

the binary variables fixed in the master problem. This can be helpful in reducing the number of

MIP problems solved in the overall algorithm.
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Algorithm 2 Generating multiple cuts for a fixed x′

1: input: x′, {Dk}Kk=1

2: repeat

3: y′ = (x′,u′,v′,w′,W ′, z′)← optimal solution of the master problem (17) with x=x′ fixed

4: for all k ∈ {1, ...,K} do

5: dk← argmaxd∈D gk(y′,d)

6: If gk(y′,dk)> 0 let Dk←Dk ∪{dk}

7: end for

8: until gk(y′,dk)≤ 0 for all k ∈ {1, ...,K}

9: output: {Dk}Kk=1

In particular, fix the commitment vector at the current solution (x,u,v) of the master problem,

then the master problem becomes a linear program (LP) in the dispatch policy variables (w,W ).

Apply constraint generation to the resulting problem, starting from the current set of uncertainty

scenarios d’s until all the violated scenarios are identified for each robust constraint. This procedure

is presented in Algorithm 2.

Furthermore, this technique can also be applied at the initialization phase of the overall con-

straint generation method. In particular, we can solve a static robust UC, which we define as a

simplification of (8a)-(8g) by forcing W = 0 and replacing robust energy balance constraints (8g)

by enforcing it only for maximum total net load in the uncertainty set. This problem is very fast

to solve and provides a good starting point for x.

The concept of generating several cuts in each iteration of a constraint generation framework

has been studied before with different formats. For example, Birge and Louveaux (1988) extended

the L-shaped method for two-stage stochastic linear programs to a multicut version where each

subproblem can induce a different cut. We make use of this idea in our algorithm, where each sub-

problem corresponds to checking the feasibility of a robust constraint. However, the enhancement

presented here is different in that we proceed with the constraint generation algorithm solving

an LP master problem with fixed binary variables, as many times as needed, inducing the fast

generation of many “useful cuts” before solving each MIP master problem where binary variables

are allowed to change. Another relevant idea that could be explored to enhance the algorithm is

the concept of on-demand accuracy; see the work by de Oliveira and Sagastizábal (2014) and refer-

ences therein. For example, some of the subproblems could be solved partially, and as the method

develops the quality of their solutions could be increased as needed, potentially making the overall

algorithm faster.
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5.5. Algorithm Summary

The overall constraint generation algorithm with the above proposed algorithmic improvements

is summarized in Algorithm 3. The initialization consists of finding d’s described in Sections 5.2

and 5.3, and solving the static robust UC described in Section 5.4. Then the algorithm solves the

master problem, and updates in each iteration the lists {Dk}Kk=1 using each commitment solution

found as described in Section 5.4.

Algorithm 3 Proposed solution method

1: Dk←∅ ∀k= 1,2, . . . ,K

2: Add d from (19) to the Dk representing (8b)

3: Add d’s from (19)-(20) to all Dk’s representing (8c)

4: Add respective d’s from (19)-(22) to all Dk’s representing (8d)-(8e)

5: x′← optimal solution of static robust UC

6: repeat

7: Update {Dk}Kk=1 using Algorithm 2 for x′

8: y′ = (x′,u′,v′,w′,W ′, z′)← optimal solution of (17)

9: for all k ∈ {1, ...,K} do

10: dk← argmaxd∈D gk(y′,d)

11: If gk(y′,dk)> 0 let Dk←Dk ∪{dk}

12: end for

13: until gk(y′,dk)≤ 0 for all k ∈ {1, ...,K}

14: output: y′ = (x′,u′,v′,w′,W ′, z′) is an optimal solution for (16)

For simplicity, in our description of this algorithm we ignore the case where the master problem

(17) reports infeasibility at some point. If such event ever occurs, the algorithm stops and reports

infeasibility of the affine multistage robust UC problem under the affine policy used. Also, notice

that checking for violated robust constraints can be parallelized, because it consists of solving K

separate problems with the procedure described in Section 5.1.

6. Computational Experiments

We conduct extensive computational experiments on the IEEE 118-bus and the 2736-bus Polish

systems (c.f. Zimmerman et al. (2011)). The major aspects of these instances are summarized in

Table 2. In all cases, the UC problems involve a planning horizon of T = 24 hours. Uncertain

net loads are located at every node with electricity demand. The uncertainty sets are given by

(3), where we choose d̂tj = 0.1d
t

j with various budget levels Γ, unless stated otherwise. All the

experiments have been implemented using Python 2.7 in a PC laptop with an Intel Core i5 at 2.4

GHz and 4GB memory with CPLEX 12.5 as MIP and LP solver.



Lorca, Sun, Litvinov, Zheng: Multistage Adaptive Robust Optimization for the Unit Commitment Problem
22

Table 2 Summary of test cases used

Buses 118 2736
Units 54 289
Loads 99 2011
Lines 186 100

Total generation capacity (MW) 7106 28880
Min total nominal net load (MW) 3327 10851
Max total nominal net load (MW) 4931 18075

Section 6.1 demonstrates the computational efficiency of the proposed algorithm. Section 6.2

shows that the simplified affine policies, as an approximation to the fully-adaptive policy, achieve

close-to-optimal performance. Section 6.3 studies the impact of the UC solutions on the real-

time dispatch operation from a worst-case perspective. In particular, it compares the worst-case

performance of the real-time dispatch problem based on the UC solutions obtained from the two-

stage robust UC model against those obtained from the affine multistage robust UC model. Section

6.4 studies the average performance of the affine multistage robust UC model in a rolling horizon

simulation framework, and compares it with the deterministic and two-stage robust UC models.

6.1. Computational Performance of the Proposed Algorithm

In this section, we demonstrate the efficiency of the proposed solution methods for solving the

affine multistage robust UC model in (8) with the Wit-policy structure. We show the efficiency

enhancement achieved by individual algorithmic improvement techniques as well as the ultimate

improvement achieved by their combination, and compare them with the two traditional solu-

tion methods, namely the duality-based approach (DBA) introduced in Section 4.1 and the basic

constraint generation (CG) algorithm discussed in Section 4.2.

