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Abstract. The Euclidean Steiner Tree Problem in dimension greater
than 2 is notoriously difficult. Successful methods for exact solution are
not based on mathematical-optimization — rather, they involve very so-
phisticated enumeration. There are two types of mathematical-optimiza-
tion formulations in the literature, and it is an understatement to say that
neither scales well enough to be useful. We focus on a known nonconvex
MINLP formulation. Our goal is to make some first steps in improving
the formulation so that large instances may eventually be amenable to
solution by a spatial branch-and-bound algorithm. Along the way, we de-
veloped a new feature which we incorporated into the global-optimization
solver SCIP and made accessible via the modeling language AMPL, for han-
dling piecewise-smooth univariate functions that are globally concave.

1 Introduction

The Euclidean Steiner tree problem (ESTP) in IRn is: Given a set of finite points
in IRn, find a tree of minimal Euclidean length spanning these points, using or
not additional points. Original points are terminals and additional nodes in the
tree are Steiner points. The ESTP is NP-Hard [9], and interest in the problem
stems from both the mathematical challenge and its potential applications (e.g.,
communications, infrastructure networks). In biology, [3] gives an application of
the ESTP to phylogenetic analysis (i.e., the construction of evolutionary trees).

Basic properties of an optimal solution, called a Steiner minimal tree (SMT),
are: (i) A Steiner point in an SMT has degree 3; a Steiner point and its adjacent
nodes lie in a plane, and the angles between the edges connecting the point to its
adjacent nodes are 120 degrees. (ii) A terminal in an SMT has degree between 1
and 3. (iii) An SMT on p terminals has at most p−2 Steiner points (see [12,5])).

The topology of a Steiner tree is the tree for which we have fixed the number
of Steiner points and the edges between all points, but not the position of the
Steiner points. A topology is a Steiner topology if each Steiner point has degree



3 and each terminal has degree 3 or less. A Steiner topology with p terminals is a
full Steiner topology if there are p−2 Steiner points and each terminal has degree
1. A full Steiner tree is a Steiner tree corresponding to a full Steiner topology.
A Steiner tree corresponding to some topology, but with certain edges shrunk
to zero length, is degenerate. Any SMT with a non-full Steiner topology can be
associated with a full Steiner topology for which the tree is degenerate.

Many papers have addressed exact solution in IR2, and impressive results
were obtained with the GeoSteiner algorithm [18]. But these algorithms cannot
be applied when n ≥ 3, and only a few papers have considered exact solution in
this case. [11] proposed solving the problem in IRn by enumerating all Steiner
topologies and computing a min-length tree associated with each topology, which
in practice, can only solve very small instances because of the fast growth of the
number of topologies as p increases. A branch-and-bound (b&b) algorithm for
finding SMTs in IRn was proposed by Smith [14]. He presented a scheme for im-
plicitly enumerating all full Steiner topologies on a given set of terminals, and he
gave computational results sufficient to disprove for all 3 ≤ n ≤ 9, an important
conjecture of Gilbert and Pollak on the “Steiner ratio”. Fampa and Anstreicher
[6] used Smiths’s enumeration scheme and proposed a conic formulation for the
problem of locating the Steiner points for a given topology, to obtain a lower
bound on the min tree length and to implement a “strong branching” technique.
[15] presented geometric conditions that are satisfied by Steiner trees with a
full topology and applied those conditions to eliminate candidate topologies in
Smith’s scheme. The best computational results for the ESTP for n ≥ 3 are
presented in these two last papers.

None of the works mentioned above have considered a math-programming
formulation for the ESTP, which was presented only in [13] and [7]. [13] formu-
lated the ESTP as a non-convex mixed-integer nonlinear programming (MINLP)
problem and proposed a b&b algorithm using Lagrangian dual bounds. [7] pre-
sented a convex MINLP formulation that could be implemented in a b&b al-
gorithm using bounds computable from conic problems. Both formulations use
0/1 variables to indicate whether the edge connecting two nodes is present in a
Steiner topology. The presence of these 0/1 variables leads to a natural branching
scheme, however neither [13] nor [7] present computational results.

