
Block-wise Alternating Direction Method of Multipliers
with Gaussian Back Substitution for Multiple-block

Convex Programming

Xiaoling Fu1 Bingsheng He2 Xiangfeng Wang3 Xiaoming Yuan 4

September 16, 2014

Abstract. We consider the linearly constrained convex minimization model with a separable

objective function which is the sum of m functions without coupled variables, and discuss how

to design an efficient algorithm based on the fundamental technique of splitting the augmented

Lagrangian method (ALM). Our focus is the specific big-data scenario where m is huge. A

pretreatment on the original data is to regroup the m functions in the objective and the cor-

responding m variables as t subgroups, where t is a handleable number (usually t ≥ 3 but

much smaller than m). To tackle the regrouped model with t blocks of functions and vari-

ables, some existing splitting methods in the literature are applicable. We concentrate on the

application of the alternating direction method of multiplier with Gaussian back substitution

(ADMM-GBS) whose efficiency and scalability have been well verified in the literature. The

block-wise ADMM-GBS is thus resulted and named when the ADMM-GBS is applied to solve

the t-block regrouped model. To alleviate the difficulty of the resulting ADMM-GBS subprob-

lems, each of which may still require minimizing more than one function with coupled variables,

we suggest further decomposing these subproblems but proximally regularizing these further

decomposed subproblems to ensure the convergence. With this further decomposition, each

of the resulting subproblems only requires handling one function in the original objective plus

a simple quadratic term; it thus may be very easy for many concrete applications where the

functions in the objective have some specific properties. Moreover, these further decomposed

subproblems can be solved in parallel, making it possible to handle big-data by highly capable

computing infrastructures. Consequently, a splitting version of the block-wise ADMM-GBS,

is proposed for the particular big-data scenario. The implementation of this new algorithm is

suitable for a centralized-distributed computing system, where the decomposed subproblems

of each block can be computed in parallel by a distributed-computing infrastructure and the

blocks are updated by a centralized-computing station. For the new algorithm, we prove its

convergence and establish its worst-case convergence rate measured by the iteration complexity.

Two refined versions of this new algorithm with iteratively calculated step sizes and linearized

subproblems are also proposed, respectively.

Key Words: Convex programming, Alternating direction method of multipliers, Big data,

Distributed computing, Centralized computing, Splitting methods, Convergence rate

1Institute of Systems Engineering, Southeast University, Nanjing, 210096, China. This author was supported by

the NSFC grant 70901018. Email: fuxlnju@hotmail.com
2International Centre of Management Science and Engineering, and Department of Mathematics, Nanjing Univer-

sity, Nanjing, 210093, China. This author was supported by the NSFC Grant 91130007 and 11471156. Email:

hebma@nju.edu.cn
3Shanghai Key Laboratory of Trustworthy Computing, Software Engineering Institute, East China Normal Uni-

versity, Shanghai 200062, China. Email: xfwang@sei.ecnu.edu.cn
4Corresponding author, Department of Mathematics, Hong Kong Baptist University, Hong Kong. This author was

supported by a General Research Fund from Hong Kong Research Grants Council. Email: xmyuan@hkbu.edu.hk

1

1 Introduction

We consider a separable convex minimization problem with linear constraints and its objective func-

tion is the sum of more than one function without coupled variables:

min
{ m∑

i=1

θi(xi)
∣∣ m∑

i=1

Aixi = b, xi ∈ Xi, i = 1, · · · ,m
}
, (1.1)

where θi : Rni → R (i = 1, · · · ,m) are convex (not necessarily smooth) closed functions; Ai ∈ Rℓ×ni ,

b ∈ Rℓ, and Xi ⊆ Rni (i = 1, · · · ,m) are closed convex sets. The solution set of (1.1) is assumed

to be nonempty throughout our discussions in this paper. We also assume that matrices AT
i Ai

(i = 1, . . . ,m) are all nonsingular.

Our discussion is under the assumption that each function θi in the objective of (1.1) has some

specific properties and it is worthwhile to take advantage of them in algorithmic design. One repre-

sentative case, which has wide applications in many sparse- and/or low-rank-related fields, is when

the proximal operator of θi given by

arg min
xi∈Rni

{
θi(xi) +

τ

2
∥xi − pi∥2

}
(1.2)

has a closed-form representation for any given vector pi ∈ Rni and scalar τ > 0. In (1.2), ∥·∥ denotes

the standard l2 norm. Thus, we do not discuss the case where the model (1.1) is treated as a whole

and its separable structures are ignored in algorithmic design. Instead, we are interested in such an

algorithm whose subproblems at each iteration are all of the same difficulty as (1.2) or at most as

the one

arg min
xi∈Rni

{
θi(xi) +

τ

2
∥Aixi − a∥2

}
(1.3)

with a ∈ Rℓ. Note that when the proximal operator given in (1.2) has a closed-form representation,

solving (1.3) is generally easy. For instance, the problem (1.3) can be iteratively solved by linearizing

the quadratic term in (1.3) because the linearized subproblem reduces to the task of evaluating

the proximal operator defined in (1.2). This is indeed an implementation of the forward-backward

splitting method which originated in [28]. Therefore, to expose our main idea of algorithmic design

with easier notation, we mainly focus on the discussion of designing an algorithm with subproblems

in form of (1.3) and only briefly mention its advanced version with subproblems in form of (1.2).

The augmented Lagrangian method (ALM) in [23, 30] is the basis for a number of splitting

methods in the literature for solving the model (1.1). Let the Lagrange function of (1.1) be

Lm(x1, x2, . . . , xm, λ) =

m∑
i=1

θi(xi)− λT (

m∑
i=1

Aixi − b), (1.4)

with λ ∈ Rℓ the Lagrange multiplier and it be defined on Ω = X1 × X2 × · · · × Xm × Rℓ. The

augmented Lagrangian function is

Lm
β (x1, . . . , xm, λ) = Lm(x1, . . . , xm, λ) +

β

2
∥

m∑
i=1

Aixi − b∥2, (1.5)

where Lm(x1, x2, . . . , xm, λ) is given by (1.4) and β > 0 is a penalty parameter with respect to the

violation of the linear constraints in (1.1). If we treat the primal variables in model (1.1) as a whole

and apply directly the ALM, then the resulting scheme is{
(xk+1

1 , xk+1
2 , · · · , xk+1

m) = argmin
{
Lm
β (x1, x2, · · · , xm, λk)

∣∣ xi ∈ Xi, i = 1, · · · ,m
}
,

λk+1 = λk − β(
∑m

i=1Aix
k+1
i − b).

(1.6)

2

The minimization subproblem in (1.6) is clearly not efficient under the mentioned assumption that

each θi has specific properties. Thus, when considering the model (1.1), the scheme (1.6) is only of

conceptual sense. But it is the basis of a number of efficient methods in the literature whose common

feature is to decompose the minimization subproblem in (1.6) appropriately and then to ensure the

convergence with some additional steps if necessary. The most successful case is decomposing the

minimization subproblem in (1.6) in Gauss-Seidel order for the special case of (1.1) with m = 2:
xk+1
1 = argmin

{
L2
β(x1, x

k
2, λ

k)
∣∣ x1 ∈ X1

}
,

xk+1
2 = argmin

{
L2
β(x

k+1
1 , x2, λ

k)
∣∣ x2 ∈ X2

}
,

λk+1 = λk − β(A1x
k+1
1 +A2x

k+1
2 − b).

(1.7)

This is the so-called alternating direction method of multiplier (ADMM) in [11] and it has found

many efficient applications in a broad spectrum of application domains such as image processing,

statistical learning, computer vision, network optimization, and so on. We refer to [2, 5, 10] for some

review papers on the ADMM.

With the efficiency of ADMM, it is natural to consider directly extending the scheme (1.7) to the

case of (1.1) with m > 2. The resulting direct extension of ADMM reads as

xk+1
1 = argmin

{
Lm
β (x1, x

k
2, · · · , xkm, λk)

∣∣ x1 ∈ X1

}
,

...

xk+1
i = argmin

{
Lm
β (xk+1

1 , · · · , xk+1
i−1 , xi, x

k
i+1, · · · , xkm, λk)

∣∣ xi ∈ Xi

}
,

...

xk+1
m = argmin

{
Lm
β (xk+1

1 , · · · , xk+1
m−1, xm, λk)

∣∣ xm ∈ Xm

}
,

λk+1 = λk − β(
∑m

i=1Aix
k+1
i − b).

(1.8)

Empirically, the direct extension of ADMM scheme (1.8) indeed works well for some applications,

as shown in, e.g. [29, 31]. However, it was shown in [3] that theoretically the scheme (1.8) is not

necessarily convergent. Hence, like the extreme case of treating (1.1) as a whole and applying no

splitting at all to the ALM (1.6), this scheme (1.8) resulted by applying a full splitting to the ALM

(1.6) does not work either.

In the literature, some surrogates with provable convergence and numerical performance compet-

itive to (1.8) have been well studied. For examples, the schemes in [15, 16] treat the output of (1.8)

as a predictor and suggest correcting it appropriately to ensure the convergence. These schemes are

all in the prediction-correction framework. The scheme in [17] requires no correction step, but it

slightly changes the order of updating the Lagrange multiplier and twists some of the subproblems

appropriately to obtain the convergence. Accordingly, the (x2, · · · , xm)-subproblems can be solved

in parallel but they should be regularized by appropriate proximal terms with sufficiently large prox-

imal coefficients. Moreover, the scheme in [24] suggests attaching a shrinking factor to the Lagrange

multiplier updating step in (1.8). In [3], it was shown that it could be very hard to find such a factor

to guarantee the convergence of the direct extension of the ADMM scheme (1.8).

In this paper, we focus on the particular case of (1.1) which arises from a big-data scenario;

thus m is assumed to be huge. Under this big-data scenario with a huge m, a pretreatment on

the original model (data) is usually implemented. For example, we can classify the original func-

tions and the corresponding variables into t classes by identifying some common features or data-

processing in particular applications. A more specific case is that t represents the number of fea-

tures in a data-mining application of the abstract model (1.1). In general, t ≥ 2 is a handleable

number but it is much smaller than m. The general model (1.1) is thus treated as a separable

3

model with t blocks of functions and variables. For the r-th block (r = 1, 2, · · · , t), let mr be

the number of variables in the r-th block and thus
∑t

r=1mr = m. That is, we consider regroup-

ing the variables x = (x1, x2, · · · , xm) and functions (θ1, θ2, · · · , θm) in (1.1) as (x1,x2, · · · ,xt) with

xr = (xr1 , xr2 , · · · , xrmr
) and (ϑ1(x1), ϑ2(x2), · · · , ϑt(xt)) with ϑr(xr) =

∑mr
j=1 θrj (xrj), respectively;

and furthermore, we define

Ar = (Ar1 , . . . , Armr
), Xr =

mr∏
j=1

Xrj , r = 1, . . . , t. (1.9)

Then, the model (1.1) can be reformulated as the block-wise form

min
{ t∑
r=1

ϑr(xr)
∣∣ t∑
r=1

Arxr = b, xr ∈ Xr, r = 1, . . . , t
}
. (1.10)

Reiterating the block-wise reformulation (1.10) may account for the application where each block of

variables and functions represents a specific set of decision variables and cost functions in the same

classification. Accordingly, the Lagrange function (1.4) can be written as the block-wise

Lt(x1, . . . ,xt, λ) =

t∑
r=1

ϑr(xr)− λT (
∑t

r=1Arxr − b), (1.11)

and thus the augmented Lagrangian function (1.5) as

Lt
β(x1, . . . ,xt, λ) = Lt(x1, . . . ,xt, λ) +

β

2
∥
∑t

r=1Arxr − b∥2. (1.12)

When t = 2, the original ADMM scheme (1.7) can be applicable to the block-wise reformulation

(1.10) and its iterative scheme reads as
xk+1
1 = argmin

{
L2
β(x1,x

k
2, λ

k)
∣∣ x1 ∈ X1

}
,

xk+1
2 = argmin

{
L2
β(x

k+1
1 ,x2, λ

k)
∣∣ x2 ∈ X2

}
,

λk+1 = λk − β(A1x
k+1
1 +A2x

k+1
2 − b).

(1.13)

We refer to [22] for the discussion of how to further decomposing the subproblems in (1.13) and

obtain solvable subproblems in form of (1.3).

In this paper, we focus on the case of t ≥ 3 and discuss how to design implementable algorithms

for the block-wise reformulation (1.10). Recall that the scheme (1.8) is not necessarily convergent.

Thus, its block-wise extension to (1.10), which reads as

xk+1
1 = argmin

{
Lt
β(x1,x

k
2, · · · ,xk

t , λ
k)
∣∣ x1 ∈ X1

}
,

...

xk+1
r = argmin

{
Lt
β(x

k+1
1 , · · · ,xk+1

r−1 ,xr,x
k
r+1, · · · ,xk

t , λ
k)
∣∣ xr ∈ Xr

}
,

...

xk+1
t = argmin

{
Lt
β(x

k+1
1 , · · · ,xk+1

t−1 ,xt, λ
k)
∣∣ xt ∈ Xt

}
,

λk+1 = λk − β(
∑t

r=1Arx
k+1
r − b),

(1.14)

is not necessarily convergent, either; and it is important to investigate how to design implementable

algorithms for (1.10) based on the scheme (1.14). In particular, since the efficiency and stability of

the ADMM with a Gaussian back substitution (ADMM-GBS for short) in [15] has been well verified

4

for various applications such as image processing, statistical learning, SDP, etc., we focus on this

method and further discuss how to extend it to the block-wise reformulation (1.10).

The rest of this paper is organized as follows. In Section 2, we review some known results and

prove some preliminary propositions which are useful for further analysis. The new algorithm is

presented in Section 3, followed by some remarks. Then, we prove the convergence for the new

algorithm in Section 4; and establish its worst-case convergence rate in Section 5. In Section 6, we

elucidate some special cases of the new algorithm and see its relationship to some existing schemes in

the literature. We present a refined version for the new algorithm with an iteratively calculated step

size in Section 7; and briefly mention its convergence analysis. In Section 8, we present a linearized

version of the new algorithm proposed in Section 3, whose subproblems are in form of (1.2) rather

than (1.3). In addition, two key results which essentially guarantee its convergence are established

for this linearized version. Finally, we make some conclusions in Section 9.

