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Abstract

The k-Parallel Row Ordering Problem (kPROP) is an extension of the Single-Row Facility Layout Problem
(SRFLP) that considers arrangements of the departments along more than one row. We propose an exact algorithm
for the (kPROP) that extends the semidefinite programming approach for the (SRFLP) by modelling inter-row
distances as products of ordering variables. For k = 2 rows, our algorithm is a good complement to a mixed integer
programming (MIP) formulation that was proposed by Amaral [7] very recently. The MIP approach allows to solve
instances with up to 23 departments to optimality within a few days of computing time while our semidefinite
programming approach yields tight global bounds for instances of the same size within a few minutes on a similar
machine. Additionally our algorithm is able to produce reasonable global bounds for instances with up to 100
departments. We show that our approach is also applicable for k ≥ 3 rows and even yields better computational
results for a larger number of rows.

Key words. Facilities planning and design; Flexible manufacturing systems; Semidefinite Programming; Global
Optimization

1 Introduction

Facility layout is concerned with the optimal location of departments inside a plant according to a given objective
function. This is a well-known operations research problem that arises in different areas of applications. For
example, in manufacturing systems, the placement of machines that form a production line inside a plant is a layout
problem in which one wishes to minimize the total material flow cost. Another example arises in the design of
Very Large Scale Integration (VLSI) circuits in electrical engineering. The objective of VLSI floorplanning is to
arrange a set of rectangular modules on a rectangular chip area so that performance is optimized; this is a particular
version of facility layout. In general, the objective function may reflect transportation costs, the construction cost of
a material-handling system, or simply adjacency preferences among departments.

The variety of applications means that facility layout encompasses a broad class of optimization problems. The
survey paper [42] divides facility layout research into three broad categories. The first is concerned with models and
algorithms for tackling different versions of the basic layout problem that asks for the optimal arrangement of a given
number of departments within a facility so as to minimize the total expected cost of flows inside the facility. This in-
cludes the well-known special case of the quadratic assignment problem in which all the departments sizes are equal.
The second category is concerned with extensions of unequal-areas layout that take into account additional issues
that arise in real-world applications, such as designing dynamic layouts by taking time-dependency issues into ac-
count, designing layouts under uncertainty conditions, and computing layouts that optimize two or more objectives
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simultaneously. The third category is concerned with specially structured instances of the problem. This paper will
focus on a problem from this third area, namely the k-Parallel Row Ordering Problem (kPROP). In this introduc-
tion we will highlight the relations of the (kPROP) to other problems from this third category like the Single-Row
Facility Layout Problem (SRFLP), the Space-Free Multi-Row Facility Layout Problem (SF-MRFLP) and the
Multi-Row Facility Layout Problem (MRFLP). These layout problems are e.g. of special interest for optimizing
flexible manufacturing systems (FMSs).

FMSs are automated production systems, typically consisting of numerically controlled machines and material
handling devices under computer control, which are designed to produce a variety of parts. In FMSs the layout of the
machines has a significant impact on the materials handling cost and time, on throughput, and on productivity of the
facility. A poor layout may also adulterate some of the flexibilities of an FMS [29]. The type of material-handling
devices used such as handling robots, automated guided vehicles (AGVs), and gantry robots typically determines
machine layout in an FMS [43]. In practice, two of the most frequently encountered layout types are the single-row
layout (Figure 1) and multi-row layouts (Figure 2) [31].
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Figure 1: In a.) an AGV transports parts between the machines moving in both directions along a straight line. In
b.) a material-handling industrial robot carries parts between the machines.
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Figure 2: In a.) an AGV transports parts between the machines that are located on both sides of a linear path of
travel. In b.) a gantry robot is used when the space is limited.

The Single-Row Facility Layout Problem (SRFLP) The easiest known layout type is single-row layout. It
arises as the problem of ordering stations on a production line where the material flow is handled by an AGV in both
directions on a straight-line path [32]. An instance of the (SRFLP) consists of n one-dimensional machines, with
given positive lengths l1, . . . , ln, and pairwise connectivities cij . The optimization problem can be written down as

min
π∈Πn

∑
i,j∈[n]
i<j

cijz
π
ij , (1)

where Πn is the set of permutations of the indices [n] := {1, 2, . . . , n} and zπij is the center-to-center distance
between machines i and j with respect to a particular permutation π ∈ Πn.

Several practical applications of the (SRFLP) have been identified in the literature, such as the arrangement
of rooms on a corridor in hospitals, supermarkets, or offices [49], the assignment of airplanes to gates in an airport
terminal [52], the arrangement of machines in flexible manufacturing systems [32], the arrangement of books on a
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shelf and the assignment of disk cylinders to files [44]. Accordingly several heuristic algorithms have been suggested
to tackle instances of interesting size of the (SRFLP), the best ones to date are [19, 37, 47].

The (SRFLP) is NP-hard, even if all department lengths are equal and the connectivities are binary [25] . The
(SRFLP) is one of the few layout problems for which strong global lower bounds and even optimal solutions can
be computed for instances of reasonable size. The global optimization approaches for the (SRFLP) are based on
relaxations of integer linear programming (ILP) and semidefinite programming (SDP) formulations. The strongest
ILP approach is an LP-based cutting plane algorithm using betweenness variables [4] that can solve instances with
up to 35 departments within a few hours. The strongest SDP approach to date using products of ordering variables
[36] is even stronger and can solve instances with up to 42 departments within a few hours. More details on global
optimization approaches for the (SRFLP) can be found below in Section 2.

The k-Parallel Row Ordering Problem (kPROP) The (kPROP) is an extension of the (SRFLP) that con-
siders arrangements of the departments along more than one row. An instance of the (kPROP) consists of n one-
dimensional departments with given positive lengths `1, . . . , `n, pairwise connectivities cij and an assignment r of
each department to one of the k rows R := {1, . . . , k}. The objective is to find permutations π1 ∈ Π1, . . . , πk ∈
Πk of the departments within the rows such that the total weighted sum of the center-to-center distances between
all pairs of departments (with a common left origin) is minimized:

min
π1∈Π1,...,πk∈Πk

∑
i,j∈[n]
i<j

cijz
πr(i),πr(j)

ij , (2)

where Π = {Π1, . . . ,Πk} denotes the set of all feasible layouts and zπ
r(i),πr(j)

ij denotes the distance1 between the
centroids of departments i and j in the layout {π1, . . . , πk} ∈ Π. If the (kPROP) is restricted to two rows we sim-
ply call it (PROP). Applications of the (kPROP) are the arrangement of departments along two or more parallel
straight lines on a floor plan, the construction of multi-floor buildings and the layout of machines in FMSs. The
(kPROP) was very recently introduced by Amaral [7] that proposed a mixed integer programming (MIP) formula-
tion. From a computational point of view his MIP approach allows to solve instances with up to 23 departments to
optimality within a few days.

Further Variants of Multi-Row Layouts The (kPROP) can be further extended to the Space-Free Multi-Row
Facility Layout Problem (SF-MRFLP) by additionally optimizing over all possible row assignments. Hence an
instance of the (SF-MRFLP) consists of n one-dimensional departments with given positive lengths `1, . . . , `n,
pairwise connectivities cij and a function r : [n] → R that assigns each department to one of the k rows. The
objective is to find permutations π1 ∈ Π1, . . . , πk ∈ Πk of the departments within the rows such that the total
weighted sum of the center-to-center distances between all pairs of departments (with a common left origin) is
minimized:

min
π1×...×πk∈Π1×...×Πk

∑
i,j∈[n]
i<j

cijz
πr(i),πr(j)

ij ,

where Π = Π1 × . . . × Πk denotes the set of all feasible layouts and zπ
r(i),πr(j)

ij denotes the distance between
the centroids of departments i and j in the layout {π1 × . . . × πk} ∈ Π. If we restrict the (SF-MRFLP) to two
rows we obtain the Space-Free Double-Row Facility Layout Problem (SF-DRFLP) as a special case. A specific
example of the application of the (SF-DRFLP) is in spine layout design. Spine layouts, introduced by Tompkins
[53], require departments to be located along both sides of specified corridors along which all the traffic between
departments takes place. Although in general some spacing is allowed, layouts with no spacing are much preferable
since spacing often translates into higher construction costs for the facility. Algorithms for spine layout design have
been proposed, see e.g. [38]. The best methods known to date for the (SF-DRFLP) are an algorithm based on

1We will discuss two different ways for defining the distance between pairs of departments in Subsection 3.1.