More specifically, we show the performance of the proposed algorithmic improvements in the

following order. (a) The algorithm based on basic CG and Algorithm 2, which generates Multiple

Cuts (MC) in each iteration for a fixed commitment solution (see Section 5.4). We denote this

procedure as “CG + MC”. (b) The algorithm based on basic CG and the method that exploits

the Problem Structure (PS) of the Wit-policy (see Section 5.3). We denote this procedure as “CG

+ PS”. (c) The combination of (a) and (b), denoted as “CG + MC + PS”. (d) The combination

of (a)(b)(c) along with the generation of an Initial Scenario (IS) of specific d for the worst-case

dispatch cost constraint (see Section 5.2). This is the final solution algorithm summarized in Section

5.5. We denote it as “CG + MC + PS + IS”.

All of the above four algorithms are implemented to solve the multistage robust UC model (8)

with the Wit-policy on the 118-bus system. Table 3 shows the solution time (in seconds) of all these

methods on the 118-bus system with different values of budget Γ for the uncertainty sets in (3).
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The stopping criterion of 0.1% optimality gap is used for solving each MIP problem. A time limit

of 15,000 seconds is imposed on each algorithm. “M” and “T” in Table 3 stand for out-of-memory

and out-of-time limits, respectively.

Table 3 Solution time (seconds) of various algorithms for solving affine multistage robust UC under the

Wit-policy for the 118-bus system.

Method Γ = 0.25 Γ = 0.5 Γ = 1 Γ = 2 Γ = 3 Γ = 4
DBA M M M M M M
CG T T T T T T

CG + MC 6,807 8,475 5,639 3,488 10295 6,965
CG + PS 563 80 961 1,011 1183 1,227

CG + MC + PS 175 67 77 78 161 218
CG + MC + PS + IS 66 64 47 63 155 178

Notice that DBA and the basic CG are not efficient in solving the simple Wit-policy for the

118-bus system — either running out of memory or time limits. Applying the techniques of fixing

the UC solution to find d’s (CG + MC) or exploiting the policy structure (CG + PS) leads to a

substantial improvement in solution times, especially when the special structure of the Wit-policy is

exploited (CG + PS). When the two techniques are combined (i.e., CG + MC + PS), the solution

times are reduced to within 218 seconds (less than 4 minutes) for all sizes of tested uncertainty

sets, and even faster for problems with small uncertainty sets (around 1 minute). Running time

is further reduced by initializing the algorithm with one more valid d for the worst-case dispatch

cost constraint (CG + MC + PS + IS).

At this point, let us try to understand why the algorithm with “CG + MC + PS + IS” is

significantly more efficient than DBA. For the medium-sized 118-bus system with the Wit-policy,

the MIP obtained by directly applying DBA requires the creation of approximately 70 million

dual variables and 35 million associated constraints for the explicit representation of all the robust

constraints of the original formulation. If the special structure of the Wit-policy is exploited (which

can also be combined with DBA) these numbers are reduced to approximately 3.5 million dual

variables and 1.8 million associated constraints, which still runs into memory issues. In contrast,

the algorithm with “CG + MC + PS + IS” requires initially creating about 15,000 constraints for

policy structure exploitation, but does not require the creation of dual variables. Furthermore, if

we take Γ = 4, a total number of 263 constraints are generated in the master problem along the

algorithm, where a total of 5 MIPs and 7 LPs are solved (while these numbers are even smaller

for the other Γ’s tested). This significantly saves the computation time comparing to a naive CG

method.
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Algorithm “CG + MC + PS + IS”, thus identified as the most efficient algorithm among the

six tested methods, is applied to the 2736-bus Polish system. Table 4 presents the solution times

of this algorithm for solving the multistage robust UC model with the Wit-policy structure, for

different values of Γ. For the 2736-bus system, an optimality gap of 1% is used for all MIP problems

solved in the algorithm. In Table 4, “inf” indicates that the algorithm detects the problem being

infeasible, which is caused by the large size of the uncertainty set. The solution time variations for

the 2736-bus system are explained by the variability in the time taken for the MIPs to be solved.

Table 4 Solution time using “CG + MC + PS + IS” algorithm for both systems studied under the Wit-policy.

System Γ = 0.25 Γ = 0.5 Γ = 1 Γ = 2 Γ = 3 Γ = 4
118-bus 66s 64s 47s 63s 155s 178s
2736-bus 3.6h 3.2h 2.3h 2.0h 2.4h 0.4h (inf)

For the 2736-bus Polish system, when Γ = 1, a total number of 6 MIPs and 5 LPs are solved, and

727 constraints are generated by the proposed constraint generation algorithm. Similar numbers

are obtained for the other values of Γ tested. In comparison, if DBA is used with exploitation of

the special structure of the Wit-policy, the MIP obtained would require approximately 39 million

dual variables and 19 million associated constraints for the explicit representation of all the robust

constraints of the original formulation. Furthermore, without exploiting the structure of the Wit-

policy, more than 250 million dual variables would be required in DBA.

From Table 4 we can see that the proposed algorithm can efficiently solve the real-world 2736-

bus system within a time framework reasonable for the day-ahead operation. Considering the

complexity of the multistage robust UC model and the simple computation resources (a moderate

personal computer) that our experiments rely on, these computational experiments show that the

affine multistage robust UC model and the proposed algorithms are very promising for practical

applications in large-scale power system operations.

6.2. Optimality Gap for Simplified Affine Policies

The affine multistage robust UC model proposed in (8) is an approximation scheme to the original

fully-adaptive multistage robust UC model (5). The UC solution and the affine dispatch policy

thus obtained are feasible, but may not be optimal for the fully-adaptive model. In this section, we

study the approximation quality of the simplified affine policies. As will be shown, affine policies

with the very simple Wi-policy or Wit-policy perform surprisingly well as approximate solutions to

the fully adaptive problem. This is a particularly encouraging result for the large-scale 2736-bus

system.
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6.2.1. Bounding the Approximation Quality of Affine Policies The two-stage robust

UC formulation (2) is a relaxation of the fully adaptive multistage robust UC model (5) by ignoring

non-anticipativity on dispatch decisions. Thus, the optimal objective value of the two-stage robust

UC problem, denoted as v∗2S, provides a lower bound to the optimal objective value of the fully

adaptive multistage robust UC, denoted as v∗MS. However, obtaining a globally optimal solution of

the two-stage robust UC problem for large-scale power systems is still computationally challenging

(e.g. see Bertsimas et al. (2013)). To reduce computation time, we employ the heuristic used by

Lorca and Sun (2015), which generates a lower bound to v∗2S, denoted as v2S. Furthermore, since the

affine policy is an approximation to the fully adaptive policy, its optimal objective value, denoted

as v∗AFF , provides an upper bound to the optimal objective value of the fully adaptive multistage

robust UC. Because the MIP solver is terminated within a certain accuracy (e.g. with a 0.1%

MIP gap), the solution at termination gives a further upper bound to v∗AFF , denoted as vAFF . In

summary, we have the following relations between objective values of different solutions: v2S ≤ v∗2S ≤

v∗MS ≤ v∗AFF ≤ vAFF . Then, the optimality gap between v∗AFF and v∗MS, i.e., (v∗AFF − v∗MS)/v∗MS, is

upper bounded as

0≤ v∗AFF − v∗MS

v∗MS

≤ vAFF − v2S

v2S

,Guaranteed Optimality Gap.