We did some preliminary experiments with the nonconvex model. We solved
some randomly generated instances using SCIP [1,16], and the results are dismal.
Two difficulties observed have motivated this research: the weakness of the lower
bounds given by the relaxations, and non-differentiability at points where the
solution degenerates. In what follows, we investigate strategies to deal with these
difficulties: (i) the use of approximate differentiable functions for the Euclidean
norm, and (ii) nonconvex cuts based on geometric considerations.

2 A Nonconvex MINLP formulation

[13] formulates the ESTP as a nonconvex MINLP problem, first defining a special
graph G = (V,E). Let P := {1, 2, ..., p} be the indices associated with the given



terminals a1, a2, ..., ap and S := {p+1, p+2, ..., 2p−2} be the indices associated
with the Steiner points xp+1, xp+2, ..., x2p−2. Let V = P ∪ S. Denote by [i, j]
an edge of G, with i, j ∈ V such that i < j. Define E := E1 ∪ E2, where
E1 := {[i, j] : i ∈ P, j ∈ S} and E2 := {[i, j] : i ∈ S, j ∈ S}. Define a 0/1 yij
for each edge [i, j] ∈ E, where yij = 1 if the edge [i, j] is present in the SMT and
0 otherwise. The ESTP is then formulated as

(MMX) min
∑

[i,j]∈E1

‖ai − xj‖yij +
∑

[i,j]∈E2

‖xi − xj‖yij , (1)

∑
j∈S

yij = 1, for i ∈ P, (2)

∑
i∈P

yij +
∑

k<j,k∈S

ykj +
∑

k>j,k∈S

yjk = 3, for j ∈ S, (3)

∑
k<j,k∈S

ykj = 1, for j ∈ S − {p+ 1}, (4)

yij ∈ {0, 1}, [i, j] ∈ E, xi ∈ IRn, i ∈ S, (5)

where ‖v‖ :=
√∑n

l=1 v
2
l is the Euclidean norm of v ∈ IRn. The constraints model

a full Steiner topology for p given terminals in IRn. Constraints (2) enforce that
the degree of each terminal node is equal to 1. Constraints (3) enforce that the
degree of each Steiner point is equal to 3, and constraints (4) eliminate cycles.
Every full Steiner tree corresponds to a feasible solution of the formulation.

We aim to solve MMX using a spatial branch-and-bound (sbb) algorithm, as
implemented in SCIP. This is not nearly straightforward, as we have to deal with
non-differentiability of the distance function and with poor bounds that arise.
In what follows, we propose approaches for handling these difficulties.

3 Dealing with the non-differentiability

The continuous relaxation of MMX is a nonconvex NLP problem. Convergence of
most NLP solvers (e.g. Ipopt [17]) requires that functions be twice continuously
differentiable. This is not the case for MMX due to the non-differentiability of the
Euclidean norm when the solution degenerates (i.e., when the norm is zero); and
it is easy to see examples where the optimal solution does degenerate. In water-
network optimization, [2] smooths away non-differentiability at zero of another
function (modeling the pressure drop due to friction of the turbulent flow of water
in a pipe). There are different ways that we can deal with the non-differentiability
that we face. Let w(xi− xj) := ‖xi− xj‖2, so that ‖xi− xj‖ =

√
w(xi − xj). In

this way, we can focus on
√
·, the source of the non-differentiability.

3.1 Implicit square roots

One possibility is to introduce an auxiliary variable z, and use the additional
inequality −z2 + w ≤ 0 and the nonnegativity constraint z ≥ 0. In this way,



any optimal solution will have z =
√
w. This looks possibly attractive, but

the overhead of so many additional nonnegatively-constrained variables and the
difficulty of many additional nonconvex constraints is prohibitive.

On the other hand, while nonconvex, these functions −z2+w manifest them-
selves as −z2ij+

∑n
l=1 v

2
l , with v = xi−xj . The nonconvexity in −z2ij+

∑n
l=1 v

2
l is

isolated to −z2ij , so it may be possible to adapt the techniques of [4] (exploiting
concave separability), though we have to deal with the multiplication of distance
variables zij by 0/1 variables yij in the objective function of MMX.

Another view is that −z2 + w ≤ 0 is equivalent to
√
w ≤ z, which is mani-

fested as the second-order cone constraint ‖xi−xj‖2 ≤ zij . We can try to exploit
methods for handling such constraints, though we have to deal with the multi-
plication of distance variables zij by 0/1 variables yij in the objective function.