3



a MIP formulation proposed by Amaral [6] and an SDP approach suggest by Hungerländer and Anjos [34] that is
also applicable to the (SF-MRFLP). The MIP formulation allows to solve instances with up to 13 departments
to optimality within a few hours of computing time. Amaral [6] also proposed two heuristics (based on 2-opt
and 3-opt) and showed that these heuristics can handle larger instances with 30 departments. Hungerländer and
Anjos [34] extend the SDP approach from this paper and provide high-quality global bounds in reasonable time
for (SF-DRFLP) instances with up to 15 departments and for (SF-MRFLP) instances with up to 5 rows and
11 departments. Additionally very recently Ahonen et al. [1] suggested several heuristic methods to tackle the
(SF-DRFLP).

The Double-Row Facility Layout Problem (DRFLP) is a natural extension of the (SRFLP) in the manufactur-
ing context when one considers that an AGV can support stations located on both sides of its linear path of travel (see
Figure 2). This is a common approach in practice for improved material handling and space usage. Furthermore,
since real factory layouts most often reduce to double-row problems or a combination of single-row and double-row
problems, the (DRFLP) is especially relevant for real-world applications. The (DRFLP) can be further general-
ized to the (MRFLP), where the departments are arranged along multiple parallel rows. Hence the (MRFLP) is
a generalization of the (SF-MRFLP) in which the rows may not have a common left origin and space is allowed
between departments.

The (MRFLP) has many applications such as computer backboard writing [50], campus planning [21], schedul-
ing [27], typewriter keyboard design [45], hospital layout [22], the layout of machines in an automated manufactur-
ing system [33], balancing hydraulic turbine runners [39], numerical analysis [14], optimal digital signal processors
memory layout generation [55]. Different extensions of the (MRFLP) like considering a clearance between any
two adjacent machines given as a fuzzy set [26] or the design of a FMS in one or multiple rows [23] have been
proposed and tackled with genetic algorithms. Somewhat surprisingly, the development of exact algorithms for the
(DRFLP) and the (MRFLP) has received only limited attention in the literature. In the 1980s Heragu and Kusiak
[32] proposed a non-linear programming model and obtained locally optimal solutions to the (SRFLP) and the
(DRFLP). Recently Chung and Tanchoco [18] (see also [58]) focused exclusively on the (DRFLP) and proposed
a MIP formulation that was tested in conjunction with several heuristics for assigning the departments to the rows.
Amaral [5] proposed an improved MIP formulation that allowed him to solve instances with up to 12 departments
to optimality.

A toy example for illustrating and comparing different layout types Next let us further clarify the workings
and differences of the (SRFLP), the (kPROP), the (SF-MRFLP) and the (MRFLP) with the help of a toy
example: We consider 4 machines with lengths l1 = 1, l2 = 2, l3 = 3, l4 = 4. Additionally we are given the
pairwise connectivities c2,3 = 0, c12 = c14 = c34 = 1, c13 = c24 = 2. Figure 3 illustrates the optimal layouts and
the corresponding costs for the different problems.

Outline The main contributions of this article are the following. We propose the first SDP approach for the
(PROP) that is at the same time the first (exact) approach to the (kPROP) for k ≥ 3. We show the connections
and differences of the formulations and relaxations for the (SRFLP) and the (kPROP) and argue that in general
the (kPROP) is essentially harder to solve than the (SRFLP). In a computational study we demonstrate that for the
(PROP) our algorithm is a good complement to a MIP formulation that was proposed by Amaral [7] very recently.
The MIP approach allows to solve instances with up to 23 departments to optimality within a few days of computing
time while our SDP approach yields strong global bounds for instances of the same size within a few minutes on
a similar machine. Additionally our approach is able to produce reasonable global bounds for instances with up to
100 departments. Finally we demonstrate that our approach is also applicable for (kPROP) instances with k ≥ 3

rows: We propose two different methods for calculating the distances of departments located in non-adjacent rows
and show that for one of the two variants the computational results even improve for a larger number of rows.

The article is structured as follows. In Section 2 we recall different formulations and relaxations for the
(SRFLP). In Section 3 we discuss the possibilities to extend the different (SRFLP) formulations for the (kPROP).
In particular we argue that a reasonably tight SDP relaxation for the (kPROP) consists of the relaxation for the
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Figure 3: We are given the following data: l1 = 1, l2 = 2, l3 = 3, l4 = 4, c12 = c14 = c34 = 1, c13 = c24 = 2. In
a.) we display the optimal layout for the (SRFLP)with associated costs of 3·2+2.5·1+2·2+5.5·1+4.5·1 = 22.5.
In b.) we depict the optimal layout for the (PROP) with machines 3 and 2 assigned to row 1 and machines 1 and 4
assigned to row 2. The corresponding costs are 3.5 · 1 + 1 · 2 + 1 · 2 + 1.5 · 1 + 2.5 · 1 = 11.5. In c.) we show the
optimal layout for the (SF-DRFLP) with associated costs of 1.5 · 1 + 2 · 2 + 0.5 · 1 + 1 · 2 + 2.5 · 1 = 10.5. Finally
we display the optimal layout for the (DRFLP) in d.). The corresponding costs are 2.5 · 1 + 2.5 · 1 + 2.5 · 1 = 7.5.

(SRFLP) plus two further constraint classes. In Section 4 we explain how the proposed SDP relaxations can be
solved efficiently and we suggest a heuristic that generates feasible layouts from the solutions of the SDP relax-
ations. Computational results demonstrating the strength and potential of our SDP approach for the (kPROP) are
presented in Section 5. Section 6 concludes the paper.

2 Formulations and Relaxations for the (SRFLP)

There exist several different LP and SDP formulations for the (SRFLP) based on betweenness, distance or ordering
variables. MIPs using distance variables were proposed by Love and Wong [41] and Amaral [2]. Both models suffer
from weak lower bounds and hence have high computation times and memory requirements. Recently Amaral
and Letchford [8] achieved significant progress in that direction through the first polyhedral study of the distance
polytope for the (SRFLP) and showed that their approach can solve instances with up to 30 departments within a
few hours of computing time. In the following we will describe two formulations for the (SRFLP) that relate to
the most competitive exact approaches for the (SRFLP).

2.1 Zero-One Linear Programming via Betweenness Variables

To model the (SRFLP) as a preferably easy zero-one LP, let us introduce the betweenness variables ζijk, i, j, k ∈
[n], i < j, i 6= k 6= j,

ζijk =

{
1, if department k lies between departments i and j

0, otherwise.
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We collect these betweenness variables in a vector ζ and rewrite (1) in terms of ζ (for details see [4, Proposition 1
and 2]):

min
ζ∈Pn

Btw

∑
i,j,k∈[n],
i<j,k<j

(cij lk − ciklj) ζijk +
∑
i,j∈[n]
i<j

cij2 (li + lj) +
∑
k∈[n],
k>j

cij lk

 . (3)

where PnBtw denotes the betweenness polytope

PnBtw := conv {ζ : ζ represents an ordering of the elements of [n]}.

If department i comes before department j, department k has to be located mutually exclusive either left of depart-
ment i, or between departments i and j, or right of department j. Thus the following equations are valid for the
betweenness polytope PnBtw

ζijk + ζikj + ζjki = 1, i < j < k ∈ [n]. (4)

In [48] it is shown that these equations describe the smallest linear subspace that containsPnBtw. To obtain a tight LP
relaxation several additional classes of valid inequalities can be deduced. We refer to Amaral [4] for a description
of an exact algorithm based on the above formulation that is able to solve instances with up to 35 departments to
optimality within a few hours.

2.2 Semidefinite Programming via Ordering Variables

Another way to get tight global bounds for (SRFLP) is the usage of SDP relaxations. SDP is the extension of LP
to linear optimization over the cone of symmetric positive semidefinite matrices. This includes LP problems as a
special case, namely when all the matrices involved are diagonal. A (primal) SDP can be expressed as the following
optimization problem

inf
X
{ 〈C,X〉 : X ∈ P},

P := { X | 〈Ai, X〉 = bi, i ∈ {1, . . . ,m}, X < 0 } ,
(SDP)

where the data matrices Ai, i ∈ {1, . . . ,m} and C are symmetric. For further information on SDP we refer to the
handbooks [9, 56] for a thorough coverage of the theory, algorithms and software in this area, as well as a discussion
of many application areas where semidefinite programming has had a major impact.