We call the upper bound to the optimality gap the guaranteed optimality gap of the affine multistage

robust UC problem.

6.2.2. Computational Results for Guaranteed Optimality Gap Table 5 presents the

guaranteed optimality gaps of two simple affine policy structures for the 118-bus and 2736-bus

systems with different values of the uncertainty set size parameter Γ.

Table 5 Guaranteed opt. gap under different policy structures (“inf” indicates infeasibility).

118-bus system
Policy Γ = 0.25 Γ = 0.5 Γ = 1 Γ = 1.5 Γ = 2 Γ = 3 Γ = 4
Wi 0.04% 0.02% 0.04% 0.08% 0.10% 0.26% 0.67%
Wit 0.04% 0.02% 0.03% 0.07% 0.07% 0.17% 0.35%

2736-bus system
Policy Γ = 0.25 Γ = 0.5 Γ = 1 Γ = 1.5 Γ = 2 Γ = 3 Γ = 4
Wi 0.09% 0.22% 0.42% 0.55% 1.05% inf inf
Wit 0.07% 0.11% 0.25% 0.35% 0.53% 0.94% inf

From these results, we offer the following observations.
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1. For each test system, the Wit-policy achieves a better guaranteed optimality gap than the Wi

policy, especially for larger uncertainty sets. For example, for the 2736-bus system with Γ = 2, the

guaranteed optimality gap is improved from 1.05% of the Wi-policy to 0.53% by the Wit-policy.

For smaller uncertainty sets, the Wi-policy has a more comparable performance to the Wit-policy.

2. The simple Wit-policy achieves surprisingly good performance in both test cases. The guaran-

teed optimality gap is at most 0.94% for all sizes of uncertainty sets in both test systems. Due to its

strong performance and computational tractability, we will use the Wit-policy in all the following

experiments.

6.3. Worst-Case Performance Analysis

As discussed in Section 2.3, the proposed multistage robust UC formulation is motivated by a

critical issue of the two-stage robust UC model, namely that it ignores non-anticipativity in the

dispatch process for the sequential revelation of uncertain net loads, and thus may not be prepared

in real-time operations for all realizations of net loads within the uncertainty set. Indeed, Claims 1

and 2 in Section 2.3 show that this is possible based on a simple two-bus example. This section will

further study this issue on the 118-bus and the 2736-bus systems. In particular, we want to estimate

“how much” infeasibility can be caused in the real-time dispatch under the commitment solutions

of the two-stage robust UC model. For this purpose, the two-stage model is solved for different

sizes of the uncertainty sets, then the obtained UC solutions are fed into the affine multistage

robust model (8). That is, the UC decision in (8) is fixed at the two-stage UC solution, and the

remaining affine multistage robust dispatch problem is solved. The dispatch model is properly

augmented with penalty variables in the energy balance and transmission constraints, so that the

degree of infeasibility can be quantified by the amount of penalty costs incurred (see Section EC.2

in the Electronic Companion for details on the penalty variables). In this way, we can compare

the worst-case operational costs (including penalty costs) of the real-time dispatch under the two-

stage robust UC solutions against those obtained under the affine multistage robust UC solutions.

It is important to carry out this type of worst-case performance study of the real-time dispatch

under different UC solutions, because power system operations require extremely high reliability.

Infeasibility in real-time operation has to be resolved by starting expensive fast-start units or

shedding load, both of which bear significant economic consequences.

Table 6 presents the results. “Total Cost” is the worst-case dispatch cost plus penalty cost of

the affine multistage robust dispatch model under a specific UC solution. “Penalty” is the total

penalty cost associated with constraint violations in the dispatch model, where $5000/MW is used

as the unit penalty cost. “Rel Diff” is the relative difference between the total costs obtained by

the multistage and two-stage UC solutions. We can make the following observations.
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1. The multistage UC solutions do not cause any infeasibility in real-time operation for Γ≤ 3,

whereas even though the two-stage UC model is feasible in itself for both 118-bus and 2736-bus

systems, its UC solutions cause infeasibility to the multistage robust dispatch and incur quite

significant penalties in the real-time operation.

2. The penalty costs and the total costs of the two-stage UC solutions increase as the size of the

uncertainty set grows. For the 118-bus system, the two-stage model has 62.87% more total cost

than the multistage model at Γ = 3, and the penalty cost is over $1.2M. For the 2736-bus system,

the two-stage UC model incurs 25.70% more total cost than the multistage model at Γ = 3, and

the absolute amount of penalty cost exceeds $2.7M.

These results further demonstrate the importance of non-anticipative constraints and the multi-

stage robust UC model in power system operations.

Table 6 Worst-case cost (US$) of multistage robust dispatch under the two-stage and multistage UC solutions.

Multistage models use the Wit-policy.

