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Abstract. We consider the total variation minimization model with consistent finite element dis-
cretization. It has been shown in the literature that this model can be reformulated as a saddle-point
problem and be efficiently solved by the primal-dual method. The convergence for this application
of the primal-dual method has also been analyzed. In this paper, we focus on a more general primal-
dual scheme with a combination factor for the model and derive its convergence. We also establish
the worst-case convergence rate measured by the iteration complexity for this general primal-dual
scheme. Furthermore, we propose a prediction-correction scheme based on the general primal-dual
scheme, which can significantly relax the step size for the discretization in the time direction. Its
convergence and the worst-case convergence rate are established. We present preliminary numerical
results to verify the rationale of considering the general primal-dual scheme and the primal-dual-
based prediction-correction scheme.
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1. Introduction. We consider the total variation (TV) minimization model in
[34]:

(1.1) inf
u

E(u) := ∥Du∥+ α

2
∥u− g∥2L2(Ω),

where the energy functional E : BV (Ω)∩L2(Ω) → R with a bounded Lipschitz domain
Ω ⊂ Rd with d = 2, g ∈ L2(Ω) is a given function, α > 0 is a parameter, BV (Ω) is the
bounded variation space consists of all functions v ∈ L1(Ω) satisfying ∥Dv∥ < +∞,
and ∥Dv∥ denotes the TV norm defined by

(1.2) ∥Dv∥ := sup
{∫

Ω

v divφ dx : φ ∈ C1
c (Ω;Rd), ∥φ∥∞ ≤ 1

}
.

In (1.2), ∥φ∥∞ = (
∑d

i=1 supx∈Ω |φi(x)|2)1/2, Dv represents the gradient of v in the
distributional sense, div denotes the divergence operator, and C1

c (Ω;Rd) is the set
of once continuously differentiable Rd-valued functions with compact support in Ω.
The BV (Ω) space endowed with norm ∥v∥BV := ∥v∥L1(Ω) + ∥Dv∥ is a Banach space.
We refer the reader to, e.g., [2, 5, 6, 40] for more details. As well studied in the
literature, the model (1.1) has particular effective applications in image processing
domain, mainly because of the capability of preserving sharp edges of digital images
with piecewise smooth structure. Note that the model (1.1) has a unique solution in
BV (Ω) because of the strict convexity of the quadratic term of the energy functional
E(u).

To find a numerical solution for (1.1), we can consider its Euler-Lagrange equation

(1.3) −div
( ∇u

|∇u|

)
+ α(u− g) = 0,
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where ∇u is the gradient of u in L1(Ω), and | · | denotes the Euclidean norm in
Rd. The equation (1.3) indeed characterizes the first-order KKT condition of (1.1).
In the literature, there are various efficient numerical schemes that are applicable
for solving (1.3) or its regularized equation with homogeneous Neumann boundary
condition. For instance, the time marching scheme in [34], the linear semi-implicit
fixed-point method in [17, 18, 36], the interior-point primal-dual implicit quadratic
methods in [16] and some others in [6, 12, 15, 37]. Furthermore, we can consider
the L2 gradient flow of the model (1.1) and its regularized problem constructed by
evolving the Euler-Lagrange equation:

(1.4) ∂tu− div
( ∇u

|∇u|

)
+ α(u− g) = 0

with Neumann boundary condition and initial data from the theoretical and compu-
tational aspects. In (1.4), ∂t means the time partial derivative. We refer to, e.g.,
[3, 8, 22, 23, 29, 34, 35], for more discussions for (1.4). In particular, in a very recent
work [8], the authors studied an algorithm for (1.4) with α = 0 which was based on
the methods in [7, 14].

Replacing the term ∇u
|∇u| in (1.4) by a new variable p, we can reformulate (1.4) as

(1.5) ∂tu− divp+ α(u− g) = 0, p ∈ ∂|∇u|,

where ∂(|·|) denotes the subdifferential of a nonsmooth convex function. Indeed, (1.5)
is the L2 gradient flow of the energy functional E(u) considered in [7]. As indicated
in [7], by the equivalence

p ∈ ∂|∇u| ⇔ ∇u ∈ ∂IB(p),

where B = {p ∈ L1(Ω;Rd) : ∥p∥∞ ≤ 1} and IB(·) denotes its indictor function, it
motivates us to consider the following system of evolution equations

(1.6) ∂tu− divp+ α(u− g) = 0, −σ∂tp+∇u ∈ ∂IB(p)

with a parameter σ > 0 as the scale for ∇u. Note that the system (1.6) can also
be regarded as the simultaneous gradient flow for the saddle-point formulation of the
model (1.1)

(1.7) inf
u

E(u) = inf
u

sup
p

E(u, p) := α

2
∥u− g∥2L2(Ω) +

∫
Ω

∇u · p dx− IB(p).

As mentioned in [7], the piecewise constant and piecewise affine globally contin-
uous finite element spaces are dense in BV (Ω) with respect to weak* convergence in
BV (Ω). Thus, the following finite element spaces{

S1(Th) = {vh ∈ C(Ω̄) : vh|T is affine for each T ∈ Th},
L0(Th) = {qh ∈ L1(Ω) : qh|T is constant for each T ∈ Th},

are built in [7] to approximate the functions u and p in (1.6), respectively, where Th
denotes as the regular triangulations of Ω into triangles and h = maxT∈Th

diam(T ) as
the maximal diameters. Furthermore, in [7], the L2 scalar product to equip L0(Th)d,
i.e., a space of piecewise constant vector fields, is based on the identity

∥Duh∥ = sup
ph∈L0(Th)d,∥ph∥∞≤1

∫
Ω

∇uh · ph dx.
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Then, the TV minimization model (1.1) with finite element approximation can be
reformulated as the following saddle-point problem:

inf
uh

E(uh) = inf
uh∈S1(Th)

sup
ph∈L0(Th)d

E(uh, ph)

=
α

2
∥uh − g∥2L2(Ω) +

∫
Ω

∇uh · ph dx− IB(ph).
(1.8)

Note that the discretized saddle-point problem (1.8) has a solution point (uh, ph) ∈
S1(Th)×L0(Th)d, because E(uh, ph) is a closed, proper and convex-concave functional,
see, e.g., [7].

For solving a saddle-point problem including the special form (1.8), the primal-
dual method has received much attention from different areas, see, e.g., earlier work
on the inexact Uzawa method [4, 19] and [10, 19, 24, 25, 33, 41] for saddle-point linear
systems resulted from the numerical approximation of elasticity problems or stokes
equations, and the quadratic programming with linear constraints. Moreover, in some
work such as [14, 20, 38, 39], its particular applications to various image processing
problems have been intensively investigated. As analyzed in [20, 38], the primal-dual
method is a variant of inexact Uzawa method [4, 19]. In [7], the saddle-point problem
(1.8) was solved by an iterative scheme, which is the variational form of the following
primal-dual scheme:

un+1
h = argmin

{
E(vh, pnh) +

1

2τ
∥vh − un

h∥2 | vh ∈ S1(Th)
}
,(1.9a)

ũn+1
h = 2un+1

h − un
h,(1.9b)

pn+1
h = argmax

{
E(ũn+1

h , qh)−
σ

2τ
∥qh − pnh∥2 | qh ∈ L0(Th)d

}
,(1.9c)

where τ > 0 and it can be understood as the step size for implementing gradient-based
iterative methods for the minimization and maximization subproblems in (1.9). The
scheme (1.9) can be viewed as an semi-implicit difference scheme for (1.6) with finite
element discretization in space, and the parameter τ in (1.9) behaves as the step size
in the time direction. We refer to [7] for its convergence and numerical efficiency.

Inspired by the work [14, 26], in this paper we consider a more general primal-dual
scheme, which includes the scheme (1.9) as a special case, for the model (1.8). More
specifically, we propose the following scheme:

un+1
h = argmin

{
E(vh, pnh) +

1

2τ
∥vh − un

h∥2 | vh ∈ S1(Th)
}
,(1.10a)

ũn+1
h = un+1

h + θ(un+1
h − un

h),(1.10b)

pn+1
h = argmax

{
E(ũn+1

h , qh)−
σ

2τ
∥qh − pnh∥2 | qh ∈ L0(Th)d

}
,(1.10c)

where the combination factor θ ∈ [−1, 1]. Clearly, (1.9) is a special case of (1.10)
with θ = 1. Note that it is in [14] that θ was extended to [0, 1] and then in [26] to
[−1, 1] in the optimization context. This generalization can accelerate the convergence
numerically as shown in [26], and it provides more insights in algorithmic design as
shown in [32].

Our contributions can be summarized as follows. 1) We propose the general
primal-dual scheme (1.10) and prove its convergence; for which the analytic techniques
for contraction type methods (see [9]) are used. 2) We establish the worst-case conver-
gence rate measured by the iteration complexity for the scheme (1.10). 3) We propose
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a new prediction-correction scheme in which the output of (1.10) needs to be refreshed
by a correction step (5.2). This primal-dual-based prediction-correction scheme can
significantly relax the restriction on the discretization step size τ from O(h2) to O(h).
4) We also establish the convergence and the worst-case convergence rate measured
by the iteration complexity for the primal-dual-based prediction-correction scheme.

The rest of this paper is organized as follows. In Section 2, some known results
in the literature which are useful for further analysis are summarized. In Section
3, we propose the general primal-dual scheme (1.10) in the variational form and
give some remarks. Then, the analysis of convergence and convergence rate for the
general primal-dual scheme is presented in Section 4. In Section 5, we propose a
primal-dual-based prediction-correction scheme and analyze its convergence and con-
vergence rate. Some preliminary numerical results are reported in Section 6 to verify
the effectiveness of the general primal-dual scheme and the new primal-dual-based
prediction-correction scheme. Finally, some conclusions are made in Section 7.