We can deduce an SDP formulation for the (SRFLP) from the betweenness-based approach above by introduc-
ing bivalent ordering variables yij , i, j ∈ [n], i < j,

yij =

{
1, if department i lies before department j

−1, otherwise,
(5)

and using them to express the betweenness variables ζ via the transformations

ζijk =
1 + yikykj

2
, i < k < j, ζijk =

1− ykiykj
2

, k < i < j, ζijk =
1− yikyjk

2
, i < j < k, (6)

for i, j, k ∈ [n]. Using (6) we can easily rewrite the objective function (3) and equalities (4) in terms of ordering
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variables

K −
∑
i,j∈[n]
i<j

cij
2

∑
k∈[n]
k<i

lkykiykj −
∑
k∈[n]
i<k<j

lkyikykj +
∑
k∈[n]
k>j

lkyikyjk

 , (7)

yijyjk − yijyik − yikyjk = −1, i < j < k ∈ [n], (8)

with

K =

 ∑
i,j∈[n]
i<j

cij
2


∑
k∈[n]

lk

 . (9)

In [15] it is shown that the equations (8) formulated in a {0, 1} model describe the smallest linear subspace that
contains the quadratic ordering polytope

PnQO := conv { yy> : y ∈ {−1, 1}, |yij + yjk − yik| = 1 }.

To obtain matrix-based relaxations we collect the ordering variables in a vector y and consider the matrix Y = yy>.
The main diagonal entries of Y correspond to y2

ij and hence diag(Y ) = e, the vector of all ones. Now we can
formulate the (SRFLP) as a semidefinite program, first proposed in [13]

min { 〈C, Y 〉+K : Y satisfies (8), diag(Y ) = e, rank(Y ) = 1, Y < 0 }, (SRFLP)

where the cost matrix C is deduced from (7). Dropping the rank constraint yields the basic semidefinite relaxation
of the (SRFLP)

min { 〈C, Y 〉+K : Y satisfies (8), diag(Y ) = e, Y < 0 }, (SDPtrivial)

providing a lower bound on the optimal value of the (SRFLP).
As Y is actually a matrix with {−1, 1} entries in the original (SRFLP) formulation, Anjos and Vanelli [11]

proposed to further tighten (SDPtrivial) by adding the triangle inequalities, defining the metric polytopeM and
known to be facet-defining for the cut polytope, see e.g. [20]

M =

Y :


−1 −1 −1
−1 1 1

1 −1 1

1 1 −1


 Yi,j

Yj,k

Yi,k

 ≤ e, i < j < k ∈

(
n

2

) . (10)

Adding the triangle inequalities to (SDPtrivial), we obtain the following relaxation of the (SRFLP)

min { 〈C, Y 〉+K : Y satisfies (8), Y ∈M, diag(Y ) = e, Y < 0 }. (SDPbasic)

As solving (SDPbasic) directly with an interior-point solver like CSDP gets far too expensive, Anjos and Vannelli
[11] suggest to use the ≈ 1

12n
6 triangle inequalities as cutting planes in their algorithmic framework.

Recently Hungerländer and Rendl [36] suggested a further strengthening of (SDPbasic) and an alternative
algorithmic approach to solve such large SDP relaxations. To this end we introduce the matrix

Z = Z(y, Y ) :=

(
1 yT

y Y

)
, (11)
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and relax the equation Y − yy> = 0 to
Y − yyT < 0⇔ Z < 0,

which is convex due to the Schur-complement lemma. Note that Z < 0 is in general a stronger constraint than
Y < 0. Additionally we use an approach suggested by Lovász and Schrijver in [40] to further improve on the
strength of the semidefinite relaxation. This yields the following inequalities

−1− ylm ≤ yij + yjk − yik + yij,lm + yjk,lm − yik,lm ≤ 1 + ylm, i < j < k ∈ [n], l < m ∈ [n]

−1 + ylm ≤ yij + yjk − yik − yij,lm − yjk,lm + yik,lm ≤ 1− ylm, i < j < k ∈ [n], l < m ∈ [n]
(12)

that are generated by multiplying the 3-cycle inequalities valid for the ordering problem

1− yij − yjk + yik ≥ 0, 1 + yij + yjk − yik ≥ 0,

by the nonnegative expressions (1− ylm) and (1 + ylm). These constraints define the polytope LS

LS := { Z : Z satisfies (12) }, (13)

consisting of ≈ 1
3n

5 constraints. In summary, we come up with the following relaxation of the (SRFLP)

min { 〈C, Y 〉+K : Y satisfies (8), Z ∈ (M∩LS) , diag(Z) = e, Z < 0 }. (SDPstandard)

To make (SDPstandard) computationally tractable Hungerländer and Rendl [36] suggest to deal with the triangle
inequalities (10) and LS-cuts (12) through Lagrangian duality (for details see Subsection 4.1 below). Similar relax-
ations have been applied recently to different types of quadratic ordering problem like the linear ordering problem,
the linear arrangement problem and multi-level crossing minimization [15, 17, 35]. For more details on global
optimization approaches for the (SRFLP) we refer to the survey article by Anjos and Liers [10].

3 Formulations and Relaxations for the (kPROP)

Recently Amaral [7] extended his own approach for the (SRFLP) based on distance variables [2] to the (PROP)2

and argued that a (PROP) with n departments may be solved faster than a (SRFLP) with n departments. We want
to complement this statement: This is true if we model both the (SRFLP) and the (PROP) with distance variables
(for convincing theoretical arguments and computational comparisons see [7]), but one should also bear in mind
that the two strongest approaches for the (SRFLP) are other ones. As we will see below

• it is not possible to extend the approach of [4] to the (PROP) because the distances of departments from the
two different rows cannot be modelled as linear terms in betweenness variables and

• solving an SDP relaxation for the (SRFLP) and the (kPROP) with n departments results in about the same
computational effort but the lower bounds from the (SRFLP) relaxations are tighter than the ones from the
(PROP) relaxations.

These arguments fall into place with the fact that the largest (PROP) instances with proven optimal solutions have
23 departments but the largest (SRFLP) instances with proven optimal solutions have 42 departments. Hence the
(SRFLP) is practically clearly easier to solve than the (PROP) (at least with the models at hand at the moment).

3.1 A Semidefinite Formulation via Ordering Variables
In the following we show how to generalize the SDP approach for the (SRFLP) to the (kPROP). Let us start with
expressing the center-to-center distances of pairs of departments i and j, i, j ∈ [n], i < j from different rows as

2Possible next steps to improve on this approach are tightening the lower bounds by adding cutting planes connected to the distance polytope
in the style of [8] and the generalization of the approach to the (kPROP).
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quadratic terms of ordering variables. To do so we sum up the lengths of the departments left of i and j respectively
and then take the difference of the two sums. Finally we multiply the whole term by the ordering variable yij . This
ensures a correct calculation of the distances of departments from different rows through the constraints (14) and
(15):

zyij =
1

2
(`i + `j) +

∑
k∈[n], k<i,
r(k)=r(i)

`k
1− ykiykj

2
+

∑
k∈[n], i<k<j,

r(k)=r(i)

`k
1 + yikykj

2
+

∑
k∈[n], k>j,
r(k)=r(i)

`k
1− yikyjk

2
, r(i) = r(j), (14a)

zyij = yij (dj − di) , r(i) 6= r(j), di =
`i
2

+
∑

k∈[n], k<i,
r(k)=r(i)

`k
1 + yki

2
+

∑
k∈[n], k>i,
r(k)=r(i)

`k
1− yik

2
. (14b)

To ensure non-negative distances for all feasible layouts we have to introduce the following, additional constraints:

zyij ≥ 0, i, j ∈ [n], i < j, r(i) 6= r(j). (15)

In summary we are able to rewrite (2) with the help of ordering variables.

Theorem 1. Minimizing
∑
i,j∈[n], i<j cijz

y
ij over y ∈ {−1, 1}(

n
2), (8), (14) and (15) solves the (kPROP).

Proof. The equations (8) model transitivity for y ∈ {−1, 1}(
n
2) [15] and hence suffice together with the integrality

conditions on y and (15) to induce all feasible layouts. Thus by definition of the distances zyij in (14), the objective
value

∑
i,j∈[n],i<j cijz

y
ij gives the costs of a feasible layout.

Next we rewrite the objective function in terms of matrices and obtain a matrix-based formulation:

min
{
〈Cd, Z〉 : y ∈ {−1, 1}(

n
2), y satisfies (8) and (15)

}
, (kPROP)

where the cost matrix Cd is deduced by equating the coefficients of the following equation

2〈Cd, Z〉
!
=

∑
i,j∈[n], i<j
r(i)=r(j)

cij

 ∑
k∈[n], i<k<j,
r(k)=r(i)

`kyikykj −
∑

k∈[n], k<i,
r(k)=r(i)

`kykiykj −
∑

k∈[n], k>j,
r(k)=r(i)

`kykiykj



+
∑

i<j∈[n],
r(i)6=r(j)

cijyij

Lr(i) − Lr(j) +
∑

k∈[n], k<i,
r(k)=r(i)

`kyki −
∑

k∈[n], k>i,
r(k)=r(i)

`kyik

−
∑

k∈[n], k<j,
r(k)=r(j)

`kykj +
∑

k∈[n], k>j,
r(k)=r(j)

`kyjk

+
∑
h∈R


 ∑
i,j∈[n], i<j,
r(i)=r(j)=h

cij


 ∑

i<j∈[n],
r(i)=r(j)=h

`i


 ,

and Li denotes the sum of the length of the departments on row i

Li =
∑
k∈[n],
r(k)=i

`k, i ∈ R.