118-bus system
Γ = 0.5 Γ = 1 Γ = 1.5 Γ = 2 Γ = 3

Affine multistage UC solutions
Total Cost 1,696,304 1,725,470 1,755,398 1,784,543 1,845,218

Penalty 0 0 0 0 0
Two-stage UC solutions

Total Cost 1,696,456 1,749,766 1,797,503 1,897,212 3,005,290
Penalty 0 52,501 55,268 196,101 1,229,300
Rel Diff 0.01% 1.41% 2.40% 6.31% 62.87%

2736-bus system
Γ = 0.5 Γ = 1 Γ = 1.5 Γ = 2 Γ = 3

Affine multistage UC solutions
Total Cost 9,445,069 9,596,788 9,746,685 9,905,527 10,234,459

Penalty 0 0 0 0 0
Two-stage UC solutions

Total Cost 9,505,651 9,745,889 10,183,433 10,975,403 12,864,719
Penalty 96,313 224,952 591,661 1,165,324 2,703,522
Rel Diff 0.64% 1.55% 4.49% 10.80% 25.70%

We have the following further discussion. In the above experiment, the same uncertainty set sizes

Γ are used in the two-stage and multistage UC models. It is also interesting to test if the two-stage

UC solution would perform better in the multistage dispatch if the two-stage UC model uses a

larger value of Γ than the Γ later used in the multistage dispatch problem. In this way, a larger Γ

might “compensate” the two-stage UC solution for its lack of non-anticipativity. For this purpose,

we feed the two-stage UC solutions obtained using Γ = 3 to the multistage dispatch problem with
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Γ = 0.5,1,1.5,2. For the 2736-bus system, the worst-case costs of the total UC costs thus obtained

are respectively 1.35%, 1.04%, 0.84% and 0.66% higher than those obtained by directly solving

the affine multistage robust UC problem, which indeed are better than the performance reported

in Table 6. From this we can see that if the two-stage robust UC is solved under a conservative

“over-robustness” request, better solutions can be obtained than using smaller Γ’s, however the

performance is still not as cost-effective as those obtained by directly solving the multistage robust

UC problem. Similar results are obtained for the 118-bus system.

6.4. Average Performance of UC Models in Real-Time Dispatch

In the previous section, we have conducted a worst-case analysis to compare the two-stage and

multistage robust UC models. In this section, we study the average performance of different UC

solutions and their impact on real-time dispatch. We develop a rolling-horizon simulation platform

to mimic the real time operation of the power system, where information about uncertain net

load is revealed sequentially as time moves forward. On this platform, we conduct Monte-Carlo

simulations of different economic dispatch (ED) models that are suitable for the associated UC

solution concepts. In particular, we propose a new robust ED model that exploits the affine policy

obtained from the multistage robust UC model. For the two-stage robust UC and the deterministic

UC solutions, we use a multi-period (“look-ahead”) deterministic ED model in simulation, which

has started to be adopted in some ISO markets (the most prevalent in practice is still the single-

period ED model) ((FERC 2014, Table 4), Navid and Rosenwald (2012)).

6.4.1. Efficient Robust Dispatch Model Exploiting Affine Policy. The proposed robust

ED model is motivated by the following considerations. First, solving the affine multistage robust

UC model not only produces a UC solution, but also provides an affine policy that could be

exploited in the ED process. Second, any ED model needs to be solved fast within a few minutes

in real-time operation.

With these considerations, we propose a new robust dispatch model in (23), which we call the

policy-enforcement robust ED model. At each time t, the dispatch decision pt is the first-stage

decision, which satisfies all the dispatch constraints Ωt(x,d
t,pt−1) in the current period and will

be implemented “right now” at time t. Furthermore, the policy-enforcement robust ED model also

considers the next period’s dispatch decision pt+1 and assumes that it takes the form of the affine

policy with coefficients (wt+1
i ,W t+1

i ) of time t+ 1 obtained from the day-ahead affine multistage

robust UC model.
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min
pt

∑
i∈Ng

Cip
t
i (23a)

s.t. pt ∈Ωt(x,d
t,pt−1) (23b)

wt+1
i +W t+1

i dt+1− pti ≥−RDix
t+1
i −SDiv

t+1
i ∀dt+1 ∈Dt+1 (23c)

wt+1
i +W t+1

i dt+1− pti ≤RUixti +SUiu
t+1
i ∀dt+1 ∈Dt+1. (23d)

Here, Ωt(x,d
t,pt−1) includes all the dispatch related constraints in the deterministic UC model

(1) at time t, with the observed values of the current period’s net load vector dt and the previous

period’s dispatch level pt−1. Constraints (23d) and (23c) enforce ramping limits between pt and

pt+1 for any realization of nodal net loads in the uncertainty set at time t+ 1. In this way, the

proposed dispatch model coordinates the ramping capabilities in the two consecutive periods and

hedges against unfavorable net load realizations in future periods.

It is important to note that we can also consider a multi-period model where affine policies

obtained from the multistage robust UC model for all future periods t + 1, t + 2, . . . are used.

However, this multi-period model is exactly equivalent to the above two-period model, because the

affine policies obtained from the robust UC model already satisfy all the dispatch constraints in

each future period as well as the ramping constraints coupling every two consecutive periods. Also

notice that the above robust ED model has almost the same size as a deterministic single-period

ED, since we can use the strategy in Section 5.3 to handle robust ramping constraints.

For the deterministic and two-stage robust UC solutions, there is no affine policy readily available

to exploit. Instead, we use the deterministic multi-period look-ahead ED model for their dispatch

simulation, where net loads in future periods use forecast values (i.e., the nominal d
t

j values), and

the ED model is obtained from the deterministic UC model (1) by fixing the commitment decision.

6.4.2. Rolling-Horizon Simulation Platform for Real-Time Dispatch. We develop a

rolling horizon platform to simulate the real-time dispatch process. In particular, for each UC

solution, we select an ED model according to the discussion in Section 6.4.1. At each time period

t in the simulation, the selected ED model is solved with the observation of nodal net load up

to time t, and the dispatch solution of time period t is implemented. Then the time horizon rolls

forward and the same procedure is repeated. This simulation process is different from the existing

ones in the literature such as in Bertsimas et al. (2013), Jiang et al. (2012), Zhao and Zeng (2012),

where net loads over the entire scheduling horizon are revealed all at once to the dispatch model,

ignoring non-anticipativity.

We consider a 24-hour horizon with an hourly step size in the simulation process. At each time

t, the robust ED model in (23) considers two periods t and t+ 1, i.e., a one period look-ahead,
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whereas the deterministic look-ahead ED model considers 4 periods, i.e. a three periods look-

ahead. The look-ahead horizon shrinks in the last three periods. Each round of the rolling-horizon

simulation contains T = 24 consecutive runs of the ED model through the entire horizon. For each

UC solution and the corresponding ED model, we carry out multiple rounds of such simulations.

In the uncertainty set of the robust UC problems solved, we used d
t

j and d̂tj selected equal to the

expected value and standard deviation, respectively, of net load at bus j and time t. The same set

of nodal net load trajectories are used in all evaluations of different UC solutions to generate a

fair comparison. Penalty variables are incorporated to deal with violations of energy balance and

transmission, all of which have a unit penalty cost of $5000/MWh. Due to space restriction, we

only show the results for the 2736-bus system.