2 Preliminaries

In this section, we summarize some results known in the literature and introduce some additional

notations for the convenience of analysis later.

2.1 Variational Inequality Characterization

Let
(
x∗1, x

∗
2, . . . , x

∗
m, λ∗) be a saddle point of the Lagrange function (1.4), it follows that

Lm
λ∈Rℓ(x

∗
1, x

∗
2, · · · , x∗m, λ) ≤ Lm(x∗1, x

∗
2, · · · , x∗m, λ∗) ≤ Lm

xi∈Xi (i=1,...,m)(x1, x2, . . . , xm, λ∗).

Then, finding a saddle point of Lm(x1, x2, . . . , xm, λ) is equivalent to finding (x∗1, x
∗
2, ..., x

∗
m, λ∗) ∈ Ω

such that 

x∗1 ∈ X1, θ1(x1)− θ1(x
∗
1) + (x1 − x∗1)

T (−AT
1 λ

∗) ≥ 0, ∀x1 ∈ X1,

x∗2 ∈ X2, θ2(x2)− θ2(x
∗
2) + (x2 − x∗2)

T (−AT
2 λ

∗) ≥ 0, ∀x2 ∈ X2,
...

x∗m ∈ Xm, θm(xm)− θm(x∗m) + (xm − x∗m)T (−AT
mλ∗) ≥ 0, ∀xm ∈ Xm,

λ∗ ∈ Rℓ, (λ− λ∗)T (
∑m

i=1Aix
∗
i − b) ≥ 0, ∀λ ∈ Rℓ.

(2.1)

We denote by Ω∗ the set of all saddle points of Lm(x1, x2, . . . , xm, λ). More compactly, (2.1) can be

written as the following variational inequality:

VI(Ω, F, θ) w∗ ∈ Ω, ϑ(x)− ϑ(x∗) + (w −w∗)TF (w∗) ≥ 0, ∀w ∈ Ω, (2.2a)

where

x =

 x1
...

xm

 , w =


x1
...

xm
λ

 , ϑ(x) =
m∑
i=1

θi(xi), F (w) =


−AT

1 λ
...

−AT
mλ∑m

i=1Aixi − b

 . (2.2b)

Using the mentioned block-wise notation, we can rewrite (2.1)-(2.2) respectively as

x∗
1 ∈ X1, ϑ1(x1)− ϑ1(x

∗
1) + (x1 − x∗

1)
T (−AT

1 λ
∗) ≥ 0, ∀x1 ∈ X1,

x∗
2 ∈ X2, ϑ2(x2)− ϑ2(x

∗
2) + (x2 − x∗

2)
T (−AT

2 λ
∗) ≥ 0, ∀x2 ∈ X2,

...

x∗
t ∈ Xt, ϑt(xt)− ϑt(x

∗
t) + (xt − x∗

t)
T (−AT

mλ∗) ≥ 0, ∀xt ∈ Xt,

λ∗ ∈ Rℓ, (λ− λ∗)T (
∑t

r=1Arx
∗
r − b) ≥ 0, ∀λ ∈ Rℓ,

(2.3)

5

and

VI(Ω, F, θ) w∗ ∈ Ω, ϑ(x)− ϑ(x∗) + (w −w∗)TF (w∗) ≥ 0, ∀w ∈ Ω, (2.4a)

where

x =

 x1
...

xt

 , w =


x1
...

xt

λ

 , ϑ(x) =

t∑
r=1

ϑr(xr), F (w) =


−AT

1 λ
...

−AT
t λ∑t

r=1Arxr − b

 . (2.4b)

2.2 Some Properties

Recall the matrices Ar’s defined in (1.9). Then, for Ar and As, we have

AT
r As =


AT

r1As1 · · · · · · AT
r1Asms

...
. . .

...
...

. . .
...

AT
rmr

As1 · · · · · · AT
rmr

Asms

 .

For these matrices Ar’s, they have a useful property for further analysis. We summarize it the

following lemma and omit its trivial proof.

Lemma 2.1. For the matrix Ar defined in (1.9), if we define

diag(AT
r Ar) :=


AT

r1Ar1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0

0 · · · 0 AT
rmr

Armr

 , (2.5)

then we have

mr · diag(AT
r Ar) ≽ AT

r Ar, r = 1, . . . , t. (2.6)

Further more, we define

τr ≥ mr − 1, and Dr = (τr + 1)diag(AT
r Ar), r = 1, . . . , t. (2.7)

3 The Block-wise ADMM with Gaussian Back Substitution

In this section, we consider how to extend the ADMM-GBS in [15] to the block-wise reformulation

(1.10) of the original model (1.1) and propose a block-wise ADMM-GBS with solvable subproblems in

form of (1.3). In particular, this block-wise ADMM-GBS turns out to be a unified scheme including

the existing algorithms in [15, 17] as special cases.

3.1 The ADMM-GBS in [15]

First of all, let us recall the ADMM-GBS in [15] for the original model (1.1). As mentioned, the

ADMM-GBS in [15] treats the output of the direct extension of the ADMM scheme (1.8) as a

6

predictor and corrects it via a Gaussian back substitution procedure to ensure the convergence. Its

iterative scheme reads as



x̄k+1
1 = argmin

{
Lm
β (x1, x

k
2, · · · , xkm, λk)

∣∣ x1 ∈ X1

}
,

...

x̄k+1
i = argmin

{
Lm
β (x̄k+1

1 , · · · , x̄k+1
i−1 , xi, x

k
i+1, · · · , xkm, λk)

∣∣ xi ∈ Xi

}
,

...

x̄k+1
m = argmin

{
Lm
β (x̄k+1

1 , · · · , x̄k+1
m−1, xm, λk)

∣∣ xm ∈ Xm

}
,

λ̄k+1 = λk − β(
∑m

i=1Aix̄
k+1
i − b),

vk+1 = vk − αP−1(vk − v̄k+1), α ∈ (0, 1),

(3.1)

where Lm
β is defined in (1.5) and the matrix P is a block-wise upper triangular matrix defined as

P =



In2 (AT
2 A2)

−1AT
2 A3 · · · (AT

2 A2)
−1AT

2 Am 0

0
. . .

. . .
...

...

...
. . .

. . . (AT
m−1Am−1)

−1AT
m−1Am 0

0 · · · 0 Inm 0

0 · · · 0 0 Iℓ



, (3.2)

whose dimension is (n2 + · · · + nm + ℓ). Note that in (3.1), v represents the collection of variables

(xT2 , · · · , xTm, λT)T which are essentially required in the iteration. As mentioned in [2], the first

variable x1 is not required in the iteration and it is thus “intermediate” in the iteration. This is why

in the scheme (3.1), the back substitution procedure is only implemented to v without x1. Clearly,

the last step in (3.1) can be written as

P (vk+1 − vk) = α(v̄k+1 − vk).

Thus, with the block-wise upper triangular matrix P defined in (3.2), the entries of vk+1 can be

updated in the order of λ → xm → · · ·x2, just like the standard Gaussian back substitution procedure

for solving a system of liner equations.

For the ADMM-GBS (3.1), the ADMM splitting step (i.e., the xi-subproblems in (1.8)) is mainly

for yielding easier subproblems so that it becomes possible to exploit the properties of θi’s indi-

vidually. However, since yielding these easier subproblems is on the cost that the individual m

xi-subproblems in (3.1) is only an approximation of the ALM subproblem in (1.6) and thus the de-

composed subproblems, even if all are solved exactly, are not necessarily accurate enough to provide

a qualified input to update the Lagrange multiplier such that the convergence can be still ensured.

This is an explanation of the failure of convergence for the direct extension of ADMM (1.8), see the

counter example given in [3] showing the divergence of the direct extension of ADMM (1.8). The

Gaussian back substitution step in (3.1) can thus be regarded as a correction step to compensate the

inaccuracy resulted by the decomposition on the ALM and so as to ensure the contraction property

for the iterative sequence to the solution set. With this contraction, the convergence of (3.1) can be

established from the contraction method perspective.

7

3.2 Motivation

Since we consider the block-wise reformulation (1.10) with t ≥ 3 blocks and the block-wise direct

extension of ADMM scheme (1.14) is not necessarily convergent, the ADMM-GBS (3.1) can be

extended to (1.10) and its convergence is ensured provided that all the resulting subproblems are

solved exactly. The resulting block-wise ADMM-GBS reads as



x̄k+1
1 = argmin

{
Lt
β(x1,x

k
2, · · · ,xk

t , λ
k)
∣∣ x1 ∈ X1

}
,

...

x̄k+1
r = argmin

{
Lt
β(x̄

k+1
1 , · · · , x̄k+1

r−1 ,xr,x
k
r+1, · · · ,xk

t , λ
k)
∣∣ xr ∈ Xr

}
,

...

x̄k+1
t = argmin

{
Lt
β(x̄

k+1
1 , · · · , x̄k+1

t−1 ,xt, λ
k)
∣∣ xt ∈ Xt

}
,

λ̄k+1 = λk − β(
∑t

r=1Arx̄
k+1
r − b),

vk+1 = vk − αP−1(vk − v̄k+1), α ∈ (0, 1),

(3.3)

where Lt
β is defined in (1.12) and the matrix P in (3.3) is a block-wise upper triangular matrix

similar as in (3.2), see (3.8). Note that this block-matrix P makes the output of (1.14) updated via

a Gaussian back substitution procedure in block-wise form in the scheme (3.3).
For a general case, similar as (1.14), each of the minimization subproblems in (3.3) involves

more than one function in its objective and the mr variables are coupled by the quadratic term in
(1.12). This may make it hard to solve these subproblems unless the special case mr = 1. Recall
that we only consider the case where each subproblem to be solved is in the form of (1.2) or (1.3).
Thus, we suggest further decomposing the xr-subproblem in (3.3) as mr smaller subproblems so that
each function θi is treated individually. More specifically, the block-wise xr-subproblem in (3.3) is
decomposed as the following mr smaller subproblems:

x̄k+1
r1 = argmin

{
Lt
β(x̄

k+1
1 , · · · , x̄k+1

r−1 , xr1 , x
k
r2 , · · · , x

k
rmr

,xk
r+1, · · · ,xk

t , λ
k)
∣∣ xr1 ∈ Xr1

}
,

...

x̄k+1
rj = argmin

{
Lt
β(x̄

k+1
1 , · · · , x̄k+1

r−1 , x
k
r1 , · · ·, x

k
rj−1

, xrj , x
k
rj+1

, · · ·, xk
rmr

,xk
r+1, · · · ,xk

t , λ
k)
∣∣ xrj ∈ Xrj

}
,

...

x̄k+1
rmr

= argmin
{
Lt
β(x̄

k+1
1 , · · · , x̄k+1

r−1 , x
k
r1 , · · · , x

k
rmr−1

, xrmr
,xk

r+1, · · · ,xk
t , λ

k)
∣∣ xrmr

∈ Xrmr

}
.

(3.4)

Note that we only consider implementing the parallel decomposition to the xr-subproblem in (3.3).

This makes it possible to implement parallel computation to tackle each block of subproblems by, e.g.,

a distributed-computing system. To summarize, the implementation of the new algorithm can be

ordered as t main phases which are proceeded sequentially according to the block-wise ADMM-GBS

scheme (3.3); and for the r-th phase, there are mr subtasks in form of (1.3) which can be proceeded

in parallel. This feature is useful for big-data scenarios where parallel computation is necessary.

It is also worthwhile to mentation that if the alternating decomposition is implemented to the xr-

subproblem in (3.3), then the resulting scheme reduces to the original ADMM-GBS (3.1). Recall that

the ADMM-GBS (3.1) requires solving all the decomposed subproblems in a completely sequential

way. Hence, when the big-data scenario is consider where m is huge in (1.1), the waiting time

resulted by the sequential computing might be too expensive if the ADMM-GBS (3.1) is directly used.

We are thus interested in implementing the ADMM-GBS in the block-wise form (3.3) but further

decomposing the block-wise subproblems in the parallel way of (3.4). In this way, the advantage

of the ADMM-GBS such as its efficiency and stability is preserved among blocks while the parallel

computation to tackle big-data scenarios is applicable within each block. This is the main motivation

of the new algorithm to be proposed.

8

3.3 Further Remarks

We have emphasized the importance of parallel computation to tackle the big-data scenarios of the

model (1.1). One may ask why not just implement the full parallel decomposition directly to the

ALM (1.6) and thus obtain the following scheme whose m xi-subproblems can be solved fully in

parallel: 

xk+1
1 = argmin

{
Lm
β (x1, x

k
2, · · · , xkm, λk)

∣∣ x1 ∈ X1

}
,

...

xk+1
i = argmin

{
Lm
β (xk1, · · · , xki−1, xi, x

k
i+1, · · · , xkm, λk)

∣∣ xi ∈ Xi

}
,

...

xk+1
m = argmin

{
Lm
β (xk1, · · · , xkm−1, xm, λk)

∣∣ xm ∈ Xm

}
,

λk+1 = λk − β(
∑m

i=1Aix
k+1
i − b).

(3.5)

In fact, the scheme (3.5) requiresm work stations to realize the parallel computation. Whenm is huge

for a big-data scenario, it might be too expensive to be practical. Moreover, from methodological

point of view, as shown in [13], the scheme (3.5) is not necessarily convergent even for m = 2. Later,

it was shown in [18] that the convergence of (3.5) can be guaranteed if all the xi-subproblems are

proximally regularized by certain proximal term

xk+1
1 = argmin

{
Lm
β (x1, x

k
2, · · · , xkm, λk) + sβ

2 ∥A1(x1 − xk1)∥2
∣∣ x1 ∈ X1

}
,

...

xk+1
i = argmin

{
Lm
β (xk1, · · · , xki−1, xi, x

k
i+1, · · · , xkm, λk) + sβ

2 ∥Ai(xi − xki)∥2
∣∣ xi ∈ Xi

}
,

...

xk+1
m = argmin

{
Lm
β (xk1, · · · , xkm−1, xm, λk) + sβ

2 ∥Am(xm − xkm)∥2
∣∣ xm ∈ Xm

}
,

λk+1 = λk − β(
∑m

i=1Aix
k+1
i − b).