3.2 Shifting

A simple fix is to approximate
√
w by h(w) :=

√
w + δ −

√
δ for some small

δ > 0. Then we underestimate all positive distances (via the triangle inequality).
Because our objective function is increasing in each distance, we get a relaxation
of MMX. But a strong downside is that we underestimate all positive distances,
and the error in each distance calculation rapidly approaches

√
δ as w increases.

3.3 Linear extrapolation

The following approximation, depending on the choice of a σ > 0, was proposed
in [10] to avoid non-differentiability of the Euclidean-distance function for the
“traveling-salesman problem with neighborhoods.”

l(w) :=

{√
w, if w ≥ σ2;

σ
2 + 1

2σw, if w ≤ σ2.

The function l is well-defined at w = σ2. It is analytic except when w = σ2, and
in this case, it is still differentiable once. In fact, l simply uses the tangent at
w = σ2 of the graph of the strictly concave function

√
w to overestimate

√
w on

[0, σ2). We already see that because l is not twice continuously differentiable, we
should not expect good behavior from most NLP solvers. A strong shortcoming
for our context is that l miscalculates zero distances; that is, l(0) = σ/2, while
obviously

√
0 = 0. Because l(w) is an upperbound on

√
w, and because our

objective function is increasing in distances, using the approximation l, we do
not get a relaxation of MMX. Moreover, for degenerate Steiner trees, we will
systematically overestimate distances that should be zero.

3.4 Smooth under-estimation

We propose another piecewise smoothing, using a particular homogeneous cubic
depending on the choice of a λ > 0, that has very nice properties:

c(w) :=

{√
w, if w ≥ λ2;

15
8λw −

5
4λ3w

2 + 3
8λ5w

3, if w ≤ λ2.



We have depicted all of these smoothings in Fig. 1.

Fig. 1: Behavior of all smoothings (λ2 = σ2 = 0.01):

– the red curve is the true
√
· function.

– the “smooth underestimation” c, which we advocate, follows the cubic green curve
below w = 0.01.

– the “linear extrapolation” l follows the orange line below w = 0.01.
– both piecewise-defined functions c and l follow the true

√
· function above w = 0.01.

– the “shift” h (with δ = (4λ/15)2 chosen so that it has the same derivative as c
does at 0) follows the consistent underestimate given by the blue curve.

The next result makes a very strong case for the smoothing c.

Thm. 1.

1. c(w) agrees with
√
w in value at w = 0;

2. c(w) agrees with
√
w in value, derivative and second derivative at w = λ2;

hence c is twice continuously differentiable;

3. c is strictly concave on [0,+∞] (just like
√
·);

4. c is strictly increasing on [0,+∞] (just like
√
·); consequently, c(‖xi − xj‖2)

is quasiconvex (just like ‖xi − xj‖);

5.
√
w − c(w) ≥ 0 on [0,+∞];

6. For all λ > 0, max{(
√
w − c(w))/λ : w ∈ [0,+∞]} is the real root γ of

−168750+1050625x+996300x2+236196x3, which is approximately 0.141106.

Because distances only appear in the objective, and in a very simple manner,
the approximation with c is a relaxation (due to (5) of Thm. 1). Meaning that
the objective value of a global optimum using distance approximation is a lower
bound on the true global optimum. And plugging the obtained solution into
the true objective function gives an upper bound on the value of a true global
optimum. So, in the end we get a solution and a bound on how close to optimal
we can certify it to be. To be precise, for any λ > 0, let MMX(λ) denote MMX
with all square roots in the norms replaced by the function c.

Cor. 2. The optimal value of MMX is between the optimal value of MMX(λ)
and the optimal value of MMX(λ) plus λγ(2p− 3) (γ ≈ 0.141106).



We note that the upper bound of Cor. 2 is a very pessimistic worst case
— only achievable when the optimal tree has a full Steiner topology and all
edges are very short. If such were the case, certainly λ should be decreased.
Furthermore, we emphasize that if the length of every edge in the SMT that
solves MMX(λ) is either zero (degenerate case) or greater than or equal to λ,
then the optimal values of MMX and MMX(λ) are the same.

For δ = (4λ/15)2, we have c′(0) = h′(0). That is, at this value of δ we can
expect that c and h will have the same numerical-stability properties near 0.