6.4.3. Results for the 2736-bus system with temporally independent nodal net loads.

In the experiments presented in this subsection, the nodal net load corresponds to demand sampled

from a normal distribution with a standard deviation equal to 10% of its expected value (i.e.,

d̂tj = 0.10d̄tj) and independent across time periods. In order for the uncertainty set (3) to contain

the entire `∞-ball of Πj∈Nd
[d̄tj− d̂tj, d̄tj + d̂tj], the budget parameter Γ has to be

√
Nd =

√
2011 = 44.8.

This corresponds to an extremely conservative robust solution. We want to choose a Γ value that

is small enough to still guarantee a robust enough performance. The following experiments use

Γ≤ 3.0, which corresponds to significantly smaller uncertainty sets and less conservative solutions.

In each experiment, 1000 rounds of simulation are conducted.

Table 7 presents the simulation performance of the multistage robust UC solution with the

Wit-policy and the corresponding policy-enforcement robust ED model, the two-stage robust UC

solution with the deterministic look-ahead ED model, and a deterministic reserve approach, for

the 2736-bus system. We compare the average total costs over the 24-hour horizon (“Cost Avg”),

their standard deviation (“Cost Std”), the average penalty costs (“Penalty Avg”), and the average

frequency of penalty occurrence (“Penalty Freq Avg”). We also study the performance of the

deterministic UC model with adjusted reserve and look-ahead ED in the rolling-horizon simulation,

which resembles the current operational practice. The reserve adjustment follows the rule used in

Bertsimas et al. (2013) with various reserve levels tested.

From these results we can see that the multistage robust UC model achieves the best average

total cost at Γ = 0.5, which is a 0.46% ((9319396− 9362379)/9362379) reduction from the best

average cost of the two-stage robust UC model achieved at Γ = 3, and a 0.95% reduction from that

of the deterministic UC with reserve adjusted at 20%. Further comparing these three columns,

we can see that the multistage robust UC solution achieves a significant improvement on system

reliability, with a cost standard deviation reduced by 64.97% from the two-stage solution and
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Table 7 Simulation performance of the different models for the 2736-bus system with temporally independent

demand.

Affine multistage robust UC with policy-enforcement robust ED
Γ 0.25 0.5 1 1.5 2 3

Cost Avg ($) 9,397,528 9,319,396 9,342,754 9,360,359 9,379,464 9,442,858
Cost Std ($) 113,725 15,970 12,828 12,509 12,363 12,092

Penalty Cost Avg ($) 93,552 3497 727 61 5 0
Penalty Freq Avg 10.00% 1.47% 0.40% 0.01% 0.00% 0.00%

Two-stage robust UC with look-ahead ED
Γ 0.25 0.5 1 1.5 2 3

Cost Avg ($) 9,398,109 9,456,599 9,408,732 9,383,569 9,407,290 9,362,379
Cost Std ($) 93,470 195,774 173,884 144,698 162,469 45,584

Penalty Cost Avg ($) 80,127 152,637 98,113 66,801 82,864 6,103
Penalty Freq Avg 9.93% 12.26% 7.80% 5.11% 5.57% 0.37%

Deterministic UC with reserve and look-ahead ED
Reserve 2.5% 5% 10% 15% 20% 30%

Cost Avg ($) 9,556,549 9,575,446 9,424,678 9,561,024 9,408,173 9,411,741
Cost Std ($) 261,464 288,777 121,122 196,354 92,268 69,050

Penalty Cost Avg ($) 254,627 271,672 119,127 248,658 83,938 51,907
Penalty Freq Avg 15.93% 13.37% 14.31% 18.16% 10.03% 7.22%

82.69% from the deterministic UC with reserve. Moreover, the penalty cost of the multistage robust

UC solution is reduced by 42.70% and 98.43% from the two-stage robust UC and deterministic

UC solutions, respectively. The penalty cost can be reduced to zero by a larger value of Γ in the

multistage model, whereas both the two-stage robust UC and deterministic UC do not achieve zero

penalty for all tested budget and reserve levels.

6.4.4. Results for the 2736-bus system with persistent demand. Here we present sim-

ulation results for the 2736-bus system where nodal net corresponds to demand sampled from a

persistent model (Hamilton 1994), which exhibits some simple temporal correlation. In particular,

we sample the trajectory of demand at bus j from the following autoregressive model:

d̃tj = µtj +σtjZ
t
j ∀ t∈ T

Ztj = φZt−1
j + εtj ∀ t∈ T ,

where the εtj’s are sampled independently from a normal distribution with an expected value of 0

and a standard deviation of σε =
√

1−φ2, and Z0
j is sampled from a normal distribution with an

expected value of 0 and a standard deviation of 1. The value of σε is selected so that the standard

deviation of Ztj is always 1. Further, σtj = 0.1µtj. Given this, d̃tj has an expected value of µtj and a

standard deviation of 0.1µtj, and the correlation between d̃tj and d̃t−1
j is φ. In the uncertainty set,
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we take d
t

j = µtj and d̂tj = σtj = 0.1µtj. The setting in Section 6.4.3 corresponds to the case φ= 0. In

this section we use φ= 0.9 denoting a strong temporal correlation in demand.

Table 8 presents the simulation performance results for the different UC approaches studied. We

can observe that the best average cost is still achieved at Γ = 0.5 for the multistage robust UC, at

Γ = 3 for the two-stage robust UC, and at 20% reserve for the deterministic UC. For these cases,

the multistage robust UC presents a 0.39% and 0.84% reduction in average cost with respect to

the two-stage robust UC and the deterministic UC, respectively. We can also observe that with

a proper choice for Γ the multistage robust UC can completely eliminate the penalty cost, while

the two-stage robust UC and deterministic UC could not completely eliminate penalty under the

tested values of Γ and reserve.

Table 8 Simulation performance of the different models for the 2736-bus system with persistent demand.