(3.6)

where the proximal parameter s is required to be greater than m − 1. The xi-subproblems in the

scheme (3.6) are also eligible for parallel computation. But recall that we are considering the big-data

scenarios where m is huge. Thus, the proximal terms in (3.6) with s ≥ m−1 play a dominate role in

the objective functions and the convergence is doomed to be extremely slow due to the huge value of

m− 1, though the convergence can be guaranteed asymptotically. Therefore, we do not expect that

the existing schemes based on the technique of directly decomposing the ALM (1.6) in a parallel way

are applicable for the big-data scenarios of (1.1) with a huge m. Note that in [12, 13], it was also

suggested to correct the output of (3.5) by certain correction steps and the proximal terms are not

needed to regularize the decomposed subproblems. But these schemes also require m work stations

to realize the parallel computation.

3.4 The New Algorithm

Based on the previous discussion, we now propose the new algorithm which embeds the parallel

computation (1.3) into the block-wise ADMM-GBS (3.3). As analyzed in [14, 22], if we replace the

xr-subproblems in (3.3) directly by the further decomposed subproblems in (3.4), the convergence

is not guaranteed. In fact, the proximity to the last iterate should be controlled when solving the

further subproblems in (3.4). Therefore, we should embed not the subproblems in (3.4), but their

9

regularized counterparts:

xk+1
rj = argmin

{ Lt
β(x

k+1
1 , · · · ,xk+1

r−1 , x
k
r1 , · · · , x

k
rj−1, xrj , x

k
rj+1, · · · , xkrmr

,xk
r+1, · · · ,xk

t , λ
k)

+ τrβ
2 ∥Arj (xrj − xkrj)∥

2

∣∣∣∣xrj ∈ Xrj

}
(3.7)

with τr (r = 1, · · · , t) into the block-wise ADMM-GBS (3.3). By defining a matrix

P =



I 0 0 · · · 0 0

0 I D−1
2 AT

2 A3 · · · D−1
2 AT

2 At 0

0 0
. . .

. . .
...

...

...
...

. . .
. . . D−1

t−1AT
t−1At 0

0 0 · · · 0 I 0

0 0 · · · 0 0 Iℓ


, (3.8)

where Dr is defined in (2.7), we summarize the resulting algorithm as follows.

Algorithm 1: A splitting version of the block-wise ADMM-GBS (3.3) for (1.1)

Initialization: Specify a regrouping for the model (1.1) with determined values of t and mr

for r = 1, 2, · · · , t. Choose constants τr such that τr ≥ mr − 1 for r = 1, . . . , t. Let P be defined

in (3.8). With the given iterate wk = (xk1, x
k
2, · · · , xkm, λk) ∈ X1 ×X2 × · · · ×Xm ×Rℓ, the new

iterate is generated by the following steps.



for r = 1, 2, . . . t, do:

for j = 1, . . .mr, parallel do:

x̄k+1
rj = argmin

{
Lt
β

(
x̄k+1
1 , . . . , x̄k+1

r−1 , x
k
r1 , . . . , x

k
rj−1

, xrj , x
k
rj+1

, . . . , xkrmr
,

xk
r+1, . . . ,x

k
t , λ

k
)
+ τrβ

2 ∥Arj (xrj − xkrj)∥
2

∣∣∣∣xrj ∈ Xrj

}
;

end.

end.

λ̄k+1 = λk − β
(∑t

r=1Arx̄
k+1
r − b

)
.

P(wk+1 −wk) = α(w̄k+1 −wk), α ∈ (0, 1).
(3.9)

Remark 3.1. To implement the proposed algorithm (3.9), at most max{m1, · · · ,mt} work stations

are needed. Also, the proximal parameters τr is only dependent on the number of variables mr of

the r-th group; they thus can be significantly smaller than m− 1 as required in (3.6). This feature

thus can avoid slow convergence due to too large proximal coefficients. Certainly, when a specific

application of the abstract model (1.1) is considered, the user can optimally determine the values of

t and mr for r = 1, 2, · · · , t, so that the balance among the sequential and parallel computation is

achieved and the optimal overall performance is achieved. But in this paper, we focus on the general

methodology of algorithmic design for the generic case of (1.1), and do not discuss the specific

regrouping strategies among variables which are case-dependent.

Remark 3.2. It is easy to see that at each iteration, the new algorithm (3.9) mainly requires solving

m subproblems in form of (1.3). We use the proximal terms τrβ
2 ∥Arj (xrj − xkrj)∥

2 to regularize

the further decomposed subproblems in (3.9). But, just like the analysis in [21], we can instead

10

use the terms τrβ
2 ∥xrj − xkrj∥

2, or more generally τrβ
2 ∥xrj − xkrj∥

2
G with a positive definite matrix

G. Therefore, for the case where Ai is not the identity matrix while θi is simple in the sense that

its proximal operator defined in (1.2) has a closed-form representation, then we can easily further

consider linearizing the quadratic term in its corresponding subproblem in (3.9) and thus propose a

linearized version of the algorithm (3.9). The corresponding analysis is not much different from our

analysis to be presented. We thus will only briefly discuss the linearized version in Section 8; and

mainly focus on the discussion for the scheme (3.9) for the purpose of exposing our main idea with

easier notation.

4 Convergence

In this section, we prove the global convergence for the proposed algorithm (3.9).

4.1 Some Matrices

First of all, for the convenience of analysis, let us define some matrices and prove some useful

properties for these matrices. Let

Q =



β(D1 −AT
1 A1) 0 · · · · · · 0 0

0 βD2
. . .

...
...

0 βAT
3 A2

. . .
. . .

...
...

...
...

. . .
. . . 0 0

0 βAT
t A2 · · · βAT

t At−1 βDt 0

0 −A2 · · · −At−1 −At
1
β I


, (4.1)

where Ar and Dr are defined in (1.9) and (2.7), respectively.

In fact, the matrix Q in (4.1) can be written as the block-wise form

Q =

 β(D1 −AT
1 A1) 0 0

0 βQe 0

0 −A 1
β I

 , (4.2)

with

A = (A2, . . . ,At) (4.3)

and

Qe =


D2 0 · · · 0

AT
3 A2 D3

. . .
...

...
. . .

. . . 0

AT
t A2 · · · AT

t At−1 Dt

 . (4.4)

Moreover, we use De to denote the diagonal part of Qe, i.e.,

De =


D2 0 · · · 0

0 D3
. . .

...
...

. . .
. . . 0

0 · · · 0 Dt

 . (4.5)

11

With the just defined matrices A, Qe, and De, we further define

M =

 I 0 0

0 Q−T
e De 0

0 −βA I

 . (4.6)

These matrices will help us present the coming analysis more succinctly.

Indeed, proving the convergence for the proposed algorithm (3.9) crucially depends on some

important properties of the just defined matrices. We summarize them in the following two lemmas.

Lemma 4.1. For the matrices A, Qe and De which are defined in (4.3), (4.4) and (4.5), respectively,

we have

QT
e +Qe

{
≽ De +ATA, τr ≥ mr − 1, r = 1, . . . , t;

≻ De +ATA, τr > mr − 1, r = 1, . . . , t.
(4.7)

Proof. Using the structure of the matrices Qe and De (see (4.4) and (4.5)), we obtain

QT
e +Qe = De +


D2 AT

2 A3 · · · AT
2 At

AT
3 A2 D3

. . .
...

...
. . .

. . . AT
t−1At

AT
t A2 · · · AT

t At−1 Dt

 .

Since we choose τr ≥ (resp. >) mr − 1, it follows that

Dr = (τr + 1)diag(AT
r Ar) ≽ (Resp., ≻)AT

r Ar, r = 1, . . . , t,

and consequently, 
D2 AT

2 A3 · · · AT
2 At

AT
3 A2 D3

. . .
...

...
. . .

. . . AT
t−1At

AT
t A2 · · · AT

t At−1 Dt

 ≽ (Resp., ≻)ATA.

The assertions (4.7) are followed immediately. 2

Lemma 4.2. For the matrices Q and M defined in (4.1) and (4.6), respectively, let

H := QM−1 (4.8a)

and

G := QT +Q− αMTHM. (4.8b)

Then, we have the following conclusions.

1. The matrix H defined in (4.8a) is symmetric and positive definite.

2. For the matrix G defined in (4.8b), we have

G = QT +Q− αMTHM


{

≻ 0, ∀α ∈ (0, 1),

≽ 0, α = 1,
if τr ≥ mr − 1, r = 1, . . . , t;

≻ 0, ∀α ∈ (0, 1], if τr > mr − 1, r = 1, . . . , t.

(4.9)

12

Proof. First, we check the positive definiteness of the matrix H. For the matrix M defined in (4.6),

we have

M−1 =

 I 0 0

0 D−1
e QT

e 0

0 βAD−1
e QT

e I

 .

Thus, according to the definition of the matrix H (see (4.8a)), we conclude that

H = QM−1 =


β(D1 −AT

1 A1) 0 0

0 βQe 0

0 −A 1
β I




I 0 0

0 D−1
e QT

e 0

0 βAD−1
e QT

e I



=


β(D1 −AT

1 A1) 0 0

0 βQeD−1
e QT

e 0

0 0 1
β I

 ,

is symmetric and positive definite.

Now, we turn to check the positive definiteness of the matrix G. Note that

QT+Q =


2β(D1 −AT

1 A1) 0 0

0 β(QT
e +Qe) −AT

0 −A 2
β I

 (4.7)

≽


2β(D1 −AT

1 A1) 0 0

0 β(De +ATA) −AT

0 −A 2
β I


and

MTHM = QTM =


β(D1 −AT

1 A1) 0 0

0 βQT
e −AT

0 0 1
β I




I 0 0

0 Q−T
e De 0

0 −βA I



=


β(D1 −AT

1 A1) 0 0

0 β(De +ATA) −AT

0 −A 1
β I

 . (4.10)

From the definition of G (see (4.8b) and the two different cases of (4.7)), it follows that

G = QT +Q− αMTHM

(
≽
≻

) 
(2− α)β(D1 −AT

1 A1) 0 0

0 0 0

0 0 0

+ (1− α)


0 0 0

0 β(De +ATA) −AT

0 −A 1
β I


≽ 0.

The assertion (4.9) is proved. 2

As we shall see, Lemmas 4.3 and 4.2 actually play a very important role in proving the convergence

for the proposed algorithm (3.9).

13

4.2 A Prediction-Correction Reformulation of (3.9)

Now, with the matrices introduced in the last subsection, we can rewrite the proposed algorithm

(3.9) as the following prediction-correction form.

Prediction. For the given wk = (xk1, x
k
2 . . . , x

k
m, λk) = (xk

1, . . . ,x
k
t , λ

k), generate the predictor

w̃k = (x̃k1, x̃
k
2 . . . , x̃

k
m, λ̃k) = (x̃k

1, . . . , x̃
k
t , λ̃

k) by the following steps:

for r = 1, 2, . . . t, do:

for j = 1, . . .mr, parallel do:

x̃krj = argmin

{
Lt
β

(
x̃k
1, . . . , x̃

k
r−1, x

k
r1 , . . . , x

k
rj−1

, xrj , x
k
rj+1

, . . . , xkrmr
,

xk
r+1, . . . ,x

k
t , λ

k
)
+ τrβ

2 ∥Arj (xrj − xkrj)∥
2

∣∣∣∣xrj ∈ Xrj

}
;

end.

end.
(4.11a)

Additionally, we define

λ̃k = λk − β
(
A1x̃

k
1 +

∑t
j=2Ajx

k
j − b

)
. (4.11b)

Correction. The new iterate wk+1 is given by

wk+1 = wk − αM(wk − w̃k), (4.12a)

where w̃k is the predictor generated by (4.11), the matrix M is defined in (4.6) and

α ∈

{
(0, 1), if τr ≥ mr − 1, r = 1, . . . , t;

(0, 1], if τr > mr − 1, r = 1, . . . , t.
(4.12b)

As mentioned in [22], we conduct the convergence analysis in the context of the prediction-

correction form (4.11)-(4.12) because the proof of the convergence is essentially to prove the contrac-

tion property with respect to the solution set, while the progress of the proximity to the solution

set is measured by the quantity ∥wk − w̃k∥2G where G is defined in (4.8b). Thus, it is convenient to

explicitly analyze the predictor w̃k and accordingly revisit the algorithm (3.9) from the prediction-

correction perspective. The other reason is that this prediction-correction reformulation enables us

to investigate the relationship between the proposed algorithm (3.9) and some existing schemes in

the literature by a unified framework, as elaborated in Sections 6.1 and 6.2.

Let us take a closer look at the correction step (4.12). Recall that the matrix M defined in (4.6)

and the matrices Qe, De in M are defined in (4.4) and (4.5), respectively. Moreover, using (4.3) and

(4.11b), we can see that the correction step (4.12) consists of the following computations:

xk+1
1 − xk

1 = α(x̃k
1 − xk

1),

D−1
e QT

e

 xk+1
2 − xk

2
...

xk+1
t − xk

t

 = α

 x̃k
2 − xk

2
...

x̃k
t − xk

t

 ,

λk+1 = λk − αβ
(∑t

s=1Asx̃
k
s − b

)
.

(4.13)

Notice that D−1
e QT

e is a block-wise upper-triangular matrix whose diagonal parts are identities. Thus,

the block-wise variables (x2,x3, . . . ,xt) are updated consecutively in the back substitution order:

14

xk+1
t → xk+1

t−1 → · · · · · · → xk+1
2 . Recall that within each block variable, the further decomposed

subproblems are eligible for parallel computation. Thus, The correction step (4.12) can be viewed

as a Gaussian back substitution procedure to correct the output of (4.11).

Now, let us come back to the prediction step (4.11). In the following lemma, we analyze the

optimality conditions of the x̃rj -subproblems in (4.11) and represent the predictor generated by

(4.11) as a VI reformulation. This VI reformulation helps us better discern its difference from the

VI characterization (2.4) of the original model (1.1); and thus clearly see how far the predictor w̃k

is from a solution point. It also inspires the correction step (4.12).