Finally we can further rewrite the above matrix-based formulation as an SDP:

Theorem 2. The problem

min
{
〈Cd, Z〉 : Z satisfies (8) and (15) , Z ∈ E , y ∈ {−1, 1}(

n
2)
}
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is equivalent to the (kPROP).

Proof. Since y2
ij = 1, i, j ∈ [n], i < j we have diag(Y − yy>) = 0, which together with Y − yy> < 0 shows that

in fact Y = yy> is integral. By Theorem 1, integrality on Y together with (8) and (15) suffice to induce all feasible
layouts of the (kPROP) and the objective function 〈Cd, Z〉 gives the correct costs for all feasible layouts.

Looking at the (kPROP) with k ≥ 3 we can model the distance between two departments i and j located in
non-adjacent rows alternatively as the sum of the distances of the centers of the departments i and j to the common
left origin:

zyij =
`i + `j

2
+

∑
k∈[n], k<i,
r(k)=r(i)

`k
1 + yki

2
+

∑
k∈[n], k>i,
r(k)=r(i)

`k
1− yik

2

+
∑

k∈[n], k<j,
r(k)=r(j)

`k
1 + ykj

2
+

∑
k∈[n], k>j,
r(k)=r(j)

`k
1− yjk

2
, |r(i)− r(j)| > 1.

For an illustration and comparison of the direct distance calculation from above and the “indirect” one suggested
now see Figure 4.

a.)

12

34

5 6

Robot

b.)

1 2

3 4

5 6

AGV

Figure 4: Illustration and comparison of the different distance calculation for departments in non-adjacent rows. We
are given the following data: elli = i, i ∈ {1, . . . , 6}, c16 = c34 = 1, c13 = c15 = c24 = 2. Departments 1 and
2 are assigned to row 1, departments 3 and 4 are assigned to row 2 and departments 5 and 6 are assigned to row 3.
In a.) a gantry robot is used that can travel “directly” between departments in non-adjacent rows. We display the
optimal (PROP) layout for the direct distance calculation with associated costs of 1 ·2+3 ·2+5.5 ·1+3.5 ·1 = 17.
In b.) an AGV transports parts between the machines that are located on both sides of a linear path of travel. If the
AGV has to transport parts between machines in non-adjacent rows it has to leave one corridor on the left and enter
the other corridor also on the left. We depict the optimal (PROP) layout for the indirect distance calculation. The
proper costs are 1 · 2 + 3 · 2 + 3.5 · 1 + 3 · 2 + 8.5 · 1 = 26.
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The alternative cost matrix Ci can be obtained from:

2〈Ci, Z〉
!
=

∑
i,j∈[n], i<j,
r(i)=r(j)

cij

 ∑
k∈[n], i<k<j,
r(k)=r(i)

`kyikykj −
∑

k∈[n], k<i,
r(k)=r(i)

`kykiykj −
∑

k∈[n], k>j,
r(k)=r(i)

`kykiykj



+
∑

i,j∈[n], i<j,
|r(i)−r(j)|=1

cijyij

Lr(i) − Lr(j) +
∑

k∈[n], k<i,
r(k)=r(i)

`kyki −
∑

k∈[n], k>i,
r(k)=r(i)

`kyik −
∑

k∈[n], k<j,
r(k)=r(j)

`kykj

+
∑

k∈[n], k>j,
r(k)=r(j)

`kyjk

+
∑

i,j∈[n], i<j,
|r(i)−r(j)|>1

cij

Lr(i) + Lr(j) +
∑

k∈[n], k<i,
r(k)=r(i)

`kyki −
∑

k∈[n], k>i,
r(k)=r(i)

`kyik

+
∑

k∈[n], k<j,
r(k)=r(j)

`kykj −
∑

k∈[n], k>j,
r(k)=r(j)

`kyjk

+
∑
h∈R


 ∑
i,j∈[n], i<j,
r(i)=r(j)=h

cij


 ∑

i<j∈[n],
r(i)=r(j)=h

`i


 .

Note that we do not have to concern ourselves with vertical distances because the assignment of the departments to
the rows is input data and hence the sum of the vertical distances is a predetermined constant.

The decision on how to define the distances of departments located in non-adjacent rows is determined by
technical conditions in practice. In Subsection 5.3 we will computationally compare the two proposed variants with
respect to the tightness of the related relaxations. In the following subsection we will deduce a computationally
tractable, preferably tight semidefinite relaxation for the (kPROP).

3.2 Semidefinite Relaxations

As we are able to model the (kPROP) on the same variables as the (SRFLP) (namely products of ordering
variables) we can adopt the strongest SDP relaxation from the previous section:

min { 〈Cd, Z〉 : Y satisfies (8) and (15), Z ∈ (M∩LS) , diag(Z) = e, Z < 0 }. (SDPstandard)

But as the objective function of the (kPROP) is more complex as the one of the (SRFLP) we will try to deduce
additional valid inequalities to tighten the relaxation. Therefore we propose triangle inequalities relating the dis-
tances between three departments that are clearly valid for both alternative ways to calculate the distances between
departments located in non-adjacent rows:

zyij + zyik ≥ z
y
jk, zyij + zyik ≥ z

y
jk, zyik + zyjk ≥ z

y
ij , i, j, k ∈ [n], i < j < k. (16)

By an inductive argument it is very easy to see that the above constraints imply similar constraints for more than
three departments. Hence let us define the polytope

DV := { Z : Z satisfies (16) } (17)

containing the 3
(
n
3

)
triangle inequalities relating the distances between 3 or more departments. Adding these con-

straints to (SDPstandard) yields

min { 〈Cd, Z〉 : Y satisfies (8) and (15), Z ∈ (M∩LS ∩ DV) , diag(Z) = e, Z < 0 }. (SDPfull)

11



It was demonstrated in [35] that using M and LS in the semidefinite relaxation pays off for several ordering
problems including the (SRFLP) in practice. But for the (kPROP) we will refrain from using M ∩ LS due
to several reasons that we will be discussed in Section 5 in detail. Instead we will work with the following SDP
relaxation

min { 〈Cd, Z〉 : Y satisfies (8) and (15), Z ∈ DV, diag(Z) = e, Z < 0 }. (SDPcheap)

4 On Solving SDP Relaxations

The core of our SDP approach is to solve our SDP relaxation (SDPcheap), using the bundle method [24] in con-
junction with interior point methods. The resulting fractional solutions constitute lower bounds for the exact SDP
formulation of the (kPROP). By the use of a rounding strategy, we can exploit such fractional solutions to obtain
upper bounds, i.e., integer feasible solutions that describe feasible layouts of the departments. Hence, in the end
we have some feasible solution, together with a certificate of how far this solution could possibly be from the true
optimum. We will discuss these two steps in more detail in the following.

4.1 Computing Lower Bounds

Looking at the constraint classes and their sizes in the relaxation (SDPcheap), it is clear that explicitly maintaining
O(n3) or more constraints is not an attractive option. We therefore consider an approach originally suggested
in [24], which was applied to the max cut problem [46] and several ordering problems [16, 35], and adapt it for
the (kPROP). Initially, we only aim at explicitly ensuring the constraints diag(Z) = e and Z < 0, which can be
achieved with standard interior point methods, see, e.g. [30].

All other constraints are handled through Lagrangian duality in the objective function f . Thus the objective
function f becomes non-smooth. The bundle method [24] iteratively evaluates f at some trial points and uses
subgradient information to obtain new iterates. Evaluating f amounts to solving an SDP with the constraints
diag(Z) = e and Z < 0 that can be solved efficiently by using again interior point methods. Finally we obtain
an approximate minimizer of f that is guaranteed to yield a lower bound to the optimal solution of (SDPcheap).
Since the bundle method has a rather weak local convergence behavior, we limit the number of function evaluations
that are responsible for more than 95% of the required running time to control the overall computational effort. This
limitation of the number of function evaluations leaves some room for further incremental improvement. We next
describe how a feasible layout can be obtained from a solution to (SDPcheap).

4.2 Obtaining Feasible Layouts

To obtain feasible layouts, we apply the hyperplane rounding algorithm of Goemans-Williamson [28] to the frac-
tional solution of the SDP relaxation. We take the resulting vector y and flip the signs of some of its entries to make
it feasible with respect to (15) and the 3-cycle inequalities

−1 ≤ yij + yjk − yik ≤ 1. (18)

that are well-known [54, 57] to ensure feasible orderings of n elements. Computational experiments demonstrated
that repair strategies of this type are not as critical as one might assume. For example, in multi-level crossing
minimization this SDP rounding heuristic clearly dominates traditional heuristic approaches [17].

