
EURO Journal on Transportation and Logistics manuscript No.
(will be inserted by the editor)

Tools for primal degenerate linear programs:
IPS, DCA, and PE

Jean Bertrand Gauthier · Jacques

Desrosiers · Marco E. Lübbecke

Received: date / Accepted: date

Abstract This paper describes three recent tools for dealing with primal degen-
eracy in linear programming. The first one is the Improved Primal Simplex (IPS)
algorithm which turns degeneracy into a possible advantage. The constraints of
the original problem are dynamically partitioned based on the numerical values of
the current basic variables. The idea is to work only with those constraints that
correspond to nondegenerate basic variables. This leads to a row-reduced problem
which decreases the size of the current working basis. The main feature of IPS is
that it provides a nondegenerate pivot at every iteration of the solution process
until optimality is reached. To achieve such a result, a negative reduced cost convex
combination of the variables at their bounds is selected, if any. This pricing step
provides a necessary and sufficient optimality condition for linear programming.
The second tool is the Dynamic Constraints Aggregation (DCA), a constructive
strategy specifically designed for set partitioning constraints. It heuristically aims
to achieve the properties provided by the IPS methodology. We bridge the sim-
ilarities and differences of IPS and DCA on set partitioning models. The final
tool is the Positive Edge (PE) rule. It capitalizes on the compatibility definition
to determine the status of a column vector and the associated variable during the
reduced cost computation. Within IPS, this added value is obtained without ex-
plicitly computing the updated column components in the simplex tableau. Since
the selection of a compatible variable to enter the basis ensures a nondegenerate
pivot, PE permits a trade-off between strict improvement and high reduced cost
degenerate pivots. Ultimately, we establish tight bonds between these three tools
by going back to the linear algebra framework from which emanates the so-called
concept of subspace basis.

J.B. Gauthier and J. Desrosiers
HEC Montréal & GERAD
3000, chemin de la Côte-Sainte-Catherine, Montréal, Canada, H3T 2A7
E-mail: <jean-bertrand.gauthier, jacques.desrosiers>@hec.ca

M.E. Lübbecke
RWTH Aachen University, Operations Research
Kackertstraße 7, D-52072 Aachen, Germany
E-mail: marco.luebbecke@rwth-aachen.de

2 Jean Bertrand Gauthier et al.

Keywords Primal simplex · degeneracy · combination of entering variables ·
Positive Edge rule · nondegenerate pivot algorithm · dynamic Dantzig-Wolfe
decomposition · vector subspace.

1 Introduction

When solving a linear program with the primal simplex algorithm (see Dantzig
1963), degeneracy comes in two flavors: degenerate solutions and degenerate piv-
ots. The first case is a question of observation, it is a dichotomous state of the
solution which either exhibits degenerate basic variables or not. A basic solution
is degenerate if at least one of its basic variables is at its lower or upper bound.
Geometrically speaking, it corresponds to an over-represented vertex meaning that
several equivalent bases are associated with the same solution. The second case
is the culprit of the algorithm in more ways than one. In fact, it is the only
phenomenon which jeopardizes the convergence of the simplex algorithm both
theoretically and empirically. Degeneracy questions the efficiency of the simplex
algorithm and creates ambiguity in the post-analysis. On the one hand, degen-
eracy can affect the efficiency of the algorithm in obtaining an optimal solution
because it creates redundant work. More specifically, a degenerate pivot amounts
to trading one degenerate basic variable for a nonbasic one. Since no gain is made
with respect to the objective function, it is in the aftermath of the computations
that one ultimately realizes the wasted effort. It is even possible to cycle meaning
that the simplex algorithm moves through a series of bases eventually returning to
an already visited one. If this happens indefinitely, the simplex algorithm may not
even converge (Schrijver 1986). On the other hand, a by-product of the simplex
method is the sensitivity analysis done after the optimization. Each constraint is
associated with a dual variable whose value depends on the chosen basis. Since an
optimal degenerate basis is not uniquely defined, it can mislead the interpretation
of two otherwise equivalent solutions.

It should be noted that column generation used to solve linear programs with
a huge number of variables (Barnhart et al 1998; Lübbecke and Desrosiers 2005) is
a natural extension of the primal simplex, and as such suffers from degeneracy as
well. With that being said, degeneracy is a phenomenon encountered particularly
often for linear programming relaxations of combinatorial optimization problems.
Set partitioning and set covering models are prominent examples of practical rele-
vance: vehicle routing and crew scheduling problems (and many related problems in
transportation and logistics) are most successfully formulated this way (Desrosiers
et al 1995; Desaulniers et al 1998).

Degeneracy has been under scrutiny for practically as long as linear program-
ming. We distinguish two lines of studies from the literature. The first aims to
eliminate degeneracy altogether and the other provides guidelines to alleviate its
impact. On the first count, think of the work of Charnes (1952) which revolves
around modifying the polytope of the whole solution space in such a way that no
two solutions ever share the same vertex. The concept amounts to right-hand side
perturbations thus creating slight variations in the way the hyperplanes intersect.
While the idea of eradicating degeneracy altogether is appealing, today’s simplex
codes use a more ad hoc strategy which sends us to the second count. The contri-
butions of Wolfe (1963) and Ryan and Osborne (1988) are abundant evidence that

Tools for primal degenerate linear programs: IPS, DCA, and PE 3

applying this strategy as necessary is highly effective. The perturbations are now
applied in an adaptive manner and on a more local scale. Stabilization extends the
idea of perturbation by incorporating dual information. Penalty functions, trust
regions and expansion strategies are among the instrumental concepts of stabiliza-
tion as described in the papers of du Merle et al (1999) and Ben Amor et al (2009).
Column generation benefits from the latter as it tackles the particular sensitivity
to the values of dual variables during the resolution process.

Numerous pivot rules have also been proposed to avoid performing degenerate
pivots. In this regards, the work of Terlaky and Zhang (1993) is enlightening in
many respects. Indeed, while many of these rules share common properties and
sometimes even correspond to special cases of one another, they are distinguished
according to certain properties: feasibility maintenance, anti-cycling feature and
recursive nature. While there might have been hope about the performance of
many of these rules, even nondegenerate instances can be difficult to optimize
as supported by Klee and Minty (1972). The performance of a pivot rule may
therefore be considered as a trade-off between its complexity and the savings it
procures with respect to the number of iterations. The state of the art in terms
of degenerate problems seems to be the Devex rule of Harris (1973), see Terlaky
and Zhang (1993). We underline that regardless of their intricacies, all of these
rules have a limited gain with respect to the absence of guaranteed efficiency.
That is, zero step size pivots could still ensue from the chosen direction. The anti-
cycling feature present in Bland (1977) or Fukuda (1982) ensures this behavior
does not happen indefinitely. It is however generally accepted that taking expensive
measures to protect against cycling is not worthwhile.

A new trend appears in the late nineties with the paper of Pan (1998) who
formulates a generic basis for degenerate solutions. Embedding this concept in
a column generation scheme led to the Dynamic Constraints Aggregation (DCA)
algorithm of Elhallaoui et al (2005, 2008) for the set partitioning problem. This
problem lands itself particularly well to such a concept because of its peculiar
structure. Indeed, it is this very structure that allows DCA to heuristically harness
the power of a generic basis and quite often find strictly improving pivots. The
paper of Elhallaoui et al (2011) extends the algorithmic methodology with the
Improved Primal Simplex (IPS). As its name would have it, this extension takes
place with regards to any linear programming problem. In a nut shell, the structure
of a solution is preemptively taken into account in order to drive the next simplex
pivot in a strictly improving direction. That structure is dynamically updated with
respect to the current solution.

The methodological paper at hand describes three tools for dealing with primal
degeneracy. At the heart of this framework lies the search for so-called compatible

column vectors and associated variables. Whether such a column exists as is in the
original problem or is constructed as a convex combination of these, it corresponds
to a direction in a polytope induced by a transformation of the original simplex. As
such, we believe that IPS provides a better starting point from which the other two
tools can benefit in terms of presentation. The second tool is of course DCA (which
was incidentally designed prior to IPS) and the third is the Positive Edge (PE) rule
(Raymond et al 2010a; Towhidi et al 2014). It is safe to say that DCA is a method
steered by practical imperatives. Yet, explaining the reason behind its performance
can now also be done in a straightforward manner in light of the IPS framework.
PE is yet another example of benefits obtained from a higher level of abstraction.

4 Jean Bertrand Gauthier et al.

Indeed, while manipulating the set of compatible vectors can be computationally
efficient, identifying said set can be time consuming for large problems. PE aims to
simplify this verification by extracting the compatibility status during the reduced
cost computation using the original column data.

The paper is organized as follows. Section 2 first exposes the theory of IPS
with several hints to the primal simplex algorithm. By casting the linear algebra
framework on our study, Section 3 presents another perspective of IPS. Section 4
addresses the more practical side with regards to several implementation choices.
The importance of compatibility in the design of specialized applications is high-
lighted in Section 5. The similarities and differences between IPS and DCA are
examined in Section 6 while Section 7 reveals PE. Various results from the litera-
ture are reported at the end of Sections 4 , 6 and 7 depending on the context of
the underlying tool. Our conclusions end the paper in Section 8.

Motivation. In the words of Perold (1980), a great many degenerate iterations is
usually the resulting observation of degeneracy. As a matter of fact, it is not
unusual to see that when an average of 20% of basic columns are degenerate,
50% of the iterations are degenerate. While the former statement gives a feel
for the negative impact of degeneracy, the second statement rapidly frames it
within a quantitative measure. The degenerate variables percentage of each basic
solution encountered during the resolution process is averaged over the number
of iterations. As such, it is certainly possible to characterize a linear program as
degenerate if some basis exhibits such a quality, yet it is much more interesting to
measure the extent of this pathology. The latter is based on empirical evidence.
A linear program is thus said to have a degeneracy level of β%, where β = 20
corresponds to the average in Perold’s example.

In the same vein, whole class of linear programs can be qualified in the same
manner by computing the mean of these values. For instance, assignment network
problems have a degeneracy level of 50%, or even 100% if upper bounds are explicit.
We do not know of any guidelines to state that family classes are degenerate, but
it is fair to say that the level should be at least 20%. In vehicle routing, it is
immediate how degeneracy occurs: Constraints represent (often large numbers) of
tasks to be covered by relatively few vehicles or crew members, that is, only few
variables assume a positive value, especially in an integer solution.

Notation and terminology. Vectors and matrices are written in bold face. We
denote by I` the `× ` identity matrix and by 0 (resp. 1) a vector/matrix with all
zeros (resp. ones) entries of contextually appropriate dimension. For a subset I ⊆
{1, . . . ,m} of row indices and a subset J ⊆ {1, . . . , n} of column indices, we denote
by AIJ the sub-matrix of A containing the rows and columns indexed by I and J ,
respectively. We further use standard linear programming notation like AJxJ , the
subset of columns of A indexed by J multiplied by the corresponding sub-vector
of variables xJ . The lower case notation is reserved for vectors and uses the same
subset index rules. In particular, the matrix A := (aj)j∈{1,...,n} contains n vector-
columns. Finally, there is one notable exception: The set N does not denote the
nonbasis but rather the set of basic and nonbasic variables at their lower or upper
bounds. Hence, for a linear program in standard form, xN represents the vector
of null variables.

The pricing step in the seminal IPS papers refers to solving a complementary

problem whereas it was later shown that IPS can be seen as a dynamic Dantzig-

Tools for primal degenerate linear programs: IPS, DCA, and PE 5

Wolfe decomposition at every iteration. As a survey paper, we use a unifying
terminology and choose to define the pricing step as solving a pricing problem.

2 Improved Primal Simplex

This section first exposes the theory of IPS in the context of a linear program
with lower and upper bounded variables. It is based on the original papers of El-
hallaoui et al (2011), Raymond et al (2009, 2010b), Metrane et al (2010) and its
generalization to row-reduced column generation (Desrosiers et al 2014). However,
contrary to the original presentation, the choice of using a bounded linear program
in the description of IPS is becoming of its purpose. Indeed, when embedded in
a branch-and-bound scheme, bounded variables appear rapidly. In set partition-
ing problems, degenerate upper bounds are also exploited for a faster resolution.
Finally, the change of variables utilized for the row partition also becomes more
apparent with upper bounds.

We present in Section 2.1 the algorithmic steps of IPS. Section 2.2 provides the
proof of a necessary and sufficient optimality condition derived from the improved
pricing step. Section 2.3 presents a simplified version of IPS for linear programs in
standard form. For a better understanding of the concepts, an illustrative example
is given in Section 2.4 on a small linear program.

Consider a linear program (LP) with lower and upper bounded variables:

z? := min cᵀx

s.t. Ax = b, [π]
l ≤ x ≤ u,

(1)

where x, c, l,u ∈ Rn, b ∈ Rm, A ∈ Rm × Rn, and m < n. We assume that A is a
matrix of full row rank and that LP is feasible and bounded. Finally, π ∈ Rm is a
vector of dual variables associated with the equality constraints.

2.1 Algorithmic steps

The main idea in IPS is to reduce the number of constraints from m to f , the
number of nondegenerate or free variables in a basic solution. The advantage of
this row reduction is a smaller working basis of dimension f × f rather than the
usual larger one of dimension m×m. This comes at the expense of a more involved
pricing step which solves a linear program of row size m − f + 1 to select an
improving subset of columns, that is, a convex combination of columns with two
properties: this selection is compatible with the current row-reduced problem (see
Definition 1) and its reduced cost is negative. If such a combination exists, a strict
improvement in the objective function value occurs, otherwise the current solution
is optimal.