Lemma 4.3. Let x̃k be generated by (4.11a) from the given vector wk and λ̃k be defined by (4.11b).

Then, the predictor w̃k ∈ Ω satisfies

w̃k ∈ Ω, ϑ(x)− ϑ(x̃k) + (w − w̃k)TF (w̃k) ≥ (w − w̃k)TQ(wk − w̃k), ∀w ∈ Ω, (4.14)

where Q is defined in (4.1).

Proof. Using the notation of the augmented Lagrangian function (see (1.5)), we observe the opti-

mality condition of the xrj -subproblem in the r-th group of (4.11a) for r = 1, . . . , t. Ignoring some

constant terms in the objective function of the subproblems, we have

x̃krj = argmin

{
Lt
β

(
x̃k
1, . . . , x̃

k
r−1, x

k
r1 , . . . , x

k
rj−1

, xrj , x
k
rj+1

, . . . , xkrmr
,

xk
r+1, . . . ,x

k
t , λ

k
)
+ τrβ

2 ∥Arj (xrj − xkrj)∥
2

∣∣∣∣xrj ∈ Xrj

}
(1.5)
= argmin

{
θrj (xrj)− (λk)TArjxrj +

β
2 ∥Arj (xrj − xkrj) +

∑r−1
s=1 Asx̃

k
s

+
∑t

s=r Asx
k
s − b∥2 + τrβ

2 ∥Arj (xrj − xkrj)∥
2

∣∣∣∣xrj ∈ Xrj

}
.

The optimality condition of the above convex minimization problem is

x̃krj ∈ Xrj , θrj (xrj)− θrj (x̃
k
rj) + (xrj − x̃krj)

T
{
−AT

rjλ
k

+βAT
rj

[∑r−1
s=1 Asx̃

k
s +

∑t
s=r Asx

k
s − b

]
+ (τr + 1)βAT

rjArj (x̃
k
rj − xkrj)

}
≥ 0, ∀xrj ∈ Xrj .

Using the definition of λ̃k (see (4.11b)), we have

λk = λ̃k + β
(
A1x̃

k
1 +

∑t
s=2Asx

k
s − b

)
.

Substituting it into the last inequality, we obtain

x̃krj ∈ Xrj , θrj (xrj)− θrj (x̃
k
rj) + (xrj − x̃krj)

T
{
−AT

rj λ̃
k

+βAT
rj

[∑r−1
s=2 As(x̃

k
s − xk

s)
]
+ (τr + 1)βAT

rjArj (x̃
k
rj − xkrj)

}
≥ 0, ∀xrj ∈ Xrj .

Applying this inequality for the cases of j = 1, . . . ,mr, and summarizing the resulting inequalities,

we get

x̃k
r ∈ Xr, ϑr(xr)− ϑr(x̃

k
r) + (xr − x̃k

r)
T
{
−AT

r λ̃
k

+βAT
r

[∑r−1
s=2 As(x̃

k
s − xk

s)
]
+ (τr + 1)βdiag(AT

r Ar)(x̃
k
r − xk

r)
}
≥ 0, ∀xr ∈ Xr.

(4.15)

Note that, for r = 1, (4.15) means that

x̃k
1 ∈ X1, ϑ1(x1)− ϑ1(x̃

k
1) + (x1 − x̃k

1)
T
{
−AT

1 λ̃
k

−βAT
1 A1(x̃

k
1 − xk

1) + (τ1 + 1)βdiag(AT
1 A1)(x̃

k
1 − xk

1)
}
≥ 0, ∀x1 ∈ X1,

15

Using the notation of matrix D1 (see (2.7)), it can be written as

x̃k
1 ∈ X1, ϑ1(x1)−ϑ1(x̃

k
1)+(x1−x̃k

1)
T
{
−AT

1 λ̃
k+β(D1−AT

1 A1)(x̃
k
1−xk

1)
}
≥ 0, ∀x1 ∈ X1. (4.16)

In addition, by using (4.11b), we have

(

t∑
r=1

Arx̃
k
r − b)−

t∑
s=2

As(x̃
k
s − xk

s) +
1

β
(λ̃k − λk) = 0,

and it can be rewritten as

λ̃k ∈ Rℓ, (λ− λ̃k)T
{
(

t∑
r=1

Arx̃
k
r − b)−

t∑
s=2

As(x̃
k
s − xk

s) +
1

β
(λ̃k − λk)

}
≥ 0, ∀λ ∈ Rℓ. (4.17)

Combining (4.16), (4.15) (r = 2, . . . , t) and (4.17) together and using the notations F (w), Q and Dr

(see (2.2), (4.1) and (2.7)), the assertion of this lemma is followed directly. 2

Recall the VI reformulation (2.4a)-(2.4b) of the model (1.1). Lemma 4.3 thus indicates that

the accuracy of the predictor w̃k to a solution point w∗ is measured by the quantity max{(w −
w̃k)TQ(wk − w̃k) | w ∈ Ω}. This is also the reason we search for a better iterate at the correct step

(4.12) along the direction −(wk − w̃k) to further reduce the proximity and to guarantee that the

whole sequence is monotonically closer to the solution set. With this strict contraction property, it

becomes standard to prove the convergence from the contraction method perspective in [1].

4.3 An Illustrative Example of Lemma 4.3

For better understanding the proposed algorithm (3.9) and seeing the assertion in Lemma 4.3 more

specifically, we consider the special case of (1.1) with m = 6:

min
{ 6∑
i=1

θi(xi)
∣∣ 6∑

i=1

Aixi = b, xi ∈ Xi, i = 1, 2, · · · , 6
}
;

and regroup the variables as

x =

 x1

x2

x3

 with x1 =

(
x1
x2

)
, x2 =

(
x3
x4

)
and x3 =

(
x5
x6

)
. (4.18a)

Therefore, m1 = m2 = m3 = 2. Accordingly, we regroup

A1 = (A1, A2), A2 = (A3, A4), A3 = (A5, A6), (4.18b)

and

X1 = X1 ×X2, X2 = X3 ×X4, X3 = X5 ×X6. (4.18c)

The corresponding augmented Lagrangian function is

L6
β(x1, x2, x3, x4, x5, x6, λ) =

6∑
i=1

θi(xi)− λT (

6∑
i=1

Aixi − b) +
β

2

∥∥ 6∑
i=1

Aixi − b
∥∥2. (4.19)

With the given wk = (xk1, x
k
2, x

k
3, x

k
4, x

k
5, x

k
6, λ

k), the prediction step (4.11) at the k-th iteration

can be specified as{
x̃k1 = argmin

{
L6
β(x1, x

k
2, x

k
3, x

k
4, x

k
5, x

k
6, λ

k) + τ1β
2 ∥A1(x1 − xk1)∥2

∣∣ x1 ∈ X1

}
,

x̃k2 = argmin
{
L6
β(x

k
1, x2, x

k
3, x

k
4, x

k
5, x

k
6, λ

k) + τ1β
2 ∥A2(x2 − xk2)∥2

∣∣ x2 ∈ X2

}
;

(4.20a)

16

{
x̃k3 = argmin

{
L6
β(x̃

k
1, x̃

k
2, x3, x

k
4, x

k
5, x

k
6, λ

k) + τ2β
2 ∥A3(x3 − xk3)∥2

∣∣ x3 ∈ X3

}
,

x̃k4 = argmin
{
L6
β(x̃

k
1, x̃

k
2, x

k
3, x4, x

k
5, x

k
6, λ

k) + τ2β
2 ∥A4(x4 − xk4)∥2

∣∣ x4 ∈ X4

}
;

(4.20b)

{
x̃k5 = argmin

{
L6
β(x̃

k
1, x̃

k
2, x̃

k
3, x̃

k
4, x5, x

k
6, λ

k) + τ3β
2 ∥A5(x5 − xk5)∥2

∣∣ x5 ∈ X5

}
,

x̃k6 = argmin
{
L6
β(x̃

k
1, x̃

k
2, x̃

k
3, x̃

k
4, x

k
5, x6, λ

k) + τ3β
2 ∥A6(x6 − xk6)∥2

∣∣ x6 ∈ X6

}
;

(4.20c)

λ̃k = λk − β
(
A1x̃

k
1 +A2x̃

k
2 +

∑6
j=3Ajx

k
j − b

)
. (4.20d)

By using (4.19), we derive the following optimal condition of the xi-subproblems of (4.20a):{
θ1(x1)− θ1(x̃

k
1)+ (x1 − x̃k

1)
T
{
−AT

1 λ
k + βAT

1 [A1(x̃
k
1 − xk

1) + (
∑6

j=1 Ajx
k
j − b)]+τ1βA

T
1 A1(x̃

k
1−xk

1)
}
≥ 0, ∀x1 ∈ X1;

θ2(x2)− θ2(x̃
k
2) + (x2 − x̃k

2)
T
{
−AT

2 λ
k + βAT

2 [A2(x̃
k
2 − xk

2) + (
∑6

j=1 Ajx
k
j − b)]+τ1βA

T
2 A2(x̃

k
2−xk

2)
}
≥ 0, ∀x2 ∈ X2.

Substituting λk = λ̃k + β
(
A1x̃

k
1 +A2x̃

k
2 +

∑6
j=3Ajx

k
j − b

)
(see (4.20d)) into the last inequalities,{

θ1(x1)− θ1(x̃
k
1)+ (x1 − x̃k

1)
T
{
−AT

1 λ̃
k − βAT

1 [A1(x̃
k
1 − xk

1) +A2(x̃
k
2 − xk

2)]+(τ1+1)βAT
1 A1(x̃

k
1−xk

1)
}
≥ 0, ∀x1 ∈ X1;

θ2(x2)− θ2(x̃
k
2) + (x2 − x̃k

2)
T
{
−AT

2 λ̃
k − βAT

2 [A1(x̃
k
1 − xk

1) +A2(x̃
k
2 − xk

2)]+(τ1+1)βAT
2 A2(x̃

k
2−xk

2)
}
≥ 0, ∀x2 ∈ X2.

Using the notations in (4.18), it can be written as

ϑ(x1)−ϑ(x̃k
1)+(x1−x̃k

1)
T {−AT

1 λ̃
k−βAT

1 A1(x̃
k
1−xk

1)+(τ1+1)βdiag(AT
1 A1)(x̃

k
1−xk

1)} ≥ 0, ∀x1 ∈ X1.

(4.21)
For the x2-group,{

θ3(x3)− θ3(x̃
k
3) + (x3 − x̃k

3)
T
{
AT

3 [β(A1x̃
k
1 +A2x̃

k
2 +

∑6
j=3Ajx

k
j − b)− λk] + (τ2 + 1)βAT

3 A3(x̃
k
3 − xk

3)
}
≥ 0, ∀x3 ∈ X3;

θ4(x4)− θ4(x̃
k
4) + (x4 − x̃k

4)
T
{
AT

4 [β(A1x̃
k
1 +A2x̃

k
2 +

∑6
j=3Ajx

k
j − b)− λk] + (τ2 + 1)βAT

4 A4(x̃
k
4 − xk

4)
}
≥ 0, ∀x4 ∈ X4;

Substituting β
(
A1x̃

k
1 +A2x̃

k
2 +

∑6
j=3Ajx

k
j − b

)
− λk = −λ̃k (see (4.20d)) into the last inequalities,{

θ3(x3)− θ3(x̃
k
3) + (x3 − x̃k

3)
T
{
−AT

3 λ̃
k + (τ2 + 1)βAT

3 A3(x̃
k
3 − xk

3)
}
≥ 0, ∀x3 ∈ X3;

θ4(x4)− θ4(x̃
k
4) + (x4 − x̃k

4)
T
{
−AT

4 λ̃
k + (τ2 + 1)βAT

4 A4(x̃
k
4 − xk

4)
}
≥ 0, ∀x4 ∈ X4;

Using the notation in (4.18), it can be rewritten as

ϑ(x2)− ϑ(x̃k
2) + (x2 − x̃k

2)
T {−AT

2 λ̃
k + (τ2 + 1)βdiag(AT

2 A2)(x̃
k
2 − xk

2)} ≥ 0, ∀x2 ∈ X2. (4.22)

For the x3-group,{
θ5(x5)− θ5(x̃

k
5) + (x5 − x̃k

5)
T
{
AT

5 [β(
∑4

i=1 Aix̃
k
i +A5x̃

k
5 +A6x

k
6 − b)− λk] + τ3βA

T
5 A5(x̃

k
5 − xk

5)
}
≥ 0, ∀x5 ∈ X5;

θ6(x6)− θ6(x̃
k
6) + (x6 − x̃k

6)
T
{
AT

6 [β(
∑4

i=1 Aix̃
k
i +A5x

k
5 +A6x̃

k
6 − b)− λk] + τ3βA

T
6 A6(x̃

k
6 − xk

6)
}
≥ 0, ∀x6 ∈ X6;

Substituting β
(
A1x̃

k
1 +A2x̃

k
2 +

∑6
j=3Ajx

k
j − b

)
− λk = −λ̃k (see (4.20d)) into the last inequalities,{

θ5(x5)− θ5(x̃
k
5) + (x5 − x̃k

5)
T
{
−AT

5 λ̃
k + βAT

5 [A3(x̃
k
3 − xk

3) +A4(x̃
k
4 − xk

4)] + (τ3 + 1)βAT
5 A5(x̃

k
5 − xk

5)
}
≥ 0, ∀x5 ∈ X5;

θ6(x6)− θ6(x̃
k
6) + (x6 − x̃k

6)
T
{
−AT

6 λ̃
k + βAT

6 [A3(x̃
k
3 − xk

3) +A4(x̃
k
4 − xk

4)] + (τ3 + 1)βAT
6 A6(x̃

k
6 − xk

6)
}
≥ 0, ∀x6 ∈ X6;

Using the notation in (4.18), it can be rewritten as

ϑ(x3)−ϑ(x̃k
3)+(x3−x̃k

3)
T {−AT

3 λ̃
k+βAT

3 A2(x̃
k
2−xk

2)+(τ3+1)βdiag(AT
3 A3)(x̃

k
3−xk

3)} ≥ 0, ∀x3 ∈ X3.