Let us give a more detailed description of the implementation of our heuristic. We consider a vector y′ that
encodes a feasible layout of the departments in all rows. The algorithm stops after 100 executions of step 2. (Note
that before the 51st execution of step 2, we perform step 1 again. As step 1 is quite expensive, we refrain from
executing it too often.)

12



1. Let Y ′′ be the current primal (fractional) solution of (SDPfull) (or some other semidefinite relaxation)
obtained by the bundle method or an interior-point solver. Compute the convex combinationR := λ(y′y′>)+

(1− λ)Y ′′ using a randomly generated λ ∈ [0.3, 0.7]. Compute the Cholesky decomposition DD> of R.

2. Apply Goemans-Williamson hyperplane rounding to D and obtain a −1/+1 vector w (cf. [46]).

3. Compute the induced objective value z(y) :=

(
1

y

)>
Cd

(
1

y

)
. If z(y) ≥ z(y′): go to step 2.

4. If y satisfies (15) and (18): set y′ := y and go to 2. Else: modify y by first changing the signs of one of three
variables in all violated 3-cycle inequalities, afterwards flipping signs to satisfy (15) and go to step 3.

The final y′ is the heuristic solution. If the duality gap is not closed after the heuristic, we continue approximating
(SDPcheap) with the help of the bundle method and then retry the heuristic (retaining the last vector y′).

5 Computational Experiments

We report the results for different computational experiments with our semidefinite relaxations. All computations
were conducted on an Intel Xeon E5160 (Dual-Core) with 2 GB RAM, running Debian 5.0 in 64-bit mode. The
algorithm was implemented in Matlab 7.7. We use the (PROP) instances from [7] and define new (kPROP)

instances by adapting (SRFLP) and (PROP) instances from the literature. For each instance considered, our
computational objective is to obtain the best possible solution for a given assignment of the departments to 2 – 5
rows. This demonstrates that our relaxations and methodology are in principle applicable to (kPROP) instances
with any given number of rows. All the instances can be downloaded from http://anjos.mgi.polymtl.

ca/flplib. Let us finally mention that we can round the lower bound 〈C,Z〉 to the nearest integer because 0.5
can only occur in the constant term. First we review the best known practical results for the (SRFLP) in Subsection
5.1 and then we explain our algorithmic strategies for the (PROP) in detail in Subsection 5.2. Finally we expand
our computational results to the case of 3 and more rows in Subsection 5.3.

5.1 Review: (SRFLP) Instances

Let us start with giving the characteristics and the optimal (SRFLP) solutions of the instances considered in our
computational study in Table 1. All results obtained are provided by the SDP approach [36], which is the strongest
to date, applied to (SDPstandard) on our machine. Its main features are summarized in Subsection 2.2. Using
a direct extension of the (SRFLP) approach to obtain the results of the following two subsections allows a fair
comparison of the computational (SRFLP) and (kPROP) results.

5.2 (PROP) Instances

We started with computing the exact relaxation values for small and medium sized (PROP) instances. Among n
departments, suppose that there are t departments with some characteristic in common so that they should be ar-
ranged along one row, leaving the remaining departments to be arranged on a parallel row. For reasons of efficiency
we used 10 function evaluations of the bundle method applied to (SDPcheap) to obtain an initial set of constraints
to add to the relaxation (SDPbasic). We then solved the resulting relaxation using Sedumi [51]; added all vio-
lated inequality constraints from (SDPcheap); solved again using Sedumi; and repeated this process until no more
violations were found. We also tried to solve (SDPcheap) directly but the running times were at least one order
of magnitude slower. Additionally we tried to solve (SDPfull) instead of (SDPcheap) which resulted in slightly
improved lower bounds but tremendously larger running times because many of the O(n6) triangle inequalities and
O(n5) LS-cuts are active at the optimum. E.g. even for the smallest instance S11 with only 11 departments and an
optimal solution value of 3895.5 we need more than 10 minutes to compute (SDPfull), we have to consider 2745
constraints and the lower bound is 3600.5. For comparison we need only 1 second to compute (SDPcheap) as we
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Instance Source Size SRFLP
(n) Best Best Gap Time (sec)

lower bound layout (%) [36]
S11 [49] 11 6933.5 0 1
P15 [2] 15 6305 0 20

P16_a [7] 16 14829 0 34
P16_b [7] 16 11878.5 0 34

P17 [3] 17 9254 0 35
P18 [3] 18 10650.5 0 33

H_20 [33] 20 15549 0 54
P20_a [7] 20 24180.5 0 1:03
P20_b [7] 20 25218 0 1:07
P21_a [7] 21 13432.5 0 1:13
P21_b [7] 21 22964 0 1:21
P22_a [7] 22 17064 0 1:00
P22_b [7] 22 29770 0 1:07
P23_a [7] 23 19589 0 1:14
P23_b [7] 23 30257.5 0 1:06

N25_05 [11] 25 15623 0 3:31
H_30 [33] 30 44965 0 14:17

N30_05 [11] 30 115268 0 18:30
Am33_03 [4] 33 69942.5 0 36:33
Am35_03 [4] 35 69002.5 0 53:14

ste36.5 [12] 36 91651.5 0 17:58
N40_5 [36] 40 103009 0 2:20:09
sko42-5 [12] 42 248238.5 0 1:08:42
sko49-5 [12] 49 666130 666143 0.002 9:30:22
sko56-5 [12] 56 591915.5 592335.5 0.07 17:46:46

AKV-60-05 [13] 60 318792 318805 0.004 12:39:37
sko64-5 [12] 64 501059.5 502063.5 0.20 13:53:04

AKV-70-05 [13] 70 4213774.5 4218002.5 0.10 28:16:05
sko72-5 [12] 72 426224.5 430288.5 0.95 31:39:43

AKV-75-05 [13] 75 1786154 1791469 0.30 41:10:37
AKV-80-05 [13] 80 1585491 1590847 0.34 58:30:30

sko81-5 [12] 81 1293905 1311166 1.33 58:59:28
sko100-5 [12] 100 1021584.5 1040929.5 1.89 201:29:27

Table 1: Characteristics and optimal (SRFLP) results for instances with between 11 and 100 departments. The
bundle method is restricted to 500 function evaluations for 42 ≤ n ≤ 56 and 250 function evaluations for n ≥ 60.
The running times are given in sec or min:sec or in h:min:sec respectively.

have to consider only 113 constraints and the lower bound obtained is 3563.5. The results obtained are summarized
in Table 2, where the optimal solutions are provided by Amaral [7].

While the computing time clearly grows with the instance size, the gaps seem to be independent of the number
of departments considered. However the size of t has an obvious influence on the gaps: The more departments are
located in the same row, the smaller the gaps are in average, i.e. (PROP) instances that are “similar” to (SRFLP)
instances are easier. This finding perfectly falls into place with our argument above that the (SRFLP) is easier to
solve than the (PROP). Contrary to that the MIP approach by Amaral [7] that provides the optimal solution for
instances with up to 23 departments works better on balanced instances, i.e. on a machine that is similar to our
computer3 his approach needs in average around 17.5 hours for instances with 23 departments and t = bn/2c and
in average around 96 hours for instances with 23 departments and t = bn/5c. In the following we will show that
our SDP algorithm, in contrast to the MIP approach, can also be used the obtain reasonably tight lower bounds for
(PROP) instances with up to 100 departments.