Affine multistage robust UC with policy-enforcement robust ED
Γ 0.25 0.5 1 1.5 2 3

Cost Avg ($) 9,395,199 9,320,462 9,343,907 9,361,336 9,380,499 9,443,846
Cost Std ($) 180,122 51,226 42,344 41,229 41,295 40,387

Penalty Cost Avg ($) 90,292 3,464 835 8 0 0
Penalty Freq Avg 10.11% 1.23% 0.43% 0.01% 0.00% 0.00%

Two-stage robust UC with look-ahead ED
Γ 0.25 0.5 1 1.5 2 3

Cost Avg ($) 9,390,163 9,409,159 9,380,783 9,386,101 9,362,994 9,357,111
Cost Std ($) 118,856 234,627 187,981 164,032 130,666 43,809

Penalty Cost Avg ($) 71,238 10,3861 69,188 60,483 45,171 5
Penalty Freq Avg 9.35% 11.68% 7.05% 5.30% 5.23% 0.01%

Deterministic UC with reserve and look-ahead ED
Reserve 2.5% 5% 10% 15% 20% 30%

Cost Avg ($) 9,525,854 9,565,603 9,415,143 9,515,113 9,398,984 9,409,452
Cost Std ($) 372,593 369,799 163,575 271,478 131,586 108,410

Penalty Cost Avg ($) 222,972 261,016 108,863 201,491 73,849 48,801
Penalty Freq Avg 15.05% 13.08% 13.58% 16.45% 8.83% 6.11%

6.4.5. Results for the 2736-bus system using temporally correlated wind data. In

the above simulations we sampled demand from specific distributions, first assuming temporal inde-

pendence and then incorporating temporal correlations through an autoregressive model. However,

in power systems with a high penetration of wind power, most of the uncertainty in net loads stems

from the intermittency of wind power outputs, and we would like to study the performance of our

approach under more realistic net load trajectories for such power systems. For this purpose, we

added 140 wind farms to the 2736-bus system, with each wind farm located at a different load bus,
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making use of one year of wind power output data from 140 locations of NREL’s Western Wind

Integration Dataset (NREL 2012, Potter et al. 2008). The average hourly total wind power output

is 1051MW, which corresponds to 7.37% of average hourly total demand. Each of the N = 365

days of wind power output data corresponds to one simulation, and for each of these 24-hour tra-

jectories we also consider demand generated as described in Section 6.4.2, namely from a normal

distribution at each bus with a standard deviation σdemand,tj corresponding to 10% of the expected

value at the respective bus j and time t. Then, we use linear regression to estimate daily and

semi-daily seasonality pattern and subtract it from the wind power data to estimate the standard

deviation σwind,tj of the errors of wind farm j and time t. When building the uncertainty set for

robust UC, we select d
t

j as the nominal value for net load at bus j and time t, calculated as the

expected demand minus the expected wind power output, and d̂tj as the standard deviation of net

load, calculated as
√
σ2
demand,tj +σ2

wind,tj, assuming independence between demand and wind power

output.

The simulation performance results are presented in Table 9. We can see that now the multistage

robust UC model achieves the best average total cost at Γ = 1, which is a 1.14% reduction from the

best average cost of the two-stage robust UC model, achieved at Γ = 2. The standard deviation of

the cost is reduced by 6.07%. Furthermore, we can see that the multistage robust UC approach can

completely remove penalty cost with Γ = 3, while penalties remain fairly large for the two-stage

robust UC approach under all Γ’s (we also tested Γ’s larger than 3, confirming our statement).

Comparing with the deterministic reserve-based approach, we can see that the deterministic UC

becomes very ineffective at handling this level of temporally correlated uncertainty. In particular,

the multistage robust UC model reduces the average cost by 24.52% from the deterministic UC,

and reduces the standard deviation of the cost by 83.22%.

Finally, Table 10 presents simulation performance results under the temporally correlated wind

power data described above, and with demand sampled from the persistent model in Section 6.4.4.

The best average cost is still achieved at Γ = 1 for the multistage robust UC, at Γ = 2 for the

two-stage robust UC, and at 30% reserve for the deterministic UC, with the multistage robust UC

achieving a 1.23% and 24.52% reduction in average cost, with respect to the two-stage robust UC

and deterministic UC, respectively. We can also observe that under Γ = 3 the multistage robust UC

does not completely eliminate the penalty cost, but achieves a significant reduction as compared

to the other models, with a penalty frequency average of 0.01% as compared to 2.07% for the

two-stage robust UC under Γ = 2 and 15.03% for the deterministic UC under 30% reserve (which

respectively achieve their minimum penalties). All of these experiments on a large-scale power

system demonstrate that the multistage UC model together with the proposed robust ED approach

can dominate the performance of the two-stage robust UC and the deterministic UC models with

look-ahead ED in terms of both average cost and system reliability.
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Table 9 Simulation performance of the different models for the 2736-bus system with wind power and

temporally independent demand.

Affine multistage robust UC with policy-enforcement robust ED
Γ 0.25 0.5 1 1.5 2 3

Cost Avg ($) 11,078,125 9,511,651 8,523,553 8,568,135 8,642,679 9,414,582
Cost Std ($) 3,726,779 2,006,668 528,697 452,158 423,938 454,504

Penalty Cost Avg ($) 2,761,688 1,163,142 122,558 69,472 24,334 0
Penalty Freq Avg 18.80% 14.21% 1.95% 0.48% 0.15% 0.00%

Two-stage robust UC with look-ahead ED
Γ 0.25 0.5 1 1.5 2 3

Cost Avg ($) 10,431,937 11,368,530 8,780,404 8,904,157 8,622,251 8,944,327
Cost Std ($) 1,865,595 1,065,188 689,745 867,257 562,878 754,036

Penalty Cost Avg ($) 2,106,438 1,035,071 426,520 530,980 209,218 440,250
Penalty Freq Avg 13.29% 3.74% 7.84% 5.68% 2.15% 2.68%

Deterministic UC with reserve and look-ahead ED
Reserve 2.5% 5% 10% 15% 20% 30%

Cost Avg ($) 13,343,698 14,395,889 13,259,879 13,647,325 11,986,311 11,292,887
Cost Std ($) 5,652,913 7,032,034 5,634,975 6,025,708 4,134,035 3,150,160

Penalty Cost Avg ($) 5,064,315 6,128,731 4,979,369 5,365,449 3,686,461 2,957,919
Penalty Freq Avg 30.57% 29.99% 33.49% 32.85% 24.41% 15.59%

Table 10 Simulation performance of the different models for the 2736-bus system with wind power and

persistent demand.