(4.23)

Using the notations in (4.18), we rewrite (4.20d) as

λ̃k ∈ Rℓ, (λ−λ̃k)T
{
(

3∑
r=1

Arx̃
k
r−b)−A2(x̃

k
2−xk

2)−A3(x̃
k
3−xk

3)+
1

β
(λ̃k−λk)

}
≥ 0, ∀λ ∈ Rℓ. (4.24)

17

Combining (4.21), (4.22), (4.23) and (4.24) together, and using the VI (2.2), the predictor w̃k ∈ Ω

satisfies (4.14) with the concrete matrix Q defined as

Q =



(τ1+1)βdiag(AT
1 A1)− βAT

1 A1 0 0 0

0 (τ2+1)βdiag(AT
2 A2) 0 0

0 βAT
3 A2 (τ3+1)βdiag(AT

3 A3) 0

0 −A2 −A3
1
β I

 .

Therefore, for a given scenario of the abstract model (1.1) and when the regrouping strategy is

determined, the matrix Q in (4.14) can be easily specified.

4.4 Convergence Proof

With the proved propositions, we are now ready to prove the convergence for the proposed algorithm

(3.9). First of all, let us further analyze the term (w − w̃k)TQ(wk − w̃k) in the right-hand side of

(4.14), which will help us show the strict contraction for the sequence {wk} generated by (3.9) with

respect to the solution set Ω∗.

Theorem 4.4. Let {wk} be the sequence generated by the proposed algorithm (3.9). We have

ϑ(x)− ϑ(x̃k) + (w − w̃k)TF (w̃k)

≥ 1

2α

(
∥w −wk+1∥2H − ∥w −wk∥2H

)
+

1

2
∥wk − w̃k∥2G, ∀w ∈ Ω. (4.25)

Proof. First, it follows from (4.8a) that Q = HM . We thus have

(w − w̃k)TQ(wk − w̃k) =
1

α
(w − w̃k)TH(wk −wk+1).

Together with (4.14), this identity means

ϑ(x)− ϑ(x̃k) + (w − w̃k)TF (w̃k) ≥ 1

α
(w − w̃k)TH(wk −wk+1), ∀w ∈ Ω. (4.26)

Applying the identity

(a− b)TH(c− d) =
1

2

(
∥a− d∥2H − ∥a− c∥2H

)
+

1

2

(
∥c− b∥2H − ∥d− b∥2H

)
,

to the therm (w − w̃k)TH(wk −wk+1) in the right-hand side of (4.26) with

a = w, b = w̃k, c = wk, and d = wk+1,

we thus obtain

(w−w̃k)TH(wk−wk+1) =
1

2

(
∥w−wk+1∥2H−∥w−wk∥2H

)
+
1

2
(∥wk−w̃k∥2H−∥wk+1−w̃k∥2H). (4.27)

For the last group term of (4.27), we have

∥wk − w̃k∥2H − ∥wk+1 − w̃k∥2H
= ∥wk − w̃k∥2H − ∥(wk − w̃k)− (wk −wk+1)∥2H

(4.8a)
= ∥wk − w̃k∥2H − ∥(wk − w̃k)− αM(wk − w̃k)∥2H
= 2α(wk − w̃k)THM(wk − w̃k)− α2(wk − w̃k)TMTHM(wk − w̃k)

= α(wk − w̃k)T (QT +Q− αMTHM)(wk − w̃k)

(4.8b)
= α∥wk − w̃k∥2G. (4.28)

18

Substituting (4.27), (4.28) in (4.26), the assertion of this theorem is proved. 2

Now, we are ready to show the strict contraction property of the sequence {wk} generated by

the proposed scheme (3.9).

Theorem 4.5. Let {wk} be the sequence generated by the proposed algorithm (3.9). Then we have

∥wk+1 −w∗∥2H ≤ ∥wk −w∗∥2H − α∥wk − w̃k∥2G, ∀w∗ ∈ Ω∗. (4.29)

Proof. Setting w = w∗ in (4.25), we get

∥wk −w∗∥2H − ∥wk+1 −w∗∥2H ≥ α∥wk − w̃k∥2G + 2α{ϑ(x̃k)− ϑ(x∗) + (w̃k −w∗)TF (w̃k)}.

Using the optimality of w∗ and the monotonicity of F (w), we have

ϑ(x̃k)− ϑ(x∗) + (w̃k −w∗)TF (w̃k) ≥ ϑ(x̃k)− ϑ(x∗) + (w̃k −w∗)TF (w∗) ≥ 0

and thus

∥wk −w∗∥2H − ∥wk+1 −w∗∥2H ≥ α∥wk − w̃k∥2G.

The assertion (4.29) follows directly. 2

Finally, the convergence of {wk} generated by the algorithm (3.9) can be proved easily. We

summarize it in the following theorem.

Theorem 4.6. The sequence {wk} generated by the proposed algorithm (3.9) converges to a solution

point of VI(Ω, F, θ).

Proof. First, according to (4.29), it holds that {wk} is bounded and

lim
k→∞

∥wk − w̃k∥G = 0. (4.30)

Thus, {wk} (and {w̃k}) has a cluster point w∞. Using w∞ to start a new iteration, (4.14) becomes

w̃∞ ∈ Ω, ϑ(x)− ϑ(x̃∞) + (w − w̃∞)TF (w̃∞) ≥ 0, ∀w ∈ Ω,

and thus w̃∞ is a solution of VI(Ω, F, θ). According to (4.29), the sequence {wk} can not have

another cluster point and it converges to w̃∞. The proof is complete. 2

5 Convergence Rate

In this section, we establish the O(1/t) worst-case convergence rates measured by the iteration

complexity in both the ergodic and nonergodic senses for the new algorithm (3.9), where t denotes

the iteration counter. Recall the prediction-correction algorithm (4.11)-(4.12) is a reformulation of

(3.9).

5.1 Convergence Rate in the Ergodic Sense

We first establish a worst-case O(1/t) convergence rate for the scheme (3.9) in the ergodic sense.

The proof is inspired by our earlier work in [19] for the ADMM (1.7).

For this convergence rate analysis, we need to recall a characterization of the solution set Ω∗,

which is described in the following theorem. Its proof can be found in [6] (Theorem 2.3.5) or [19]

(Theorem 2.1).

19

Theorem 5.1. The solution set of VI(Ω, F, θ) is convex and it can be characterized as

Ω∗ =
∩
w∈Ω

{
w̃ ∈ Ω :

(
ϑ(x)− ϑ(x̃)

)
+ (w − w̃)TF (w) ≥ 0

}
. (5.1)

Therefore, for given ϵ > 0, w̃ ∈ Ω is called an ϵ-approximate solution of VI(Ω, F, θ) if it satisfies

ϑ(x)− ϑ(x̃) + (w − w̃)TF (w) ≥ −ϵ, ∀ w ∈ D(w̃),

where

D(w̃) = {w ∈ Ω | ∥w − w̃∥ ≤ 1}.

We refer the reader to [27] ((2.5) therein) for the definition of an ϵ-approximate solution using the

above set.

In the following, we shall show that based on t iterations generated by the proposed algorithm

(3.9), we can find w̃ ∈ Ω such that

w̃ ∈ Ω and sup
w∈D

(w̃)

{
ϑ(x̃)− ϑ(x) + (w̃ −w)TF (w)

}
≤ ϵ. (5.2)

with ϵ = O(1/t). Theorem 4.4 is also the basis for the coming analysis about the worst-case conver-

gence rate.

Note that it follows from the monotonicity of F that

(w − w̃k)TF (w) ≥ (w − w̃k)TF (w̃k).

Substituting it into (4.25), we obtain

ϑ(x)− ϑ(x̃k) + (w − w̃k)TF (w) +
1

2α
∥w −wk∥2H ≥ 1

2α
∥w −wk+1∥2H , ∀w ∈ Ω. (5.3)

Note that the above assertion hold whenever G ≽ 0.

Theorem 5.2. Let {wk} be generated by the proposed algorithm (3.9) and {w̃k} be defined in (4.11).

For any integer t > 0, let w̃t be defined as

w̃t =
1

t+ 1

t∑
k=0

w̃k. (5.4)

Then, we have w̃t ∈ Ω and

ϑ(x̃t)− ϑ(x) + (w̃t −w)TF (w) ≤ 1

2α(t+ 1)
∥w −w0∥2H , ∀w ∈ Ω. (5.5)

Proof. First, it holds that w̃k ∈ Ω for all k ≥ 0. Together with the convexity of X and Rℓ, (5.4)

implies that w̃t ∈ Ω. Applying (5.3) to the cases with k = 0, 1, . . . , t, and adding all the resulting

inequalities together, we obtain

(t+ 1)ϑ(x)−
t∑

k=0

ϑ(x̃k) +
(
(t+ 1)w −

t∑
k=0

w̃k
)T

F (w) +
1

2α
∥w −w0∥2H ≥ 0, ∀w ∈ Ω.

Use the notation of w̃t, it can be written as

1

t+ 1

t∑
k=0

ϑ(x̃k)− ϑ(x) + (w̃t −w)TF (w) ≤ 1

2α(t+ 1)
∥w −w0∥2H , ∀w ∈ Ω. (5.6)

20

Since ϑ(x) is convex and

x̃t =
1

t+ 1

t∑
k=0

x̃k,

we have that

ϑ(x̃t) ≤
1

t+ 1

t∑
k=0

ϑ(x̃k).

Substituting it in (5.6), the assertion of this theorem follows directly. 2

Recall (5.2). The conclusion (5.5) thus indicates that based on t iterations of the proposed

algorithm (3.9), we can find an approximate solution of VI(Ω, F, θ) (i.e., w̃t defined in (5.4)) with

an accuracy of O(1/t). That is, a worst-case O(1/t) convergence rate is established for the proposed

algorithm (3.9) in the ergodic sense.

5.2 Convergence Rate in a Nonergodic Sense

In this subsection, we establish a worst-case O(1/t) convergence rate in a nonergodic sense for the

proposed algorithm (3.9). Note that in general a worst-case nonergodic convergence rate is stronger

than the ergodic convergence rate. The proof is inspired by our earlier work in [20] for the ADMM

(1.7). We first need to prove the following lemma.

Lemma 5.3. For the sequences {wk} and {w̃k} generated by the proposed prediction-correction

algorithm (4.11)-(4.12), we have

(wk−w̃k)TMTHM{(wk−w̃k)− (wk+1−w̃k+1)} ≥ 1

2α
∥(wk−w̃k)− (wk+1−w̃k+1)∥2(QT+Q). (5.7)

Proof. First, set w = w̃k+1 in (4.14), we have

ϑ(x̃k+1)− ϑ(x̃k) + (w̃k+1 − w̃k)TF (w̃k) ≥ (w̃k+1 − w̃k)TQ(wk − w̃k). (5.8)

Note that (4.14) is also true for k := k + 1. Thus, we have

ϑ(x)− ϑ(x̃k+1) + (w − w̃k+1)TF (w̃k+1) ≥ (w − w̃k+1)TQ(wk+1 − w̃k+1), ∀w ∈ Ω.

Setting w = w̃k in the above inequality, we obtain

ϑ(x̃k)− ϑ(x̃k+1) + (w̃k − w̃k+1)TF (w̃k+1) ≥ (w̃k − w̃k+1)Q(wk+1 − w̃k+1). (5.9)

Adding (5.8) and (5.9), and using the monotonicity of F , we get

(w̃k − w̃k+1)TQ{(wk − w̃k)− (wk+1 − w̃k+1)} ≥ 0. (5.10)

Further, adding the term

{(wk − w̃k)− (wk+1 − w̃k+1)}TQ{(wk − w̃k)− (wk+1 − w̃k+1)}

to both sides of (5.10), and using wTQw = 1
2w

T (QT +Q)w, we obtain

(wk −wk+1)TQ{(wk − w̃k)− (wk+1 − w̃k+1)} ≥ 1

2
∥(wk − w̃k)− (wk+1 − w̃k+1)∥2(QT+Q).

Substituting (wk −wk+1) = αM(wk − w̃k) into the left-hand side of the last inequality and using

Q = HM , we obtain (5.7) and the lemma is proved. 2

In the following theorem, we prove a key inequality for establishing the worst-case O(1/t) con-

vergence rate in a nonergodic sense for the proposed algorithm (3.9).

21

Theorem 5.4. For the sequences {wk} and {w̃k} generated by the proposed prediction-correction

algorithm (4.11)-(4.12), we have

∥M(wk+1 − w̃k+1)∥H ≤ ∥M(wk − w̃k)∥H , ∀ k > 0, (5.11)

where M and H are defined in (4.6) and (4.8a), respectively.

Proof. Setting a = M(wk − w̃k) and b = M(wk+1 − w̃k+1) in the identity

∥a∥2H − ∥b∥2H = 2aTH(a− b)− ∥a− b∥2H ,

we obtain

∥M(wk − w̃k)∥2H − ∥M(wk+1 − w̃k+1)∥2H
= 2(wk − w̃k)TMTHM [(wk − w̃k)− (wk+1 − w̃k+1)]− ∥M [(wk − w̃k)− (wk+1 − w̃k+1)]∥2H .

Inserting (5.7) into the first term of the right-hand side of the last equality, we obtain

∥M(wk − w̃k)∥2H − ∥M(wk+1 − w̃k+1)∥2H
≥ 1

α
∥(wk − w̃k)− (wk+1 − w̃k+1)∥2(QT+Q) − ∥M [(wk − w̃k)− (wk+1 − w̃k+1)]∥2H

(4.8b)
=

1

α
∥(wk − w̃k)− (wk+1 − w̃k+1)∥2G ≥ 0,

where the last inequality is because of the positive definiteness of the matrix (QT+Q)−αMTHM ≽ 0.

The assertion (5.11) follows immediately. 2

Note that it follows from G ≻ 0 and Theorem 4.5 that there exists a constant c0 > 0 such that

∥wk+1 −w∗∥2H ≤ ∥wk −w∗∥2H − c0∥M(wk − w̃k)∥2H , ∀w∗ ∈ Ω∗.

Since αM(wk − w̃k) = (wk −wk+1), we have a constant c > 0 such that

∥wk+1 −w∗∥2H ≤ ∥wk −w∗∥2H − c∥wk −wk+1∥2H , ∀w∗ ∈ Ω∗. (5.12)

Now, with (5.12) and (5.11), we are ready to establish a worst-case O(1/t) convergence rate in a

nonergodic sense for the proposed algorithm (3.9).