Prop. 3. For δ = (4λ/15)2, we have h(w) < c(w) on (0,+∞). Moreover c(w)−
h(w) is strictly increasing on [0,+∞).

Hence the relaxation provided using c is always at least as strong as the relaxation
provided using h. In fact, strictly stronger in any realistic case (specifically, when
there is more than 1 terminal). We make a few further observations about c:

Choosing λ. Note that c′(0) = 15
8λ , so we should not be too aggressive in picking

λ extremely small. But a large derivative at 0 is the price that we pay for getting
everything else; in particular, any concave function f that agrees with

√
w at

w = 0 and w = λ2 has f ′(0) ≥ 1
λ . By Cor. 2, choosing λ to be around 2p−1 would

seem to make sense, thus guaranteeing that our optimal solution of MMX(λ) is
within a universal additive constant of the optimal value of MMX. If the points
are quite close together, either they should be scaled up or λ can be decreased.

Secant lower bound. Owing to the strict concavity, in the context of an sbb
algorithm, c is always best lower bounded by a secant on any subinterval. Of
course, it can be an issue whether a sbb solver can recognize and exploit this.
In general, such solvers (e.g., Baron and Couenne) do not yet support general
piecewise-smooth concave functions, while conceptually they could and should.
However, we implemented a feature in SCIP (version 3.2) that allowed us to
solve the proposed relaxation. In particular, by using the modeling-language
AMPL interface and its general suffix facility (see [8]), we are able to specify to
SCIP to treat a piecewise-defined constraint as globally concave. With this new
SCIP feature we were able to solve the secant relaxation — see Section 5.

4 Tightening relaxations

4.1 Integer extreme points

Here, we examine the continuous relaxation of the feasible region of MMX, just
in the space of the y-variables. That is, the set of yij ∈ [0, 1] satisfying (2-
4). The coefficient matrix of the system (2-4) is not totally unimodular (TU).
However, for each j ∈ S −{p+ 1}, we can subtract the equation of (4) from the



corresponding equation of (3) to arrive at the system:∑
j∈S

yij = 1, for i ∈ P, (6)

∑
i∈P

yij +
∑

k>j,k∈S

yjk =

{
3, for j = p+ 1,
2, for j ∈ S − {p+ 1}, (7)

∑
k<j,k∈S

ykj = 1, for j ∈ S − {p+ 1}. (8)

This resulting system is the set of constraints for the ordinary formulation of
a bipartite 0/1 “b-matching” problem. Such a formulation has a TU constraint
matrix. So we immediately have the following theorem (also observed in [13, §4.3,
pp. 217-9] via a much more complicated and less revealing proof) and corollaries:

Thm. 4. The set of yij ∈ [0, 1] satisfying (2-4) has integer extreme points.

Cor. 5. No valid linear inequality in the y-variables alone can improve the linear
relaxation of the equations (2-4) describing full Steiner topologies.

This is not to say that optimality-based (linear) inequalities in the y-variables
alone cannot be derived (see §4.2.2).

Cor. 6. Given a globally-optimal solution of the continuous relaxation of MMX,
in polynomial time we can calculate a globally-optimal solution of MMX.

The relevant b-matching problem is depicted in Fig. 2. There is a node for every
constraint of (6-8) and an edge for every variable. To the right of each node is its
required degree. All possible edges exist between nodes at levels (6) and (7); i.e.,
those node sets induce a complete bipartite graph. All possible edges extending
“down to the right” exist between nodes at levels (7) and (8); i.e., between nodes
at level (7) and all nodes of greater number at level (8). A feasible choice of edges
(selecting a full Steiner topology) is one that meets the degree requirements. E.g.,
we can see that we must choose the edge between node p + 1 of level (7) and
node p+ 2 of level (8).

4.2 Geometric cuts

Based on various geometric considerations concerning optimal solutions, we can
derive several families of valid inequalities seeking to improve relaxations of our
formulation. Some of these are nonlinear, and it is an ongoing challenge to take
advantage of them computationally. Until we address it in §4.2.3, assume that
all norms are taken exactly — not smoothed.