Affine multistage robust UC with policy-enforcement robust ED
Γ 0.25 0.5 1 1.5 2 3

Cost Avg ($) 10,996,931 9,459,785 8,502,923 8,581,532 8,646,665 9,415,693
Cost Std ($) 3,665,301 2,007,317 490,457 466,999 424,801 458,865

Penalty Cost Avg ($) 2,679,299 1,110,032 101,234 81,834 27,344 218
Penalty Freq Avg 18.84% 14.44% 1.67% 0.47% 0.18% 0.01%

Two-stage robust UC with look-ahead ED
Γ 0.25 0.5 1 1.5 2 3

Cost Avg ($) 10,390,214 11,365,568 8,734,840 8,863,975 8,609,160 8,947,959
Cost Std ($) 1,831,279 1,059,427 620,301 802,441 522,881 793,447

Penalty Cost Avg ($) 2,064,045 1,032,109 380,451 490,562 195,681 443,401
Penalty Freq Avg 12.73% 3.68% 7.37% 5.19% 2.07% 2.66%

Deterministic UC with reserve and look-ahead ED
Reserve 2.5% 5% 10% 15% 20% 30%

Cost Avg ($) 13,186,705 14,272,477 13,110,030 13,617,194 11,879,817 11,248,546
Cost Std ($) 5,557,309 7,023,964 5,596,039 6,082,173 4,095,780 3,113,902

Penalty Cost Avg ($) 4,905,635 6,003,861 4,827,766 5,334,746 3,578,986 2,912,186
Penalty Freq Avg 30.45% 29.94% 33.00% 32.43% 23.61% 15.03%
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7. Conclusion

This paper presents a systematic study of multistage adaptive robust optimization for the UC

problem with the solution concept of simplified affine policy. Such a model can deal with significant

uncertainty in electricity demand and renewable generation caused by a high level penetration of

wind and solar resources. We also propose a solution framework based on constraint generation with

various algorithmic improvements, which achieves efficient solution of the affine multistage robust

UC in large-scale power systems when the traditional methods fail. We also propose an associated

robust ED model for real-time dispatch, which exploits the solution of the affine multistage robust

UC model and is quickly solvable in real-time operation. We conduct extensive computational

experiments on medium and large-scale power systems to thoroughly study the performance of the

proposed models and algorithms and to compare them with existing approaches. The results show

that the proposed algorithms can effectively solve the multistage robust UC model with simplified

affine policies within a time frame reasonable for the day-ahead operation of large-scale power

systems. The computational results demonstrate the effectiveness of the multistage robust UC

model in reducing operational costs and at the same time improving system reliability, compared

to the existing two-stage robust UC model and a deterministic UC model with reserve. Built on

this work, future research can further explore more complex affine or non-affine policy structures

and respective solution algorithms, and also modeling techniques to combine uncertainty from

heterogeneous sources such as wind and solar power, demand, and generation or transmission

contingencies.
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EC.1. Proofs for Sections 3, 4, 5

Proof of Proposition 1: To make references more explicit, we use (2S) and (M) to denote the

two-stage (2) and the multistage models (5) in this proof, respectively. The proof follows from

the fact that, without ramping constraints (5c), the dispatch problems using uncertainty sets (3)

in both (2S) and (M) are separable over time periods. In fact, we show that, without ramping

constraints, (2S) and (M) are both equivalent to problem (1P ), defined as follows:

(1P ) min
(x,u,v)∈X

{∑
t∈T

∑
i∈Ng

(Gix
t
i +Siu

t
i) +

∑
t∈T

max
dt∈Dt

min
pt∈ΩNR

t (x,dt)

∑
i∈Ng

Ci p
t
i

}
,

where X = {(x,u,v) : (1b)-(1g) are satisfied} and ΩNR
t (x,dt) is the feasible dispatch set at time t

without ramping constraints, i.e. ΩNR
t (x,dt), {pt : (1h), (1j), (1k) are satisfied}.

(i) First, we show that without ramping constraints, (2S) is equivalent to (1P ). In fact, without

ramping constraints, (2S) can be written as

min
(x,u,v)∈X

{∑
t∈T

∑
i∈Ng

(Gix
t
i +Siu

t
i) + max

d∈D
min

{p:pt∈ΩNR
t (x,dt)∀t∈T }

∑
t∈T

∑
i∈Ng

Ci p
t
i

}
,

and we have

max
d∈D

min
{p:pt∈ΩNR

t (x,dt)∀t∈T }

∑
t∈T

∑
i∈Ng

Ci p
t
i

= max
d∈D

∑
t∈T

min
pt∈ΩNR

t (x,dt)

∑
i∈Ng

Ci p
t
i

=
∑
t∈T

max
dt∈Dt

min
pt∈ΩNR

t (x,dt)

∑
i∈Ng

Ci p
t
i,

where the first equality comes from the fact that the dispatch set {p : pt ∈ ΩNR
t (x,dt) ∀t ∈ T } is

separable over time, and the second equality comes from the separability of the uncertainty set D

defined in (3) over time periods. Adding
∑

t∈T
∑

i∈Ng
(Gix

t
i +Siu

t
i) and applying min

(x,u,v)∈X
at both

sides of this equality yields the desired result.

(ii) Now we show that, without ramping constraints, (M) is equivalent to (1P ). Without ramping

constraints, Ωt(x,d
t,pt−1) = ΩNR

t (x,dt), so the nested multistage formulation (6) is equivalent to

(M̃NR) min
(x,u,v)∈X

{
G>x+S>u+ max

d1∈D1
min

p1∈ΩNR
1 (x,d1)

{
C>p1 + · · ·+ max

dT∈DT
min

pT∈ΩNR
T

(x,dT )
C>pT

}}
.
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Consider the max-min problem at t= T − 1 in (M̃NR). Since DT , ΩNR
T (x,dT ), and C>pT do not

depend on pT−1 and dT−1, we obtain

max
dT−1∈DT−1

min
pT−1∈ΩNR

T−1
(x,dT−1)

{
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and this argument can be carried out backward until t= 1 to obtain

max
d1∈D1

min
p1∈ΩNR

1 (x,d1)

{
C>p1 + · · ·+ max

dT∈DT
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Adding
∑

t∈T
∑

i∈Ng
(Gix

t
i +Siu

t
i) and applying min

(x,u,v)∈X
on both sides of this equality yields that

(M̃NR) is equivalent to (1P ), which completes the proof. �

Proof of Proposition 2: c>d ≤ h ∀d ∈ D is equivalent to max
d∈D

c>d ≤ h. Now notice that Dt is

the projection over dt of

D̃t =

{
(dt,zt) :

∑
j∈Nd

ztj ≤ Γ
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Nd, d̂
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So by defining D̃ =
∏
t∈[1:T ] D̃t, we have max

d∈D
c>d= max

(d,z)∈D̃
c>d= min

π∈Π
e>π, where the last equality

follows from duality theory, since D is bounded, where π ∈Π is equivalent to (12b)-(12d) and e>π

is the left hand side of (12a). Now, min
π∈Π

e>π ≤ h is equivalent to the existence of π ∈Π such that

e>π≤ h and the result follows. �

Proof of Proposition 3: Take the Wit-policy. The energy balance equation (8g) can be written

as

∑
i∈Ng

wti +
∑
j∈Nd

(∑
i∈Ng

Wit− 1

)
dtj = 0 ∀d∈D, ∀t∈ T .