Figure 1 contains an overview of the main steps of IPS. The initialization con-
tains the change of variables, input basic solution x0, and the associated column
partition with null variables set N . The main loop provides: (1) the construction
of a generic basis and the resulting linear transformation and row partition; (2)
the definition of compatibility; (3) the development of an improving pricing step;

6 Jean Bertrand Gauthier et al.

(4) the exchange mechanism from a solution x0 to the next x1 which inciden-
tally brings an inspiring twist to the pivoting rule; (5) the update of the column
partition.

Initialization: basic solution x0;
change of variables;
column partition {F,L, U} and N := {L ∪ U};

1 Generic basis B, transformation B−1, row partition {P,Z} of AF ;
2 Compatibility with row partition {P,Z} of AF <optional>;
3 Improved pricing step: optimize minimum reduced cost µ;

4 Exchange mechanism from x0 to x1;
5 Update column partition {F,L, U} and goto Step 1;

Fig. 1 IPS algorithmic steps

Initialization Let x0, represented by (x0
F ; x0

L; x0
U), be a basic solution where the

three sub-vectors are defined according to the value of their variables: x0
L at their

lower bounds, x0
U at their upper bounds, and free variables lF < x0

F < uF . Free
variables are basic and they can move below or above their current value which
obviously makes them nondegenerate. Let there be f := |F | such free variables,
0 ≤ f ≤ m. Partition matrix A = [AF ,AL,AU] and cost vector cᵀ = [cᵀF , c

ᵀ
L, c

ᵀ
U]

accordingly. Although the change of variables is blindly applied, IPS retains only
those pertinent to the construction: xL and xU :

xL := x0
L + yL, yL ≥ 0

xU := x0
U − yU , yU ≥ 0.

(2)

Let N := L ∪ U to form yN = (yL; yU), the vector of currently null y-variables,
bounded above by rN , where rj := uj − `j , ∀j ∈ N . Let dᵀ

N := [cᵀL,−cᵀU] and define
A0
N := [AL,−AU], that is, a0

j = aj , ∀j ∈ L, and a0
j = −aj , ∀j ∈ U . Given the

adjusted right-hand side b0 := b−ALx0
L −AUx0

U , LP becomes:

z? = cᵀLx0
L + cᵀUx0

U + min cᵀFxF + dᵀ
NyN

s.t. AFxF + A0
NyN = b0, [π]

lF ≤ xF ≤ uF , 0 ≤ yN ≤ rN .

(3)

1 – Generic basis B, transformation B−1, row partition {P,Z} of AF . Current so-
lution being basic, columns of AF are linearly independent. When f = m, there
is no row reduction but the current solution is nondegenerate, and so is the next
pivot. Assume that f < m such that the basis associated with x0 contains degen-
erate variables. Let us call basis completion the process of selecting m− f variables
taking value zero which complement adequately (read basis-inducing) the critical
component AF . Since any and all combinations of degenerate variables which may
complete the basis is as good as the next one, let us construct a generic m×m basis
denoted B. Such a basis is readily available using the f free variables associated
with the columns of AF together with m − f artificial variables. The selection of
an appropriate set of artificial variables can be done by solving a restricted primal

Tools for primal degenerate linear programs: IPS, DCA, and PE 7

simplex phase I problem over columns of AF and those of the identity matrix Im
with the corresponding vector of artificial variables here denoted λ:

min 1ᵀλ

s.t. AFxF + Imλ = b0,

xF ≥ 0, λ ≥ 0.

(4)

Solving this problem is undoubtedly successful in accordance with the fact that
AFx0

F = b0. Furthermore, this restricted phase I differs from a cold start phase I
on one key point: only the former can guarantee a basis in which all degenerate
basic variables are artificial ones. Let it be clear that this construction process
identifies some subset APF of exactly f independent rows from matrix AF . This
provides the row partition {P, P̄} of AF , where for notational convenience we use
Z := P̄ . Generic basis B and its inverse B−1 are as follows:

B =

[
APF 0

AZF Im−f

]
and B−1 =

[
A−1
PF 0

−AZFA−1
PF Im−f

]
, (5)

where matrix APF of dimension f × f is the working basis. Basis B is one of the
many bases available to identify the over-represented vertex x0. As such, observe
the sensitivity of the dual vector πᵀ := cᵀBB−1 with respect to the choice of basis
completion. LP becomes

z? = cᵀLx0
L + cᵀUx0

U + min cᵀFxF + dᵀ
NyN

s.t. APFxF + A0
PNyN = b0

P , [πP]

AZFxF + A0
ZNyN = b0

Z , [πZ]

lF ≤ xF ≤ uF , 0 ≤ yN ≤ rN .

(6)

Let b̄0 := B−1b0 and

Ā0
N := B−1A0

N =

[
Ā0
PN

Ā0
ZN

]
=

[
A−1
PFA0

PN

A0
ZN −AZFA−1

PFA0
PN

]
. (7)

The new LP formulation obtained after the change of y-variables and the left-
multiplication by the linear transformation B−1 of the set of equality constraints
(which incidentally also transform the dual variables) makes degeneracy more
evident:

z? = cᵀLx0
L + cᵀUx0

U + min cᵀFxF + dᵀ
NyN

s.t. xF + Ā0
PNyN = b̄0

P , [ψP]

Ā0
ZNyN = 0, [ψZ]

lF ≤ xF ≤ uF , 0 ≤ yN ≤ rN .

(8)

The current solution is given by xF = x0
F = A−1

PFb0
P = b̄0

P while yN = 0.
Observe that constraints of LP are divided according to the actual values of b̄0:
for row set P , b̄0

P > 0; for the remaining rows in set Z, b̄0
Z = 0. Dual vector π

can be retrieved from the above transformed dual vector ψ using the expression
πᵀ = ψᵀB−1:

πᵀ
P = ψᵀ

PA−1
PF −ψ

ᵀ
ZAZFA−1

PF (9)

πᵀ
Z = ψᵀ

Z . (10)

8 Jean Bertrand Gauthier et al.

2 – Compatibility with row partition {P,Z} of AF . Observe that any solution to (8),
optimal or not, must satisfy Ā0

ZNyN = 0. This leads us to the first definition of
compatibility.

Definition 1 A vector a ∈ Rm (and the associated variable, if any) is compatible

with row partition {P,Z} of AF if and only if āZ := aZ −AZFA−1
PF aP = 0.

From formulation (8), one can derive that the column vectors of AF are com-
patible (hence the free variables xj , j ∈ F) as well as the transformed right-hand
side vector b0 (with no associated variable) but degenerate basic variables are not.
Further notice that the concept of compatibility assumes a row partition {P,Z} of
AF which is sometimes silenced.

3 – Improved pricing step: optimize minimum reduced cost µ. Variables xF are basic
in row set P , hence the reduced cost vector c̄F = cF − ψP = 0 which means
that ψP = cF . With respect to the values of ψZ , we recall the basis completion
paradigm whereby the selection of degenerate variables that complete the basis
influences the values of their associated dual variables. In other words, it is possi-
ble to capitalize on this freedom and consider them undetermined. Current solu-
tion x0 = (x0

F ; x0
L; x0

U) is optimal for (1), or equivalently (xF ; yN) = (x0
F ; 0) is opti-

mal for (8), if there exists some dual vector ψZ such that the reduced cost d̄j of ev-
ery variable yj , j ∈ N, is nonnegative, that is, d̄j := dj−cᵀF ā0

Pj−ψ
ᵀ
Z ā0

Zj ≥ 0, ∀j ∈ N.
Let µ := min

j∈N
d̄j be the smallest reduced cost for yN given ψP = cF but

optimized over ψZ . Finding µ can be formulated as a linear program:

max µ

s.t. µ ≤ dj − cᵀF ā0
Pj −ψ

ᵀ
Z ā0

Zj , [yj] ∀j ∈ N,
(11)

where yj ≥ 0, j ∈ N, is the dual variable associated with the corresponding
inequality constraint. Let d̃j := dj−cᵀF ā0

Pj be the partial reduced cost of yj computed

by using dual vector ψP = cF , or equivalently d̃ᵀ
N := dᵀ

N −cᵀF Ā0
PN in vector form.

Therefore, (11) becomes

max µ

s.t. 1µ + ψᵀ
ZĀ0

ZN ≤ d̃N , [yN].
(12)

Taking the dual of (12), the pricing problem is written in terms of yN , the
vector of currently null variables to price out:

µ = min d̃ᵀ
NyN

s.t. 1ᵀyN = 1, [µ]
Ā0
ZNyN = 0, [ψZ]

yN ≥ 0.

(13)

Pricing problem (13) can be solved by the dual simplex algorithm because only
the convexity constraint 1ᵀyN = 1 is not satisfied by the current value yN = 0.
For a more recent analysis of the resolution of the pricing problem, Omer et al
(2014) explore ways to warm start the basis notably with the use of more elaborate
coefficients for the convexity constraints. Alternatively, specialized algorithms can
be used in some applications. This is the case for LP defined as a capacitated

Tools for primal degenerate linear programs: IPS, DCA, and PE 9

minimum cost network flow problem where pricing problem (13) corresponds to a
minimum mean cost cycle problem which can be solved in O(mn) time by dynamic
programming (Karp 1978). What ultimately matters is that we are looking for
extreme point solutions to (13) (see Gauthier et al 2014).

The number of positive variables in an optimal solution y0
N to (13) is at

most m − f + 1, the row dimension of the pricing problem. Solution x0 is op-
timal for LP if µ ≥ 0. Otherwise, µ < 0 and y0

N = (y0
L; y0

U) to (13) identifies a
convex combination ω ∈ Ω of columns such that Ā0

ZNy0
N = 0. Observe that by

Definition 1, the vector A0
Ny0

N ∈ Rm is compatible with the row partition {P,Z}
of AF .

4 – Exchange mechanism from x0 to x1. Solution y0
N is utilized to move from x0 to

x1. In simplex terms, column A0
Ny0

N enters basis B. Denote the entering variable
by θω, ω ∈ Ω, a surrogate variable nonexistent from the original formulation and
indexed by convex combination ω. Such a variable θω is compatible by Definition 1.

Parameters of θω relative to formulation (8) are as follows: ā0
w =

[
ā0
Pw

ā0
Zw

]
=[

Ā0
PNy0

N

0

]
, reduced cost µ, cost dᵀ

Ny0
N , and y0

N 6= 0. With the addition of the

variable θω to the LP model in (8), we have the following relations, where relevant
parameters are indicated within brackets:

xF + [ā0
Pω] θω = b̄0

P

lF ≤ xF ≤ uF , 0 ≤ [y0
N] θω ≤ rN .

(14)

Regardless of its solution, observe that the pricing problem finds a partial im-
proving direction y0

N of negative reduced cost value µ, if one exists, uniquely
completed by y0

F , the impact in row set P :[
y0
F

y0
N

]
=

[
−ā0

Pω

y0
N

]
=

[
−Ā0

PNy0
N

y0
N

]
∈ Rn. (15)

The step size ρ is governed by the usual pivot rule. In (14), entering variable θω
can increase up to the maximum change for yN , that is, y0

Nθω ≤ rN , or according
to the maximum change for xF , that is, lF ≤ b̄0

P − ā0
Pωθω ≤ uF . Step size ρ on θω

is given by

ρ := min

{
min

j∈N |y0
j>0

{
rj

y0
j

}
, min
i∈P |ā0

iw>0

{
b̄0i − li
ā0
iw

}
, min
i∈P |ā0

iw<0

{
ui − b̄0i
−ā0

iw

}}
. (16)

A nondegenerate pivot occurs (ρ > 0) and the objective function strictly im-
proves by

∆z = ρµ = ρ d̃ᵀ
Ny0

N . (17)

The x0-solution is updated to x1 according to direction (15):

x1
F := x0

F − ρ ā0
Pω

x1
L := x0

L + ρy0
L

x1
U := x0

U − ρy0
U .

(18)

10 Jean Bertrand Gauthier et al.

The number of free variables in x1 is at most f + (m− f + 1)− 1 = m, that is,
the new solution can be more degenerate but it can also be less degenerate when
several variables of the convex combination become free.

Regardless of the manner in which one updates the current solution, the af-
termath is the result of an exchange mechanism. Even the ratio test performed to
identify the exiting variable in the traditional primal simplex echoes this notion.
Indeed, the exchange always happens in a one-to-one fashion, while we have just
seen that it can be more involved. Given the current solution, the exchange mech-
anism provided in (18) starts in the pricing problem (13) for rows in set Z by
finding in Ā0

ZNyN = 0, yN ≥ 0, which induces directions y0
L and −y0

U for vectors
xL and xU , respectively. The exchange process is afterward completed by using
rows in set P and interval constraints in (14): direction for vector xF is given by
−ā0

Pω =− Ā0
PNy0

N and the step size is derived in expression (16). In the latter, it
occurs between xF and entering variable θω, ω ∈ Ω.

5 – Update column partition {F,L, U} In the midst of obtaining the new solution
x1, every variable affected by the new direction is identified. It is therefore easy
to modify the status of each of these variable if necessary. Notice that the generic
basis B is inspired by the column partition F .