Let ηi be the distance from terminal ai to the nearest other terminal; i.e.,

ηi := min
j∈P, j 6=i

{‖ai − aj‖}, ∀ i ∈ P. (9)
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1
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Fig. 2: The bipartite b-matching model for selecting a full Steiner topology

4.2.1 Non-combinatorial cuts.

Thm. 7. For all n ≥ 2, we have

yik
(
‖xk − ai‖

)
≤ ηi, ∀ i ∈ P, k ∈ S. (10)

Lem. 8. Among triangles with edge lengths a, b, c and corresponding angles x,y,z,
with c and z fixed, the one maximizing a+ b is isosceles (that is a = b, x = y).

Thm. 9. For all n ≥ 2, we have

yikyjk
(
‖xk − ai‖+ ‖xk − aj‖

)
≤ 2√

3
‖ai − aj‖, ∀ i, j ∈ P, i < j, k ∈ S. (11)

In computations, we treat the bilinear term yikyjk by replacing it with a variable
yijk and using the standard McCormick inequalities.

Another way to try and use the same principle is as follows:

Thm. 10. For all n ≥ 2, we have

yikyjk‖xk−ai‖‖xk−aj‖
(
‖xk − ai‖ − 1√

3
‖ai − aj‖

)
= 0, ∀ i, j ∈ P, i < j, k ∈ S.

(12)

Thms. 9 and 10 easily extends to the case where the Steiner point xk is
adjacent to only 1 terminal in the SMT and also to the case where xk is not
adjacent to any terminal. In the such cases, we have

yikykl
(
‖xk − ai‖+ ‖xk − xl‖

)
≤ 2√

3
‖ai − xl‖, ∀ i ∈ P, k, l ∈ S, k < l; (13)

yklykm
(
‖xk − xl‖+ ‖xk − xm‖

)
≤ 2√

3
‖xl−xm‖, ∀ k, l,m ∈ S, k < l < m. (14)

Via another geometric principle, we have the following result.

Thm. 11. For n = 3 and i, j ∈ P, i < j, k, l ∈ S, k < l, we have

yikyjkykl · det

[
ai aj xk xl

1 1 1 1

]
= 0. (15)

We note that the determinant of the 4×4 matrix in Thm. 11 is quadratic in the
x-variables — actually bilinear between xk and xl. In computations, we treat
the trilinear term yikyjkykl by replacing it with a variable yijkl and using the



standard inequalities

yijkl ≤ yik, yijkl ≤ yjk, yijkl ≤ ykl,
yik + yjk + ykl ≤ 2 + yijkl.

Thm. 11 easily extends to dimensions n > 3.

Thm. 12. For n ≥ 3, i, j ∈ P, i < j, k, l ∈ S, k < l, and for every 3 × 4
submatrix B = [bi, bj , ξk, ξl] of the n× 4 matrix

[
ai, aj , xk, xl

]
, we have

yikyjkykl · det

[
bi bj ξk ξl

1 1 1 1

]
= 0. (16)

4.2.2 Combinatorial cuts. In this section, we introduce some valid linear
inequalities satisfied by optimal topologies of the ESTP.

Thm. 13. For n ≥ 2 and i, j ∈ P, i < j, we have

If ‖ai − aj‖ > ηi + ηj , then yik + yjk ≤ 1, ∀ k ∈ S. (17)

Considering the valid inequalities in (17), we note that the inequalities (11) can
only be active for i, j ∈ P, i < j, k ∈ S, such that ‖ai−aj‖ ≤ ηi+ηj . Therefore,
only such valid inequalities should be included in MMX. Furthermore, the result
in Thm. 13 extends to the more general case addressed in Thm. 14.

Thm. 14. Let H be a graph with vertex set P , and such that i and j are adjacent
if ‖ai− aj‖ > ηi + ηj. Then for each k ∈ S, the set of i ∈ P such that yik = 1 in
an optimal solution is a stable set of H. Therefore, every valid linear inequality∑
i∈P αiyi ≤ ρ for the stable set polytope of H yields a valid linear inequality∑
i∈P αiyik ≤ ρ for each k ∈ S.

Let T be a min-length spanning tree on terminals ai, i ∈ P . For i, j ∈ P , let

βij := length of the longest edge on the path between ai and aj in T . (18)

The proof of the following well-known lemma can be found for example in [12].
We use it to prove the validity of cuts presented in Cor. 16.