Theorem 5.5. Let {wk} be the sequence generated by the proposed algorithm (3.9). For any integer

t > 0, we have

∥wt −wt+1∥2H ≤ 1

(t+ 1)c
∥w0 −w∗∥2H , ∀w∗ ∈ Ω∗, (5.13)

with a constant c > 0.

Proof. First, it follows from (5.12) that
∞∑
k=0

c∥wk −wk+1∥2H ≤ ∥w0 −w∗∥2H , ∀w∗ ∈ Ω∗. (5.14)

According to Theorem 5.4, the sequence {∥wk −wk+1∥2H} is monotonically non-increasing. There-

fore, we have

(t+ 1)∥wt −wt+1∥2H ≤
t∑

k=0

∥wk −wk+1∥2H . (5.15)

The assertion (5.13) follows from (5.14) and (5.15) immediately. 2

Let d := inf{∥w0 − w∗∥H |w∗ ∈ Ω∗}. Then, for any given ϵ > 0, Theorem 5.5 shows that

the proposed algorithm (3.9) needs at most ⌊d2/cϵ⌋ iterations to ensure that ∥wk − wk+1∥2H ≤ ϵ.

Recall (4.26) and α > 0 is a constant. It indicates that wk is a solution point of VI(Ω, F, θ) if

∥wk −wk+1∥2H = 0. A worst-case O(1/t) convergence rate in a nonergodic sense is thus established

for the proposed algorithm (3.9).

22

6 Some Special Cases

In this section, we discuss some special cases when a regrouping strategy for (1.1) is specified and

demonstrate the new algorithm in some more specific contexts. In particular, we show that the

existing algorithms in [15, 17] can both be recovered by regrouping the variables in (1.1) appropriately.

Therefore, the convergence rate results established in Sections 5.1 and 5.2 are applicable to the

methods in [15, 17]. This is a by-product of this paper.

In such special cases, we always consider the first group as x1, thus we have

x1 = x1, and m1 = 1. (6.1)

In addition, we take

τ1 = m1 − 1 = 0.

Because x1 = x1 and τ1 = 0, The first subproblem in the prediction step (4.11a) becomes

x̃k
1 = argmin

{
Lt
β[x1,x

k
2, . . . ,x

k
t , λ

k]
∣∣ x1 ∈ X1

}
.

For this case, the prediction step (4.11) can be specified as follows.

Prediction. For given vk = (xk2, . . . , x
k
m, λk) = (xk

2, . . . ,x
k
t , λ

k),

x̃k
1 = argmin

{
Lt
β[x1,x

k
2, . . . ,x

k
t , λ

k]
∣∣ x1 ∈ X1

}
;

for r = 2, . . . t, do:

for j = 1, . . .mr, do:

x̃krj = argmin

{
Lt
β

(
x̃k
1, . . . , x̃

k
r−1, x

k
r1 , . . . , x

k
rj−1

, xrj , x
k
rj+1

, . . . , xkrmr
,

xk
r+1, . . . ,x

k
t , λ

k
)
+ τrβ

2 ∥Arj (xrj − xkrj)∥
2

∣∣∣∣xrj ∈ Xrj

}
;

end.

end.

(6.2a)

Additionally, we define

λ̃k = λk − β
(
A1x̃

k
1 +

t∑
r=2

Arx
k
r − b

)
. (6.2b)

According to (6.2), because we choose x1 = x1 and τ1 = 0, then x1 = x1 is an intermediate

variable and it is not needed in the iteration. In other words, to implement the proposed algorithm

(3.9) with x1 = x1, we only need vk = (xk
2, . . . ,x

k
t , λ

k). Moreover, note that β(D1 − AT
1 A1) is the

unique non-zero elements in the first row and first column of the matrix Q (see (4.1)). In this case,

D1 = (τ1 + 1)diag(AT
1 A1) = diag(AT

1 A1)

and (D1 − AT
1 A1) becomes the zero matrix. Accordingly, Lemma 4.3 is reduced to the following

lemma (for convenience, we still use the same letters to denote the matrices).

Lemma 6.1. Let x̃k be generated by (6.2a) from the given vector vk and λ̃k be defined by (6.2b).

Then, the predictor w̃k ∈ Ω satisfies

w̃k ∈ Ω, ϑ(x)− ϑ(x̃k) + (w − w̃k)TF (w̃k) ≥ (v − ṽk)TQ(vk − ṽk), ∀w ∈ Ω, (6.3)

23

where Q is defined by

Q =

(
βQe 0

−A 1
β I

)
, (6.4)

A and Qe are defined by (4.3) and (4.4), respectively.

Note that the matrix Q in (6.4) can be generated by cutting off the first row and column of

the matrix Q given in (4.1). This is because the first block-wise variable x1 is just an intermediate

variable for the special case under our current consideration. Thus, the matrix Q originally given

in (4.1) for the generic case of Algorithm 1 has all zeros in its first row and column for the special

case where x1 = x1; hence we only consider (6.4) for this special case. Likewise, with the specific Q

in (6.4), we can also define the corresponding matrix H and G as in (4.8a) and (4.8b), respectively.

Moreover, as shown in Lemma 4.2, the positive definiteness of these two matrices is crucial for proving

the convergence of Algorithm 1 for the special case where x1 = x1.

Moreover, the correction step (4.12) in the generic setting can be specified as follows.

Correction. The new iterate vk+1 is given by

vk+1 = vk − αM(vk − ṽk), (6.5a)

where

M =

(
Q−T

e De 0

−βA I

)
, α ∈

{
(0, 1), if τr ≥ mr − 1, r = 2, . . . , t;

(0, 1], if τr > mr − 1, r = 2, . . . , t,
(6.5b)

and ṽk is the related sub-vector of the predictor w̃k generated by (6.2).

The matrices Qe, De in (6.5b) are defined in (4.4) and (4.5), respectively. It follows from (6.5b)

that

M =

(
Q−T

e De 0

−βA I

)
and A = (A2, A3, . . . , Am).

Also, because of (6.2b), we have

λk+1 = λk − αβ
(∑m

j=1Aj x̃
k
j − b

)
. (6.6a)

In addition, the variables x2, · · · , xm are updated by the back substitution procedure:

D−1
e QT

e

 xk+1
2 − xk

2
...

xk+1
t − xk

t

 = α

 x̃k
2 − xk

2
...

x̃k
t − xk

t

 . (6.6b)

In the following, we show that both the methods in [15, 17] are special cases of the proposed

algorithm (3.9) with x1 = x1.

6.1 The ADMM-GBS in [15]

Let us consider the special regrouping strategy with xi = xi for i = 1, · · · ,m for (1.1). That is, each

block of variables only consists of one variable. For this case, we have

x =


x1
x2
...

xm

 =


x1

x2
...

xm

 , where xi = xi, i = 1, . . . ,m. (6.7)

24

Clearly, for this regrouping strategy, in the implementation of the proposed algorithm (3.9), we have

τi = 0, i = 1, 2, . . . ,m,

and thus the matrix Qe (4.4) and De can be specified as

Qe =


AT

2 A2 0 · · · 0

AT
3 A2 AT

3 A3
. . .

...

...
. . .

. . . 0

AT
mA2 · · · AT

mAm−1 AT
mAm

 and De =


AT

2 A2 0 · · · 0

0 AT
3 A3

. . .
...

...
. . .

. . . 0

0 · · · 0 AT
mAm

 ,

respectively. According to (6.2), the prediction step (4.11) is reduced to

x̃k1 = argmin
{
Lm
β (x1, x

k
2, x

k
3, . . . , x

k
m, λk)

∣∣ x1 ∈ X1

}
;

x̃k2 = argmin
{
Lm
β (x̃k1, x2, x

k
3, . . . , x

k
m, λk)

∣∣ x2 ∈ X2

}
;

...

x̃ki = argmin
{
Lm
β (x̃k1, . . . , x̃

k
i−1, xi, x

k
i+1, . . . , x

k
m, λk)

∣∣ xi ∈ Xi

}
;

...

x̃km = argmin
{
Lm
β (x̃k1, . . . , x̃

k
m−1, xm, λk)

∣∣ xm ∈ Xm

}
,

(6.8a)

and

λ̃k = λk − β
(
A1x̃

k
1 +

m∑
j=2

Ajx
k
j − b

)
. (6.8b)

The new iterate vk+1 is given by (6.5). Since τi = mi − 1 = 0, the step size α ∈ (0, 1).

If we denote the output (6.8a) by x̄k+1
1 , x̄k+1

2 , . . . , x̄k+1
m , namely,

x̄k+1
1 = argmin

{
Lm
β (x1, x

k
2, x

k
3, . . . , x

k
m, λk)

∣∣ x1 ∈ X1

}
;

x̄k+1
2 = argmin

{
Lm
β (x̄k+1

1 , x2, x
k
3, . . . , x

k
m, λk)

∣∣ x2 ∈ X2

}
;

...

x̄k+1
i = argmin

{
Lm
β (x̄k+1

1 , . . . , x̄k+1
i−1 , xi, x

k
i+1, . . . , x

k
m, λk)

∣∣ xi ∈ Xi

}
;

...

x̄k+1
m = argmin

{
Lm
β (x̄k+1

1 , . . . , x̄k+1
m−1, xm, λk)

∣∣ xm ∈ Xm

}
,

(6.9a)

and set

λ̄k+1 = λk − β
(m∑
j=1

Aj x̄
k+1
j − b

)
. (6.9b)

The implementation of (6.6) becomes
D−1

e QT
e

 xk+1
2 − xk2

...

xk+1
m − xkm

 = α

 x̄k+1
2 − xk2

...

x̄k+1
m − xkm

 ,

λk+1 − λk = α(λ̄k+1 − λk).

(6.10)

25

Note that for this special case, we have

D−1
e QT

e =



In2 (AT
2 A2)

−1AT
2 A3 · · · (AT

2 A2)
−1AT

2 Am

0
. . .

. . .
...

...
. . .

. . . (AT
m−1Am−1)

−1AT
m−1Am

0 · · · 0 Inm


.

It is just the left-upper part of the matrix P (see (3.2)). Thus, the method (6.9)-(6.10) reduces to

the ADMM-GBS in [15].

6.2 The Splitting Method in [17]

Then, we consider another regrouping for (1.1):

x =


x1
x2
...

xm

 =

(
x1

x2

)
, where x1 = x1 and x2 =

 x2
...

xm

 . (6.11)

For this regrouping, we have

m1 = 1 and m2 = m− 1.

Besides (6.1), for the implementation of the new algorithm (3.9), we have

τ2 = τ > m− 2 = m2 − 1

and thus the matrix Qe given in (4.4) is specified as

Qe = De =



(τ + 1)AT
2 A2 0 · · · 0

0 (τ + 1)AT
3 A3

. . .
...

...
. . .

. . . 0

0 · · · 0 (τ + 1)AT
mAm


. (6.12)

Thus, according to (6.2), the prediction step (4.11) is reduced to
x̃k1 = argmin

{
L2
β(x1, x

k
2, x

k
3, . . . , x

k
m, λk)

∣∣ x1 ∈ X1

}
;

x̃ki = argmin

{
L2
β(x̃

k
1, x

k
2 . . . , x

k
i−1, xi, x

k
i+1, . . . , x

k
m, λk)

+ τβ
2 ∥Ai(xi − xki)∥2

∣∣∣∣ xi ∈ Xi

}
, i = 2, . . . ,m.

(6.13a)

and

λ̃k = λk − β
(
A1x̃

k
1 +

m∑
j=2

Ajx
k
j − b

)
. (6.13b)

Since τ2 = τ > m2 − 1 = m − 2, we take the step size α = 1 in the correction step (6.5). The new

iterate is given by

vk+1 = vk −M(vk − ṽk).

26

Because x2 = (x2, . . . , xm), we have Qe = De (see (4.4) and (4.5)). Thus the matrix M in (6.5b)

becomes

M =

(
I 0

−βA I

)
.

Using Qe = De and α = 1, the implementation of correction (6.6) is reduced to

λk+1 = λk − β
(∑m

j=1Aj x̃
k
j − b

)
. (6.14a)

and  xk+1
2
...

xk+1
m

 =

 x̃k2
...

x̃km

 . (6.14b)

Therefore, the prediction-correction method consists of (6.13) and (6.14) can be directly represented

by 

xk+1
1 = argmin

{
L2
β(x1, x

k
2, x

k
3, . . . , x

k
m, λk)

∣∣ x1 ∈ X1

}
;

xk+1
i = argmin

{
L2
β(x

k+1
1 , xk2 . . . , x

k
i−1, xi, x

k
i+1, . . . , x

k
m, λk) + τβ

2 ∥Ai(xi − xki)∥2
∣∣ xi ∈ Xi

}
,

i = 2, . . . ,m.

λk+1 = λk − β
(∑m

j=1Ajx
k+1
j − b

)
.

(6.15)

To clearly see the relationship between (6.15) and the method in [17], let us summarize a con-

clusion in the following lemma.

Lemma 6.2. Let the augmented Lagrange function Lm
β (x1, . . . , xm, λ) be defined in (1.5). Then we

have

argmin
{
Lm
β (xk+1

1 , xk2 . . . , x
k
i−1, xi, x

k
i+1, . . . , x

k
m, λk) +

τβ

2
∥Ai(xi − xki)∥2

∣∣ xi ∈ Xi

}
= argmin

{
θi(xi)− (λk+ 1

2)TAixi +
(τ + 1)β

2
∥Ai(xi − xki)∥2

∣∣ xi ∈ Xi

}
(6.16)

where

λk+ 1
2 = λk − β

(
A1x

k+1
1 +

m∑
i=2

Aix
k
i − b

)
. (6.17)

Proof. Let us observe the xi-subproblems in the left-hand side of (6.16). Notice that

Lm
β (xk+1

1 , xk2 . . . , x
k
i−1, xi, x

k
i+1, . . . , x

k
m, λk)

= θi(xi)− θi(x
k
i) +

∑m
j=1θj(x

k
j)− (λk)T [A1x

k+1
1 +Aixi +

∑m
j=2,j ̸=iAjx

k
j − b]

+β
2 ∥Ai(xi − xki) +A1x

k+1
1 +

∑m
j=2Ajx

k
j − b∥2.