Special case: y0
j = 1, j ∈ N . The reader is invited to contemplate the special case

where the convex combination contains a single variable y0
j , j ∈ N . The repercus-

sions are many in terms of mathematical simplifications but we are most interested
in the following one. The surrogate variable actually exists as is in the original for-
mulation (8) which means that some existing variables in set N are compatible
with the row partition {P,Z} of AF . In that case, column a0

j , j ∈ N, enters ba-

sis B, µ = d̃j , and the step size ρ is computed according to the maximum increase
of variable yj . From (8), we have the following relations:

xF + ā0
Pjyj = b̄0

P

lF ≤ xF ≤ uF , 0 ≤ yj ≤ rj .
(19)

The step size ρ on yj can increase up to the upper bound rj , or according to
the maximum change in the vector of free variables lF ≤ b̄0

P − ā0
Pjyj ≤ uF :

ρ := min

{
rj , min

i∈P |ā0
ij>0

{
b̄0i − li
ā0
ij

}
, min
i∈P |ā0

ij<0

{
ui − b̄0i
−ā0

ij

}}
> 0 . (20)

Objective function z improves by ∆z = ρd̃j = ρµ. Either j ∈ L (xj is at its
lower bound) or j ∈ U (xj is at its upper bound) and x0 is updated to x1 as

x1
F := x0

F − ρ ā0
Pj

x1
L := x0

L + ρy0
L

x1
U := x0

U − ρy0
U .

(21)

The number of free variables in x1 is at most f , that is, the new solution can
be more degenerate. If ρ < rj , f decreases if more than one of the free variables
reach their bounds. Otherwise ρ = rj , the corresponding xj variable changes bound
and therefore stays degenerate in the new solution; the number of free variables
decreases if at least one free variable reaches a bound.

Tools for primal degenerate linear programs: IPS, DCA, and PE 11

2.2 Characterization of linear programming optimality

In summary, when µ ≥ 0, the current solution x0 is optimal. Otherwise, µ < 0
and we obtain a strict improvement of the objective function, update the current
solution from x0 to x1, and the process is repeated until the following necessary

and sufficient optimality condition is met.

Proposition 1 A basic feasible solution x0 = (x0
F ; x0

L; x0
U) is an optimal solution to

the linear program (1) if and only if there exists a dual vector ψZ such that µ ≥ 0, as

optimized by the primal-dual pair (12)–(13) of the pricing problem.

Proof Formulations (1) and (8) are equivalent. Because c̄F = 0, if there exists
some dual vector ψZ such that dᵀ

N − cᵀF Ā0
PN − ψ

ᵀ
ZĀ0

ZN ≥ 0ᵀ, N := L ∪ U , then
(c̄F , d̄N) ≥ 0. Therefore, ψᵀ = (cᵀF ,ψ

ᵀ
Z) provides a feasible dual solution to (8).

Since ψᵀ
P b̄0

P = cᵀFx0
F , primal and dual objective functions are equal and the current

feasible solution x0 is optimal for (1).
To show the converse, let x0 be an optimal solution to (1) and assume µ < 0.

An optimal solution to the pricing problem (13) identifies a convex combination
of variables such that a nondegenerate pivot occurs (ρ > 0) and the objective
function strictly improves by ρµ < 0. This contradicts the optimality of x0 and
completes the proof. 2

All simplex derivatives work according to the presumption of innocence. Opti-
mality is indeed assumed until proven otherwise. It is no different in IPS, yet it is
an amazing feat that the content of the pricing problem be reminiscent of the no
more, no less punch line. The sufficient condition answers to the first part, while
the necessary condition to the second.

2.3 IPS for a linear program in standard form

The reader may recall that incorporating lower and upper bounds in the primal
simplex method adds a plethora of intricacies in the algorithmic analysis. Although
the same is true of IPS, we assumed the reader was sufficiently accustomed with
the primal simplex method. In the spirit of conveying the general idea of IPS,
it might be worthwhile to present a simpler version. This basically amounts to
removing the dimension U from the formulation. The simplifications are threesome
and correspond to the main steps of IPS: creating the column and row partitions,
building the pricing problem, and modifying the current solution. Given LP in
standard form

z? := min cᵀx

s.t. Ax = b, [π]
x ≥ 0,

(22)

and a feasible solution x0 = (x0
F ; x0

N), the column partition step distinguishes
between currently nondegenerate (or free) basic vector x0

F and null vector x0
N :

z? = min cᵀFxF + cᵀNxN

s.t. AFxF + ANxN = b, [π]
xF ≥ 0, xN ≥ 0.

(23)

12 Jean Bertrand Gauthier et al.

Recall the previous change of variables in (2). Since N now only contains
variables at their lower bounds, xN could be used interchangeably with yN . We
maintain the general presentation to underscore that the construction aims to find
an improving direction induced by yN . It should also be clear that A0

N = AN ,
and b0 = b.

z? = min cᵀFxF + cᵀNyN

s.t. xF + ĀPNyN = b̄P , [ψP]

ĀZNyN = 0, [ψZ]

xF ≥ 0, yN ≥ 0.

(24)

Once again, the linear transformation B−1 performed on the original system
underline the degeneracy of the current solution. Furthermore, any solution must
satisfy ĀZNyN = 0 in (24). Therefore, the pricing problem can be written in terms
of the vector of null variables to price out, and the current partial reduced cost
vector c̃ᵀN := cᵀN −ψ

ᵀ
P ĀPN = cᵀN − cᵀF ĀPN :

µ := min c̃ᵀNyN

s.t. 1ᵀyN = 1, [µ]

ĀZNyN = 0, [ψZ]

yN ≥ 0.

(25)

Solution x0 = (x0
F > 0; x0

N = 0) is optimal for LP in (22) if µ ≥ 0. Other-
wise µ < 0 and an optimal solution y0

N to (25) identifies a convex combination
of variables such that ĀZNy0

N = 0. The convex combination established by the
pricing problem may once again contain one or several y-variables. Let θω, ω ∈ Ω,
be the entering variable with the following parameters: reduced cost µ, cost cᵀNy0

N ,

and āω =

[
āPω
āZω

]
=

[
ĀPNy0

N

0

]
. What matters is that the ratio test (16) is now

computed with a single component:

ρ := min
i∈P |āiω>0

{
b̄i
āiω

}
> 0. (26)

A nondegenerate pivot occurs and the objective of LP in (22) strictly improves
by ∆z = ρµ. Finally, x0 is updated to x1 as follows:

x1
F := x0

F − ρ āPω

x1
N := ρy0

N .
(27)

2.4 Numerical example

Table 1 depicts a linear program in standard form comprising eight x-variables
and six constraints. Degenerate solution x0 is already presented in the simplex
tableau format: (x0

1, x
0
2, x

0
3) = (30, 25, 50) are the positive (or free) basic variables

and the basis has been completed with artificial λ-variables in rows 4, 5, and 6.
The cost of this solution is z0 = 185.

Dual vector cᵀF = [2, 3, 1] is used for computing partial reduced cost vector
c̃ᵀN = [-3, 3, -9, -9, 1]. By inspection, we see that x4 and x5 are compatible with

Tools for primal degenerate linear programs: IPS, DCA, and PE 13

Table 1 Simplex tableau at x0

x1 x2 x3 λ4 λ5 λ6 x4 x5 x6 x7 x8 θω
c 2 3 1 10 17 -20 14 -4 -5

1 2 2 1 -5 7 = 30 1
1 4 3 -5 10 -10 = 25 -2

1 -3 1 2 3 11 = 50 5
1 0 0 6 5 -13 = 0 0

1 0 0 3 4 -8 = 0 0
1 0 0 3 -4 0 = 0 0

x0 30 25 50 z0 = 185
c̃ -3 3 -9 -9 1 -6

the row partition derived from the right-hand side values. One can observe that
the associated columns are (trivial) combinations of the (unit) vectors of the free
variables x1, x2 and x3.

Both compatible variables would provide a nondegenerate simplex pivot if cho-
sen as entering variables but only x4 has a negative partial reduced cost value
c̃4 = -3 (which is also equal to its reduced cost c̄4). Incompatible variables x6 and
x7 possess the same negative partial reduced cost value of -9 whereas c̃8 = 1. The
selection of incompatible variable x6 or x7 would result in a degenerate simplex
pivot while that of x8 would increase the objective function by 1× (30

7).
However, solving the pricing problem (25) over the last three rows results in a

combination of the incompatible vectors with weights: (y0
6 , y

0
7 , y

0
8) = (0.4, 0.3, 0.3).

This provides the compatible vector āᵀ
ω = [1 -2 5 0 0 0] for variable θω of reduced

cost µ = -9(0.4) - 9(0.3) + 1(0.3) = -6 and cost -5. Ratio test on the top three
rows results in ρ = min{30

1 ,−,
50
5 } = 10. Entering variable θω provides a strict

improvement of the objective function of -6×10 = -60. Variable θω takes value 10,
x3 goes out of the basis, and other free variables x1 and x2 are respectively updated
to 20 and 45. Alternatively, variables x6, x7 and x8 can be entered one by one in
the basis, in any order, and this provides the same results. In the new solution of
cost 125, the positive variables are (x1, x2, θω) = (20, 45, 10) or equivalently for x1

in terms of the original variables, (x1, x2, x6, x7, x8) = (20, 45, 4, 3, 3) while x3, x4

and x5 are null variables.
¿From the five columns corresponding to the positive variables, the first five

rows are independent and artificial variable λ6 is basic at value zero in the last
row. Inverse basis B−1 at x1 appears in Table 2 and is used to construct the next
degenerate simplex tableau in Table 3.

Table 2 Basis B and its inverse at x1

B =


1 1 -5 7

1 -5 10 -10
2 3 11
6 5 -13
3 4 -8
3 -4 0 1

 B−1 =


1 -0.20 -2.133 4.067

1 0.40 5.600 -9.800
0.08 0.453 -0.627
0.06 -0.327 0.613
0.06 0.007 -0.053

0 0 0 -2.667 4.333 1



A−1
PF , the inverse of the working basis within B−1, is used to compute the row

set P dual variable vector cᵀFA−1
PF = [2, 3, -0.2, -1.133, 0.067] and partial reduced

14 Jean Bertrand Gauthier et al.

Table 3 Simplex tableau at x1

x1 x2 x6 x7 x8 λ6 x3 x4 x5

c 2 3 -20 14 -4 1 10 17

1 -0.20 2.60 1.80 = 20
1 0.40 2.80 3.40 = 45

1 0.08 -0.24 0.08 = 4
1 0.06 -0.18 0.06 = 3

1 0.06 -0.18 0.06 = 3
1 0 0 0 = 0

x1 20 45 4 3 3 z1 = 125
c̃ 1.2 -6.6 4.2

costs (c̃3, c̃4, c̃5) = (1.2, -6.6, 4.2). Moreover,

āZj : = −AZFA−1
PF aPj + aZj = 0, j ∈ {3, 4, 5},

characterizes column compatibility by computing

[
āZ3 āZ4 āZ5

]
= (0, 0, 0, -2.667, 4.333)

[
aP3 aP4 aP5

]
+
[

0 0 0
]

=
[

0 0 0
]
.

Null variables x3, x4 and x5 are compatible with the current row partition, and
the optimal solution to the pricing problem at iteration 1 is y1

4 = 1: x4 enters the
basis, being the only one with a negative reduced cost of -6.6. Ratio test on top five
rows results in ρ = min{ 20

2.6 ,
45
2.8 ,−,−,−} = 7.692 and entering variable x4 provides

an objective function improvement of -6.6× 7.692 = -50.769. Variable x1 goes out
of the basis, and updated free variables x2, x6, x7 and x8 appear in Table 4, here
presented in terms of the simplex tableau at x2 before being updated. Observe
that the actual combination of variables x6, x7 and x8 satisfies the last three rows
at zero right-hand side. The cost of this solution is z2 = 74.231.

Table 4 Simplex tableau at x2 before being updated

x4 x2 x6 x7 x8 λ6 x3 x1 x5

c 10 3 -20 14 -4 1 2 17

2 1 -5 7 1 2 = 30
4 1 -5 10 -10 3 = 25

-3 2 3 11 1 1 = 50
6 5 -13 = 0
3 4 -8 = 0
3 -4 0 1 = 0

x2 7.692 23.462 5.846 4.385 4.385 z2 = 74.231
c̃ 0.692 2.538 8.769

B−1 at x2 appears in Table 5 from which we compute cᵀFA−1
PF = [−0.538, 3,

0.308, 4.282, −10.256] and partial reduced costs (c̃3, c̃1, c̃5) = (0.692, 2.538, 8.769).
Since these are positive, x2 is optimal.

Tools for primal degenerate linear programs: IPS, DCA, and PE 15

Table 5 Inverse basis B−1 at x2

B−1 =


0.385 -0.077 -0.821 1.564

-1.077 1 0.615 7.897 -14.179
0.092 0.062 0.256 -0.251
0.069 0.046 -0.474 0.895
0.069 0.046 -0.141 0.228

0 0 0 -2.667 4.333 1



3 Linear Algebra Framework

To appreciate the generality of IPS, the reader is invited to consider its presen-
tation only borrows from the algebraic manipulations of the primal simplex algo-
rithm. The linear algebra framework is put forth to derive another way to look
at the row/column partition. Section 3.1 introduces the vector subspace V(AF)
spanned by the column vectors of AF . This is followed in Section 3.2 by the prac-
tical use of an equivalent subspace basis Λf . In Section 3.3, we examine a different
subspace basis, Λr, of possibly larger dimension r ≥ f that is sufficient to span AF .
Section 3.4 discusses the pitfalls of this more general subspace basis and a modified
algorithm is given in Section 3.5. For the record, the vector subspace notion is first
mentioned in Benchimol et al (2012) for the implementation of a stabilized DCA
algorithm for the set partitioning problem.