2. Preliminary. In this section, we summarize some known results in the liter-
ature for the convenience of further analysis. Most of the results can be found in [7].
The notation (·, ·) stands for the L2 scalar product throughout this paper.

First, the first-order optimality condition for the minimization of the energy func-
tional E(u) in S1(Th) is stated in the following lemma.

Lemma 2.1 ([7]). The function uh ∈ S1(Th) minimizes the energy functional
E(u) in S1(Th) if and only if there exists ph ∈ B1(L0(Th)d) := {qh ∈ L0(Th)d :
∥qh∥∞ ≤ 1} such that(

ph,∇vh
)
+ α

(
uh − g, vh

)
= 0, ∀ vh ∈ S1(Th),(

∇uh, qh − ph
)
≤ 0, ∀ qh ∈ B1(L0(Th)d).

(2.1)

Notice that the optimality condition (2.1) can be rewritten as the following vari-
ational inequality (VI) in a compact form: Finding µh ∈ S1(Th) × B1(L0(Th)d) such
that

(2.2)
(
F (µh), νh − µh

)
≥ 0, ∀ νh ∈ S1(Th)× B1(L0(Th)d),

where

(2.3) µh =

(
uh

ph

)
, νh =

(
vh
qh

)
, F (µh) =

(
−divph + α(uh − g)

−∇uh

)
,

and −div is the conjugate operator of ∇ and −(divqh, vh) = (qh,∇vh).
Obviously, it is easy to see that the mapping F (·) in (2.3) satisfies

(2.4)
(
F (µh)− F (νh), µh − νh

)
= α∥uh − vh∥2L2(Ω).

It follows from Lemma 2.1 that the first component uh of a solution pair of (1.8)
is unique. But the second one ph is not unique in general.

The error of the finite element approximation of function u in (1.8) is given by
the following theorem.

Theorem 2.2 ([7]). We have uh → u in L2(Ω) as h → 0, and if d = 2,
Ω = (0, 1)2 and u ∈ Lip(β, L2(Ω)) for some 0 < β < 1, then

∥u− uh∥2L2(Ω) ≤ ch
β

1+β ,
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where u ∈ Lip(β, L2(Ω)) if

sup
t>0

t−β sup
|y|≤t

(∫
Ω

|u(x+ y)− u(x)|2dx
)1/2

< +∞.

3. A General Primal-Dual Scheme. In this section, we specify the general
primal-dual scheme (1.10) in the variational form for solving (1.8) and present the
algorithm based on it. Let us use the notation

dtv
n+1 =

vn+1 − vn

τ

for a sequence {vn}n∈N, where τ > 0 is the discretization step size.

Algorithm 1: A general primal-dual scheme for (1.8)

Input: Choose an initial iteration (u0
h, p

0
h) ∈ S1(Th)× L0(Th)d. Choose

constants τ, σ > 0 and θ ∈ [−1, 1].
for n = 0, 1, 2, · · · , do

Step 1 Update un+1
h by solving

(3.1)
(
dtu

n+1
h + α(un+1

h − g), vh
)
+
(
pnh,∇vh

)
= 0, ∀ vh ∈ S1(Th);

Step 2 Set

(3.2) ũn+1
h = un+1

h + θτdtu
n+1
h ;

Step 3 Update pn+1
h satisfying

(3.3)
(
− σdtp

n+1
h +∇ũn+1

h , qh − pn+1
h

)
≤ 0, ∀ qh ∈ B1(L0(Th)d).

end

Remark 3.1. As mentioned, Algorithm 1 with θ = 1 reduces to the primal-dual
scheme in [7]. In [7], it is noticed that pn+1

h satisfying (3.3) is the unique minimizer
of

qh 7→ σ

2τ
∥qh − pnh∥2 −

(
qh,∇ũn+1

h

)
+ IB(qh);

and it is given by

pn+1
h =

(
pnh + (τ/σ)∇ũn+1

h

)
/max

{
1, |pnh + (τ/σ)∇ũn+1

h |
}
.

Remark 3.2. The first and third steps in Algorithm 1 can be respectively viewed
as the discretization of the systems

(3.4)

{
∂tuh = −∂vE(uh, ph),
σ∂tph ∈ ∂qE(uh, ph),

which are the finite element discretizations of the evolution systems (1.6). Moreover,
the parameter τ in Algorithm 1 behaves as the step size of the discretization in the
time direction.

Remark 3.3. An inverse estimate in [11] shows that there exists c > 0 such that
∥∇vh∥L2(Ω) ≤ ch−1

min∥vh∥L2(Ω) for all vh ∈ S1(Th), where hmin = minT∈Th
diam(T ).
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We denote

∥∇∥ = sup
vh∈S1(Th)\{0}

∥∇vh∥L2(Ω)

∥vh∥L2(Ω)
≤ ch−1

min,

which will emerge in the theoretical analysis in the sequel. For a regular mesh Th, it
yields from the above estimate that ∥∇∥ ≤ ch−1.

4. Convergence Analysis for Algorithm 1. In this section, we prove the
convergence for Algorithm 1 and establish its worst-case convergence rate measured
by the iteration complexity. As [26], our analysis follows the framework for contraction
type methods in [9].

4.1. Convergence. First, for the iteration µn+1
h = (un+1

h ; pn+1
h ) ∈ S1(Th) ×

B1(L0(Th)d) generated by Algorithm 1, it is easy to see that it satisfies the VI:

(4.1)
(
F (µn+1

h ) +M(µn+1
h − µn

h), νh − µn+1
h

)
≥ 0, ∀ νh ∈ S1(Th)× B1(L0(Th)d)

with

(4.2) M =

(
1
τ I div

−θ∇ σ
τ I

)
.

We prove an inequality in the following lemma; it is useful for further analysis.

Lemma 4.1. Let the sequence {µn+1
h = (un+1

h ; pn+1
h )} be generated by Algorithm

1 with θ ∈ [−1, 1]. Then, we have(
G(µn+1

h − µn
h), νh − µn+1

h

)
≥ α∥vh − un+1

h ∥2L2(Ω) +
(
F (νh), µ

n+1
h − νh

)
− (1− θ)

(
∇(vh − un+1

h ), pnh − pn+1
h

)
,

∀ νh = (vh; qh) ∈ S1(Th)× B1(L0(Th)d),
(4.3)

where

(4.4) G =

(
1
τ I θdiv

−θ∇ σ
τ I

)
.

Proof. We can rewrite (4.1) as follows(
F (µn+1

h ) +G(µn+1
h − µn

h), νh − µn+1
h

)
− (1− θ)

(
∇(vh − un+1

h ), pn+1
h − pnh

)
≥ 0, ∀ νh ∈ S1(Th)× B1(L0(Th)d).

(4.5)

Then, adding
(
F (νh), µ

n+1
h − νh

)
to both sides of (4.5) yields(

G(µn+1
h − µn

h), νh − µn+1
h

)
≥
(
F (νh)− F (µn+1

h ), νh − µn+1
h

)
+
(
F (νh), µ

n+1
h − νh

)
− (1− θ)

(
∇(vh − un+1

h ), pnh − pn+1
h

)
,

∀ νh ∈ S1(Th)× B1(L0(Th)d),

(4.6)

which completes the proof by using the property (2.4) of F .
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Using the inequality proved in the above lemma, we can show that the sequence
generated by Algorithm 1 is strictly contractive with respect to the solution set of
(1.8) under some conditions. We summarize the assertion in the following theorem.

Theorem 4.2 (Contraction). Let µh be the solution point of (1.8) and {µn+1
h }

be the sequence generated by Algorithm 1 with θ ∈ [−1, 1]. Under the condition

(4.7)
(
θ2 +

(1− θ)2

2ατ

)τ2∥∇∥2

σ
< 1,

we have

(4.8) ∥µn+1
h − µh∥2G ≤ ∥µn

h − µh∥2G − ∥µn
h − µn+1

h ∥2Q,

where G is given by (4.4) and

(4.9) Q =

(
1
τ I θdiv

−θ∇
(

σ
τ − (1−θ)2∥∇∥2

2α

)
I

)
.

Proof. Using Cauchy-Schwarz inequality and it follows from (4.3) that

(
G(µn+1

h − µn
h), νh − µn+1

h

)
≥ α∥vh − un+1

h ∥2L2(Ω) +
(
F (νh), µ

n+1
h − νh

)
− α

∥∇∥2
∥∇(vh − un+1

h )∥2L2(Ω)

− (1− θ)2∥∇∥2

4α
∥pnh − pn+1

h ∥2L2(Ω)

≥
(
F (νh), µ

n+1
h − νh

)
− (1− θ)2∥∇∥2

4α
∥pnh − pn+1

h ∥2L2(Ω),

∀ νh ∈ S1(Th)× B1(L0(Th)d).

(4.10)

Applying the identity

(4.11)
(
G(b− a), b

)
=

1

2

(
∥b∥2G − ∥a∥2G + ∥a− b∥2G

)
to the term on the left-hand side of (4.10) with b = µn+1

h − νh and a = µn
h − νh, we

derive

2
(
F (νh), µ

n+1
h − νh

)
≤ ∥µn

h − νh∥2G − ∥µn+1
h − νh∥2G

−
(
∥µn

h − µn+1
h ∥2G − (1− θ)2∥∇∥2

2α
∥pnh − pn+1

h ∥2L2(Ω)

)
,

∀ νh ∈ S1(Th)× B1(L0(Th)d).