As a first experiment in that direction we generate row assignments of similar row lengths that are the most
difficult ones for our approach (for details see Table 2). To do so we select the row assignments using the following
simple heuristic: We first randomly assign 25% of the departments to each of the two rows; then the remaining 50%
of the departments are added one at a time by taking the longest remaining department and adding it to the shorter

3For exact numbers of the speed differences see http://www.cpubenchmark.net/.
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Instance t = bn/2c t = bn/3c
Lower bound Optimal solution Gap (%) Time (sec) Lower bound Optimal solution Gap (%) Time (sec)

S11 3563.5 3895.5 9.3 0.6 5336.5 5404.5 1.3 1.3
P15 3269 3435 5.1 5.7 3651 3754 2.8 5.7

P16_a 7326 7630 4.1 9.8 9006 9813 9.0 10.3
P16_b 6039.5 6239.5 3.3 8.0 8579.5 9091.5 6.0 7.4
P20_a 11707.5 12609.5 7.7 30.5 14702.5 15874.5 8.0 44.1
P20_b 12169 12936 6.3 34.3 17903 19167 7.1 25.2
P21_a 6582.5 7006.5 6.4 100.2 8466.5 9141.5 8.0 78.8
P21_b 11105 11705 5.4 101.1 12838 13887 8.2 89.9
P22_a 8348 8874 6.3 99.7 11347 12238 7.9 104.9
P22_b 14673 15714 7.1 160.7 17590 19183 9.1 179.5
P23_a 9599 10242 6.7 148.4 13416 14294 6.6 145.4
P23_b 14884.5 15802.5 6.2 157.3 19936.5 21116.5 5.9 253.1

Instance t = bn/4c t = bn/5c
Lower bound Optimal solution Gap (%) Time (sec) Lower bound Optimal solution Gap (%) Time (sec)

S11 5840.5 5852.5 0.2 1.1 5840.5 5852.5 0.2 1.1
P15 4445 4537 2.1 2.9 4445 4537 2.1 2.9

P16_a 10999 11409 3.7 6.9 11958 12279 2.7 6.6
P16_b 9392.5 9636.5 2.6 11.1 11031.5 11256.5 2.0 8.0
P20_a 17372.5 18185.5 4.7 65.3 20618.5 21215.5 2.9 37.0
P20_b 21784 22801 4.7 35.1 23148 23902 3.3 46.7
P21_a 11243.5 11765.5 4.7 66.1 11959.5 12385.5 3.6 94.1
P21_b 17862 18564 4.0 62.3 20489 20825 1.6 63.9
P22_a 14730 15385 4.4 148.0 15617 16114 3.2 89.4
P22_b 22859 23534 3.0 99.9 24702 25044 1.4 122.3
P23_a 17085 17812 4.3 139.2 18100 18619 2.9 220.8
P23_b 25427.5 26004.5 2.3 168.6 29395.5 29892.5 1.7 200.0

Table 2: (PROP) results for (SDPcheap) and given row assignments using the bundle method in conjunction with
Sedumi. Among n departments, t departments are arranged along one row, leaving the remaining departments to be
arranged on a parallel row. The optimal solutions are provided by Amaral [7].

row. Such balanced row assignments are often of interest in the design of layouts in practice, see e.g. [38]. Our
heuristic quickly yields assignments for which the total row lengths are very close; see the second-to-last column
of Table 4. We summarize the results averaged over 10 row assignments selected by our heuristic in Table 3. We
used the same algorithmic approach as described above for the lower bound computation. The upper bounds are
provided by the heuristic described in Subsection 4.2. Additionally we state the average number of inequalities of
(SDPcheap) that we considered when obtaining the optimal solution.

Instance Lower Upper Minimum Maximum Average Average Average
bound bound gap gap gap (%) number of time

(%) (%) inequalities
P17 4501.5 4722 2.68 10.05 5.82 265.7 41
P18 5153 5503.5 3.85 11.51 8.36 298.6 1:07

H_20 7520 8046 4.97 10.86 7.70 400.7 4:03
N25_05 7385 7986 5.62 11.56 8.79 659.1 23:06

H_30 21028 22848 6.64 13.74 9.63 1057.6 2:12:30
N30_05 53854 58221 5.89 13.46 9.27 1201.3 2:37:19

Am33_03 32847 35904.5 7.59 13.88 9.31 1580.7 5:52:13
Am35_03 32142 35273 8.64 12.89 9.74 1666.3 10:27:58

ste36.5 44786.5 46794.5 1.36 5.54 3.66 1633.6 12:40:15

Table 3: (PROP) results for (SDPcheap) and given row assignments using the bundle method in conjunction with
Sedumi. The results are averages over 10 row assignments. For the heuristically selected row assignments the total
row lengths are very close. The running times are given in sec or min:sec or in h:min:sec respectively.

We have to call Sedumi 3 times on average to solve (SDPcheap) exactly. It is interesting to note that in all our
experiments, the gap changes only marginally after the first call to Sedumi, i.e. lower bounds of nearly the same
quality are already obtained after one third of the computing time. We assume that the slightly larger gaps compared
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to Table 2 are due to non-optimal upper bounds because the performance of our rounding heuristic depends of course
on the quality of the fractional starting solutions provided. If these starting solutions are already off a few percent
the obtained layouts are good but not optimal in general. Additionally we can observe that the growing size of
the SDP matrices and the growing number of inequalities considered when obtaining the optimal solution result in
rapidly growing running times for increasing n.

Hence for large instances with n ≥ 40 departments we apply only the bundle method (without Sedumi) to
(SDPcheap). Also in this case the large number of violated LS-cuts has only little effect on the bound quality but
slows down the bundle computation significantly which altogether leads to a computationally better performance
of our approach applied to (SDPcheap) compared to (SDPfull). We report results for instances with up to 100
departments, again averaged over 10 balanced row assignments selected by our heuristic. The experiments quickly
become very time consuming which is evidenced by the growth of the running times in Table 4 below, as well as in
Table 1 for solving the simpler (SRFLP) relaxation. We restrict the bundle method to 125 function evaluations of
the objective function f . This limitation of the number of function evaluations sacrifices some possible incremental
improvement of the bounds. Table 4 summarizes the results we obtained.

Instance Lower Upper Minimum Maximum Average Average Average
bound bound gap gap gap difference of time

(%) (%) (%) row lengths (sec)
P17 4435 4737 4.68 10.62 7.29 1.8 25
P18 5080 5462.5 5.09 14.32 9.63 1.0 32

H_20 7402 8149 8.54 12.40 10.03 2.0 48
N25_05 7254 7945 6.37 15.33 10.45 0.4 2:09

H_30 20659.5 22801 9.18 18.70 13.34 2.0 5:13
N30_05 52756.5 58425 7.29 13.55 10.45 1.8 5:10

Am33_03 32058 35958.5 10.45 20.41 15.39 1.6 9:14
Am35_03 31521 34794.5 8.77 18.48 14.83 1.2 12:00

ste36.5 41409.5 47259.5 7.14 19.94 12.91 1.0 13:28
N40_5 46877.5 55220 13.73 21.75 17.53 0.0 24:24
sko42-5 113606 127639.5 11.36 19.43 15.54 1.0 32:40
sko49-5 291004.5 349137 17.46 23.10 20.20 2.0 1:21:44
sko56-5 261686 306133.5 15.91 22.54 19.66 1.0 3:17:29

AKV-60-05 145702 171280 17.56 22.42 19.41 1.0 4:46:03
sko64-5 219646 261257.5 18.95 24.78 21.56 1.0 6:20:28

AKV-70-05 1861211 2196942.5 18.04 21.36 19.62 1.2 12:33:52
sko72-5 185496 222924.5 19.77 24.76 22.14 0.0 14:00:31

AKV-75-05 793712 946626 18.37 23.17 20.61 2.2 17:36:27
AKV-80-05 708327.5 836043 16.99 23.11 19.82 2.2 26:19:44

sko81-5 568646.5 691250 20.94 23.62 22.10 1.0 28:45:03
sko100-5 441133 552389.5 24.37 27.01 25.61 1.0 98:08:37

Table 4: (PROP) results for (SDPcheap) and given row assignments using the bundle method restricted to 125
function evaluations. The results are averages over 10 row assignments. For the heuristically selected row assign-
ments the total row lengths are very close. “Lower bound” gives the worst lower bound over the 10 instances and
“Upper bound” states the best upper bound over the 10 instances. The running times are given in sec or min:sec or
in h:min:sec respectively.

Comparing the results in Tables 3 and 4 shows that the lower bounds of the bundle method quickly get close
to the exact (SDPcheap) bounds even though the number of function evaluations is capped at 125. Furthermore,
while the running times in Table 3 grow very quickly with the problem size, the computation times of the bundle
method in Table 4 are not so strongly affected by the problem size. Hence this approach yields bounds competitive
with the exact optimal value of (SDPcheap) at only a fraction of the computational cost. For comparison the
(SRFLP) results from Table 1 were obtained by the same algorithmic approach but using a different SDP relaxation
((SDPstandard) instead of (SDPcheap)) and a higher number of function evaluations. We can observe that the
number of function evaluations mainly determines the running times and that the size of the gaps clearly differs for
(SRFLP) and (PROP) instances due to the different objective functions.
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5.3 (kPROP) Instances with k ≥ 3

Finally we aim to analyze the effect of an increased number of rows on our SDP approach. Hence we adapt the exper-
iments from the previous subsection to (kPROP) instances with 3 ≤ k ≤ 5. Let us start with the small and medium
size instances from [7]. We use again the bundle method in conjunction with Sedumi applied to (SDPcheap) be-
cause this approach clearly outperforms the other two variants discussed above (solving (SDPcheap) directly or
using (SDPfull)) due to the same reasons. We choose again t departments with some characteristic in common
so that they should be arranged along the first row, leaving the remaining departments to be arranged equally on the
other rows. We compare the two different objective functions discussed in Subsection 3.1, for an illustration see
Figure 4. The results obtained are summarized in Table 5 for 3 rows and in Table 6 for 4 and 5 rows. The upper
bounds are provided by the heuristic described in Subsection 4.2.