3.1 Vector subspace V(AF)

The reader might have observed that we have taken the liberty to omit the contex-
tual precision of the row partition {P,Z} outside of the definition of compatibility,
where Z = P̄ . It turns out that this omission works well in our favor. The following
result holds the explanation (Desrosiers et al 2014) whereas Proposition 3 presents
an alternative definition of compatibility which is impervious to the partition.

Proposition 2 Let APF and AQF be two working bases identifying different row par-

titions of AF . If vector a is compatible with partition {P, P̄} then it is also compatible

with {Q, Q̄}. Hence, we say a is compatible with AF .

Proof Assume a is compatible with partition {P, P̄} and consider the following
relation on set Q:

A−1
PF aP = A−1

QF aQ ≡ aQ −AQFA−1
PF aP = 0. (28)

The right part is verified for every component i ∈ Q: true for i ∈ Q ∩ P̄ since a is
compatible whereas for i ∈ Q ∩ P , ai −AiFA−1

PF aP = ai − ai = 0. Hence,

aQ̄ −AQ̄FA−1
QF aQ =

{
ai −AiFA−1

PF aP = ai − ai = 0 ∀i ∈ Q̄ ∩ P
ai −AiFA−1

PF aP = 0 ∀i ∈ Q̄ ∩ P̄ , (29)

the last equality being true since a is compatible with partition {P, P̄}. 2

Proposition 3 A vector a ∈ Rm (and the associated variable, if any) is compatible
with AF if and only if it belongs to V(AF).

16 Jean Bertrand Gauthier et al.

Proof We first show that if Definition 1 is satisfied for some partition {P,Z} then
the statement rings true. We then show that the converse is also true. Assume that
a is compatible such that āZ = aZ −AZFA−1

PF aP = 0. Let α := A−1
PF aP . Then,[

aP
aZ

]
=

[
APFα

AZFα

]
meaning that a indeed belongs to the linear span of V(aF). Let

us now assume that there exists some α ∈ Rf such that a is a linear combination of
the column vectors of AF . Since AF is a subspace basis, there exists some row set
P such that APF is invertible. Then, α = A−1

PF aP and compatibility of a follows.
2

A consequence of Proposition 3 is that every subset Λf of f independent vectors
of V(AF) can be used as a subspace basis for V(AF). Let us explicitly recall the
definition of a vector basis as a linearly independent spanning set. A simple but
important observation is the following: The set of f independent vectors of AF

identified in IPS is therefore a minimal spanning set capable of representing the
current solution, AFx0

F = b0. Indeed, the very construction of the working basis
in B implies that AF spans b0, that is, x0

F = A−1
PFb0

P , see the system of linear
equations in (6) or (8).

3.2 Subspace basis Λf

The identification of the working basis is one of the bottleneck operations of IPS.
Furthermore, as the reader can observe from formulation (8), it is useless to mul-
tiply by A−1

PF the rows in set P to identify improving variable θω, ω ∈ Ω, if any.
Indeed, only āPω needs to be computed to perform ratio test (16). An alternative

set to AF of f independent vectors that spans V(AF) is Λf =

[
If

M

]
, where M =

AZFA−1
PF . Together with Λ⊥f =

[
0

Im−f

]
, it provides basis T := [Λf ,Λ

⊥
f] of Rm

and its inverse:

T =

[
If 0

M Im−f

]
and T−1 =

[
If 0

−M Im−f

]
. (30)

The LP formulation obtained after the change of variables and the transfor-
mation by the more practical T−1 results in an equivalent system for which only
the rows in set Z are transformed:

z? = cᵀLx0
L + cᵀUx0

U

+ min cᵀFxF + dᵀ
NyN

s.t. APFxF + A0
PNyN = b0

P , [ψP]

Ā0
ZNyN = 0, [ψZ]

lF ≤ xF ≤ uF , 0 ≤ yN ≤ rN ,

(31)

where Ā0
ZN = A0

ZN −MA0
RN . Similarly to (9) and (10), π can be retrieved from

dual vector ψ in (31) using the expression πᵀ = ψᵀT−1:

[πᵀ
P ,π

ᵀ
Z] =

[
ψᵀ
P −ψ

ᵀ
ZM, ψᵀ

Z

]
. (32)

Tools for primal degenerate linear programs: IPS, DCA, and PE 17

When all is said and done, using vector subspace properties enables one to
derive a working basis using any and all efficient methods to extract an equivalent
subspace basis. Furthermore, depending on the application, the inverse is implicitly
obtained in M as a by-product of the decomposition. Of course, having access to
CPLEX’s own LU-decomposition would be quite practical. Note that although B

constructed in (5) is implicitly considered as a simplex basis in IPS, T is more
generally defined as a basis in Rm, that is, an invertible linear transformation in
Rm.

3.3 Subspace basis Λr, r ≥ f

Let us consider the general situation where r, the dimension of the subspace ba-
sis Λr spanning the columns of AF , is larger than or equal to f , the number of
free variables. Assume Λr includes the f columns of AF and r − f ≥ 0 additional
columns such that these r columns are linearly independent. Using a restricted
phase I, one identifies r independent rows in subset R ⊆ {1, . . . ,m} and the sub-

space basis can take the form Λr =

[
Ir

M

]
, where M is an (m − r) × r matrix,

whereas Λ⊥r =

[
0

Im−r

]
. Let V(Λr) be the vector subspace spanned by Λr. At the

end of the day, the definition of compatibility can be enlarged to the spanning set
of the chosen subspace basis.

Definition 2 A vector a ∈ Rm (and the associated variable, if any) is compatible

with Λr if and only if it belongs to V(Λr).

3.4 Words of caution about compatibility

Once the general form of the subspace basis Λr is retained, it is delicate to still
claim this modified version as IPS. If the latter can be seen as a poorer vector
subspace which obviously includes AF , the added granularity provided by the
superfluous columns yields a denser compatible set.

The danger of over-spanning AF is that a compatible surrogate variable θω, ω ∈
Ω, found by the pricing problem does not guarantee a strictly improving pivot.
Indeed, any value ā0

iω 6= 0, i ∈ R, corresponding to b̄0i = 0, i ∈ R, is potential cause
for a zero step size, hence a degenerate pivot. Observe that the magnitude of the
value ā0

iω is irrelevant, what really matters is its sign. In a very superficial sense,
the probability of making a degenerate pivot thus increases exponentially by one
half for every extra row, i.e., 1 − (1/2)r−f . When r > f , the probability ranges
from one half to almost surely very rapidly. For that matter, even an incompatible
variable might induce a nondegenerate pivot with probability (1/2)m−f . The reader
is invited to take a look at the variable x8 in the numerical example of Section 2.4
to be convinced of the nondegenerate potential. Of course, a more refined analysis
of the probabilities would include the configuration of matrix A and at this point
falls outside the purpose of this paper.

In most if not all literature surrounding IPS and its derivatives, the concept
of compatibility is associated with nondegenerate pivot. While it is true that in

18 Jean Bertrand Gauthier et al.

the purest form of IPS, a compatible variable necessarily induces a nondegenerate
pivot, the implication of the previous paragraph denies this synonymy for the
general form of the subspace basis, as it stands the implemented version. What
does this all mean? The linear algebra framework that surrounds IPS provides a
more robust definition of compatibility. As the latter gains in flexibility, it loses in
certainty. Compatibility provides a way to categorize variables by their capacity to
induce nondegenerate pivots with fair accuracy. We guess researchers have taken
the liberty to address one for the other because of the intent behind the partition
scheme. A leap of faith comes to mind.

To sum up, this larger subspace basis Λr breaks away from the strictly im-
proving pivot construction of IPS. It is however a necessary evil that gives a lot of
freedom in the implementation and, more importantly, closes the theoretical gap
between IPS and DCA.

3.5 Modified algorithm

Figure 2 contains the modifications necessary to include the linear algebra frame-
work to the vanilla version of IPS. In Step 1, the construction of the working basis
uses the representation T. For Step 2, the compatible set is constructed with the
alternative Definition 2. Steps 3 and 4 rely on the modified row partition {R, R̄},
but their essence remains otherwise untouched and therefore see no particular
caveat. Neither does Step 5.

1 Generic basis T, transformation T−1, row partition {R, R̄} of Λr;

2 Compatibility with row partition {R, R̄} of Λr <optional>;
3 Improved pricing step: optimize minimum reduced cost µ;

4 Exchange mechanism from x0 to x1;
5 Update column partition {F,L, U} and goto Step 1;

Fig. 2 Modified algorithmic steps

4 Aiming for efficiency

This section serves the practical side of an implementation of IPS. The fourth
step of IPS, namely the exchange mechanism, brings the solution of the improved
pricing step back to what can be called a control system. This is indeed where
feasibility is maintained by using the flexibility of the free variables and the in-
terval bounds otherwise omitted from the pricing step. With that being said, this
process of information sharing between the pricing step and the control system
is quite close to a master problem/subproblem paradigm. In fact, with a better
understanding of the pricing step, we argue in Section 4.1 that IPS corresponds
to dynamically applying a Dantzig-Wolfe reformulation (Dantzig and Wolfe 1960)
at every iteration, the row partition being done according to the current solution
vector x0 given by [x0

F ; x0
L; x0

U].

Tools for primal degenerate linear programs: IPS, DCA, and PE 19

This interpretation of IPS can result in very flexible resolution strategies. Recall
among these the usage of surrogate variable θω, ω ∈ Ω, which can also be broken
down into its components (the original x-variables). We also know from column
generation that generating several columns during one iteration of the pricing
step is highly efficient. In line with this idea also comes that of using heuristics
to solve the pricing problem during the early stage of the resolution process. The
fourth and perhaps most important idea defers to the time consuming task of
updating the row partition. Such is the content of the three subsequent subsections
(Sections 4.2, 4.3 and 4.4) which examine these various ways to accelerate IPS.
Section 4.5 presents the dynamic Dantzig-Wolfe implementation of IPS while

Section 4.6 shares computational results gathered from different papers.

4.1 Dynamic Dantzig-Wolfe decomposition

We now present an interpretation of IPS in terms of a decomposition scheme pro-
posed by Metrane et al (2010) for standard linear programs. Here is an adaptation
for the bounded case.

Consider a Dantzig-Wolfe decomposition of the previous so-called compact
formulation (31) which has a block angular structure. The equality constraints
in set P together with the interval constraints lF ≤ xF ≤ uF and upper bounds
yN ≤ rN stay in the master problem structure. The equality constraints in row
set Z and the nonnegativity constraints yN ≥ 0 form the subproblem domain:

SP := {yN ≥ 0 | Ā0
ZNyN = 0}. (33)

The Dantzig-Wolfe decomposition builds on the representation theorems by
Minkowski and Weyl (see Schrijver 1986; Desrosiers and Lübbecke 2011) that any
vector yN ∈ SP can be reformulated as a convex combination of extreme points
plus a nonnegative combination of extreme rays of SP. Moreover, SP is a cone
for which the only extreme point is the null vector yN = 0 at zero cost. Since this
extreme point does not contribute to the master problem constraints, it can as
such be discarded from the reformulation. Vector yN can thus be expressed as a
nonnegative combination of the extreme rays {yωN}ω∈Ω :

yN =
∑
ω∈Ω

yωNθω, θω ≥ 0, ∀ω ∈ Ω.

Substituting in the master problem structure, LP becomes:

z? = cᵀLx0
L + cᵀUx0

U + min cᵀFxF +
∑
ω∈Ω [dᵀ

NyωN]θω

s.t. APFxF +
∑
ω∈Ω [A0

PNyωN]θω = b0
P , [ψP]∑

ω∈Ω [yωN]θω ≤ rN ,

lF ≤ xF ≤ uF , θω ≥ 0, ∀ω ∈ Ω.

(34)

At any iteration of IPS, none of the θ-variables are yet generated and the
inequality constraints in (34) are not binding. Therefore, the dual vector for these
constraints is null and the reduced cost of variable θω, ω ∈ Ω, is given by:

[dᵀ
NyωN]−ψᵀ

P [A0
PNyωN] = (dᵀ

N −ψ
ᵀ
PA0

PN)yωN = d̃ᵀ
NyωN ,

20 Jean Bertrand Gauthier et al.

where d̃N is the partial reduced cost vector already used in IPS, see formula-
tion (12). Now, any negative reduced cost ray in SP results in the same sub-
problem minimum objective value, that is, −∞. However, observe that for any
nonzero solution in the cone defined by SP in (33), there exists a scaled one such
that 1ᵀyN = 1. Therefore, without loss of generality, the domain of the subproblem
can be rewritten as

SPN := {yN ≥ 0 | Ā0
ZNyN = 0, 1ᵀyN = 1}. (35)

Hence, an equivalent subproblem in this Dantzig-Wolfe decomposition, search-
ing for a negative reduced cost column until optimality is reached, is exactly the
one defined by the primal pricing problem (13) in IPS:

min d̃ᵀ
NyN s.t. yN ∈ SPN . (36)

The bottleneck of this algorithm is the improved pricing step. Recall that the
content of the latter is but a ripple effect of the master problem’s decomposition
choice. These ideas can therefore be separated in two categories: the first supports
the idea that the master problem and the pricing step are communicating ves-
sels, the second is solely aimed at the pricing step in an effort to find solutions,
not necessarily optimal, faster. Before moving on to the three subsections which
examine the aforementioned various ways to accelerate IPS, let us recall how the
master problem may be fed with surrogate variables or their original column vector
content.