(4.12)

Thus, it yields

2
(
F (νh), µ

n+1
h − νh

)
≤ ∥µn

h − νh∥2G − ∥µn+1
h − νh∥2G − ∥µn

h − µn+1
h ∥2Q,

∀ νh ∈ S1(Th)× B1(L0(Th)d).
(4.13)

Setting νh = µh in (4.13) and using the optimality condition (2.2), then we get the
result (4.8).
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We emphasize that the condition (4.7) is essential for ensuring the positive defi-
niteness of the matrix form operators G and Q given by (4.4) and (4.9), respectively.
The strict contraction of the sequence generated by Algorithm 1, which is implied
by the assertion (4.8), essentially means that the sequence {µn+1

h } converges to the
solution set of (1.8). We summarize the convergence result in the following theorem.

Theorem 4.3 (Convergence). Let the sequence {µn+1
h = (un+1

h ; pn+1
h )} be gener-

ated by Algorithm 1 with θ ∈ [−1, 1]. Under the condition (4.7), the sequence {un+1
h }

converges to the unique minimizer of the problem (1.1) in S1(Th).
Proof. According to (4.8), for any integer N > 0, we have

N∑
n=0

∥µn
h − µn+1

h ∥2Q ≤ ∥µh − µ0
h∥2G.

Thus, we conclude

lim
n→∞

∥µn
h − µn+1

h ∥2Q = 0.

As Q is positive definite under the condition (4.7), then limn→∞(µn
h − µn+1

h ) = 0.
Substituting it into (4.1), we obtain that(

F (µn+1
h ), νh − µn+1

h

)
≥ 0, ∀ νh ∈ S1(Th)× B1(L0(Th)d),

which means limn→∞ µn+1
h is a solution point of (2.2). Thus, the sequence {un+1

h }
converges to the unique minimizer of energy functional E in S1(Th) by Lemma 2.1.

4.2. Convergence Rate. In this subsection, we estimate a worst-case O( 1
N )

convergence rate measured by the iteration complexity for Algorithm 1 with θ ∈ [−1, 1]
under the condition (4.7), where N denotes the iteration counter. Note that we follow
[30, 31] and many others, a worst-case O( 1

N ) convergence rate means the accuracy to
a solution under certain criteria is of the order O( 1

N ) after N iterations of an iterative
scheme; or equivalently, it requires at most O( 1ϵ ) iterations to achieve an approximate
solution with an accuracy of ϵ.

First, we introduce a criterion to measure the accuracy of an approximation of
the VI (2.2).

Theorem 4.4. The solution set of VI (2.2) is convex and can be characterized
as

Θ =
∩
νh

{
µ̃h ∈ S1(Th)× B1(L0(Th)d) :

(
F (νh), νh − µ̃h

)
≥ 0
}
.

Proof. The proof can refer to Theorem 2.3.5 in [21] or Theorem 2.1 in [27].
Theorem 4.4 implies that µ̃h ∈ S1(Th)× B1(L0(Th)d) is an approximate solution

of VI (2.2) with an accuracy of ϵ if

(4.14)
(
F (νh), µ̃h − νh

)
≤ ϵ, ∀ νh ∈ S1(Th)× B1(L0(Th)d).

The result in the following theorem shows that we can find µ̃N such that (4.14)
is satisfied with ϵ = O( 1

N ) after N iterations of Algorithm 1. Therefore, a worst-case
O( 1

N ) convergence rate is established for Algorithm 1.

Theorem 4.5 (Convergence rate in the ergodic sense). Let the sequence {µn+1
h }

be generated by Algorithm 1 with θ ∈ [−1, 1] under the condition (4.7). For any integer
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N > 0, let

µ̃N =
1

N + 1

N∑
n=0

µn+1
h .

Then, we have

(4.15)
(
F (νh), µ̃N − νh

)
≤ 1

2(N + 1)
∥νh − µ0

h∥2G, ∀ νh ∈ S1(Th)× B1(L0(Th)d).

Proof. It follows from (4.13) that
(4.16)(
F (νh), µ

n+1
h − νh

)
≤ 1

2

(
∥νh − µn

h∥2G − ∥νh − µn+1
h ∥2G

)
, ∀ νh ∈ S1(Th)×B1(L0(Th)d).

Summing (4.16) with n = 0, 1, · · · , N , we have

(4.17)
(
F (νh),

N∑
n=0

µn+1
h − (N + 1)νh

)
≤ 1

2

(
∥νh − µ0

h∥2G − ∥νh − µN+1
h ∥2G

)
,

which yields the result (4.15).
This theorem shows a worst-case O( 1

N ) convergence rate in the ergodic sense for
Algorithm 1. The ergodic sense is because of the fact that the approximate solution
with an accuracy of O( 1

N ) is the average of all theN iterations generated by Algorithm
1. For the special case θ = 1 of Algorithm 1, i.e., the primal-dual scheme in [7], we
can obtain a stronger worst-case O( 1

N ) convergence rate in a nonergodic sense. But
it is not clear if this convergence rate in a nonergodic sense can be extended to the
general case of Algorithm 1 with θ ∈ [−1, 1). The main reason is that the matrix form
operator M defined in (4.2) is not symmetric if θ ̸= 1. Hence, it becomes difficult to
define a norm with these matrix form operators to measure the progress of proximity
to the solution set. We summarize the stronger worst-case O( 1

N ) convergence rate in
a nonergodic sense for Algorithm 1 in the following theorem. This is a by-produce of
this paper.

Theorem 4.6 (Convergence rate for θ = 1 in a nonergodic sense). Let µh be
the solution of (1.8) and the sequence {µn+1

h } be generated by Algorithm 1 with θ = 1
under the condition (4.7). Then for any integer N > 0, it exists

(4.18) ∥µN
h − µN+1

h ∥2G ≤ 1

(N + 1)
∥µh − µ0

h∥2G.

Proof. First, it follows from (4.1) when θ = 1 that

(4.19)
(
F (µn+1

h ) +G(µn+1
h − µn

h), νh − µn+1
h

)
≥ 0, ∀ νh ∈ S1(Th)× B1(L0(Th)d).

And it also holds

(4.20)
(
F (µn+2

h ) +G(µn+2
h − µn+1

h ), νh − µn+2
h

)
≥ 0, ∀ νh ∈ S1(Th)×B1(L0(Th)d).

Setting νh = µn+2
h in (4.19) and νh = µn+1

h in (4.20), and then combining them
together, we obtain(

F (µn+1
h )− F (µn+2

h ), µn+2
h − µn+1

h

)
−
(
G((µn+2

h − µn+1
h )− (µn+1

h − µn
h)), µ

n+2
h − µn+1

h

)
≥ 0.

(4.21)
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Applying the equalities (4.11) and (2.4) to (4.21) yields

∥µn+1
h − µn+2

h ∥2G ≤ ∥µn
h − µn+1

h ∥2G − 2α∥un+1
h − un+2

h ∥2L2(Ω)

− ∥(µn+2
h − µn+1

h )− (µn+1
h − µn

h)∥2G
≤∥µn

h − µn+1
h ∥2G.

(4.22)

With θ = 1 and the definition of Q in (4.9), we have from the result of Theorem 4.2
that

(4.23) ∥µh − µn+1
h ∥2G ≤ ∥µh − µn

h∥2G − ∥µn
h − µn+1

h ∥2G.

Summing (4.23) over n = 0, 1, · · · , N yields that

(4.24)
N∑

n=0

∥µn
h − µn+1

h ∥2G ≤ ∥µh − µ0
h∥2G.

The estimate (4.22) reveals that ∥µn
h − µn+1

h ∥2G is monotonically non-increasing, then
we obtain

(4.25) (N + 1)∥µN
h − µN+1

h ∥2G ≤ ∥µh − µ0
h∥2G,

which yields the result (4.18).
It is follows from (4.19) that µN+1

h belongs to the solution set of VI (2.2) if

∥µN
h − µN+1

h ∥2G = 0 since G is positive definite under the condition (4.7) with θ = 1.

In other words, if ∥µN
h − µN+1

h ∥2G = 0, we have(
F (µN+1

h ), νh − µN+1
h

)
≥ 0, ∀ νh ∈ S1(Th)× B1(L0(Th)d),

which implies µN+1
h is a solution of (1.8) characterized by VI (2.2). Then the quantity

∥µN
h − µN+1

h ∥2G can be used to measure the accuracy of an approximate solution of
(1.8). Thus, the assertion in Theorem 4.6 shows a worst-case O( 1

N ) convergence rate
measured by the iteration complexity in a nonergodic sense for Algorithm 1 with
θ = 1.

5. A Primal-Dual Based Prediction-Correction Scheme. In Section 3,
we propose Algorithm 1 which is more general than the primal-dual scheme in [7].
We will show in Section 6.1 that this general scheme with θ ̸= 1 can accelerate
the convergence numerically; it thus makes sense to consider the generalization for
θ ∈ [−1, 1]. Meanwhile, we have analyzed that the convergence of Algorithm 1 can be
guaranteed under the condition (4.7). As indicated in Remark 3.3, we have ∥∇∥2 ≤
ch−2 with the regular mesh Th. When θ ̸= 1 for Algorithm 1, the requirement τ ≤ ch2

is necessary to make the condition (4.7) satisfied. Here τ stands for the discretization
step size in the time direction if we regard Algorithm 1 as the discretizations of (3.4)
(which is the evolution systems (1.6) with finite element approximation in space). In
this sense, we may wish to relax the requirement on τ from the order of O(h2) to
O(h) if possible. This is the main motivation we consider the new primal-dual based
prediction-correction scheme in this section.