Lem. 15. An SMT contains no edge of length greater than βij on the unique
path between ai and aj, for all i, j ∈ P .

Cor. 16. For n ≥ 2 and i, j ∈ P, i 6= j, we have

If ‖ai − aj‖ > ηi + ηj + βij , then yik + ykl + yjl ≤ 2, ∀ k, l ∈ S, k < l. (19)

4.2.3 Smoothing in the context of cuts. In the definition and derivation
of all cuts, we assumed that norms are taken exactly — not smoothed. Now, we
confront the issue that we prefer to work with smoothed norms in the context



of mathematical optimization.
First of all, for any norm that just involves data and no variables, we do not

smooth. This pertains to all occurrences of ‖ai − aj‖, and hence also all occur-
rences of the parameters defined in (9) and (18). Any valid equation or inequality
based only on such use of norms (or not based on norms at all) is valid for the
original problem. So, these equations and inequalities do not exclude optimal
solutions of the original problem, and so these solutions are candidate solutions
to the problem where distances are smoothly underestimated (employing h or c),
possibly with lower objective value. Therefore, any such equation or inequality
is valid for the problem with distances smoothly underestimated. This applies
to (15), (16), (17), inequalities based on Thm. 14, and (19).

For (10) and (11), norms involving variables occur only on the low side of
the inequalities, so smooth underestimation of these norms, employing h or c,
keeps them valid.

Inequalities (13,14) also contain norms involving variables on the high side
of those inequalities. For those norms, we should replace them with smooth
overestimates. For example, we could use an “overestimating shift” ĥ(w) :=√
w + δ, or the linear extrapolation l (possibly with a different breakpoint).

In fact, by choosing the breakpoint for l at σ2 := (4λ/15)2, where λ2 is the
breakpoint for c, we get c′(0) = l′(0) (= 15/8λ). That is, if we can numerically
tolerate a breakpoint for the underestimate c at w = λ2, then we can equally
tolerate a breakpoint for the overestimate l at w = σ2 = (4λ/15)2. While global
sbb solvers do not yet support piecewise functions, at the modeling level we could
utilize tangents of the concave

√
· at a few values of w greater than (4λ/15)2. I.e.,

choose some values σ2
r > · · · > σ2

1 > σ2
0 := (4λ/15)2, let τσi

(w) := σi

2 + 1
2σi
w,

and we can instantiate (13) and (14) r+ 1 times each, replacing the
√
· implicit

on the high side of these inequalities with τσi
, for i = 0, 1, . . . , r.

Finally, we have the equation (12). The norms ‖xk − ai‖ and ‖xk − aj‖
can be smoothed in any way that correctly evaluates the norm at 0, and the
equation remains valid. So employing h or c leaves the equation valid. The norm
involving xk in the multiplicand

(
‖xk − ai‖ − ‖ai − aj‖/

√
3
)

is thornier. One

way to address it is to simply replace it with
(
‖xk − ai‖2 − ‖ai − aj‖2/3

)
, with

these (smooth) squared norms calculated exactly.

5 Experiments

In this section, we demonstrate the impact of our cuts on the solution of the
ESTP, with results on 25 instances in IR3, where the terminals are randomly
distributed in the cube [0, 10]3. For each value of p from 4 to 8, we created five
instances. We show the effect of the cuts by solving the instances a few times with
the sbb code SCIP, adding different cuts each time to MMX. In our experiments,
we considered cuts (10,11, 13–15, 17). We compare the performance of SCIP on
eight models, running with a time limit of 2 hours. The first model is MMX,
with no cuts, the following six are MMX with the independent addition of cuts,
and the last model is MMX with the addition of the three most effective cuts on



the previous experiments.