Surrogate variable vs. component wise. Each new variable θω can be split into its
components, the original x-variables. These can be sent to fill in the compact
formulation (31) together with the constraints that are active in the subprob-
lem solution. Similar techniques to solve large-scale linear multi-commodity flow
problems were previously used by Löbel (1998) and Mamer and McBride (2000),
whereas Valério de Carvalho (1999, 2002) propose a network-based compact for-
mulation of the cutting stock problem in which the classical knapsack subproblem
is solved as a shortest path problem. In all these applications, the compact for-
mulation is written in terms of arc flow variables. When a subproblem generates
a path with a negative reduced cost, the arcs of this path are iteratively added to
the compact formulation. This process allows the implicit combination of arcs into
paths without having to generate these. Sadykov and Vanderbeck (2013) describe
this in generality.

4.2 Subspace basis update

Postponing the subspace basis update can be taken advantage of on two fronts:
before and after updating to new solution x1. On the first front, it is indeed a
basic idea to harvest more information from the pricing problem than the one
iteration. Let this agenda be known as multiple improving directions. We present
two specific scenarios before the general one. The first scenario is the particular
case of independent improving directions while the second is the compatible restricted

master problem. On the second front, from the Dantzig-Wolfe mindset, it becomes
clear that entering an improving variable θw in the master problem (34) does not

Tools for primal degenerate linear programs: IPS, DCA, and PE 21

necessarily warrant an update of the subspace basis. In either case, it is in effect
a matter of manipulating the dual variables. The price to pay is the possibility of
making degenerate pivots on some of these directions.

Independent improving directions. In IPS, we rely on the strictly improving property
of the algorithm to guarantee that the exchange mechanism goes through the
components of θω with a strictly positive step size, see (16). If two variables θω1

and θω2 can be identified from the pricing problem such that compatibility is
obtained from orthogonal vectors of V(AF), then ā0

ω1
and ā0

ω2
are independent

from each other and can be added to the current solution in any order both
yielding a predictable improvement. Constraints need not be added to the pricing
problem in order to carry out this strategy, it suffice to remove variables that
already contribute in the first direction of variable θω1 . Indeed, the selection of
columns the latter contains should of course be removed from the pricing problem.
Among themselves, these columns have nonnull elements on several rows, i.e., they
contribute on each of these rows. Any variable that sports a nonnull value on any
of these same rows shares a contribution and can therefore be removed from the
pricing problem.

Compatible restricted master problem (RMPFC). Consider the row partition {R,Z}
of Λr, where Z = R̄. By Definition 2, columns of AF are compatible with Λr.
Denote by A0

C , C ⊆ N, the columns of A0
N compatible with Λr. Any of these can

easily be identified in O(m) time using the Positive Edge rule, see Section 7. Let AI

be the incompatible columns, I := N \ C. Using T := [Λr,Λ
⊥
r] and transforma-

tion T−1 =

[
Ir 0

−M Im−r

]
on formulation (3), we have ā0

Zj = b̄0
Z = 0, ∀j ∈ F ∪C.

Let Ā0
ZI := A0

ZI −MA0
RI . LP becomes

z? = cᵀLx0
L + cᵀUx0

U

+ min cᵀFxF + dᵀ
CyC + dᵀ

IyI

s.t. ARFxF + A0
RCyC + A0

RIyI = b0
R, [ψR]

Ā0
ZIyI = 0, [ψZ]

lF ≤ xF ≤ uF , 0 ≤ yC ≤ rC , 0 ≤ yI ≤ rI .

(37)

Restricting formulation (37) to column-index set F ∪C (the set of compatible
variables) yields the compatible restricted master problem RMPFC defined on
row set R, much easier to solve than (1) as it involves fewer variables and, more
importantly, fewer constraints. As such, it is less subject to degeneracy.

Of course, its optimal solution does not necessarily solve LP. It is equivalent
to having exhausted the pricing step of all improving compatible variables one
iteration after another without having updated the subspace basis. Whether one
should update the latter now or retrieve more directions from the pricing step
is arguably the exact same question as one would face after the first direction is
retrieved from the complete pricing step.

22 Jean Bertrand Gauthier et al.

Multiple improving directions. To have access to valid combinations of incompatible
columns in A0

I , the Dantzig-Wolfe decomposition obtained from x0 is maintained.
Keeping in the subproblem the equalities in Z, the nonnegativity requirements
yI ≥ 0, and a scaling constraint on yI leads to the following formulation.

min d̃ᵀ
IyI s.t. yI ∈ SPI :=

{
yI ≥ 0 | Ā0

ZIyI = 0, 1ᵀyI = 1
}
. (38)

As previously derived in Section 4.1, the substitution of the extreme rays gen-
erated from SPI , yωI , ω ∈ Ω, into the master problem gives

z? = cᵀLx0
L + cᵀUx0

U

+ min cᵀFxF + dᵀ
CyC +

∑
ω∈Ω [dᵀ

Iy
ω
I]θω

s.t. ARFxF + A0
RCyC +

∑
ω∈Ω [A0

RIy
ω
I]θω = b0

R, [ψR]∑
ω∈Ω [yωI]θω ≤ rN ,

lF ≤ xF ≤ uF , 0 ≤ yC ≤ rC , θω ≥ 0, ∀ω ∈ Ω,

(39)

and similarly to (9)–(10) or (32), dual vector π can be retrieved using the expres-
sion πᵀ = ψᵀT−1:

[πᵀ
R,π

ᵀ
Z] =

[
ψᵀ
R −ψ

ᵀ
ZM, ψᵀ

Z

]
. (40)

Ranging from heuristically modifying the dual variables to discarding certain
y-variables or type of solutions, extracting many interesting directions from the
pricing problem is then a matter of creativity. Notice that using all the compatible
variables in the RMPFC is one such heuristic.

Postponing subspace basis update past x1. Once again, the row partition is only the
fruit of a linear transformation T−1 at a given iteration. We argue that using sur-
rogate variables allows to reuse the previous subspace basis because it is simply
the result of the particular Dantzig-Wolfe decomposition partitioning rows into
{R, R̄}. Unfortunately, when more than one former free variable becomes degen-
erate, the old subspace basis now spans degenerate basic variables. It is therefore
possible to maintain the old subspace basis but it implies the use of the more
general form Λr. In accordance with Section 3.3, we will state that an update is
in order when the actual number of free variables |F | is relatively different from
|R|, the row size of the master problem.

4.3 Vector subspace flexibility

Given the vector subspace is defined with respect to matrix AF of free variables,
this section shows that it is even possible to play with the set of free variables as
we see fit. The first trick considers a particular type of upper bounds while the
other cheats the free status with algebraic manipulations.

Tools for primal degenerate linear programs: IPS, DCA, and PE 23

Implicit upper bounds. Taking upper bounds into account is an obligatory path to
guarantee strictly improving directions. However, some applications have a struc-
ture that implicitly bounds some variables by the sheer force of the technological
constraints. For instance, the assignment and the set partitioning models have
such a feature. As a matter of fact, all variables in both of these problems are
bounded above by 1, yet the explicit bound constraint needs not be added to the
formulation. That is to say that a variable xj features an implicit upper bound υ

if xj > υ is infeasible regardless of the values of the remaining variables.
IPS can therefore be applied in two different manners with respect to the way

the upper bounds are taken into account. The main difference echoes the vector
subspace V(AF) and thus the set of compatible variables, see Proposition 3. Con-
sider vector subspaces spanned by AF which contains or not implicit bounded
variables. It is obvious that the direction set of their respective pricing problem
is the same for either subspaces. The distinction lies in the compatibility set and
different AF modify the relative row sizes of the master (f) and the subprob-
lem (m− f + 1). The added granularity provided by the additional vectors in the
first case creates a denser linear span and thus allows more variable compatibility.

Coerced degeneracy. Another highly important concept is that of coerced degener-
acy. This is used in the capacitated minimum cost network flow problem which
can artificially render any current free variable into two degenerate ones on the
residual network, see Ahuja et al (1993). Indeed, an arc variable xij taking a value
`ij < x0

ij < uij of the original network formulation can be replaced by two variables

representing upwards (0 ≤ yij ≤ uij − x0
ij) and downwards (0 ≤ yji ≤ x0

ij − `ij)
possible flow variations. The current values of these y-variables is null and again
this can modify the relative row sizes of the master and the pricing problems. On
either count, the choice of the vector subspace results in a degenerate free pricing
step.

4.4 Partial pricing

In this subsection, we discuss possible partial pricing choices to accelerate the
resolution process of the pricing step without compromising optimality. That is,
as long as the last iteration uses the complete model, intermediate pricing steps
can use heuristic notions. Partial pricing strategies become appealing in diversified
aspects. For example, one can use various subsets of compatible and incompatible
variables to reduce the density of the pricing problem. We present three such
biases: partial cost, residual capacity, and rank-incompatibility. These ideas can
of course be mixed as deemed worthy.

Partial cost bias. Incompatible variable j ∈ N can be temporarily discarded if its
partial reduced cost d̃j is greater than some threshold value, the most simple one
being zero.

Residual capacity bias. The idea of this bias is to guarantee a minimum step size ρ.
One look at the modified ratio test (16) suffices to see that the residual capacity
bias also involves free variables. On the one hand, we want to keep variable j ∈
N if its residual capacity rj is relatively large. On the other hand, the coerced

24 Jean Bertrand Gauthier et al.

degeneracy principle must be used on free variables to keep only those where both
values b̄0i − li and ui − b̄0i , i ∈ R are large. Since the ratio test also depends on ā0

iω,
it makes this guarantee all the more difficult to appreciate on arbitrary matrices
A. Nevertheless, the idea works well when it is embedded in the minimum mean
cycle-canceling algorithm, an extreme case of row partition where |F | = 0 since
coerced degeneracy is applied on all free variables. Observe that once the coerced
degeneracy is applied, it might be possible to keep one of the coerced free variables
in the pricing problem.

Rank-incompatibility bias. Another possibility is to define the pricing step against
rank-incompatibility. This means that the incompatible variables are attributed a
rank according to the degree of incompatibility they display. The pricing problem
sequentially uses lower rank incompatible variables. Intuitively, the point is not to
stray too far from compatibility and thus not perturb too much the current com-
patibility definition. This concept was first seen in DCA in the paper of Elhallaoui
et al (2010).

4.5 Dynamic Dantzig-Wolfe algorithm

Figure 3 presents the implemented version of IPS inspired by the dynamic Dantzig-
Wolfe construction. The first two steps recuperate the linear algebra work. The
biggest modification thus entails the work done in Step 3 which is now broken down
into smaller components. The first utilizes the RMPFC to solve a row-reduced mas-
ter problem with only compatible variables. The second calls the pricing problem
where dual multipliers are updated and only incompatible variables remain. The
latter can be solved several times to retrieve many possibly improving directions
using whatever arsenal available to the user to accomplish said task. Finally, the
exchange mechanism in Step 5 can be applied to every predetermined direction,
yet it is simpler to let a simplex code create a new working basis using all the gath-
ered information simultaneously. The reason for this are threefold. First, it ensures
that the solution x1 is basic. Second, it fetches updated dual multipliers for row
set R in case the generic basis is not updated. Third, it allows for a possibly better
solution than the sequential work. With this new solution x1, the algorithm loops
and the partition may (goto Step 1) or may not (goto Step 3b) (in the surrogate
variable environment) be updated. The pricing step will be influenced by new dual
variables either way.

1 Generic basis T, transformation T−1, row partition {R, R̄} of Λr;

2 Compatibility with row partition {R, R̄} of Λr <optional>;
3a Restricted master problem: solve RMPFC to optimality <optional goto Step 5>;
3b Improved pricing step: optimize minimum reduced cost µ <optional repeat>;

4 Exchange mechanism from x0 to x1;
5 Update column partition {F,L, U} and goto Step 1 <optional goto Step 3b instead>;

Fig. 3 Dynamic Dantzig-Wolfe algorithmic steps

Tools for primal degenerate linear programs: IPS, DCA, and PE 25

4.6 Computational results for IPS

A comparison between IPS and the primal simplex algorithm of CPLEX was per-
formed for linear programs in standard form. As the reader might have guessed,
these ideas must be meticulously handled in the practical implementation of IPS
for it to be competitive. The computational results for the latter have therefore
been deferred to this point.

The two main ideas used to obtain these results are the subspace basis update
along with the compatible restricted master problem and the multiple improving
directions. On 10 instances involving 2,000 constraints and up to 10,000 variables
for simultaneous vehicle and crew scheduling problems in urban mass transit systems,
IPS reduces CPU times by a factor of 3.53 compared to the primal simplex of CPLEX
(Elhallaoui et al 2011; Raymond et al 2010b). These problems have degeneracy
levels of about 50%. IPS is also tested on 14 instances of aircraft fleet assignment.
These consist in maximizing the profits of assigning a type of aircraft to each
flight segment over a horizon of one week. The content of the multi-commodity
flow formulation for each of these instances can be resumed with these ballpark
figures: a degeneracy level of 65%, 5,000 constraints and 25,000 variables. IPS
reduces CPU times by a factor of 12.30 on average.

In these fleet assignment problems, an upper bound of 1 can explicitly be
imposed on arc flow variables (see the discussion in Section 4.3). Hence, degeneracy
occurs for basic variables at 0 or at 1. CPU times are reduced by a factor of 20.23
on average for these LPs with upper bounded variables (Raymond et al 2009).

On another note, opposing the surrogate variable to its component content
has been tested as follows. Computational experiments conducted with a hybrid
algorithm starting with the classical generated columns for the restricted master
problem and ending with their components for the compact formulation show
improving average factors of 3.32 and 13.16 compared to the primal simplex of
CPLEX on the previously mentioned simultaneous vehicle and crew scheduling problems

in urban mass transit systems and aircraft fleet assignment problems (Metrane et al
2010).