We would reiterate that the convergence analysis for Algorithm 1 in Section 4
mainly follows the analytic framework for contraction type methods. For its analysis,
a key technique is that the condition (4.7) can ensure the positive definiteness of the
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matrix form operators G in (4.4) and Q in (4.9). With their positive definiteness, we
can measure the progress of proximity between two consecutive iterations and eventu-
ally establish the strict contraction property for the sequence obtained by Algorithm
1 which essentially implies the convergence of Algorithm 1. It is seen from (4.4) that
the off-diagonal entries of G is not zero operator, which means that it renders two
non-square terms in the expansion of any quadratic term associated with the G-norm.
This fact essentially raises the reason of considering the condition (4.7) to sufficiently
ensure the positive definiteness of G. For the purpose of relaxing the restriction on
τ , we may consider only keeping the diagonal entries of G as the matrix form op-
erator for defining the norm when measuring the progress of proximity between two
consecutive iterations. That is,

(5.1) G =

(
1
τ I θdiv

−θ∇ σ
τ I

)
→ H :=

(
1
τ I 0
0 σ

τ I

)
.

Based on these analysis, we will follow the idea in [26] and modify Algorithm 1
as a new prediction-correction scheme whose each iteration consists of the primal-
dual step (3.1)-(3.3) and a correction step (5.2). With the additional correction step,
the requirement on τ can be relaxed from O(h2) to O(h). Moreover, the worst-case
convergence rate in both the ergodic and nonergodic senses can be established for the
new primal-dual-based prediction-correction scheme.

5.1. Algorithm. We summarize the new primal-dual-based prediction correc-
tion scheme as follows.

Algorithm 2: A primal-dual-based prediction-correction scheme for (1.8)

Input: Choose an initial iteration (u0
h, p

0
h) ∈ S1(Th)× L0(Th)d. Choose

constants τ, σ > 0, γ ∈ (0, 1] and θ ∈ [−1, 1]
for n = 0, 1, 2, · · · , do

Prediction step Obtain the predictor µ̄n
h by Algorithm 1 with input µn

h,
i.e. (3.1)-(3.3);
Correction step Generate the new iteration µn+1

h by solving

(
(un+1

h − un
h) + γ(un

h − ūn
h), vh

)
− τγ

(
∇vh, p

n
h − p̄nh

)
= 0, ∀ vh ∈ S1(Th),(

(pn+1
h − pnh) + γ(pnh − p̄nh), qh

)
− γθ

τ

σ

(
∇(un

h − ūn
h), qh

)
= 0, ∀ qh ∈ B1(L0(Th)

d).

(5.2)

end

Remark 5.1. For the correction step (5.2), it can be rewritten as the compact
form

(5.3)
(
H(µn+1

h −µn
h), νh

)
+ γ
(
M(µn

h − µ̄n
h), νh

)
= 0, ∀ νh ∈ S1(Th)×B1(L0(Th)d),

where M and H are defined in (4.2) and (5.1), respectively. It is noticed that the
correction step (5.2) in Algorithm 2 is not difficult to compute because it is essentially a
system of linear algebra equations with a symmetric and positive definite mass matrix.

Remark 5.2. The parameter γ ∈ (0, 1] in (5.2) is a relaxation factor which can
potentially accelerate numerical performance. Instead, we can simply take γ ≡ 1 if
the number of parameters is a concern for implementation.

5.2. Convergence. In this subsection, we prove the convergence for Algorithm
2. First, we prove an inequality which is important for the convergence analysis. Let
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us recall (4.1). Thus, the predictor µ̄n
h generated by Algorithm 2 satisfies

(5.4)
(
F (µ̄n

h) +M(µ̄n
h − µn

h), νh − µ̄n
h

)
≥ 0, ∀ νh ∈ S1(Th)× B1(L0(Th)d).

Lemma 5.1. Let the sequence {µn+1
h } be generated by Algorithm 2 with θ ∈

[−1, 1], γ ∈ (0, 1] and

(5.5)
τ2∥∇∥2

σ
< 1.

Then we have

2
(
H(µn

h − µn+1
h ), µn

h − νh
)
− ∥µn

h − µn+1
h ∥2H ≥ 1

4

(
1− τ2∥∇∥2

σ

)
∥µn

h − µn+1
h ∥2H

+2γ
(
F (νh), µ̄

n
h − νh

)
, ∀ νh ∈ S1(Th)× B1(L0(Th)d),

(5.6)

where H is defined in (5.1).
Proof. Adding

(
F (νh), µ̄

n
h − νh

)
to both sides of (5.4), we have(

F (µ̄n
h)− F (νh) +M(µ̄n

h − µn
h), νh − µ̄n

h

)
≥
(
F (νh), µ̄

n
h − νh

)
,

∀ νh ∈ S1(Th)× B1(L0(Th)d).
(5.7)

Then, we derive(
M(µn

h − µ̄n
h), µ

n
h − νh

)
≥
(
M(µn

h − µ̄n
h), µ

n
h − µ̄n

h

)
+
(
F (νh), µ̄

n
h − νh

)
+ α∥vh − ūn

h∥2L2(Ω), ∀ νh ∈ S1(Th)× B1(L0(Th)d).
(5.8)

With (5.3), we obtain(
H(µn

h − µn+1
h ), µn

h − νh
)
= γ

(
M(µn

h − µ̄n
h), µ

n
h − νh

)
≥ γ

(
M(µn

h − µ̄n
h), µ

n
h − µ̄n

h

)
+ γ
(
F (νh), µ̄

n
h − νh

)
,

∀ νh ∈ S1(Th)× B1(L0(Th)d).
(5.9)

Using the definition of M in (4.2) and H in (5.1), we can expand the term on the
right-hand side of (5.9) as(

M(µn
h − µ̄n

h), µ
n
h − µ̄n

h

)
= ∥µn

h − µ̄n
h∥2H − (1 + θ)

(
∇(un

h − ūn
h), p

n
h − p̄nh

)
.(5.10)

With (5.3), we also have

∥µn
h − µn+1

h ∥2H = γ
(
M(µn

h − µ̄n
h), µ

n
h − µn+1

h

)
= γ

(
H(µn

h − µn+1
h ),H−1M(µn

h − µ̄n
h)
)

= γ2
(
M(µn

h − µ̄n
h), H

−1M(µn
h − µ̄n

h)
)
,

(5.11)

whose last term can be evaluated by the definitions of H and M as(
M(µn

h − µ̄n
h),H

−1M(µn
h − µ̄n

h)
)
= ∥µn

h − µ̄n
h∥2H + τ∥div(pnh − p̄nh)∥2

+ θ2
τ

σ
∥∇(un

h − ūn
h)∥2

− 2(1 + θ)
(
∇(un

h − ūn
h), p

n
h − p̄nh

)
.

(5.12)
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Then, together with (5.9)-(5.12), we get

2
(
H(µn

h − µn+1
h ), µn

h − νh
)
− ∥µn

h − µn+1
h ∥2H

≥ 2γ
(
M(µn

h − µ̄n
h), µ

n
h − µ̄n

h

)
− γ2

(
M(µn

h − µ̄n
h), H

−1M(µn
h − µ̄n

h)
)

+ 2γ
(
F (νh), µ̄

n
h − νh

)
= (2γ − γ2)∥µn

h − µ̄n
h∥2H − 2(1 + θ)(γ − γ2)

(
∇(un

h − ūn
h), p

n
h − p̄nh

)
− γ2

(
τ∥div(pnh − p̄nh)∥2 + θ2

τ

σ
∥∇(un

h − ūn
h)∥2

)
+ 2γ

(
F (νh), µ̄

n
h − νh

)
≥
(
(2γ − γ2)−

(
(1 + θ)(γ − γ2) + θ2γ2

)τ2∥∇∥2

σ

)1
τ
∥un

h − ūn
h∥2L2(Ω)

+
((

(2γ − γ2)− (1 + θ)(γ − γ2)
)
− γ2 τ

2∥∇∥2

σ

)σ
τ
∥pnh − p̄nh∥2L2(Ω)

+ 2γ
(
F (νh), µ̄

n
h − νh

)
≥ γ2

(
1− τ2∥∇∥2

σ

)
∥µn

h − µ̄n
h∥2H + 2γ

(
F (νh), µ̄

n
h − νh

)
,

∀ νh ∈ S1(Th)× B1(L0(Th)d).

(5.13)

Therefore, because of (5.11) and (5.12), using Cauchy-Schwarz inequality and the
condition (5.5), we can derive

∥µn
h − µn+1

h ∥2H = γ2
(
∥µn

h − µ̄n
h∥2H + τ∥div(pnh − p̄nh)∥2 + θ2

τ

σ
∥∇(un

h − ūn
h)∥2

− 2(1 + θ)
(
∇(un

h − ūn
h), p

n
h − p̄nh

))
≤ γ2

(
1 +

(
θ2 + 1 + θ

)τ2∥∇∥2

σ

)1
τ
∥un

h − ūn
h∥2L2(Ω)

+ γ2
(
1 +

τ2∥∇∥2

σ
+ (1 + θ)

)σ
τ
∥pnh − p̄nh∥2L2(Ω)

≤ 4γ2∥µn
h − µ̄n

h∥2H .

(5.14)

Then the result is obtained from (5.13) and (5.14).
Using the result in the above lemma, we can easily derive that the sequence

generated by Algorithm 2 is strictly contractive with respect to the solution set of VI
(2.2). We summarize it in the following theorem.