Summarizing our results, we have that adding the cuts have significant ef-
fect on improving the lower bounds and decreasing the running time. The three
classes of cuts, (10), (14) and (17) together improve the lower bound computed
in the time limit, in the only two instances still not solved to optimality in 51%
and 52%, and decreased the overall running time in 61% on average. Three extra
instances, all with p = 8, were solved to optimality in the time limit, after the
addition of the cuts. In Table 1, we show for each value of p, the average percent-
age improvements on the running time of each model tested, when compared to
MMX (100(Time(MMX)−Time(Model))/Time(MMX)). (Negative values indi-
cate worse times with the addition of the cuts)

p MMX+
(10) (11) (13) (14) (15) (17) (10,14,17)

4 51 2 20 0 -21 24 41
5 44 -10 21 0 -82 4 56
6 92 72 91 88 -462 93 93
7 81 -274 48 56 -654 76 84
8 29 0 0 6 0 15 32

Table 1: Average % improvements on running time compared to MMX

Although these are still preliminary results, we see that our cuts can poten-
tially improve the quality of the lower bounds computed by SCIP. The two other
cuts proposed (16,19) have a positive effect in instances with more terminals or
in higher dimensions. Finally, we see that using several families of cuts together
can bring further improvements.

6 Conclusions

The ESTP is very difficult to solve for n > 2, and the application of sbb solvers
to test instances using the MMX formulation points out considerable drawbacks,
concerned with the non-differentiability of the Euclidean norm, and also to the
extreme weakness of the lower bounds given by relaxations. MMX in its original
form, with today’s sbb solvers, leads to dismal results.

We presented different approximations for the square-roots — the source
of our non-differentiability, which can be judiciously applied in the context of
valid inequalities. In particular, we introduced a smooth underestimation func-
tion, and we established several very appealing properties. We implemented this
smoothing with a new feature of SCIP that we developed. This feature could be
specialized to automatically smooth roots and other power functions.

To improve the quality of lower bounds computed in an sbb algorithm, we
presented a variety of valid inequalities, based on known geometric properties of
a SMT. Preliminary numerical experiments demonstrates the potential of these
cuts in improving lower bounds. Many of these cuts are nonconvex, and it is an



interesting research direction to apply similar ideas to other nonconvex gloabl-
optimization models. We demonstrated that the performance of the MMX model
can be significantly improved, though it is still not the best method for ESTP
with n > 2. So more work is needed to make the MMX approach competitive.
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Appendix 1: Proofs

Proof of Thm. 1:

Proof. (1) is trivial. (2) is verified by simple calculus. For (3), we can verify that
c′′(w) < 0 for w < (10/9)λ2. For (4), because c is strictly concave, for w < λ2

we have c′(w) > c′(λ2) = 1
2λ > 0. Consequently, c(‖xi−xj‖2) is the composition

of the increasing function c with the (quasi)convex function ‖xi − xj‖2, so it is
quasiconvex.

For (5), we reparameterize with t :=
√
w, letting c̃(

√
w) := c(w); so we just

need to show that the polynomial t − c̃(t) is nonnegative on [0, λ]. It is easy to
check that

t− c̃(t) = t(λ− t)3
(

8λ2 + 9λt+ 3t2

8λ5

)
,

and each of these factors is obviously nonnegative for t ∈ [0, λ], and hence so is
t− c̃(t).

For (6), it is very convenient to observe that we can reparameterize by f :=
t/λ, and we then restrict our attention to f ∈ [0, 1]. Then

(t− c̃(t))/λ = f − 15f2/8 + 5f4/4− 3f6/8.

Taking the derivative with respect to f , we find that we get one real root:

1

9

(
−6 + 3

√
15
(

9−
√

66
)

+ 3

√
15
(

9 +
√

66
))

(approximately 0.301825). Plugging this exact expression of the root back into
f − 15f2/8 + 5f4/4 − 3f6/8 and using Mathematica (to calculate the minimal
polynomial of the exact expression of the resulting algebraic number), we get
the result. ut

Proof of Prop. 3:

Proof. Clearly the result is true for w ≥ λ2, so we confine out attention to
0 < w < λ2. Let t := w/λ2, so 0 < t < 1. Then it is easy to check that

h(tλ2) = λ

√t+

(
4

15

)2

− 4

15

 ,

and

c(tλ2) = λ

(
15

8
t− 5

4
t2 +

3

8
t3
)
.

Therefore, we have

c(tλ2)− h(tλ2) = λ

15

8
t− 5

4
t2 +

3

8
t3 −

√
t+

(
4

15

)2

+
4

15

 .



So, it remains to demonstrate that

15

8
t− 5

4
t2 +

3

8
t3 −

√
t+

(
4

15

)2

+
4

15
(20)

is positive — we see that the result does not depend on the choice of λ. Now,
we resort to Mathematica to check that (20) has no zero on (0, 1). Seeing that
(20) is positive at t = 1 and continuous on (0, 1], this implies that it is positive
on all of (0, 1).