5 Designing around compatibility

As supported by the vector subspace and the subspace basis flexibility, the com-
patibility notion is indeed quite flexible. In fact, when solving particular linear
programs, the existing specialized algorithms, devised within the confines of IPS,
that have proved to be successful share the common trait of being designed around
and for compatibility. Section 5.1 addresses the class of network problems and Sec-
tion 5.2 visits the set partitioning problem.

5.1 Network flow

In the context of the capacitated minimum cost flow problem, one refers to a
solution x as a cycle free solution if the network contains no cycle composed only
of free arcs, see Ahuja et al (1993). Any such solution can be represented as a
collection of free arcs (the nondegenerate basic arcs forming a forest) and all other

26 Jean Bertrand Gauthier et al.

arcs at their lower or upper bounds. The column vectors of the free arcs form AF ,
see Figure 4.

1

6
5

2

11

10

9

8

7

3

14 13

12

4

i j
Free

Fig. 4 Forest of free arcs in AF on a residual network

According to Proposition 3 and the flow conservation equations, an arc at its
lower or upper bound is compatible if and only if it can be written in terms of the
unique subset of free arcs forming a cycle with it (Desrosiers et al 2014). Therefore,
a compatible arc simply links two nodes belonging to the same tree of the forest.
By opposition, an incompatible arc links two nodes of two different trees.

This characterization allows us to better understand the mechanism of im-
proving cycles in networks. A feasible solution is optimal if and only if there is
no negative cost directed cycle on the residual network. Two types of cycles can
be the result of the pricing problem: a cycle containing a single compatible arc
together with some free arcs of the same tree, or a cycle containing at least two
incompatible arcs together with possibly some free arcs from different trees of the
forest.

In Figure 5, dotted arc (8, 9) is compatible and forms a directed cycle with free
arcs (9, 10), (10, 11) and (11, 8). Indeed, associated column in rows 8 through 11
are such that  1

-1
0
0

 = −

 0
1

-1
0

−
 0

0
1

-1

−
 -1

0
0
1

.
Dashed arc (6, 9) links two different trees and is therefore incompatible. This

is also the case for some other arcs, e.g., (8, 12), (3, 4) and (4, 6). The reader may
verify that the sum of the associated four columns is compatible as it can be written
as the negated sum of the columns associated with free arcs (9, 10), (10, 11), (11, 8)
and (12, 13), (13, 3). Indeed, these nine arcs form a directed cycle in the residual
network.

IPS only makes nondegenerate pivots while solving linear programs. Hence,
this primal simplex-type algorithm takes a finite number of iterations on integral

Tools for primal degenerate linear programs: IPS, DCA, and PE 27

1

6
5

2

11

10

9

8

7

3

14 13

12

4

i j
Free

i j
Compatible

i j
Incompatible

Fig. 5 Compatibility characterization of degenerate arcs on a residual network

data network flow problems. Desrosiers et al (2013) show that IPS is strongly poly-
nomial for binary network problems, e.g., assignment, single shortest path, unit
capacity maximum flow. With a slight modification, it becomes strongly polyno-
mial for solving the capacitated minimum cost network flow problem. The proposed
contraction-expansion IPS-based algorithm is similar to the minimum mean cycle-
canceling algorithm, see Goldberg and Tarjan (1989); Radzik and Goldberg (1994).
On a network comprising n nodes and m arcs, it performs O(m2n) iterations and
runs in O(m3n2) time for arbitrary real-valued arc costs.

5.2 Set partitioning

The set partitioning problem (SPP) can be formulated as the binary linear program

min cᵀx s.t. Ax = 1, x ∈ Bn, (41)

where A ∈ Bm×Bn. This formulation can be seen as a generic model encountered
in various applications, namely, in vehicle routing and crew scheduling, and many
more where the aim is to perform a clustering of the rows. In such applications,
each set partitioning constraint can be associated with a task i ∈ {1, . . . ,m} that
must be covered exactly once. Such a formulation arises naturally from applying
a Dantzig-Wolfe reformulation to a multi-commodity flow model in which each
vehicle or crew member is represented by a separate commodity, see Desrosiers
et al (1995) and Desaulniers et al (1998).

In order to express the fundamental exchange mechanism of set partitioning so-
lutions, we assume that current vector xF is binary. Figure 6 should help demystify
the concept of compatibility on SPP.

In the left-hand side, we find the binary input solution defined by the three in-
dependent columns of AF . According to Proposition 3, the next column identified
by x4 is compatible with the given partition as it covers exactly the first and third

28 Jean Bertrand Gauthier et al.

AF x4 x5 x6 x7 x8 x9

1 1 1 1

1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 1

Fig. 6 Compatibility characterization for set partitioning binary solution xF

clusters. The third set shows the two incompatible columns x5 and x6. None can
be generated by the columns of AF . However, their addition is compatible with
the given partition as it covers the first and second clusters of rows. Finally, the
right-hand side set exhibits three incompatible columns, x7, x8 and x9: their com-
bination with equal weights of 1/2 is compatible as it covers the second and third
clusters of the row partition. Note that this combination breaks the integrality of
the next solution.

The compatible columns are readily available as the spanning set of AF as per
Proposition 3: a binary column is compatible if and only if it covers some of the
clusters. Therefore, the interpretation of compatibility can be seen as a question
of coverage. When the selected column is a combination of incompatible columns,
the exchange mechanism removes elements from some clusters to insert them back
in other clusters.

When the input solution is fractional, the mathematical definition of com-
patibility (Definition 1 or Proposition 3) still holds but the interpretation looses
practical meaning. In order to sidestep this unfortunate loss, we can fall back on
Λr (Definition 2) and adjust the subspace basis interpretation with respect to an
aggregation/clustering scheme. The idea is to assume that certain tasks are done
together and it is the cornerstone of DCA as described in the following section.
Historically speaking, DCA is a self-standing algorithm devised for set partition-
ing models which provides an easy way to define a specialized vector subspace
that often shares the properties of the one designed for IPS. The next section
discusses the differences and similarities that arise between the two methods. We
insist that it is in retrospective that the ties between DCA and IPS have been
better understood.

6 Dynamic Constraints Aggregation

It is the first time DCA and IPS are studied in parallel. If they share several
similarities, we hope to dissolve the confusion that arises between the two theories
by highlighting their differences. IPS relies on the linear algebra framework to
ascertain its faith and is therefore constructive by nature. It turns out that DCA
is also born from a constructive design. This design is however limited by the
embryonic intuition of a reduced basis. Let it be said that DCA is an intuitive
precursor to IPS.

In a nut shell, the differences spring forth from the choice of the vector subspace
to represent the current solution. Recall the subspace basis Λf and the equivalent
generic transformation T , see (30). DCA disregards this choice and uses the general

Tools for primal degenerate linear programs: IPS, DCA, and PE 29

subspace basis format. It constructs Λr, r ≥ f , large enough to span AF . Let us
see how and why it performs well.

In Section 6.1, we derive a row partition using a simple construction. The
method is then applied in Section 6.2 on a set partitioning problem. The inexistent

pricing step of DCA is explained in Section 6.3. An overview of the algorithm is
illustrated in Section 6.4. Section 6.5 meditates on the integrality dimension of
SPP. Finally, computational results are summarized in Section 6.6

6.1 Λr derived from the identical rows of AF

The idea behind DCA is similar to the first step of a LU-decomposition. Some of
the rows which can easily be identified as null entries after elimination are actually
identical rows. Of course, such a strategy might propose a set of constraints where
some rows are redundant because linear independence is not thoroughly verified.
Nevertheless, the separation between unique and identical rows induces a partition
of the rows. The size of the partition is expressed as the number of clusters r ≥ f of

identical rows in AF . Consider the following generic example where AF contains six
rows distributed into three clusters. The first step (7→) consists of a reorganization
of the lines such that the top rows are unique and the bottom rows are duplicates.
The second step (≡) provides a subspace basis Λr where each row cluster is as-
sociated with a unique 1-column identifier. Observe that by construction the top
rows always correspond to Ir in the vector subspace, hence the subspace basis is

of the form Λr =

[
Ir
M

]
:

AF


r1

r1

r2

r3

r3

r3

7→




r1

r2

r3

r1

r3

r3

≡

Λr


1
1

1
1

1
1

The subspace basis Λr may over-span AF if r > f . In other words, when r = f

we get from Proposition 3 that the decomposition is minimal and exactly corre-
sponds to a generic basis of IPS. When r > f , Λr may lead to degenerate pivots
although hopefully less than with the primal simplex algorithm.

6.2 DCA on set partitioning models

DCA is devised solely for the set partitioning problem. It capitalizes on the com-
patibility interpretation and characterization of set partitioning optimal solutions.
A binary solution to (41) is usually highly degenerate. Indeed, in typical vehicle
routing and crew scheduling applications, a cluster covers several tasks, say on
average m̄, which implies that the number of variables assuming value one in the
basis is of the order m/m̄. The idea of row aggregation is born.

Assume for the moment the linear relaxation of the set partitioning formula-
tion (41) is written in standard form, that is,

z?: = min cᵀx s.t. Ax = 1, x ≥ 0. (42)

30 Jean Bertrand Gauthier et al.

We present three situations that can occur in DCA. The first assumes the
current solution is binary while the second and third consider a fractional input
for which the partition is the same as the IPS decomposition for the former and
different for the latter.

If xF is binary, the corresponding columns of AF are disjoint and induce a
partition of the row set into f clusters. From AF , it is easy to construct a reduced
working basis: take a single row from each cluster and therefore, upon a reordering
of the columns and rows of A, matrix APF is If . This is illustrated with the
following integer solution (x1, x2, x3) = (1, 1, 1):

AF



1
1
1

1
1

1
1

7→





1
1

1
1
1

1
1

≡

Λf



1
1

1
1
1

1
1

.

If xF is fractional, the row partition is again derived from the number of
clusters r ≥ f of identical rows of AF . If r = f , we can again construct a working
basis as in IPS. Take the first row from each cluster to form APF while the m− f
rows of AZF are copies of the f independent rows of APF . Right multiplying AF

by A−1
PF provides subspace basis Λf =

[
If

AZFA−1
PF

]
. This alternative subspace basis

is similar to the one obtained from a binary solution. This is illustrated with the
following 3-variable fractional solution (x1, x2, x3) = (0.5, 0.5, 0.5):

AF



1 1
1 1
1 1

1 1
1 1
1 1
1 1
1 1

7→





1 1
1 1
1 1

1 1
1 1

1 1
1 1
1 1

≡

Λf



1
1

1
1
1

1
1
1

.

The third example shows a subspace basis Λr with r > f induced by xF =
(x1, x2, x3, x4) = (0.5, 0.5, 0.5, 0.5). AF comprises five clusters of identical rows,
hence Λr has dimension r = 5. The row vectors satisfy r1 + r3 = r2 + r5 and IPS
would have discarded one of these to construct APF of dimension f = 4.

AF



1 1
1 1

1 1
1 1
1 1
1 1

1 1
1 1

7→





1 1
1 1

1 1
1 1
1 1
1 1

1 1
1 1

≡

Λr



1
1

1
1

1
1

1
1

.

Tools for primal degenerate linear programs: IPS, DCA, and PE 31

The idea of compatibility steered the research and the implementation of DCA
and its variants. In the context of routing and scheduling, compatibility thus means
generating itineraries or schedules which precisely respect the current clustering
into multi-task activities. Of course, this is in perfect harmony with Definition 2.
From the above discussion, we see that the subspace basis Λr is derived from
the solution of the linear relaxation formulation (42). However, the process can
be initialized from any partition Λr of the rows: this can be done in a heuristic
manner, even infeasible. This simply results in a linear transformation T−1 applied
on the system of equality constraints, updated when needed.

6.3 Resolution process

The resolution process of DCA utilizes several properties presented in Section 4.
In fact, the RMPFC is implemented under the name of aggregated restricted master

problem by Elhallaoui et al (2005). The missing part of the puzzle, now provided
by IPS, is the pricing problem (38). Since DCA did not have such a feature when
it was originally designed, let us take a look how it manages to pursue the optimal
solution.

Let us go back to the basics and consider an optimal basic solution to RMPFC ,
that is, formulation (37) restricted to column set F ∪ C (the set of compatible
variables). From now on assume F represents the index set of the free variables in
this so-called current solution, where f ≤ r, and ψR is an optimal dual vector. If
f = r, the matrix ARF is the current working basis as in IPS; otherwise f < r and
the working basis is the final simplex basis provided with the optimal solution, the
one that serves to compute ψR. In any case, we have c̄F = cF − ψᵀ

RARF = 0 for
basic variables xF and c̄C = cC −ψᵀ

RARC ≥ 0 by optimality. The current solution
is optimal if

c̄I = cI −ψᵀ
RARI −ψᵀ

ZĀZI ≥ 0.