Instance k = 3, t = bn/3c, 〈Cd, Z〉 k = 3, t = bn/3c, 〈Ci, Z〉
Lower bound Upper bound Gap (%) Time (sec) Lower bound Upper bound Gap (%) Time (sec)

S11 2827.5 3127.5 10.6 1.1 4279.5 4323.5 1.0 1.2
P15 2134 2296 7.6 10.2 3383 3489 3.2 11.2

P16_a 4779 5234 9.5 10.7 7490 7939 6.0 9.4
P16_b 3937.5 4293.5 9.0 6.6 6107.5 6330.5 3.7 13.0
P20_a 7815.5 8608.5 10.2 91.6 12913.5 13348.5 3.4 48.4
P20_b 8282 9446 14.1 47.2 13678 14073 2.9 67.9
P21_a 4457.5 4976.5 11.6 116.6 7060.5 7491.5 6.1 101.1
P21_b 7580 8156 7.6 121.2 11942 12388 3.7 111.1
P22_a 5659 6479 14.5 219.5 9442 9829 4.1 175.6
P22_b 9612 10398 8.2 271.3 15931 16865 5.9 219.4
P23_a 6589 7545 14.5 307.8 10961 11383 3.9 223.2
P23_b 10267.5 12090.5 17.8 215.8 17531.5 18103.5 3.3 378.1

Instance k = 3, t = bn/4c, 〈Cd, Z〉 k = 3, t = bn/4c, 〈Ci, Z〉
Lower bound Upper bound Gap (%) Time (sec) Lower bound Upper bound Gap (%) Time (sec)

S11 4507.5 4700.5 4.3 1.3 5793.5 5851.5 1.0 1.7
P15 3893 4043 3.9 6.4 5374 5474 1.9 8.5

P16_a 6163 6639 7.7 10.7 9439 9615 2.0 16.1
P16_b 4872.5 5230.5 7.4 11.0 7459.5 7583.5 1.7 17.5
P20_a 9893 11482.5 16.1 61.0 17911.5 18186.5 1.5 55.8
P20_b 10456 11664 11.6 62.1 15491 16020 3.4 50.5
P21_a 5739.5 6434.5 12.1 135.8 8171.5 8405.5 2.9 126.8
P21_b 8868 10216 15.2 142.4 13364 13575 1.6 123.8
P22_a 8075 9044 12.0 160.1 11029 11317 2.6 196.6
P22_b 11768 13148 11.7 129.6 17572 18219 3.7 224.4
P23_a 9711 10779 11.0 337.7 12952 13434 3.7 263.4
P23_b 15838.5 16696.5 5.4 269.8 21236.5 22001.5 3.6 207.9

Instance k = 3, t = bn/5c, 〈Cd, Z〉 k = 3, t = bn/5c, 〈Ci, Z〉
Lower bound Upper bound Gap (%) Time (sec) Lower bound Upper bound Gap (%) Time (sec)

S11 4507.5 4700.5 4.3 1.3 5793.5 5851.5 1.0 1.7
P15 3893 4043 3.9 6.4 5374 5474 1.9 8.5

P16_a 9493 9746 2.7 13.8 12794 12845 0.4 12.7
P16_b 8922.5 9137.5 2.4 13.1 10873.5 10981.5 1.0 13.5
P20_a 5874.5 6762.5 15.1 108.2 11770.5 12082.5 2.7 68.5
P20_b 14693 15505 5.5 65.9 19237 19615 2.0 69.3
P21_a 7893.5 8606.5 9.0 106.4 10351.5 10482.5 1.3 114.8
P21_b 12068 12928 7.1 99.2 15982 16204 1.4 163.5
P22_a 10936 11669 6.7 203.2 13828 14100 2.0 259.2
P22_b 17445 18595 6.6 125.1 23147 23371 1.0 232.0
P23_a 13006 13696 5.3 202.8 16001 16351 2.2 311.4
P23_b 21200.5 22020.5 3.9 227.9 25683.5 26313.5 2.5 362.7

Table 5: (kPROP) results with k = 3 for (SDPcheap) and given row assignments using the bundle method in
conjunction with Sedumi. Among n departments, t departments are arranged along the first two rows, leaving the
remaining departments to be arranged on row 3.

Again the computing time clearly grows with the instance size and the gaps are clearly influenced in the same
way as above by t: The more departments are located in one row, the smaller the gaps are in average. The number
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of rows and the distance calculation for non-adjacent rows have no influence on the running time but a considerable
effect on the gaps:

1. The gaps are essentially smaller for the objective function 〈Ci, Z〉 compared to 〈Cd, Z〉, i.e.Cd contains more
quadratic terms in ordering variables and hence the corresponding SDP relaxation provides less tight lower
bounds.

2. For the objective function 〈Ci, Z〉 the average gaps decrease for an increasing number of rows as the number
of quadratic terms in orderings variables in Ci decreases.

3. For objective function 〈Cd, Z〉 the average gaps increase for an increasing number of rows as the number of
quadratic terms in orderings variables in Cd increases.

We have seen in the previous subsection that using only the bundle method (without Sedumi) is the preferable
approach for larger (PROP) instances. The same holds true for (kPROP) instances with k ≥ 3. Hence we solely
extend the experiments from Table 4 for 3 and 5 rows respectively. Hence we again generate row assignments of
similar row lengths. To do so we select the row assignments using the following simple heuristic: We first randomly
assign 50

k % of the departments to each of the k rows; then the remaining 50% of the departments are added one at
a time by taking the longest remaining department and adding it to the shortest row. This heuristic quickly yields
assignments for which the total row lengths are very close; see the second-to-last column of Table 7. We again
restrict the bundle method to 125 function evaluations of the objective function f which sacrifices some possible
incremental improvement of the bounds. We summarize the results averaged over 10 row assignments selected by
our heuristic in Table 7. The upper bounds are provided by the heuristic described in Subsection 4.2.

The number of rows and the different objective functions influence the computational results for large (kPROP)
instances in the same way as above for small and medium (kPROP) instances:

• The number of rows and the distance calculation for non-adjacent rows have no effect on the running time.

• The gaps are essentially smaller for the objective function 〈Ci, Z〉 compared to 〈Cd, Z〉.

• For the objective function 〈Ci, Z〉 the average gaps decrease for an increasing number of rows.

• For the objective function 〈Cd, Z〉 the average gaps increase for an increasing number of rows.

6 Conclusion

In this paper we proposed a new semidefinite programming approach for the k-Parallel Row Ordering Problem that
extends the semidefinite programming approach for the Single-Row Facility Layout Problem by modelling inter-row
distances as products of ordering variables. Our computational results show that our approach provides high-quality
global bounds in reasonable time for instances with up to 100 departments and 5 rows.

The next step in extending our approach are the consideration of further valid inequalities in our SDP relaxations,
the incorporation of spacing within the rows in the optimization process and the use of the SDP approach within a
suitable enumeration scheme to globally optimize instances of double-row and multi-row layout. For a first step in
that direction we refer to Hungerländer and Anjos [34].
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Instance k = 4, t = bn/4c, 〈Cd, Z〉 k = 4, t = bn/4c, 〈Ci, Z〉
Lower bound Upper bound Gap (%) Time (sec) Lower bound Upper bound Gap (%) Time (sec)

S11 2977.5 3156.5 6.0 1.6 4723.5 4733.5 0.2 1.5
P15 2101 2403 14.4 7.0 3754 3783 0.8 8.8

P16_a 3554 3896 9.6 11.8 7090 7191 1.4 14.0
P16_b 3026.5 3401.5 12.4 9.9 5898.5 6000.5 1.7 12.4
P20_a 6622.5 7756.5 17.1 68.3 13448.5 13524.5 0.6 103.5
P20_b 6131 7092 15.7 90.1 11973 12160 1.6 115.2
P21_a 3583.5 3942.5 10.0 138.4 7592.5 7831.5 3.2 107.4
P21_b 5687 6336 11.4 82.1 11832 11948 1.0 163.5
P22_a 4778 5675 18.8 128.2 10334 10477 1.4 166.1
P22_b 7412 8171 10.2 291.3 15777 15805 0.2 306.7
P23_a 5719 6751 18.1 272.6 12081 12334 2.1 324.1
P23_b 8559.5 10003.5 16.9 309.4 17200.5 17241.5 0.2 303.1

Instance k = 4, t = bn/5c, 〈Cd, Z〉 k = 4, t = bn/5c, 〈Ci, Z〉
Lower bound Upper bound Gap (%) Time (sec) Lower bound Upper bound Gap (%) Time (sec)