Ignoring some constant terms in the objective function of the minimization problem, we have

argmin
{
Lm
β (xk+1

1 , xk2 . . . , x
k
i−1, xi, x

k
i+1, . . . , x

k
m, λk) + τβ

2 ∥Ai(xi − xki)∥2|xi ∈ Xi}

= argmin

{
θi(xi)− (λk)TAixi +

β
2 ∥Ai(xi − xki) +A1x

k+1
1 +

∑m
j=2Ajx

k
j − b∥2

+ τβ
2 ∥Ai(xi − xki)∥2

∣∣∣∣xi ∈ Xi

}
.

Thus, the optimality condition of the xi-subproblem is

xk+1
i ∈ Xi, θi(xi)− θi(x

k+1
i) + (xi − xk+1

i)T
{
−AT

i λ
k+

+βAT
i

[
Ai(x

k+1
i − xki) + (A1x

k+1
1 +

∑m
j=2Ajx

k
j − b)

]
+ τβAT

iAi(x
k+1
i − xki)

}
≥ 0, ∀xi ∈ Xi

27

It follows from (6.17) that

λk = λk+ 1
2 + β

(
A1x

k+1
1 +

∑m
j=2Ajx

k
j − b

)
.

Substituting this identity into the last inequality, we obtain

xk+1
i ∈ Xi, θi(xi)− θi(x

k+1
i) + (xi − xk+1

i)T
{
−AT

i λ
k+ 1

2 + (1 + τ)βAT
iAi(x

k+1
i − xki)

}
≥ 0, ∀ xi ∈ Xi.

This is just the optimality condition of the xi-subproblem of the right-hand side of (6.16). 2

Thus, by setting µ = τ + 1, the scheme (6.15) can be represented as the following scheme:

xk+1
1 = argmin

{
Lm
β (x1, x

k
2, x

k
3, . . . , x

k
m, λk)

∣∣ x1 ∈ X1

}
;

λk+ 1
2 = λk − β

(
A1x

k+1
1 +

∑m
i=2Aix

k
i − b

)
;

xk+1
i = argmin

{
θi(xi)− (λk+ 1

2)TAixi +
µβ
2 ∥Ai(xi − xki)∥2

∣∣ xi ∈ Xi

}
, i = 2, . . . ,m.

λk+1 = λk − β
(∑m

j=1Ajx
k+1
j − b

)
.

(6.18)

This is just the method proposed in [17]. Recall that µ > m− 1 (since τ > m− 2) is the condition

to ensure the convergence of the method in [17].

7 A Refined Version of Algorithm 1 with Calculated Step Size

Instead of taking the constant step size α in the correction step (4.12), we can refine the algorithm

(3.9) by choosing a calculated step size αk at each iteration. Recall the role of the correction step

in the algorithm (3.9) is to ensure the strict contraction property of the sequence (see (4.29)). The

main idea of refining the algorithm (3.9) is that we can find a better step size, which is iteration-

dependent, for each iteration such that the proximity to the solution set can be further reduced. For

the case where calculating the step size is not computationally expensive, this refined version can

accelerate the convergence and the number of iteration can be reduced while the computation per

iteration is just slightly increased. However, if the step size itself is computationally expensive, we

still recommend the scheme (3.9) with a constant step size because for this case, the computation per

iteration might be significantly increased thus the overall convergence might be slower even though

the number of iteration might be smaller.

To see how to find a better step size to further reduce the proximity to the solution set, let us

revisit Lemma 4.3. Indeed, setting w = w∗ in (4.14), we get

(w̃k −w∗)TQ(wk − w̃k) ≥ ϑ(x̃k)− ϑ(x∗)− (w̃k −w∗)TF (w̃k), ∀w∗ ∈ Ω∗.

Using the monotonicity of F and (2.4), it follows that

(w̃k −w∗)TQ(wk − w̃k) ≥ 0. (7.1)

and consequently

(wk −w∗)TQ(wk − w̃k) ≥ (wk − w̃k)TQ(wk − w̃k), ∀w∗ ∈ Ω∗. (7.2)

Because Q = HM , it follows that

⟨H(wk −w∗),M(wk − w̃k)⟩ ≥ 1

2
∥wk − w̃k∥2(QT+Q), ∀w∗ ∈ Ω∗.

28

This means that M(w̃k−wk) is a descent direction of the distance function ∥w−w∗∥2H at the point

wk, even if w∗ is unknown. Along the direction M(w̃k −wk) with well-chosen step size α, we can

reduce the unknown distance function ∥w − w∗∥2H . We define the step-size-dependent new iterate

by

wk+1(α) = wk − αM(wk − w̃k), (7.3)

and

p(α) = ∥wk −w∗∥2H − ∥wk+1(α)−w∗∥2H . (7.4)

By using HM = Q, we have

p(α) = ∥wk −w∗∥2H − ∥wk+1(α)−w∗∥2H
= ∥wk −w∗∥2H − ∥(wk −w∗)− αM(wk − w̃k)∥2H
= 2α(wk −w∗)TQ(wk − w̃k)− α2∥M(wk − w̃k)∥2H .

Ideally we want to maximize the quadratic function p(α). However, it is impossible due to the lack

of the unknown solution point w∗. By using (7.2), we obtain

p(α) ≥ q(α), (7.5)

where

q(α) = 2α(wk − w̃k)TQ(wk − w̃k)− α2∥M(wk − w̃k)∥2H . (7.6)

We thus turn to the second best choice: Maximizing the quadratic function q(α) which is a lower

bound of p(α). This promotes us to take the value of α as

α∗
k =

(wk − w̃k)TQ(wk − w̃k)

∥M(wk − w̃k)∥2H
=

(wk − w̃k)TQ(wk − w̃k)

(wk − w̃k)T (MTHM)(wk − w̃k)
. (7.7)

We take α = γα∗
k. According to (4.9), we have

QT +Q−MTHM ≽ 0

and thus

α∗
k ≥ 1

2
. (7.8)

Therefore, the iteration-dependent step size calculated by (7.7) is bounded away from 0.

Moreover, it worths to mention that it follows from (4.10) that

MTHM =

 β(D1 −AT
1 A1) 0 0

0 β(De +ATA) −AT

0 −A 1
β I

 .

Therefore, the denominator in (7.7) can be calculated directly based on the matrix defined above

before implementing the Gaussian back substitution procedure and there is no need to calculate the

inverse of any matrix for determining αk.

So, the proposed algorithm (3.9) can be altered to a refined version where the constant step size

α in (4.12b) is iteratively calculated by (7.7). The resulting refined version differs from the proposed

algorithm (3.9) only in its correction step as shown below.

29

Correction step: The new iterate wk+1 is given by

wk+1 = wk − αkM(wk − w̃k), (7.9a)

where w̃k is generated by the prediction step (4.11) and M is given by (4.6). The step size αk is

given by

αk = γα∗
k, γ ∈ (0, 2) and α∗

k =
(wk − w̃k)TQ(wk − w̃k)

(wk − w̃k)T (MTHM)(wk − w̃k)
. (7.9b)

Note that it follows from (7.6) and (7.7) that

q(γα∗
k) = 2γα∗

k(w
k − w̃k)TQ(wk − w̃k)− (γα∗

k)
2∥M(wk − w̃k)∥2H

= γ(2− γ)(α∗
k)

2∥M(wk − w̃k)∥2H . (7.10)

The following theorem shows the strict contraction property of the sequence generated by the

refined algorithm with the iteratively calculated step size (7.7). Its proof is similar as Theorem 4.5

and thus omitted.

Theorem 7.1. Let {wk} be the sequence generated by the refined algorithm of (3.9) with the itera-

tively calculated step size (7.7). Then, it holds

∥wk+1 −w∗∥2H ≤ ∥wk −w∗∥2H − γ(2− γ)

4
∥M(wk − w̃k)∥2H , ∀w∗ ∈ Ω∗. (7.11)

Based on Theorem 7.1, the convergence and the convergence rates can all be established similar

as the analysis in Sections 4 and 5. We omit them for succinctness.

8 A Linearized Splitting Block-wise ADMM with Gaussian Back

Substitution

As analyzed, the xrj -subproblems (see (3.7)) in the proposed splitting version of block-wise ADMM-

GBS (3.9) are in form of (1.3) and we can further alleviate them by linearizing their quadratic terms if

these subproblems are still too hard for a particular application of the model (1.1). More specifically,

recall the xrj -subproblem (3.7) in (3.9) and ignore some constant terms in its objective. Then, if we

linearize its quadratic term, the resulting linearized subproblem becomes

x̄k+1
rj = argmin

{
θrj (xrj)− (λk)TArjxrj + (xrj − xkrj)

T

βAT
rj

(∑r−1
s=1Asx̄

k+1
s +

∑t
s=rAsx

k
s − b

)
+ νrβ

2 ∥xrj − xkrj∥
2,

}
(8.1)

which is indeed in form of (1.2). Note that in (8.1), the constant νr > 0 plays the role of controlling

the proximity of the linearization, and it should be sufficiently large to ensure the accuracy of

this linearized subproblem and finally the convergence. As well studied in the literature such as

[19, 21, 32, 33, 34], we require

νr > ρ(AT
r Ar), r = 1, . . . , t, (8.2)

where ρ(·) denotes the spectrum radius of a matrix.

Therefore, replacing the xrj -subproblems in (3.9) by their linearized counterparts given in (8.1),

we can obtain a linearized version of the proposed splitting block-wise ADMM-GBS (3.9) whose

xrj -subproblems are in form of (1.2).

30

8.1 Algorithm

For the algorithm in this section, we define the matrix

PL =



I 0 0 0 0 0

0 I 1
ν2
AT

2 A3 · · · 1
ν2
AT

2 At 0

0 0
. . .

. . .
...

...

...
. . . I 1

νt−1
AT

t−1At 0

0 0 · · · 0 I 0

0 0 · · · 0 0 Iℓ


. (8.3)

and summarize the linearized version of the scheme (3.9) as follows.

Algorithm 2: A linearized version of the splitting block-wise ADMM-GBS (3.9) for (1.1)

Initialization: Specify a regrouping for the model (1.1) with determined values of t and mr for

r = 1, 2, · · · , t. Choose constants νr such that νr > ρ(AT
r Ar) for r = 1, . . . , t. Let PL be defined

in (8.3). With the given iterate wk = (xk
1,x

k
2, · · · ,xk

t , λ
k) ∈ X1 × X2 × · · · × Xt × Rℓ, the new

iterate is generated by the following steps.



for r = 1, 2, . . . t, do:

for j = 1, 2, . . . ,mr, parallel do:

x̄k+1
rj = argmin

{
θrj (xrj)− (λk)TArjxrj + (xrj − xkrj)

T

βAT
rj

(∑r−1
s=1Asx̄

k+1
s +

∑t
s=rAsx

k
s − b

)
+ νrβ

2 ∥xrj − xkrj∥
2

∣∣∣∣xrj ∈ Xrj

}
;

end.

end.

λ̄k+1 = λk − β
(∑t

r=1Arx̄
k+1
r − b

)
.

PL(w
k+1 −wk) = (w̄k+1 −wk).

(8.4)

Remark 8.1. Just like the scheme (3.9), with the block-wise upper triangular matrix PL defined

in (3.2), the entries of vk+1 can be updated in the order of λ → xm → · · ·x2 by the Gaussian

back substitution procedure when implementing (8.4). Moreover, the matrix PL does not require

computing any inverse of matrix, not like the matrix P defined in (3.8). Therefore, it is an easier

substitution procedure compared with the one in (3.9). Meanwhile, theoretically it is required to

estimate ρ(AT
r Ar) for r = 1, 2, · · · , t, which might not be easy. This is the cost of alleviating the

difficulty levels of subproblems from (1.3) to (1.2) for (8.4). Finally, it worths to mention that the

requirements νr > ρ(AT
r Ar) for r = 1, 2, · · · , t are sufficient conditions to ensure the convergence

of the linearized version (8.4) and they represent conservative estimates on the parameters νr’s. In

implementation, usually we can choose smaller values for νr’s which might not satisfy these sufficient

conditions while can lead to better numerical performance.

Remark 8.2. In the scheme (8.4), we take the step size as 1 constantly in the Gaussian back substi-

tution procedure. As Section 7, we can analogously discuss how to choose an iteratively calculated

step size for the Gaussian back substitution step in (8.4). For succinctness, we omit it and refer to

[21] for some useful analysis.

31

8.2 Convergence Analysis

In this subsection, we prove two important results for the proposed linearized version (8.4). Based on

them, the convergence analysis including both the global convergence and the worst-case convergence

rates can be established analogously as the analysis in Sections 4 and 5. As in Section 4, we need to

rewrite the scheme (8.4) as a prediction-correction form for analysis. For this purpose, similarly as

Section 4.1, we first write the matrix Q as the block-wise form

Q =

 β(ν1I −AT
1 A1) 0 0

0 βQe 0

0 −A 1
β I

 , (8.5)

with A defined in (4.3) and

Qe =


ν2I 0 · · · 0

AT
3 A2 ν3I

. . .
...

...
. . .

. . . 0

AT
t A2 · · · AT

t At−1 νtI

 . (8.6)

Moreover, we use De = diag(ν2I, ν3I, . . . , νtI) to denote the diagonal part of Qe. Using (8.2), we

have

QT
e +Qe ≻ De +ATA. (8.7)

With these matrices, we can rewrite the scheme (8.4) as follows.