Since the uncertainty set D is full-dimensional, which is the case for the uncertainty set in (3), the

constraint that the above affine function of d is equal to zero for all d ∈ D can hold if and only

if all the coefficients of this affine function are zero, which gives (15). We can show (14) similarly.

�
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Proof of Proposition 5: In the separation problem, consider the change of variables given by

dsj = d
s

j + Γd̂sju
s
j . The equivalent problem for u is

max
u

∑
s∈T

∑
j∈Nd

csj d̂
s
j u

s
j

s.t. usj ∈ [−1, 1] ∀ j ∈Nd, s∈ T∑
j∈Nd

|usj | ≤
√
Nd ∀s∈ T .

This problem is separable in s and the solution of each of the problems obtained is found by

ordering |csj d̂sj | in j from largest to smallest, and successively assigning the highest possible values

to those |usj | with the largest respective values of |csj d̂sj |, taking each of these usj with the same sign

of csj (notice that d̂sj > 0). �

Proof of Proposition 6: The proof follows from reformulating the respective robust constraints.

(i) Constraints (8c) under the Wit-policy can be written, for each i and t, as

pmini xti ≤wti +Wit

(∑
j∈Nd

dtj

)
≤ pmaxi xti ∀d∈D,

which is equivalent to

pmini xti ≤wti + min
d∈D

Wit

(∑
j∈Nd

dtj

)
wti + max

d∈D
Wit

(∑
j∈Nd

dtj

)
≤ pmaxi xti.

Depending on the sign of Wit, the above two inequalities are equivalent to the following four

constraints,

pmini xti ≤wti +Witmin
d∈D

(∑
j∈Nd

dtj

)
≤ pmaxi xti

pmini xti ≤wti +Witmax
d∈D

(∑
j∈Nd

dtj

)
≤ pmaxi xti.

In other words, in the robust constraints (8c) D can be replaced by a finite uncertainty set consisting

of {dmin,dmax}. This completes the proof for the first part. Notice that the proof of this part is

independent of the structure of D so the conclusion of (i) is true for any convex uncertainty set.

(ii) Under the Wit-policy, (8e) can be written as

max
d∈D

{
Wit

(∑
j∈Nd

dtj

)
−Wi,t−1

(∑
j∈Nd

dt−1
j

)}
≤wt−1

i −wti +RUix
t−1
i +SUiu

t
i. (EC.1)
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Notice that the uncertainty setD defined in (3) is separable in time periods. Therefore, the left-hand

side of (EC.1) is equivalent to the following problem

max
dt∈Dt

{
Wit

(∑
j∈Nd

dtj

)}
− min
dt−1∈Dt−1

{
Wi,t−1

(∑
j∈Nd

dt−1
j

)}
. (EC.2)

Depending on the signs of the affine coefficients Wit and Wi,t−1, (EC.2) is equivalent to one of the

four possible combinations:

Wit max
dt∈Dt

(∑
j∈Nd

dtj

)
−Wi,t−1 min

dt−1∈Dt−1

(∑
j∈Nd

dt−1
j

)
(EC.3a)

Wit max
dt∈Dt

(∑
j∈Nd

dtj

)
−Wi,t−1 max

dt−1∈Dt−1

(∑
j∈Nd

dt−1
j

)
(EC.3b)

Wit min
dt∈Dt

(∑
j∈Nd

dtj

)
−Wi,t−1 min

dt−1∈Dt−1

(∑
j∈Nd

dt−1
j

)
(EC.3c)

Wit min
dt∈Dt

(∑
j∈Nd

dtj

)
−Wi,t−1 max

dt−1∈Dt−1

(∑
j∈Nd

dt−1
j

)
, (EC.3d)

where (EC.3a)-(EC.3d) correspond to the worst-case scenarios dmaxmin(t),dmax,dmin,dminmax(t),

respectively. The proof is analogous for ramping down constraints (8d). �

EC.2. Incorporating Penalty Variables

In order to incorporate penalty variables into the affine multistage robust UC with Wit-policy we

replace equations (8b), (8f) and (8g) by

∑
t∈T

∑
i∈Ng

Ci

(
wti +Wit

∑
j∈Nd

dtj

)
+Cpen

∑
t∈T

(w+
t +W+

t

∑
j∈Nd

dtj

)
+

(
w−t +W−

t

∑
j∈Nd

dtj

)
+
∑
l∈Nl

wftl

≤ z
∀d∈D

− fmaxl −wftl ≤
∑
m

∑
i∈Ng

αlmB
p
mi

(
wti +Wit

∑
j∈Nd

dtj

)
−
∑
m

∑
j∈Nd

αlmB
d
mjd

t
j ≤ fmaxl +wftl

∀d∈D, t∈ T , l ∈Nl∑
i∈Ng

(
wti +Wit

∑
j∈Nd

dtj

)
+

(
w+
t +W+

t

∑
j∈Nd

dtj

)
=
∑
j∈Nd

dtj +

(
w−t +W−

t

∑
j∈Nd

dtj

)
∀d∈D, t∈ T

wftl ≥ 0 ∀ t∈ T , l ∈Nl(
w+
t +W+

t

∑
j∈Nd

dtj

)
,

(
w−t +W−

t

∑
j∈Nd

dtj

)
≥ 0 ∀d∈D, t∈ T ,

where Cpen is the unitary penalty cost, the wftl’s are penalty variables for transmission line capacity

constraints, and the w+
it , W

+
it , w−it and W−

it ’s are the penalty variables for under- and over-generation

in the energy balance equation.