S11 2977.5 3156.5 6.0 1.6 4723.5 4733.5 0.2 1.5
P15 2101 2403 14.4 7.0 3754 3783 0.8 8.8

P16_a 5460 6022 10.3 11.3 9514 9630 1.2 13.9
P16_b 4330.5 4717.5 9.0 19.9 7239.5 7299.5 0.8 13.0
P20_a 4724.5 5210.5 10.3 95.9 10475.5 10532.5 0.6 107.4
P20_b 7764 8645 11.4 94.3 14885 15005 0.8 95.0
P21_a 4247.5 4888.5 15.1 96.9 8143.5 8181.5 0.5 186.7
P21_b 7034 7931 12.8 140.9 13664 13682 0.1 155.5
P22_a 6238 6959 11.6 169.6 11100 11136 0.3 209.2
P22_b 9434 10566 12.0 194.7 18186 18285 0.5 204.4
P23_a 7606 8382 10.2 241.9 12963 13054 0.7 434.0
P23_b 13562.5 14352.5 5.8 431.8 20962.5 21016.5 0.3 478.8

Instance k = 5, t = bn/5c, 〈Cd, Z〉 k = 5, t = bn/5c, 〈Ci, Z〉
Lower bound Upper bound Gap (%) Time (sec) Lower bound Upper bound Gap (%) Time (sec)

S11 1545.5 1742.5 12.8 1.3 3329.5 3329.5 0 0.7
P15 1500 1566 4.4 7.5 3193 3239 1.4 8.1

P16_a 2821 3181 12.8 9.4 7043 7073 0.4 13.4
P16_b 2396.5 2786.5 16.3 6.1 5817.5 5934.5 2.0 13.0
P20_a 4724.5 5210.5 10.3 95.9 10475.5 10532.5 0.6 107.4
P20_b 4898 5408 10.4 55.8 10996 11038 0.4 97.8
P21_a 2732.5 3038.5 11.2 147.3 6044.5 6076.5 0.5 155.9
P21_b 4534 5054 11.5 115.2 10366 10483 1.1 154.9
P22_a 3749 4403 17.5 213 8432 8438 0.1 220.0
P22_b 5923 6615 11.7 165.1 14180 14224 0.3 190.7
P23_a 4612 5293 14.8 199.3 10082 10104 0.2 308.3
P23_b 7075.5 8396.5 18.7 222.1 15035.5 15057.5 0.2 300.8

Table 6: (kPROP) results with k = 4 and k = 5 for (SDPcheap) and given row assignments using the bundle
method in conjunction with Sedumi. Among n departments, t departments are arranged along the first k − 1 rows,
leaving the remaining departments to be arranged on the last row.
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Instance k = 3, 〈Cd, Z〉 k = 3, 〈Ci, Z〉
Lower Upper Minimum Maximum Average Average Average Lower Upper Minimum Maximum Average Average Average
bound bound gap gap gap difference of time bound bound gap gap gap difference of time

(%) (%) (%) row lengths (%) (%) (%) row lengths
P17 3083.5 3417 8.75 19.99 14.24 1.3 30 4491.5 4715 2.62 6.73 4.31 1.3 26
P18 3513.5 3842.5 9.36 18.24 13.63 1.7 37 5113.5 5299.5 1.72 7.44 4.45 1.7 32

H_20 4950 5718 10.48 18.04 13.74 1.5 55 7150.5 7731 1.77 8.13 4.48 1.5 51
N25_05 4737 5507 11.11 17.69 15.07 0.7 2:24 7282.5 7912 1.08 8.64 4.07 0.7 2:15

H_30 13632 15408 13.03 20.82 17.31 1.5 6:08 21705.5 23265 4.38 7.18 5.66 1.5 5:44
N30_05 35034.5 39536 10.04 21.98 16.11 2.2 5:38 54644 59798 2.97 9.43 5.55 2.2 5:35

Am33_03 21187.5 24958.5 15.21 22.31 19.57 1.5 9:31 35025 37088.5 3.33 9.77 5.57 1.5 9:47
Am35_03 20515.5 23552.5 13.92 21.17 17.69 1.0 12:38 33972 36098.5 3.56 6.96 5.24 1.0 13:12

ste36.5 29326 35684.5 16.57 31.71 23.57 1.5 14:19 43378.5 47433.5 2.13 9.53 5.02 1.5 14:20
N40_5 29726.5 37388 19.54 28.58 24.83 0.7 25:54 54514.5 59497 4.79 9.61 6.42 0.7 26:59
sko42-5 73870 86835.5 16.70 24.68 21.28 0.8 32:48 122741.5 130627.5 3.98 8.80 6.68 0.8 35:37
sko49-5 187774.5 231802 23.45 27.51 25.16 2.4 1:26:00 319754 350438 7.72 10.95 9.05 2.4 1:27:53
sko56-5 169046 209771.5 23.18 27.90 25.47 0.7 3:10:14 280373 307337.5 6.15 9.62 7.83 0.7 3:10:54

AKV-60-05 93118.5 118576 25.25 34.64 28.46 1.1 4:54:59 159002 173876 4.42 9.38 7.38 1.1 5:11:26
sko64-5 140187 175694.5 25.12 30.82 27.59 0.7 7:03:37 236929 261468.5 7.87 12.20 9.80 0.7 7:37:32

AKV-70-05 1179882 1489955.5 25.27 30.37 27.70 1.4 12:25:00 2015403 2236313.5 5.73 12.63 8.78 1.4 13:44:50
Instance k = 5, 〈Cd, Z〉 k = 5, 〈Ci, Z〉

Lower Upper Minimum Maximum Average Average Average Lower Upper Minimum Maximum Average Average Average
bound bound gap gap gap difference of time bound bound gap gap gap difference of time

(%) (%) (%) row lengths (%) (%) (%) row lengths
P17 1883 2125 9.61 16.73 13.29 1.9 32 4113 4142 0.09 1.15 0.62 1.9 23
P18 2095 2465.5 8.52 19.45 13.76 1.9 40 4553 4562.5 0.11 1.50 0.64 1.9 29

H_20 3190 3641 12.64 20.45 16.00 1.4 1:01 6648 6668 0.21 1.74 0.80 1.4 45
N25_05 2885 3301 12.19 21.90 17.16 0.9 2:40 6700 6760 0.13 1.02 0.63 0.9 2:05

H_30 8078 9535 15.86 24.26 20.10 1.3 6:47 19873.5 20169 0.41 1.66 1.07 1.3 5:32
N30_05 21021 23970 10.97 26.61 20.48 2.2 6:44 51491.5 52171 0.44 1.32 0.85 2.2 5:23

Am33_03 13020.5 15468.5 15.69 27.93 22.84 1.5 11:08 29509 29828.5 0.49 1.17 0.71 1.5 9:34
Am35_03 12362.5 14753.5 19.34 27.81 23.34 1.1 14:41 30070 30561.5 0.71 1.83 1.24 1.1 14:29

ste36.5 17727 23431.5 19.39 42.88 29.70 1.4 14:44 57881.5 58551.5 0.74 2.72 1.57 1.4 15:33
N40_5 18871 23351 21.72 30.23 26.45 0.6 26:29 49102 49553.5 0.54 1.40 1.02 0.6 27:32
sko42-5 43394.5 54402.5 23.63 30.09 26.80 1.2 33:57 108072.5 109073.5 0.46 1.46 0.92 1.2 35:47
sko49-5 109725.5 142625 26.62 31.72 29.20 2.7 1:24:15 276888.5 279585 0.88 1.85 1.27 2.7 1:31:42
sko56-5 98792.5 128605.5 28.73 33.72 30.97 1.0 3:05:20 252663.5 254116.5 0.53 1.19 0.75 1.0 3:34:49

AKV-60-05 56122 73434 28.74 38.78 33.12 1.2 5:00:21 139695 140687 0.31 1.45 0.67 1.2 5:33:54
sko64-5 81613 106964.5 30.54 37.18 34.34 0.8 7:06:06 212293 214853.5 0.82 1.56 1.27 0.8 7:45:49

AKV-70-05 696599 913425.5 29.02 34.13 32.39 1.6 12:18:10 1704224.5 1717412.5 0.39 1.04 0.66 1.6 14:56:07

Table 7: (kPROP) results with k = 3 and k = 5 for (SDPcheap) and given row assignments using the bundle method. The results are averages over 10 row
assignments. For the heuristically selected row assignments the total row lengths are very close. “Lower bound” gives the worst lower bound over the 10 instances
and “Upper bound” states the best upper bound over the 10 instances. The running times are given in sec or min:sec or in h:min:sec respectively.
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