While solving RMPFC , the neglected constraints in row set Z have no dual
information on ψZ . As in IPS, reduced costs c̄I are partial to the chosen partition.
Yet, optimality of current solution is either true or false. The same reduced costs
written with respect to the original dual vector, c̄I = cI − πᵀAI , highlight the
possibility of adapting dual vector ψR to π. The answer appears in (40), [πᵀ

R,π
ᵀ
Z] =

[ψᵀ
R −ψ

ᵀ
ZM,ψᵀ

Z], which leads us to

πᵀ
R + πᵀ

ZM = ψᵀ
R. (43)

As every column of the binary matrix M in a set partitioning problem identifies
the remaining rows of a cluster, it means that ψi, i ∈ R, the dual variable of a
cluster, must be distributed across the rows of its cluster, that is, (43) reads as∑
`∈Ri

π` = ψi, ∀i ∈ R. Note that ∀i ∈ R, no matter how the ψi are distributed over
their respective clusters, c̄F = 0 and c̄C ≥ 0 remain satisfied. Therefore, consider
the following set of constraints:

πᵀaj ≤ cj , ∀j ∈ I (44)∑
`∈Ri

π` = ψi, ∀i ∈ R. (45)

32 Jean Bertrand Gauthier et al.

Notice that the system (44)–(45) is about feasibility. On the one hand, it is
indeed feasible which means that the existence of acceptable dual variables certifies
the optimal status of the current solution. On the other hand, it is infeasible:
some constraints from (44) are removed until one retrieves a vector π. Given that
π, DCA next prices out variables as in the primal simplex. A small selection of
negative reduced costs incompatible variables is presumptuously added to current
AF , say columns in AI′ , I

′ ⊂ I, such that a new partition is induced by the
identical rows in [AF ,AI′], where f + |I ′| ≤ m. This yields a new subspace basis
Λr, r > f , at which point the algorithm proceeds with a new iteration, solving
RMPFC over a new set of constraints and compatible variables.

The exercise of distributing the dual multipliers is called dual variable disag-

gregation in DCA. Since the expectation of an optimal solution to (44)–(45) can
be put on hold, the system can be preemptively constructed in such a way that
the algorithm expects a new partition. In particular, Elhallaoui et al (2010) use a
low-rank incompatibility strategy. In this respect, the disaggregation is heuristic
by design. The pricing step established in IPS is however now available for DCA.
Indeed, the reader can verify that the improved pricing step would optimally solve
by column generation (see Desrosiers et al 2014) the following problem, equivalent
to (38) for a set partitioning problem written in standard form:

max µ

s.t. µ ≤ cj − πᵀaj [yj] ∀j ∈ I∑
`∈Ri

π` = ψi, ∀i ∈ R.
(46)

6.4 DCA algorithm

Figure 7 presents the algorithm for DCA. The modifications brought to Steps 3–5.
The dual variable disaggregation replaces the pricing problem in Step 3b. Since
the latter no longer provides an improving direction, Step 4 is skipped altogether.
In Step 5, we move on directly to the column partition update. The small selection
of incompatible variables I ′ ⊆ I accompanies column set F in Step 1 to create a
new row partition.

1 Generic basis T, transformation T−1, row partition {R, R̄} of Λr;

2 Compatibility with row partition {R, R̄} of Λr <optional>;
3a Restricted master problem: solve RMPFC to optimality <optional goto Step 5>;
3b Fetch a subset I′ ⊆ I from the dual variable disaggregation;
4 Skip exchange mechanism;
5 Update column partition {F,L, U} and goto Step 1;

Fig. 7 DCA algorithmic steps

Tools for primal degenerate linear programs: IPS, DCA, and PE 33

6.5 Maintaining integrality

In SPP, wishful thinking unites with practicality. Indeed, the binary structure of
the technological constraints is highly prejudicial to identical appearances in AF

represented by positive variables. Recall the three proposed examples to support
this claim. In fact, when the solution is binary, the master problem of DCA is
the same as in IPS. Furthermore, the nature of the pricing problem is such that
it identifies convex combination containing few number of variables. Researchers
such as Zaghrouti et al (2014) rapidly turned a keen eye on this feature in an
effort to maintain the integrality throughout the resolution process. It is known as
Integral Simplex Using Decomposition (ISUD).

It amounts to verifying that the solution of the pricing problem, finally re-
cuperated from IPS, yields an improved binary solution, rejecting the associated
direction otherwise. In this respect, the binary restriction is transferred to the
pricing problem, yet it is only used on a needed basis. Of course, the additional
work imposed de facto on the pricing problem makes it more difficult to solve but
if an optimal binary solution is obtained, it means the elimination of the branch-
and-bound requirement. That is to say that when we aim to maintain integrality
in the resolution process, it makes it hard not to endorse DCA’s strategy. The
latter exploits a fast partition scheme which works out exactly when the solution
is binary and compatibility is easy to verify without the need of an inverse.

6.6 Computational results for DCA

For problems with about 2,000 constraints and 25,000 variables together with
average degeneracy levels between 40 and 50%, the combination of these ideas
within the GENCOL software system allows a reduction of solution times by factors of
50 to 100 (4.86 DCA × 4.38 BDCA × 4.53 MPDCA). The improvement factors are
compounded as discussed in the listed papers. The last two acronyms respectively
refer to Bi-DCA where tasks are also aggregated within the constrained shortest
path pricing problem solution process and Multi-phase DCA where a low-rank
incompatibility strategy is used for generating negative reduced cost columns.

To overcome degeneracy encountered during the solution of the restricted mas-
ter problems, Benchimol et al (2012) propose a stabilized DCA, called SDCA, that
incorporates the above mentioned DCA into the dual variable stabilization (DVS)
method of Oukil et al (2007). The rationale behind this combination is that DCA
reduces the primal space whereas DVS acts in the dual space. Thus, combining
both allows to fight degeneracy from primal and dual perspectives simultaneously.
This method is again designed for solving the linear relaxation of set partitioning
type models only. The computational results obtained on randomly generated in-
stances of the multi-depot vehicle scheduling problem show that the performance
of SDCA is not affected by the level of degeneracy and that it can reduce the
average computational time of the master problem by a factor of up to 7 with
respect to DVS. While this is not a direct comparison with DCA, the reduction
factor would be even greater. Indeed, many instances solved by DVS could not be
solved by DCA alone.

While DCA is implemented in a column generation context, ISUD is still in
the early phase and applies only to known columns. The latest work of Rosat et al

34 Jean Bertrand Gauthier et al.

(2014) show that the pricing problem can be modified with relatively simple cuts
when directions are rejected. These cuts have a major impact on the mean opti-
mality gap dropping to 0.21% on some aircrew scheduling problems from 33.92%
in the first ISUD paper.

7 Positive Edge

As in any simplex type algorithm, various pricing strategies can be used in IPS.
Researchers suggested to first consider nonbasic variables that are compatible with

row set P , or compatible with row set R in the general case, i.e., those in set C :=
{j ∈ N | ā0

Zj = 0}, followed by the more involved pricing step on the incompatible

ones in set I := {j ∈ N | ā0
Zj 6= 0}. However, the identification of variables

compatible with row set R requires the computation of the transformed matrix
Ā0
ZN = T−1

Z A0
ZN , where T−1

Z :=
[
−M Im−r

]
. For large-scale problems, this

can be time consuming. Enters Raymond et al (2010a) along with the Positive
Edge rule. The latter exploits a creative stochastic argument which in turn allows
the use of matrix multiplication rules to reduce the computational penalty. PE
allows to determine whether a variable yj , j ∈ N, is compatible or not without
explicitly computing vector āZj = T−1

Z aj . It is based on the observations put
forth in Section 7.1. Computational results are made available in Section 7.2.

7.1 Observations

Recall that if aj is compatible, then āZj = 0. Hence, for any vector v ∈ Rm−r, we
must have vᵀāZj = 0. Otherwise, āZj 6= 0 and

vᵀāZj = 0 if and only if v ⊥ āZj , (47)

that is, if and only if v and āZj are orthogonal. Intuitively, for a continuous
random vector v, this has probability zero. Define wᵀ := vᵀT−1

Z . Then, for any
variable yj , j ∈ N ,

vᵀāZj = vᵀT−1
Z aj = wᵀaj , (48)

and one can use the PE rule wᵀaj = 0 for a compatibility-test using original

vector aj . Expression (48) is similar to c>B āj = π>aj in the computation of the
reduced cost of variable xj , where π is the vector of dual variables associated with
constraint set Ax = b.

Computer architecture obliges, the continuous support is traded for a discrete
one thus rendering the orthogonal probability to a nonzero value, although shown
to be very small by Raymond et al (2010a). We skip the proof and present only
the random vector construction whose elements answer to the following definition.

Definition 3 Within the specifications of a computer with 32-bit words, a nonnull
rational number F ∈ Q0 with discrete distribution SEM32 is a single precision
floating-point number where the sign bit S, the exponent E, and the mantissa M
are independent and follow the discrete uniform distributions S ∼ U [0, 1], E ∼
U [64, 191], and M ∼ U [0, 223 − 1].

Tools for primal degenerate linear programs: IPS, DCA, and PE 35

Random distribution SEM32 is symmetric around a zero mean (µF = 0) with
a huge dispersion, its standard deviation being σF > 260 (Towhidi et al 2014). The
random vector v ∈ Qm−r0 is such that all m− r components are independent and
identically distributed SEM32.

Positive Edge rule. Let v ∈ Qm−r0 be a random SEM32 vector. A vector a ∈ Rm is
considered compatible with vector subspace V(Λr) if wᵀaj = 0.

Since the operation amounts to a dot product, this means that a compatible
variable is recognized in O(m) time. The pricing problem over the nonbasic ones
reduces to min

j∈C
d̃j while that over the incompatible ones is identical to (13) but

with yN replaced by yI or identical to (24) in the case of a linear program in
standard form with xN replaced by xI . Notice that considering set C is solely
from a theoretical point of view, while in practice the compatibility-test is only
performed for variables with negative reduced costs or a subset of them.

Within the scope of IPS, PE is a compatibility test which identifies nondegen-
erate improving pivots. It is a statistical test whereby the null hypothesis assumes
vector a is incompatible until sufficient evidence is provided to conclude otherwise.
On a more abstract level, PE is a membership test. In the linear algebra frame-
work, PE indeed amounts to stochastically testing whether a given vector belongs
to a subspace. Two types of error may surface, the vector a is assumed compatible
but it is not or the vector is assumed incompatible when it is.

7.2 Computational results for PE

Although PE is closely related to IPS, its foremost purpose is the identification
of compatible variables. It has as such been tested independently of IPS, that is,
by selecting entering variables in the primal simplex among the compatible set
in priority. The proof of concept is provided in Raymond et al (2010a) with the
use of two external procedures with CPLEX while a direct implementation within
COIN-OR’s CLP, where it has been combined with the Devex pricing criterion,
is presented in Towhidi et al (2014). The proposed implementation uses a two-
dimensional rule: for a variable xj , j ∈ N , the first dimension computes the reduced
cost c̄j = cj − πᵀaj , whereas the second evaluates wᵀaj . PE identifies Cw = {j ∈
N |wᵀaj = 0} and Iw = {j ∈ N |wᵀaj 6= 0}. Let c̄j? , j? ∈ Cw ∪ Iw, be the smallest
reduced cost and c̄jw , jw ∈ Cw, be the smallest one for a compatible variable. The
current solution is optimal if c̄j? ≥ 0. Compatible variables are preferred to enter
the basis except if c̄j? is much smaller than c̄jw . Given parameter 0 ≤ α < 1, the
selection rule is:

if c̄j? < 0 and c̄jw < αc̄j? , then select xjw else xj? . (49)

Tested with α = 0.5 on 32 problems from the Mittelmann’s library (Koch et al
2011) which contains instances with a wide range of degeneracy levels, computa-
tional results show that below a degeneracy level of 25%, PE is on average neutral
while above this threshold, it reaches an average runtime speedup of 2.72, with a
maximum of 4.23 on an instance with a 75% degeneracy level.

36 Jean Bertrand Gauthier et al.

8 Conclusions

This paper presents a survey of three recent tools for dealing with primal degen-
eracy in linear programming. While DCA appears first in the context of set par-
titioning models encountered in many routing and scheduling formulations solved
by branch-and-price, IPS extends the concept to linear programs in general. Both
methods partition the set of constraints in two parts, at every iteration, based on
the values taken by the basic variables. This can be seen as a dynamic application
of the Dantzig-Wolfe decomposition principle.

More specifically in IPS, one part of the constraints appears in the pricing
problem as a homogeneous linear system (together with nonnegative variables)
while the other part (together with the bound intervals on the variables) is used
in the master problem to complete the exchange mechanism from one feasible so-
lution to the next. PE adds a compatibility-test layer, done in polynomial time,
to the traditional reduced cost pricing of nonbasic variables. That is, it identifies
those entering variables that belong to the current vector subspace and are likely
to lead to nondegenerate pivots, if any. Otherwise, the IPS pricing step identi-
fies a convex combination of incompatible ones which also ultimately leads to a
nondegenerate pivot until optimality is reached in a finite number of iterations.
Computational results reported from the literature show a large reduction on CPU
times attributed to the diminution of degenerate pivots.

This paper also unifies IPS and DCA through a new interpretation in terms
of the usage of two different subspace bases spanning the columns of the master
problem. On the one hand, the subspace basis of IPS is made of the column
vectors associated with the nondegenerate (or free) basic variables. On the other
hand, that in DCA is derived from a partition of the rows into clusters, as the
one observed in any integer solution. This subspace basis has the fundamental
property that it at least spans the free variable vectors. Therefore, the dimension
of the subspace basis in DCA may be sometimes larger rather than equal to the
number of free variables and this is the reason why some degenerate pivots may
occur. As such, while every iteration of IPS is nondegenerate, DCA may encounter
some degenerate pivots.

What does the future look like? While the theory behind IPS is sound and
relatively straightforward, a general implementation is certainly a major concern.
It is however hard to discard the specific structures of different families of LP
problems. In this respect, the reader can think of several specializations of IPS
to well structured problems such as network flows, multi-commodity flows, and
linear relaxations of set partitioning and set covering problems.