Prediction. For the given wk = (xk1, x
k
2 . . . , x

k
m, λk) = (xk

1, . . . ,x
k
t , λ

k), generate the predictor

w̃k = (x̃k1, x̃
k
2 . . . , x̃

k
m, λ̃k) = (x̃k

1, . . . , x̃
k
t , λ̃

k) by the following steps:

for r = 1, 2, . . . t, do:

for j = 1, . . .mr, parallel do:

x̃krj = argmin

{
θrj (xrj)− (λk)TArjxrj + (xrj − xkrj)

T

βAT
rj

(∑r−1
s=1Asx̃

k
s +

∑t
s=rAsx

k
s − b

)
+ νrβ

2 ∥xrj − xkrj∥
2

∣∣∣∣xrj ∈ Xrj

}
;

end.

end.
(8.8a)

Additionally, we define

λ̃k = λk − β
(
A1x̃

k
1 +

∑t
j=2Ajx

k
j − b

)
. (8.8b)

Correction. The new iterate wk+1 is given by

wk+1 = wk −M(wk − w̃k), (8.9a)

where w̃k is the predictor generated by (8.8) and

M =

 I 0 0

0 Q−T
e De 0

0 −βA I

 . (8.9b)

Note that the matrix M in (8.9b) is the same form as the matric defined in (4.6). In the following,

we prove a result similar as Lemma 4.3. This assertion enables us to discern the difference between

the predictor w̃k and a solution point w∗.

32

Lemma 8.3. Let x̃k be generated by (8.8a) from the given vector wk and λ̃k be defined by (8.8b).

Then, the predictor w̃k ∈ Ω satisfies

w̃k ∈ Ω, ϑ(x)− ϑ(x̃k) + (w − w̃k)TF (w̃k) ≥ (w − w̃k)TQ(wk − w̃k), ∀w ∈ Ω, (8.10)

where

Q =



β(ν1I −AT
1 A1) 0 · · · · · · 0 0

0 βν2I
. . .

...
...

0 βAT
3 A2

. . .
. . .

...
...

...
...

. . .
. . . 0 0

0 βAT
t A2 · · · βAT

t At−1 βνtI 0

0 −A2 · · · −At−1 −At
1
β I


. (8.11)

Proof. The optimality condition of the convex minimization problem (8.8a) is

x̃krj ∈ Xrj , θrj (xrj)− θrj (x̃
k
rj) + (xrj − x̃krj)

T
{
−AT

rjλ
k

+βAT
rj

[∑r−1
s=1 Asx̃

k
s +

∑t
s=r Asx

k
s − b

]
+ νrβ(x̃

k
rj − xkrj)

}
≥ 0, ∀xrj ∈ Xrj .

Using the definition of λ̃k (see (8.8b)), we have

λk = λ̃k + β
(
A1x̃

k
1 +

∑t
s=2Asx

k
s − b

)
.

Substituting it into the last inequality, we obtain

x̃krj ∈ Xrj , θrj (xrj)− θrj (x̃
k
rj) + (xrj − x̃krj)

T
{
−AT

rj λ̃
k

+βAT
rj

[∑r−1
s=2 As(x̃

k
s − xk

s)
]
+ νrβ(x̃

k
rj − xkrj)

}
≥ 0, ∀xrj ∈ Xrj .

Applying this inequality for the cases of j = 1, . . . ,mr, and summarizing the resulting inequalities,

we get

x̃k
r ∈ Xr, ϑr(xr)− ϑr(x̃

k
r) + (xr − x̃k

r)
T
{
−AT

r λ̃
k

+βAT
r

[∑r−1
s=2 As(x̃

k
s − xk

s)
]
+ νrβ(x̃

k
r − xk

r)
}
≥ 0, ∀xr ∈ Xr.

(8.12)

Note that, for r = 1, (8.12) means that

x̃k
1 ∈ X1, ϑ1(x1)−ϑ1(x̃

k
1)+(x1− x̃k

1)
T
{
−AT

1 λ̃
k+β(ν1I−AT

1 A1)(x̃
k
1−xk

1)
}
≥ 0, ∀x1 ∈ X1. (8.13)

In addition, by using (8.8b), we have

(

t∑
r=1

Arx̃
k
r − b)−

t∑
s=2

As(x̃
k
s − xk

s) +
1

β
(λ̃k − λk) = 0,

and it can be rewritten as

λ̃k ∈ Rℓ, (λ− λ̃k)T
{
(

t∑
r=1

Arx̃
k
r − b)−

t∑
s=2

As(x̃
k
s − xk

s) +
1

β
(λ̃k − λk)

}
≥ 0, ∀λ ∈ Rℓ. (8.14)

Combining (8.13), (8.12) (r = 2, . . . , t) and (8.14) together and using the notations F (w), Q (see

(2.2) and (8.11)), the assertion of this lemma is followed directly. 2

Then, in the following lemma, we prove some assertions with respect to the matrices defined

before.

33

Lemma 8.4. For the matrices Q and M defined in (8.11) and (8.9b), respectively, let

H := QM−1 (8.15a)

and

G := QT +Q−MTHM. (8.15b)

Then, both the matrices H and G are symmetric and positive definite.

Proof. First, we check the positive definiteness of the matrix H. For the matrix M defined in (8.9b),

we have

M−1 =

 I 0 0

0 D−1
e QT

e 0

0 βAD−1
e QT

e I

 .

Thus, according to the definition of the matrix H (see (8.15a)), we conclude that

H = QM−1 =


β(ν1I −AT

1 A1) 0 0

0 βQeD−1
e QT

e 0

0 0 1
β I


is symmetric and positive definite.

Now, we turn to check the positive definiteness of the matrix G. Note that

QT +Q =


2β(ν1I −AT

1 A1) 0 0

0 β(QT
e +Qe) −AT

0 −A 2
β I

 (8.16)

and

MTHM = QTM =


β(ν1I −AT

1 A1) 0 0

0 β(De +ATA) −AT

0 −A 1
β I

 . (8.17)

Then, it follows from (8.16), (8.17) and (8.7)) that

G = QT +Q−MTHM

=


β(ν1I −AT

1 A1) 0 0

0 β(QT
e +Qe)− β(De +ATA) 0

0 0 1
β I

 ≻ 0.

The assertion of this lemma is proved. 2

Based on Lemmas 8.3 and 8.4, and following the analysis in Sections 4.4 and 5, we can easily

establish the convergence and worst-case convergence rate for the linearized version (8.4). We omit

the detail for succinctness.

34

9 Conclusions

In this paper, we discuss how to develop an algorithm for the separable multiple-block convex mini-

mization models with linear constraints and an objective function which is in the sum of m functions

without coupled variables. We focus on the big-data scenario with a huge m, to which the existing

splitting schemes in the literature seem not to be directly applicable. With the assumption that the

variables and functions are regrouped as more than two blocks, we investigate how to apply the al-

ternating direction method of multiplier with a Gaussian back substitution (ADMM-GBS) in [15] to

the regrouped model which is still in a multiple-block form. The resulting block-wise ADMM-GBS,

however, may involve hard subproblems. To yield solvable easier subproblems, we suggest embedding

a parallel computation into the block-wise ADMM-GBS; and consequently propose a splitting ver-

sion of the block-wise ADMM-GBS which is suitable for a distributed-centralized computing system.

The global convergence and the worst-case convergence rates measured by the iteration complexity

in both the ergodic and nonergodic senses are established for the new algorithm. Moreover, the new

algorithm turns to include some existing schemes as special cases; thus a by-product of this paper

is that the convergence rates for these existing schemes are also established. We also discuss how to

refine the new scheme by choosing an iteratively calculated step size and further alleviating the re-

sulting subproblems. Thus, two advanced versions with refined step sizes and linearized subproblems

are proposed, respectively.

The proposed scheme is a basic scheme which can easily inspire specific algorithms when concrete

applications of the abstract model under consideration are specified. For example, as mentioned, we

can consider further linearizing the subproblems such that each subproblem is of the difficulty level of

estimating a function’s proximal operator. Also, in addition to the Gaussian back substitution, other

correction steps in the literature (e.g., [12, 16, 13]) can be used. In [22], we focused on the case where

the model (1.1) is regrouped as two groups and thus a block-wise version of the original ADMM (1.7)

is applied. In this paper, we consider the case where the model (1.1) is regrouped as at least three

groups and thus the direct extension of ADMM (1.8) is not necessarily convergent. Because of the

significant difference between the cases of two and three blocks in ADMM-oriented schemes (see [3]),

we regard this paper complementary to the most recent one [22] for using block-wise ADMM-based

schemes for the multiple-block separable convex minimization model (1.1).

References

[1] E. Blum and W. Oettli, Mathematische Optimierung. Grundlagen und Verfahren. Ökonometrie

und Unternehmensforschung, Springer-Verlag, Berlin-Heidelberg-New York, 1975.

[2] S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed optimization and statistical

learning via the alternating direction method of multipliers, Foun. Trends Mach. Learn., 3 (2010),

pp. 1-122.

[3] C. H. Chen, B. S. He, Y. Y. Ye and X. M. Yuan, The direct extension of ADMM for multi-block

convex minimization problems is not necessarily convergent, Math. Program., under revision.

[4] J. Eckstein and D.P. Bertsekas, On the Douglas-Rachford splitting method and the proximal

point algorithm for maximal monotone operators, Math. Program., 55 (1992), pp. 293-318.

[5] J. Eckstein and W. Yao, Augmented Lagrangian and alternating direction methods for convex

optimization: A tutorial and some illustrative computational results, manuscript, 2012.

35

[6] F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity

problems, Volume I, Springer Series in Operations Research, Springer-Verlag, 2003.

[7] D. Gabay, Applications of the method of multipliers to variational inequalities, Augmented

Lagrange Methods: Applications to the Solution of Boundary-valued Problems, edited by M.

Fortin and R. Glowinski, North Holland, Amsterdam, The Netherlands, 1983, pp. 299–331.

[8] R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New

York, Berlin, Heidelberg, Tokyo, 1984.

[9] R. Glowinski, T. Kärkkäinen and K. Majava, On the convergence of operator-splitting methods,

in Numerical Methods for Scienfic computing, Variational Problems and Applications, edited

by Y. Kuznetsov, P. Neittanmaki and O. Pironneau, Barcelona, 2003.

[10] R. Glowinski, On alternating directon methods of multipliers: a historical perspective, Springer

Proceedings of a Conference Dedicated to J. Periaux, to appear.

[11] R. Glowinski and A. Marrocco, Approximation par éléments finis d’ordre un et résolution par

pénalisation-dualité d’une classe de problèmes non linéaires, R.A.I.R.O., R2 (1975), pp. 41-76.

[12] D. R. Han, X. M. Yuan and W. X. Zhang, An augmented-Lagrangian-based parallel splitting

method for separable convex programming with applications to image processing, Math. Comput.,

83 (2014), pp. 2263-2291.

[13] B. S. He, L. S. Hou and X. M. Yuan, On full Jacobian decomposition of the augmented Lagrangian

method for separable convex programming, SIAM J. Optim., under revision.

[14] B. S. He, H. Liu, J. Lu, and X. M. Yuan, Application of the strictly contractive Peaceman-

Rachford splitting method to multi-block convex programming, manuscript, 2014.

[15] B. S. He, M. Tao and X. M. Yuan, Alternating direction method with Gaussian back substitution

for separable convex programming, SIAM J. Optim., 22 (2012), pp. 313-340.

[16] B. S. He, M. Tao and X. M. Yuan, Convergence rate and iteration complexity on the alternating

direction method of multipliers with a substitution procedure for separable convex programming,

Math. Oper. Res., under revision.

[17] B. S. He, M. Tao and X. M. Yuan, A splitting method for separable convex programming, IMA

J. Numer. Anal., to appear.

[18] B. S. He, H. K. Xu and X. M. Yuan, On the proximal Jacobian decomposition of ALM

for multiple-block separable convex minimization problems and its relationship to ADMM,

manuscript, 2014.

[19] B. S. He and X. M. Yuan, On the O(1/n) convergence rate of the alternating direction method,

SIAM J. Numer. Anal., 50 (2012), pp. 700-709.

[20] B. S. He and X. M. Yuan, On nonergodic convergence rate of Douglas-Rachford alternating

direction method of multipliers, manuscript, 2012.

[21] B. S. He and X. M. Yuan, Linearized alternating direction method with Gaussian back sub-

stitution for separable convex programming, Numerical Algebra, Control and Optimization,

3(2)(2013), pp. 247-260.

36

[22] B. S. He and X. M. Yuan, Block-wise alternating direction method of multipliers for multiple-

block convex programming and Beyond, manuscript, 2014.

[23] M. R. Hestenes, Multiplier and gradient methods, J. Optim. Theory Appli., 4(1969), pp. 303-320.

[24] M. Hong and Z. Q. Luo, On the linear convergence of the alternating direction method of mul-

tipliers, manuscript, August 2012.

[25] P. L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM

J. Numer. Anal., 16 (1979), pp. 964-979.

[26] B. Martinet, Regularision d’inéquations variationnelles par approximations successive, Revue

Francaise d’Automatique et Informatique Recherche Opérationnelle, 126 (1970), pp. 154-159.

[27] Y. E. Nesterov, Gradient methods for minimizing composite objective function, Math. Prog.,

Ser. B, 140 (2013), pp. 125-161.

[28] G. B. Passty, Ergodic convergence to a zero of the sum of monotone operators in Hilbert space,

J. Math. Analy. Applic. 72 (1979), pp. 383-390.

[29] Y. G. Peng, A. Ganesh, J. Wright, W. L. Xu and Y. Ma, Robust alignment by sparse and low-

rank decomposition for linearly correlated images, IEEE Tran. Pattern Anal. Mach. Intel., 34

(2012), pp. 2233-2246.

[30] M. J. D. Powell, A method for nonlinear constraints in minimization problems, In Optimization

edited by R. Fletcher, pp. 283-298, Academic Press, New York, 1969.

[31] M. Tao and X. M. Yuan, Recovering low-rank and sparse components of matrices from incomplete

and noisy observations, SIAM J. Optim., 21 (2011), pp. 57-81.

[32] X. F. Wang and X. M. Yuan, The linearized alternating direction method for Dantzig Selector,

SIAM J. Sci. Comput., 34 (5) (2012), pp. A2792 - A2811.

[33] J. F. Yang and X. M. Yuan, Linearized augmented Lagrangian and alternating direction methods

for nuclear norm minimization, Math. Comput., 82 (281) (2013), pp. 301-329.

[34] X. Q. Zhang, M. Burger and S. Osher, A Unified Primal-Dual Algorithm Framework Based on

Bregman Iteration. J. Sci. Comput., 46 (2011), pp. 20-46.

37