Theorem 5.2 (Contraction). Let µh be the solution of (1.8) and the sequence
{µn+1

h } be generated by Algorithm 2 with θ ∈ [−1, 1] under the condition (5.5). Then
we have

(5.15) ∥µn+1
h − µh∥2H ≤ ∥µn

h − µh∥2H − 1

4

(
1− τ2∥∇∥2

σ

)
∥µn

h − µn+1
h ∥2H .

Proof. Obviously, we have

∥µn+1
h − νh∥2H = ∥µn

h − νh − (µn
h − µn+1

h )∥2H
= ∥µn

h − νh∥2H − 2
(
H(µn

h − µn+1
h ), µn

h − νh
)
+ ∥µn

h − µn+1
h ∥2H .

(5.16)

Applying the result (5.6) in Lemma 5.1 to (5.16), setting νh = µh and noticing(
F (µh), µ̄

n
h − µh

)
≥ 0, we obtain (5.15).



14 WENYI TIAN AND XIAOMING YUAN

With the strict contraction property established in the last theorem, it becomes
easy to prove the convergence for Algorithm 2. The convergence of Algorithm 2 is
summarized in the following theorem.

Theorem 5.3 (Convergence). Let the sequence {µn+1
h = (un+1

h , pn+1
h )} be gener-

ated by Algorithm 2 with θ ∈ [−1, 1] and γ ∈ (0, 1] under the condition (5.5). Then,
the sequence {un+1

h } converges to the unique minimizer of energy functional E in
S1(Th).

Proof. From (5.13) and (5.16), we obtain

(5.17) ∥µn+1
h − µh∥2H ≤ ∥µn

h − µh∥2H − γ2
(
1− τ2∥∇∥2

σ

)
∥µn

h − µ̄n
h∥2H .

Then, the above inequality and (5.15) imply that

lim
n→∞

(µn
h − µn+1

h ) = lim
n→∞

(µn
h − µ̄n

h) = 0.

Thus, we have limn→∞ µn+1
h = limn→∞ µ̄n

h. With (5.4), we derive that limn→∞ µn+1
h

satisfies the VI (2.2). So, the sequence {un+1
h } converges to the unique minimizer of

energy functional E in S1(Th) by Lemma 2.1.
Note that Algorithm 2 requires an additional correction step compared with Al-

gorithm 1. But the condition (5.5) which guarantees the convergence for Algorithm
2 can be satisfied if τ ≤ ch for some c > 0 as ∥∇∥ ≤ ch−1. This is an significantly
relaxed condition compared with the requirement τ ≤ ch2 for Algorithm 1. This is the
main advantage of Algorithm 2. We will numerically verify its superiority in Section
6.2.

5.3. Convergence Rate. In this subsection, we establish the worst-case O( 1
N )

convergence rate in both the ergodic and nonergodic senses for Algorithm 2 with
θ ∈ [−1, 1]. Recall the lack of worst-case convergence rate in a nonergodic sense of
Algorithm 1 with θ ∈ [−1, 1). Thus, the provable worst-case convergence rate in a
nonergodic sense is another theoretical advantage of Algorithm 2.

5.3.1. Convergence Rate in the Ergodic Sense. We first establish the
worst-case O( 1

N ) convergence rate in the ergodic sense for Algorithm 2 in the fol-
lowing theorem. The proof is analogous to that of Theorem 4.5.

Theorem 5.4 (Convergence rate in the ergodic sense). Let the sequence {µn+1
h }

be generated by Algorithm 2 with θ ∈ [−1, 1] and γ ∈ (0, 1] under the condition (5.5).
For any integer N , let µ̄N be defined as

µ̄N =
1

N + 1

N∑
n=0

µ̄n
h.

Then we have

(5.18)
(
F (νh), µ̄N − νh

)
≤ 1

2γ(N + 1)
∥νh − µ0

h∥2H , ∀ νh ∈ S1(Th)× B1(L0(Th)d).

Proof. It follows from (5.16) and (5.6) that(
F (νh), µ̄

n
h − νh

)
≤ 1

2γ

(
∥νh − µn

h∥2H − ∥νh − µn+1
h ∥2H

)
,

∀ νh ∈ S1(Th)× B1(L0(Th)d).
(5.19)
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Summarizing the inequalities (5.19) for the cases of n = 0, 1, · · · , N , we obtain

(
F (νh),

N∑
n=0

µ̄n
h − (N + 1)νh

)
≤ 1

2γ

(
∥νh − µ0

h∥2H − ∥νh − µN+1
h ∥2H

)
,

∀ νh ∈ S1(Th)× B1(L0(Th)d),

(5.20)

which leads to the result (5.18).

5.3.2. Convergence Rate in a Nonergodic Sense. Now we establish the
worst-case O( 1

N ) convergence rate in a nonergodic sense for Algorithm 2. The analysis
is based on the strict contraction property (5.15) and the monotonicity of the sequence
{∥µn

h − µn+1
h ∥2H}. We thus first prove this property in the following lemma.

Lemma 5.5. Let the sequence {µn+1
h } be generated by Algorithm 2 with θ ∈ [−1, 1]

and γ ∈ (0, 1]. Then, we have

(5.21) ∥µn+1
h − µn+2

h ∥2H ≤ ∥µn
h − µn+1

h ∥2H .

Proof. Because of the optimality condition (5.4) of the prediction step, we have

(5.22)
(
F (µ̄n

h) +M(µ̄n
h − µn

h), νh − µ̄n
h

)
≥ 0, ∀ νh ∈ S1(Th)× B1(L0(Th)d),

(5.23)
(
F (µ̄n+1

h ) +M(µ̄n+1
h − µn+1

h ), νh − µ̄n+1
h

)
≥ 0, ∀ νh ∈ S1(Th)×B1(L0(Th)d).

Taking νh = µ̄n+1
h in (5.22) and νh = µ̄n

h in (5.23), and adding them together, we
have

(5.24)
(
M
(
(µn

h − µ̄n
h)− (µn+1

h − µ̄n+1
h )

)
, µ̄n

h − µ̄n+1
h

)
≥ 0.

Adding the term(
M
(
(µn

h − µ̄n
h)− (µn+1

h − µ̄n+1
h )

)
,
(
(µn

h − µ̄n
h)− (µn+1

h − µ̄n+1
h )

))
to both sides of (5.24), it yields(

M
(
(µn

h − µ̄n
h)− (µn+1

h − µ̄n+1
h )

)
, µn

h − µn+1
h

)
≥
(
M
(
(µn

h − µ̄n
h)− (µn+1

h − µ̄n+1
h )

)
,
(
(µn

h − µ̄n
h)− (µn+1

h − µ̄n+1
h )

))
,

(5.25)

together with which, it follows from (5.3) that(
H
(
(µn

h − µn+1
h )− (µn+1

h − µn+2
h )

)
, µn

h − µn+1
h

)
≥ γ

(
M
(
(µn

h − µ̄n
h)− (µn+1

h − µ̄n+1
h )

)
,
(
(µn

h − µ̄n
h)− (µn+1

h − µ̄n+1
h )

))
.

(5.26)

Now we use the identity

∥a∥2H − ∥b∥2H = 2(H(a− b), a)− ∥a− b∥2H

with a = µn
h − µn+1

h and b = µn+1
h − µn+2

h and thus get

∥µn
h − µn+1

h ∥2H − ∥µn+1
h − µn+2

h ∥2H
= 2
(
H
(
(µn

h − µn+1
h )− (µn+1

h − µn+2
h )

)
, µn

h − µn+1
h

)
− ∥(µn

h − µn+1
h )− (µn+1

h − µn+2
h )∥2H .

(5.27)
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Then, it follows from (5.26), (5.27) and (5.3) that

∥µn
h − µn+1

h ∥2H − ∥µn+1
h − µn+2

h ∥2H
≥ 2γ

(
M
(
(µn

h − µ̄n
h)− (µn+1

h − µ̄n+1
h )

)
,
(
(µn

h − µ̄n
h)− (µn+1

h − µ̄n+1
h )

))
− ∥(µn

h − µn+1
h )− (µn+1

h − µn+2
h )∥2H

= 2γ
(
M
(
(µn

h − µ̄n
h)− (µn+1

h − µ̄n+1
h )

)
,
(
(µn

h − µ̄n
h)− (µn+1

h − µ̄n+1
h )

))
− γ2

(
M
(
(µn

h − µ̄n
h)− (µn+1

h − µ̄n+1
h )

)
,H−1M

(
(µn

h − µ̄n
h)− (µn+1

h − µ̄n+1
h )

))
.

(5.28)

We can show that the right-hand side term of (5.28) is nonnegative, just as the same
approach in (5.13). The result (5.21) is thus proved.

Next we establish the worst-case O( 1
N ) convergence rate in a nonergodic sense for

Algorithm 2. We summarize the result in the following theorem.
Theorem 5.6 (Convergence rate in a nonergodic sense). Let µh be the solution

of (1.8) and the sequence {µn+1
h } be generated by Algorithm 2 with θ ∈ [−1, 1] and

γ ∈ (0, 1] under the condition (5.5). Then for any integer N > 0, it holds

(5.29) ∥µN
h − µN+1

h ∥2H ≤ 1

r(N + 1)
∥µh − µ0

h∥2H ,

where r is

r =
1

4

(
1− τ2∥∇∥2

σ

)
> 0.

Proof. It follows from (5.15) that

(5.30) r∥µn
h − µn+1

h ∥2H ≤ ∥µh − µn
h∥2H − ∥µh − µn+1

h ∥2H .