The improved pricing step is the bottleneck of the method and needs to be
handled with a great deal of insight. An efficient all-purpose implementation re-
quires a significant amount of work and forces us to think about the different
acceleration strategies that were presented herein. To name but a few, we have the
partial pricing, the flexible subspace basis, the Dantzig-Wolfe surrogate variable
environment and of course the infamous compatibility concept. The question that
remains to be answered is whether trigger points for the usage of these ideas can
be automated.

We are also looking at an implementation of these ideas within column gen-
eration, its adaptation to the dual simplex algorithm and to convex optimization,
and its impact on the right-hand side sensitivity analysis, indeed the interpretation

Tools for primal degenerate linear programs: IPS, DCA, and PE 37

of the dual variables in the context of optimal degenerate solutions. Finally, the
design of a completely efficient Integral Simplex algorithm for the set partitioning
problem is a major goal.

Acknowledgements Jacques Desrosiers acknowledges the Natural Sciences and Engineering
Research Council of Canada for its financial support.

References

Ahuja RK, Magnanti TL, Orlin JB (1993) Network Flows: Theory, Algorithms, and Applica-
tions. Prentice Hall

Barnhart C, Johnson EL, Nemhauser GL, Savelsbergh MWP, Vance PH (1998) Branch-
and-price: Column generation for solving huge integer programs. Operations Research
46(3):316–329, doi:10.1287/opre.46.3.316

Ben Amor HMT, Desrosiers J, Frangioni A (2009) On the choice of explicit stabi-
lizing terms in column generation. Discrete Applied Mathematics 157(6):1167–1184,
doi:10.1016/j.dam.2008.06.021

Benchimol P, Desaulniers G, Desrosiers J (2012) Stabilized dynamic constraint aggregation for
solving set partitioning problems. European Journal of Operational Research 223(2):360–
371, doi:10.1016/j.ejor.2012.07.004

Bland RG (1977) New finite pivoting rules for the simplex method. Mathematics of Operations
Research 2(2):103–107, doi:10.1287/moor.2.2.103

Valério de Carvalho JM (1999) Exact solution of bin-packing problems using col-
umn generation and branch-and-bound. Annals of Operations Research 86(0):629–659,
doi:10.1023/A:1018952112615

Valério de Carvalho JM (2002) LP models for bin-packing and cutting stock problems. Euro-
pean Journal of Operational Research 141(2):253–273, doi:10.1016/S0377-2217(02)00124-8

Charnes A (1952) Optimality and degeneracy in linear programming. Econometrica 20(2):160–
170, doi:10.2307/1907845

Dantzig GB (1963) Linear programming and extensions. Princeton University Press, Princeton,
NJ, USA

Dantzig GB, Wolfe P (1960) Decomposition principle for linear programs. Operations Research
8(1):101–111, doi:10.1287/opre.8.1.101

Desaulniers G, Desrosiers J, Ioachim I, Solomon MM, Soumis F, Villeneuve D (1998) A unified
framework for deterministic time constrained vehicle routing and crew scheduling prob-
lems. In: Crainic T, Laporte G (eds) Fleet Management and Logistics, Kluwer, pp 57–93,
doi:10.1007/978-1-4615-5755-5 3

Desrosiers J, Lübbecke ME (2011) Branch-Price-and-Cut Algorithms, John Wiley & Sons, Inc.
doi:10.1002/9780470400531.eorms0118

Desrosiers J, Dumas Y, Solomon MM, Soumis F (1995) Time constrained routing and schedul-
ing. In: Ball M, Magnanti T, Monma C, Nemhauser G (eds) Handbooks in Operations
Research and Management Science, Vol. 8: Network Routing, Elsevier B.V, pp 35–139,
doi:10.1016/S0927-0507(05)80106-9

Desrosiers J, Gauthier JB, Lübbecke ME (2013) A contraction-expansion algorithm for the
capacitated minimum cost flow problem. Presentation at VeRoLog 2013, Southampton

Desrosiers J, Gauthier JB, Lübbecke ME (2014) Row-reduced column generation for de-
generate master problems. European Journal of Operational Research 236(2):453–460,
doi:10.1016/j.ejor.2013.12.016

Elhallaoui I, Villeneuve D, Soumis F, Desaulniers G (2005) Dynamic aggregation of
set partitioning constraints in column generation. Operations Research 53(4):632–645,
doi:10.1287/opre.1050.0222

Elhallaoui I, Desaulniers G, Metrane A, Soumis F (2008) Bi-dynamic constraint aggre-
gation and subproblem reduction. Computers & Operations Research 35(5):1713–1724,
doi:10.1016/j.cor.2006.10.007

Elhallaoui I, Metrane A, Soumis F, Desaulniers G (2010) Multi-phase dynamic constraint
aggregation for set partitioning type problems. Mathematical Programming 123(2):345–
370, doi:10.1007/s10107-008-0254-5

http://dx.doi.org/10.1287/opre.46.3.316
http://dx.doi.org/10.1016/j.dam.2008.06.021
http://dx.doi.org/10.1016/j.ejor.2012.07.004
http://dx.doi.org/10.1287/moor.2.2.103
http://dx.doi.org/10.1023/A:1018952112615
http://dx.doi.org/10.1016/S0377-2217(02)00124-8
http://dx.doi.org/10.2307/1907845
http://dx.doi.org/10.1287/opre.8.1.101
http://dx.doi.org/10.1007/978-1-4615-5755-5_3
http://dx.doi.org/10.1002/9780470400531.eorms0118
http://dx.doi.org/10.1016/S0927-0507(05)80106-9
http://dx.doi.org/10.1016/j.ejor.2013.12.016
http://dx.doi.org/10.1287/opre.1050.0222
http://dx.doi.org/10.1016/j.cor.2006.10.007
http://dx.doi.org/10.1007/s10107-008-0254-5

38 Jean Bertrand Gauthier et al.

Elhallaoui I, Metrane A, Desaulniers G, Soumis F (2011) An Improved Primal Simplex al-
gorithm for degenerate linear programs. INFORMS Journal on Computing 23:569–577,
doi:10.1287/ijoc.1100.0425

Fukuda K (1982) Oriented matroid programming. PhD thesis, University of Waterloo, Ontario,
Canada

Gauthier JB, Desrosiers J, Lübbecke ME (2014) About the minimum mean cycle-canceling
algorithm. Discrete Applied Mathematics doi:10.1016/j.dam.2014.07.005

Goldberg AV, Tarjan RE (1989) Finding minimum-cost circulations by canceling negative
cycles. Journal of the ACM 36(4):873–886, doi:10.1145/76359.76368

Harris PMJ (1973) Pivot selection methods of the devex lp code. Mathematical Programming
5(1):1–28, doi:10.1007/BF01580108

Karp RM (1978) A characterization of the minimum cycle mean in a digraph. Discrete Math-
ematics 23(3):309–311, doi:10.1016/0012-365X(78)90011-0

Klee V, Minty GJ (1972) How good is the simplex algorithm? In: Shisha O (ed) Inequalities,
vol III, Academic Press, pp 159–175

Koch T, Achterberg T, Andersen E, Bastert O, Berthold T, Bixby RE, Danna E, Gamrath
G, Gleixner AM, Heinz S, Lodi A, Mittelmann H, Ralphs T, Salvagnin D, Steffy DE,
Wolter K (2011) MIPLIB 2010. Mathematical Programming Computation 3(2):103–163,
doi:10.1007/s12532-011-0025-9

Löbel A (1998) Vehicle scheduling in public transit and Lagrangean pricing. Management
Science 44(12):1637–1649, doi:10.1287/mnsc.44.12.1637

Lübbecke ME, Desrosiers J (2005) Selected topics in column generation. Operations Research
53(6):1007–1023, doi:10.1287/opre.1050.0234

Mamer JW, McBride RD (2000) A decomposition-based pricing procedure for large-scale lin-
ear programs – An application to the linear multicommodity flow problem. Management
Science 46(5):693–709, doi:10.1287/mnsc.46.5.693.12042

du Merle O, Villeneuve D, Desrosiers J, Hansen P (1999) Stabilized column generation. Discrete
Mathematics 194:229–237, doi:10.1016/S0012-365X(98)00213-1

Metrane A, Soumis F, Elhallaoui I (2010) Column generation decomposition with the degener-
ate constraints in the subproblem. European Journal of Operational Research 207(1):37–
44, doi:10.1016/j.ejor.2010.05.002

Omer J, Rosat S, Raymond V, Soumis F (2014) Improved Primal Simplex: A More General
Theoretical Framework and an Extended Experimental Analysis. Les Cahiers du GERAD
G-2014-13, HEC Montréal, Canada

Oukil A, Ben Amor HMT, Desrosiers J, El Gueddari H (2007) Stabilized column generation for
highly degenerate multiple-depot vehicle scheduling problems. Computers & Operations
Research 34(3):817–834, doi:10.1016/j.cor.2005.05.011

Pan PQ (1998) A basis deficiency-allowing variation of the simplex method for linear pro-
gramming. Computers & Mathematics with Applications 36(3):33–53, doi:10.1016/S0898-
1221(98)00127-8

Perold AF (1980) A degeneracy exploiting LU factorization for the simplex method. Mathe-
matical Programming 19(1):239–254, doi:10.1007/BF01581646

Radzik T, Goldberg AV (1994) Tight bounds on the number of minimum-mean cycle cancel-
lations and related results. Algorithmica 11(3):226–242, doi:10.1007/BF01240734

Raymond V, Soumis F, Metrane A (2009) Improved primal simplex version 3: Cold start,
generalization for bounded variable problems and a new implementation. Les Cahiers du
GERAD G-2009-15, HEC Montréal, Canada

Raymond V, Soumis F, Metrane A, Desrosiers J (2010a) Positive edge: A pricing criterion for
the identification of non-degenerate simplex pivots. Les Cahiers du GERAD G-2010-61,
HEC Montréal, Canada

Raymond V, Soumis F, Orban D (2010b) A new version of the Improved Primal Sim-
plex for degenerate linear programs. Computers & Operations Research 37(1):91–98,
doi:10.1016/j.cor.2009.03.020

Rosat S, Elhallaoui I, Soumis F, Lodi A (2014) Integral Simplex Using Decomposition with
Primal Cuts. In: Gudmundsson J, Katajainen J (eds) Experimental Algorithms, Lec-
ture Notes in Computer Science, vol 8504, Springer International Publishing, pp 22–33,
doi:10.1007/978-3-319-07959-2 3

Ryan DM, Osborne MR (1988) On the solution of highly degenerate linear programmes. Math-
ematical Programming 41(1-3):385–392, doi:10.1007/BF01580776

http://dx.doi.org/10.1287/ijoc.1100.0425
http://dx.doi.org/10.1016/j.dam.2014.07.005
http://dx.doi.org/10.1145/76359.76368
http://dx.doi.org/10.1007/BF01580108
http://dx.doi.org/10.1016/0012-365X(78)90011-0
http://dx.doi.org/10.1007/s12532-011-0025-9
http://dx.doi.org/10.1287/mnsc.44.12.1637
http://dx.doi.org/10.1287/opre.1050.0234
http://dx.doi.org/10.1287/mnsc.46.5.693.12042
http://dx.doi.org/10.1016/S0012-365X(98)00213-1
http://dx.doi.org/10.1016/j.ejor.2010.05.002
http://dx.doi.org/10.1016/j.cor.2005.05.011
http://dx.doi.org/10.1016/S0898-1221(98)00127-8
http://dx.doi.org/10.1016/S0898-1221(98)00127-8
http://dx.doi.org/10.1007/BF01581646
http://dx.doi.org/10.1007/BF01240734
http://dx.doi.org/10.1016/j.cor.2009.03.020
http://dx.doi.org/10.1007/978-3-319-07959-2_3
http://dx.doi.org/10.1007/BF01580776

Tools for primal degenerate linear programs: IPS, DCA, and PE 39

Sadykov R, Vanderbeck F (2013) Column generation for extended formulations. EURO Journal
on Computational Optimization 1(1-2):81–115, doi:10.1007/s13675-013-0009-9

Schrijver A (1986) Theory of Linear and Integer Programming. Wiley
Terlaky T, Zhang S (1993) Pivot rules for linear programming: A survey on recent the-

oretical developments. Annals of Operations Research - Annals OR 46-47(1):203–233,
doi:10.1007/BF02096264

Towhidi M, Desrosiers J, Soumis F (2014) The positive edge criterion within coin-ors {CLP}.
Computers & Operations Research 49(0):41–46, doi:10.1016/j.cor.2014.03.020

Wolfe P (1963) A technique for resolving degeneracy in linear programming. Journal of the
Society for Industrial and Applied Mathematics 11(2):205–211, doi:10.1137/0111016

Zaghrouti A, Soumis F, El Hallaoui I (2014) Integral Simplex Using Decomposition for the Set
Partitioning Problem. Operations Research 62(2):435–449, doi:10.1287/opre.2013.1247

http://dx.doi.org/10.1007/s13675-013-0009-9
http://dx.doi.org/10.1007/BF02096264
http://dx.doi.org/10.1016/j.cor.2014.03.020
http://dx.doi.org/10.1137/0111016
http://dx.doi.org/10.1287/opre.2013.1247

	Introduction
	Improved Primal Simplex
	Linear Algebra Framework
	Aiming for efficiency
	Designing around compatibility
	Dynamic Constraints Aggregation
	Positive Edge
	Conclusions