Furthermore, checking that the derivative of (20) is positive at t = 1 and has
no zero on (0, 1), we can conclude that c−h is strictly increasing on [0,+∞). ut

Proof of Thm. 7:

Proof. Suppose yik = 1 and ‖xk − ai‖ > ηi. Then it is possible to construct a
tree with smaller length, by disconnecting ai and xk, and connecting ai to the
nearest terminal. ut

Proof of Lem. 8:

Proof. Using the law of sines, we have

a = sinx (c/ sin z);

b = sin y (c/ sin z).

So, a+ b = (c/ sin z)(sinx+ sin y).
Differentiating with respect to x (c and z are fixed, and y is an implicit

function of z; that is, y = 180− x− z), we get (c/ sin z)(cosx− cos y) (note the
use of the implicit chain rule dealing with y). Setting this last expression to 0, we
get that the only stationary point has cosx = cos y, so x = y = (180− z)/2. The
second derivative is (c/ sin z)(− sinx − sin y), which is negative for x ∈ [0, 180]
(y = 180 − x − z), so x = y = (180 − z)/2 is indeed the maximizer. We have
then that is the optimizing triangle is isosceles. ut

Proof of Thm. 9:

Proof. First, we consider the validity when the Steiner point xk does not de-
generate to either ai or aj . Then we know that the angle between the edges
connecting the Steiner point xk to the terminals ai or aj is 120 degrees. Apply-
ing Lem. 8, with z = 120 and c = ‖ai − aj‖, and using a bit of plane geometry,
we see that the choice of xk maximizing ‖xk − ai‖+ ‖xk − aj‖ has

‖xk − ai‖ = ‖xk − aj‖ = ‖ai − aj‖/
√

3.

So we can easily see that the inequality is valid (and even tight in this case).
Next, suppose, without loss of generality, that the Steiner point xk degener-

ates to ai. Then ‖xk − ai‖ + ‖xk − aj‖ = ‖xk − aj‖, and the inequality of the



theorem holds because 1 ≤ 2/
√

3. ut

Proof of Thm. 10:

Proof. The equation enforces that when terminals ai and aj are connected to
the same Steiner point xk, and if xk does not degenerate to either of these two
terminals, then ‖ai − aj‖/‖xk − ai‖ =

√
3 — that is, the angle of the edges

connecting the terminals to the Steiner point is 120 degrees. ut

Proof of Thm. 11:

Proof. When a Steiner point xk is connected to a pair of terminals ai and aj and
Steiner point xl, all 4 points must lie in the same plane. The 4 points ai, aj , xk, xl

are affinely dependent — i.e., lie on a plane – precisely when the determinant is
zero. ut

Proof of Thm. 13:

Proof. We have ‖xk − ai‖+ ‖xk − aj‖ ≥ ‖ai − aj‖. Suppose ‖ai − aj‖ > ηi + ηj
and yik = yjk = 1. Then it is possible to construct a tree with smaller length,
by removing the connections between ai and xk and also between aj and xk,
and adding to the tree the connections between ai and the nearest terminal to
it, and also between aj and the nearest terminal to it. ut

Proof of Cor. 16:

Proof. The result comes directly from Thm. 7 and Lem. 15, which imply that
there are at least 3 Steiner points (or 4 edges) in the path between ai and aj in
a SMT, if ‖ai − aj‖ > ηi + ηj + βij . ut

Appendix 2: Additional details about our experiments

All experiments were run on a 64-bit Intel(R) Xeon(R) CPU E5-2609 2 processor
running at 2.50GHz with 10240 KB cache.

In Table 2, we show the number of cuts that we utilized for our instances.
In Table 3, we compare the performance of SCIP on eight models, running

with a time limit of 2 hours. The first model is MMX, with no cuts, and the
following six are model MMX with the independent addition of cuts (10), (11),
13, 14, 15, and (17), and the last model is MMX with the simultaneous addition of
the cuts (10), (14) and (17). The first and second columns in Table 3 correspond
to the number of terminals p and to the number of the instance, respectively.
The other columns report, for each model, the value of the percentage duality
gap (Gap) (100(UB-LB)/UB), and the running time in seconds (Time).
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