Summarizing the inequalities (5.30) for the cases n = 0, · · · , N , we have

(5.31) r
N∑

n=0

∥µn
h − µn+1

h ∥2H ≤ ∥µh − µ0
h∥2H − ∥µh − µN+1

h ∥2H .

From the result (5.21) of Lemma 5.5, we know that ∥µn
h − µn+1

h ∥2H is monotonically
non-increasing. Therefore, it yields

(5.32) (N + 1)∥µN
h − µN+1

h ∥2H ≤
N∑

n=0

∥µn
h − µn+1

h ∥2H .

Then the assertion (5.29) is obtained with (5.31) and (5.32).

6. Numerical Examples. In this section, we report some preliminary numeri-
cal results to show the efficiency of the proposed algorithms. The rationale of consider-
ing the general primal-dual scheme (1.10) and the new primal-dual-based prediction-
correction scheme is thus verified. Our main purpose is to illustrate: 1) the combina-
tion factor θ ̸= 1 sometimes can accelerate the convergence of Algorithm 1 with θ = 1;
and 2) Algorithm 2 with a relaxed requirement on τ could be numerically faster than
Algorithm 1.
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All codes were written in C++ based on the finite element library AFEPack [28]
and all experiments were run on a Linux workstation with a ten core Intel 3.0GHz dual
Processors and 128GB Memory. The stopping criterion for implementing Algorithm
1 and 2 is throughout chosen as

∥un+1
h − un

h∥L2(Ω)

∥un+1
h ∥L2(Ω)

≤ Tol,

with the tolerance Tol > 0.

6.1. Numerical Results for Algorithm 1. We first test Example 6.1, which
is an example similar as the one in [7], to show the numerical efficiency of Algorithm
1 with θ ̸= 1.

Example 6.1. Let Ω = (−0.5, 0.5)2, α = 200, and g = g0+δξh with g0 = ιB(0,r),
which is the indicator function of B(0, r) = {x ∈ Ω : |x| ≤ r}, r = 0.2, and ξh is a
mesh-dependent perturbation function.

To see the effectiveness of the combination factor θ, we fix the other parameters
as σ = 1.0 and δ = 0.1; and the tolerance in the stopping criterion is set as Tol =
1.0× 10−4 for the experiments for Example 6.1. The domain Ω is partitioned by the
triangulation mesh Th with 1110 nodes and 2090 elements, as shown in the left part
of Figure 1. The right part of Figure 1 shows the plot of g0 over the mesh Th. The
discretized function gh ∈ L0(Th) is defined by gh|T = g0(xT )+ δξh|T for each T ∈ Th,
where the perturbation function ξh ∈ L0(Th) is a normally distributed random value
in each element T ∈ Th. The initial guess u0

h is taken as the projection of function gh
onto the finite element space S1(Th), and p0h is initialized as zero function.

-0.5

-0.3

-0.1

 0.1

 0.3

 0.5

-0.5 -0.3 -0.1  0.1  0.3  0.5 −0.5

0

0.5

−0.5

0

0.5

0

0.5

1

Fig. 1. Triangular mesh over Ω (left) and the function g0 (right) for Example 6.1.

To implement Algorithm 1, obeying the condition (4.7), we choose the step size
τ as

τ = 2
σ

∥∇∥2
/( (1− θ)2

2α
+

√
(1− θ)4

4α2
+ 4θ2

σ

∥∇∥2

)

and 1/∥∇∥2 is about 1.0× 10−5 to ensure the convergence of all θ ∈ [−1, 1]. We test
the cases of θ ∈ [−1, 1] with an equal distance of 0.1 and plot the iteration numbers
and the values of the step size τ in Figure 2. From this figure, we see that some cases
of θ ∈ [−0.1, 1) require less iterations. Thus the numerical efficiency of Algorithm 1
with θ ̸= 1 is demonstrated. We can also observe in Figure 2 that the value of τ plays
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a key role for the total iteration number of Algorithm 1 under the same stopping
criterion, a larger value of τ satisfying the convergence condition turns out to be with
less iteration number. It should be noticed that the largest step size τ to guarantee
the convergence for θ ∈ [−1, 1) can be larger than that of θ = 1.0 when the mesh size
h is not small enough, although τ = O(h) for θ = 1 and τ = O(h2) for θ ∈ [−1, 1) are
required to guarantee the convergence, just as it is showed in Figure 2 that the step
size τ with θ ∈ [−0.1, 1) is larger than that with θ = 1.0.

In Figure 3, the energy E(un
h) at the iterations un

h for the cases of θ = 0.3 and
1.0 with their corresponding step size τ for Example 6.1 are plotted. This figure
shows that the energy for the case with θ = 0.3 decreases more quickly than that
with θ = 1.0. It is thus again verified to consider the general primal-dual scheme:
Algorithm 1 with θ ̸= 1. We show the iterations un

h for the cases of θ = 0.3 and 1.0
in Figure 4; the cases with n = 0, 20, 40, nstop are listed from top to bottom.

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350

400

θ

Ite
ra

tio
n 

S
te

p

0

1.5

3

4.5

6
x 10

−3

τ

Fig. 2. Iteration step number (‘•’) and step size τ (‘◦’) with different θ for Example 6.1.
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)

 

 
θ = 0.3
θ = 1.0

Fig. 3. Energy E(un
h) of iterations un

h for θ = 0.3 and 1.0 with their corresponding τ for
Example 6.1.

6.2. Numerical Results for Algorithm 2. Then, we consider Example 6.2
to verify the efficiency of Algorithm 2. Its efficiency is demonstrated by comparison
with Algorithm 1.

Example 6.2. Let α = 400, g = g0+δξh and ξh be a mesh-dependent perturbation
function, where g0 is the solution at t = 1.0 of the 2D Allen-Cahn equation [1] over
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Fig. 4. Iterations un
h for θ = 0.3 (left) and 1.0 (right) for Example 6.1 with n = 0, 20, 40, nstop

from top to bottom.
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Ω = (0, 1)2 subjected to periodic boundary condition,

(6.1) ∂tu = D
(
ϵ∆u− 1

ϵ
F ′(u)

)
,

where F (u) = 1
4 (u

2 − 1)2, the initial value is taken as the following random initial
value

u(x, 0) = 0.05(2rand− 1).

We obtain g0 by solving the Allen-Cahn equation (6.1), and the image of g0 over
the mesh Th with 10, 201 nodes and 20, 000 elements is shown in Figure 5. The
perturbation function ξh ∈ S1(Th) evaluated at each node of mesh Th is a random
value sampled from the normally distribution, the noise level δ is 0.2, the initial guess
u0
h is set by function gh and p0h is chosen as 0.0.
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0.7

0.8

0.9

1

Fig. 5. The function g0 over the uniformly triangular mesh with square edge length 1/100.

We fix σ = 0.1 and γ = 1.0 for Algorithm 1 and 2.
In Table 1, the iteration numbers and CPU time in seconds when Algorithms 1 and

2 are applied to Example 6.2 are listed for the cases of θ ∈ [−0.9,−0.2] with an equal
distance of 0.1, where the tolerance in the stopping criterion is set as Tol = 1.0×10−4.
According to the table, it seems that Algorithm 1 is more sensitive to the step size τ
near the critical one certifying the convergence. We can also observe that the largest
step size τ for guaranteeing the convergence of Algorithm 1 is much smaller than
that of Algorithm 2. This coincides with the necessary requirements of the step size
with τ ≤ ch2 for Algorithm 1 and τ ≤ ch for Algorithm 2, respectively satisfying
our theoretical conditions (4.7) and (5.5). The comparison of iteration numbers and
CPU time in seconds is displayed in Figure 6. Moreover, we test more cases with
θ = −0.2,−0.4,−0.6,−0.8 with more values of the step size τ ; and plot the results
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in Figure 7. This figure shows that the iteration numbers and the CPU time of
Algorithm 1 are first decreasing and then increasing once it is convergent; while those
of Algorithm 2 are monotonically increasing with small values of the step size τ . In
Figure 8, we plot the input u0

h and outputs (first row: input u0
h; second row: output

by Algorithm 1; third row: output by Algorithm 2) when θ = −0.4 (left) and −0.8
(right) for Example 6.2 with Tol = 1.0× 10−5.
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Fig. 6. The iteration step (left) and CPU time (right) in seconds for Example 6.2 by Algorithm
1 and Algorithm 2 with θ = −0.9, · · · ,−0.2 and their corresponding step size τ marked in Table 1.

7. Conclusions. In this paper, we focus on the application of primal dual
schemes to the saddle-point reformulation of the total variation minimization model
with consistent finite element discretization and study its convergence. We first gen-
eralize the primal-dual scheme in [7], and then prove its convergence and establish its
worst-case convergence rate measured by the iteration complexity. Then, we propose
a new primal-dual scheme in the prediction-correction framework, whose necessary
requirement of the step size τ satisfying convergence condition can be significantly
relaxed. This new primal-dual-based prediction-correction scheme enjoys the same
convergence turns out to have both stronger convergence rate and better numerical
performance than the generalized primal-dual scheme. We report some preliminary
numerical results to verify the theoretical assertions. It is interesting to extend our
analysis to some more complicated total variational minimization models (such as
[13]). We leave it as our future work.

REFERENCES

[1] S. M. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its
application to antiphase domain coarsening, Acta Metall., 27 (1979), pp. 1085–1095.

[2] L. Ambrosio, N. Fusco, and D. Pallara, Functions of bounded variation and free disconti-
nuity problems, The Clarendon Press, Oxford University Press, New York, 2000.

[3] F. Andreu, C. Ballester, V. Caselles, and J. M. Mazón, Minimizing total variation flow,
Differential Integral Equations, 14 (2001), pp. 321–360.

[4] K. J. Arrow, L. Hurwicz, and H. Uzawa, Studies in linear and non-linear programming,
Stanford University Press, Stanford, 1958.

[5] H. Attouch, G. Buttazzo, and G. Michaille, Variational analysis in Sobolev and BV spaces:
Applications to PDEs and Optimization, SIAM/MPS, Philadelphia, PA, 2006.

[6] G. Aubert and P. Kornprobst, Mathematical problems in image processing: Partial differ-
ential equations and the calculus of variations, Springer, New York, 2nd ed., 2006.

[7] S. Bartels, Total variation minimization with finite elements: convergence and iterative so-
lution, SIAM J. Numer. Anal., 50 (2012), pp. 1162–1180.



22 WENYI TIAN AND XIAOMING YUAN

T
a
b
l
e
1

Itera
tio

n
step

n
u
m
bers

a
n
d
C
P
U

tim
e
in

seco
n
d
s
o
bta

in
ed

by
A
lgo

rith
m

1
a
n
d
2
fo
r
E
xa

m
p
le

6
.2

w
ith

θ
=

−
0
.2
,···

,−
0
.9

a
n
d
d
iff
eren

t
step

size
τ

(‘-’
m
ea
n
s
n
o
t
co
n
vergen

t).

θ
=

−
0
.2

θ
=

−
0
.3

θ
=

−
0
.4

θ
=

−
0
.5

A
lg

1
A
lg

2
A
lg

1
A
lg

2
A
lg

1
A
lg

2
A
lg

1
A
lg

2
τ

ste
p

C
P
U
(s)

ste
p

C
P
U
(s)

τ
ste

p
C
P
U
(s)

ste
p

C
P
U
(s)

τ
ste

p
C
P
U
(s)

ste
p

C
P
U
(s)

τ
ste

p
C
P
U
(s)

ste
p

C
P
U
(s)

1
.0
/
1
2
0
0
.0

-
-

-
-

1
.0
/
1
2
0
0
.0

-
-

-
-

1
.0
/
1
2
0
0
.0

-
-

-
-

1
.0
/
1
2
0
0
.0

-
-

-
-

1
.0
/
1
6
0
0
.0

-
-

1
0
8

5
8
.2

9
1
.0
/
1
6
0
0
.0

-
-

1
0
8

6
2
.4

6
1
.0
/
1
6
0
0
.0

-
-

1
0
8

5
7
.7

3
1
.0
/
1
6
0
0
.0

-
-

1
0
8

6
2
.8

7
1
.0
/
2
0
0
0
.0

3
9
3

1
3
5
.5
2

1
1
8

6
4
.9
5

1
.0
/
2
0
0
0
.0

-
-

1
1
8

6
3
.7
1

1
.0
/
2
4
0
0
.0

-
-

1
2
6

6
8
.6
9

1
.0
/
2
4
0
0
.0

-
-

1
2
6

6
9
.2
7

1
.0
/
2
4
0
0
.0

2
1
8

7
5
.4
0

1
2
6

6
9
.6
8

1
.0
/
2
4
0
0
.0

-
-

1
2
6

7
0
.2
4

1
.0
/
3
2
0
0
.0

-
-

1
4
1

7
7
.8
7

1
.0
/
3
2
0
0
.0

-
-

1
4
1

8
1
.4
7

1
.0
/
2
8
0
0
.0

1
8
6

6
3
.4
2

1
3
3

7
2
.4
8

1
.0
/
3
2
0
0
.0

3
6
2

1
2
4
.1
4

1
4
1

7
7
.3
2

1
.0
/
4
0
0
0
.0

5
8
3

2
0
7
.0
1

1
5
4

8
8
.9
6

1
.0
/
4
8
0
0
.0

9
4
7

3
4
9
.1
2

1
6
6

9
2
.0
3

1
.0
/
3
2
0
0
.0

1
7
8

6
5
.3
8

1
4
1

7
9
.8
4

1
.0
/
3
6
0
0
.0

2
8
1

9
6
.7
0

1
4
7

8
4
.9
7

1
.0
/
4
8
0
0
.0

3
4
5

1
2
4
.0
0

1
6
6

9
2
.2
8

1
.0
/
6
0
0
0
.0

4
0
0

1
3
9
.6
1

1
8
3

1
0
0
.4
4

1
.0
/
3
6
0
0
.0

1
7
5

6
4
.2

6
1
4
7

8
1
.1
5

1
.0
/
4
0
0
0
.0

2
5
0

8
5
.7
4

1
5
4

8
3
.9
0

1
.0
/
5
6
0
0
.0

2
8
9

1
0
5
.3
9

1
7
7

9
5
.8
4

1
.0
/
7
0
0
0
.0

3
3
6

1
1
5
.7
3

1
9
7

1
0
6
.4
0

1
.0
/
4
0
0
0
.0

1
7
9

6
2
.5
4

1
5
4

8
4
.5
6

1
.0
/
4
4
0
0
.0

2
3
5

8
1
.7
3

1
6
0

8
7
.0
9

1
.0
/
6
4
0
0
.0

2
8
3

9
6
.3
8

1
8
9

1
0
4
.5
7

1
.0
/
8
0
0
0
.0

3
2
6

1
1
3
.7
4

2
1
2

1
2
2
.9
6

1
.0
/
4
4
0
0
.0

1
8
3

6
3
.8
4

1
6
0

8
6
.9
4

1
.0
/
4
8
0
0
.0

2
3
1

7
9
.6
2

1
6
6

9
2
.0
0

1
.0
/
7
2
0
0
.0

2
8
0

9
5
.5

1
2
0
0

1
0
9
.7
2

1
.0
/
9
0
0
0
.0

3
2
2

1
1
0
.0

6
2
2
7

1
2
6
.0
7

1
.0
/
4
8
0
0
.0

1
8
9

6
5
.4
7

1
6
6

8
9
.8
6

1
.0
/
5
2
0
0
.0

2
3
1

8
0
.6
5

1
7
1

9
2
.9
4

1
.0
/
8
0
0
0
.0

2
8
4

9
8
.1
2

2
1
2

1
1
7
.3
8

1
.0
/
1
0
0
0
0
.0

3
3
3

1
1
4
.6
5

2
4
1

1
3
2
.9
7

1
.0
/
5
2
0
0
.0

1
9
5

6
6
.3
4

1
7
1

9
2
.4
4

1
.0
/
5
6
0
0
.0

2
3
0

7
9
.9

3
1
7
7

9
6
.9
4

1
.0
/
8
8
0
0
.0

2
9
3

1
0
2
.5
0

2
2
4

1
2
3
.4
3

1
.0
/
1
1
0
0
0
.0

3
3
8

1
1
5
.5
4

2
5
6

1
4
1
.7
0

1
.0
/
5
6
0
0
.0

2
0
1

7
0
.2
4

1
7
7

9
7
.7
8

1
.0
/
6
0
0
0
.0

2
3
4

8
5
.6
6

1
8
3

9
8
.3
7

1
.0
/
9
6
0
0
.0

3
0
2

1
0
5
.0
2

2
3
5

1
2
7
.9
6

1
.0
/
1
2
0
0
0
.0

3
5
0

1
2
1
.8
1

2
7
0

1
4
9
.7
4

1
.0
/
6
0
0
0
.0

2
0
7

7
1
.0
1

1
8
3

9
8
.9
9

1
.0
/
6
4
0
0
.0

2
3
8

8
2
.2
1

1
8
9

1
0
1
.0
5

1
.0
/
1
0
4
0
0
.0

3
1
1

1
1
0
.4
9

2
4
7

1
3
6
.7
7

1
.0
/
1
3
0
0
0
.0

3
6
3

1
2
5
.2
7

2
8
5

1
5
8
.6
7

1
.0
/
6
4
0
0
.0

2
1
5

7
3
.9
8

1
8
9

1
0
3
.0
2

1
.0
/
6
8
0
0
.0

2
4
2

8
3
.8
4

1
9
4

1
0
5
.8
2

1
.0
/
1
1
2
0
0
.0

3
2
0

1
1
0
.5
2

2
5
8

1
4
2
.5
8

1
.0
/
1
4
0
0
0
.0

3
7
6

1
3
6
.6
1

2
9
9

1
5
9
.9
8

1
.0
/
6
8
0
0
.0

2
2
0

7
6
.7
4

1
9
4

1
1
2
.9
5

1
.0
/
7
2
0
0
.0

2
4
5

8
5
.5
4

2
0
0

1
0
9
.5
7

1
.0
/
1
2
0
0
0
.0

3
3
2

1
1
5
.1
3

2
7
0

1
4
8
.4
4

1
.0
/
1
5
0
0
0
.0

3
8
6

1
3
1
.6
8

3
1
3

1
7
5
.9
9

θ
=

−
0
.6

θ
=

−
0
.7

θ
=

−
0
.8

θ
=

−
0
.9

A
lg

1
A
lg

2
A
lg

1
A
lg

2
A
lg

1
A
lg

2
A
lg

1
A
lg

2
τ

ste
p

C
P
U
(s)

ste
p

C
P
U
(s)

τ
ste

p
C
P
U
(s)

ste
p

C
P
U
(s)

τ
ste

p
C
P
U
(s)

ste
p

C
P
U
(s)

τ
ste

p
C
P
U
(s)

ste
p

C
P
U
(s)

1
.0
/
1
2
0
0
.0

-
-

-
-

1
.0
/
1
2
0
0
.0

-
-

-
-

1
.0
/
1
2
0
0
.0

-
-

-
-

1
.0
/
1
2
0
0
.0

-
-

-
-

1
.0
/
1
6
0
0
.0

-
-

1
0
8

5
9
.7

8
1
.0
/
1
6
0
0
.0

-
-

1
0
8

5
8
.4

3
1
.0
/
1
6
0
0
.0

-
-

1
0
8

5
9
.3

1
1
.0
/
1
6
0
0
.0

-
-

1
0
9

5
9
.2

6
1
.0
/
3
8
0
0
.0

-
-

1
5
1

8
2
.9
3

1
.0
/
4
4
0
0
.0

-
-

1
6
0

9
3
.1
6

1
.0
/
4
8
0
0
.0

-
-

1
6
6

9
1
.3
4

1
.0
/
5
4
0
0
.0

-
-

1
7
4

9
5
.7
5

1
.0
/
6
0
0
0
.0

7
4
1

2
5
5
.8
1

1
8
3

1
0
0
.9
9

1
.0
/
7
2
0
0
.0

7
2
4

2
5
2
.3
9

2
0
0

1
0
9
.9
5

1
.0
/
8
0
0
0
.0

8
9
9

3
2
9
.4
9

2
1
2

1
1
5
.4
4

1
.0
/
9
2
0
0
.0

8
7
5

2
9
9
.8
5

2
2
9

1
2
6
.5
8

1
.0
/
7
2
0
0
.0

4
5
3

1
5
5
.6
9

2
0
0

1
1
2
.4
7

1
.0
/
8
4
0
0
.0

5
0
0

1
7
1
.2
5

2
1
8

1
2
2
.0
8

1
.0
/
9
2
0
0
.0

5
9
2

2
1
6
.1
3

2
2
9

1
3
3
.2
9

1
.0
/
1
0
4
0
0
.0

6
2
1

2
1
3
.7
2

2
4
7

1
3
5
.7
4

1
.0
/
8
4
0
0
.0

3
8
5

1
3
4
.8
0

2
1
8

1
2
6
.6
1

1
.0
/
9
6
0
0
.0

4
2
6

1
5
1
.1
4

2
3
5

1
2
9
.0
4

1
.0
/
1
0
4
0
0
.0

4
9
3

1
8
2
.9
7

2
4
7

1
3
9
.8
4

1
.0
/
1
1
6
0
0
.0

5
3
2

1
8
5
.6
8

2
6
4

1
5
1
.2
0

1
.0
/
9
6
0
0
.0

3
7
2

1
3
6
.1
9

2
3
5

1
3
1
.2
6

1
.0
/
1
0
8
0
0
.0

4
1
8

1
4
7
.4
6

2
5
3

1
3
7
.6
1

1
.0
/
1
1
6
0
0
.0

4
5
4

1
6
1
.1
7

2
6
4

1
5
4
.1
2

1
.0
/
1
2
8
0
0
.0

4
9
8

1
6
9
.7
1

2
8
2

1
5
3
.6
3

1
.0
/
1
0
8
0
0
.0

3
6
6

1
2
6
.6

4
2
5
3

1
3
6
.8
0

1
.0
/
1
2
0
0
0
.0

4
0
6

1
3
8
.7

8
2
7
0

1
4
9
.3
8

1
.0
/
1
2
8
0
0
.0

4
5
1

1
5
2
.9
7

2
8
2

1
5
5
.0
4

1
.0
/
1
4
0
0
0
.0

4
9
3

1
7
0
.1
6

2
9
9

1
6
6
.5
2

1
.0
/
1
2
0
0
0
.0

3
7
8

1
3
1
.0
3

2
7
0

1
4
8
.8
0

1
.0
/
1
3
2
0
0
.0

4
1
6

1
4
2
.2
8

2
8
8

1
5
7
.9
4

1
.0
/
1
4
0
0
0
.0

4
4
7

1
6
3
.4

9
2
9
9

1
6
5
.2
3

1
.0
/
1
5
2
0
0
.0

4
8
5

1
6
5
.2

8
3
1
6

1
7
5
.0
5

1
.0
/
1
3
2
0
0
.0

3
8
6

1
3
3
.0
8

2
8
8

1
5
8
.3
4

1
.0
/
1
4
4
0
0
.0

4
2
2

1
4
4
.9
9

3
0
5

1
6
9
.2
8

1
.0
/
1
5
2
0
0
.0

4
5
5

1
5
5
.2
5

3
1
6

1
7
3
.7
3

1
.0
/
1
6
4
0
0
.0

4
9
0

1
6
6
.7
3

3
3
3

1
8
1
.4
1

1
.0
/
1
4
4
0
0
.0

3
9
9

1
4
4
.9
5

3
0
5

1
6
9
.6
5

1
.0
/
1
5
6
0
0
.0

4
3
2

1
4
9
.0
7

3
2
2

1
7
6
.7
4

1
.0
/
1
6
4
0
0
.0

4
6
2

1
5
9
.9
7

3
3
3

1
8
0
.3
3

1
.0
/
1
7
6
0
0
.0

4
9
5

1
6
9
.4
3

3
5
0

1
9
1
.5
6

1
.0
/
1
5
6
0
0
.0

4
1
2

1
4
1
.2
2

3
2
2

1
7
9
.4
1

1
.0
/
1
6
8
0
0
.0

4
4
4

1
5
4
.9
3

3
3
9

1
8
4
.9
3

1
.0
/
1
7
6
0
0
.0

4
7
3

1
6
4
.9
5

3
5
0

1
9
8
.3
6

1
.0
/
1
8
8
0
0
.0

5
0
5

1
7
1
.6
1

3
6
7

2
0
1
.1
9

1
.0
/
1
6
8
0
0
.0

4
2
6

1
4
4
.8
9

3
3
9

1
9
6
.9
8

1
.0
/
1
8
0
0
0
.0

4
5
6

1
5
7
.0
7

3
5
5

1
9
6
.1
1

1
.0
/
1
8
8
0
0
.0

4
8
1

1
6
3
.7
9

3
6
7

1
9
8
.4
0

1
.0
/
2
0
0
0
0
.0

5
1
1

1
7
3
.9
4

3
8
4

2
1
1
.2
0

1
.0
/
1
8
0
0
0
.0

4
4
2

1
5
6
.6
5

3
5
5

1
9
3
.7
4

1
.0
/
1
9
2
0
0
.0

4
7
1

1
6
0
.7
0

3
7
2

2
0
9
.2
5

1
.0
/
2
0
0
0
0
.0

4
9
7

1
7
4
.6
1

3
8
4

2
1
2
.9
7

1
.0
/
2
1
2
0
0
.0

5
2
7

1
8
3
.2
1

4
0
0

2
3
2
.9
0

1
.0
/
1
9
2
0
0
.0

4
5
5

1
6
6
.2
0

3
7
2

2
0
5
.8
9

1
.0
/
2
0
4
0
0
.0

4
8
3

1
6
5
.7
1

3
8
9

2
1
5
.0
5

1
.0
/
2
1
2
0
0
.0

5
0
6

1
7
4
.2
1

4
0
0

2
3
2
.4
2

1
.0
/
2
2
4
0
0
.0

5
3
4

1
8
3
.3
5

4
1
6

2
2
2
.1
6



CONVERGENCE OF P-D BASED METHODS FOR TV MINIMIZATION 23

10
−5

10
−4

10
−3

100

200

300

400

500

600

700

800

τ

Ite
ra

tio
n 

S
te

p

θ = −0.2

 

 

Algorithm 1
Algorithm 2

10
−5

10
−4

10
−3

50

100

150

200

250

300

350

400

450

τ

C
P

U
(s

)

θ = −0.2

 

 

Algorithm 1
Algorithm 2

10
−5

10
−4

10
−3

100

200

300

400

500

600

700

800

τ

Ite
ra

tio
n 

S
te

p

θ = −0.4

 

 

Algorithm 1
Algorithm 2

10
−5

10
−4

10
−3

50

100

150

200

250

300

350

400

450

τ

C
P

U
(s

)

θ = −0.4

 

 

Algorithm 1
Algorithm 2

10
−5

10
−4

10
−3

100

200

300

400

500

600

700

800

900

τ

Ite
ra

tio
n 

S
te

p

θ = −0.6

 

 

Algorithm 1
Algorithm 2

10
−5

10
−4

10
−3

50

100

150

200

250

300

350

400

450

τ

C
P

U
(s

)

θ = −0.6

 

 

Algorithm 1
Algorithm 2

10
−5

10
−4

10
−3

100

200

300

400

500

600

700

800

900

τ

Ite
ra

tio
n 

S
te

p

θ = −0.8

 

 

Algorithm 1
Algorithm 2

10
−5

10
−4

10
−3

50

100

150

200

250

300

350

400

450

τ

C
P

U
(s

)

θ = −0.8

 

 

Algorithm 1
Algorithm 2

Fig. 7. The iteration step (left) and CPU time (right) in seconds for Example 6.2 by Algorithm
1 and Algorithm 2 with θ = −0.2,−0.4,−0.6,−0.8 and τ = 1./[1000:1000:50000].
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Fig. 8. Input u0
h and Outputs for θ = −0.4 (left) and −0.8 (right) for Example 6.2 with noise

level δ = 0.2 and Tol = 1.0 × 10−5. (First row: input u0
h; Second row: Output by Algorithm 1;

Third row: Output by Algorithm 2)
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