
On an inexact trust-region SQP-filter method for

constrained nonlinear optimization

Andrea Walther∗ and Lorenz Biegler†

October 14, 2014

Abstract

A class of trust-region algorithms is developed and analyzed for
the solution of optimization problems with nonlinear equality and in-
equality constraints. Based on composite-step trust region methods
and a filter approach, the resulting algorithm also does not require the
computation of exact Jacobians; only Jacobian vector products are
used along with approximate Jacobian matrices. As demonstrated on
numerical examples, this feature has significant potential benefits for
problems where Jacobian calculations are expensive.

1 Introduction

We consider nonlinear optimization problems (NLPs) of the form

min
x∈RN

f(x) subject to

cE(x) = 0, (1)

cI(x) ≤ 0,

where the target function f : RN → R, the equality constraints cE : RN →
RM as well as the inequality constraints cI : RN → RP are sufficiently
smooth functions.
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To apply a trust-region filter algorithm, we consider at the kth iteration
for the given iterate xk the quadratic subproblem QP(xk)

min
s∈RN

fk + g>k s+
1

2
s>Hks subject to

cE(xk) +AE(xk)s = 0, (2)

cI(xk) +AI(xk)s ≤ 0,

where fk := f(xk), gk := ∇f(xk), A
E(xk) := ∇cE(xk)T , AI(xk) := ∇cI(xk)T ,

and Hk is the Hessian (or its approximation) of the Lagrange function

L(x, λE , λI) = f(x) + λ>E cE(x) + λ>I cI(x)

with the Lagrange multipliers λE ∈ RM and λI ∈ RP+
For the step computation, we consider a restricted version, i.e., the sub-

problem TRQP(xk,∆k)

min
s∈RN

mk(xk + s) subject to

cE(xk) +AE(xk)s = 0,

cI(xk) +AI(xk)s ≤ 0,

‖s‖ ≤ ∆k

where

mk(xk + s) := fk + g>k s+
1

2
s>Hks

and ∆k is a positive trust-region radius.
For a considerable field of applications the evaluation of the Jacobians

AE(xk) and AI(xk) is very expensive and may easily dominate the com-
puting time required for solving the optimization problem. Examples for
such a setting are Periodic Adsorption Processes (PAPs) that consist of ves-
sels or beds packed with solid sorbent. The sorbent is contacted with a
multi-component fluid stream to preferentially absorb one of the chemical
components onto the solid. PAPs are typically operated in a cyclic man-
ner with each bed repeatedly undergoing a sequence of steps. These cycle
models consist of the bed models, PDAEs in time and space, solved for each
step. After a relatively brief start-up period, the adsorption beds run in a
cyclic steady state. That is, the bed conditions at the beginning of each
cycle match those at the end of the cycle. This fact yields dense constraint
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Jacobians, where the time required for the computation of the Jacobian
dominates the overall optimization process see, e.g., [10].

Therefore, the algorithm proposed in this paper allows the inexact com-
putation of steps. Scenarios that fit into this setting comprise the approxi-
mation of the Jacobians using low-rank updates as proposed in [8] in com-
bination with algorithmic differentiation, reduced order models in combina-
tion with the possible evaluation of high accuracy models, or inexact system
solves. However, we assume that the gradient information gk can be evalu-
ated exactly.

The inexact trust-region algorithm presented here extends directly from
the filter TR approach proposed in [6], but allows for an inexact step compu-
tation. The central feature of the new algorithm is the ability to generate an
exact local model within a bounded number of steps. This may be required
for the progress of the algorithm when an exact step computation is needed.
This assumption is similar to the one introduced already in [4]. The method
presented here can be viewed also as a continuation of the study [14] that
handles only inequality constraints.

For purely equality constrained optimization problems, an alternative
approach to handle inexactness was proposed by Byrd, Curtis, and Nocedal
[2] using a line search method, where inexact solves of the KKT system
are used to compute the next optimization step. In the context of inexact
trust-region methods, Ziems and Ulbrich proposed an approach for PDE-
constrained optimization [15], where adaptive PDE discretizations were ex-
ploited. An inexact trust-region full-space approach for equality constrained
optimization was presented by Heinkenschloss and Ridzal in [9]. An inte-
rior point algorithm using a line-search technique in combination with inex-
act step computation for qualities and inequalities was proposed by Curtis,
Schenk, and Wächter [5].

The paper has the following structure; in Sect. 2 we introduce our notion
of inexactness and a corresponding accuracy requirement that is necessary to
obtain global convergence of the proposed algorithm. In Sect. 3, the concept
of the filter approach is first revisited to introduce the features required
by the inexact trust region method. The overall algorithm is presented
next. The global convergence of this algorithm is proved in Sect. 4. Sect. 5
details numerical results obtained for several test problems. Finally, we give
conclusions in Sect. 6 as well as an outlook for future work.
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2 The inexact setting

Following the approach of Byrd [1] and Omojokun [11], we apply a composite-
step trust region method, where we consider a decomposition of the full step

sk = nk + tk

into a normal step nk towards feasibility and a tangential step tk towards
optimality. In the exact setting, the normal step has to satisfy the equations

cE(xk) +AE(xk)nk = 0, cI(xk) +AI(xk)nk ≤ 0.

Assuming existence of the normal step, one may compute nk as orthogonal
projection onto the feasible set

Ck :=
{
xk + s | cE(xk) +AE(xk)s = 0, cI(xk) +AI(xk)s ≤ 0

}
of the convex QP(xk) stated in (2). Hence, one possible normal step can be
obtained as solution of the convex QP

min
p

1

2
‖n‖2

cE(xk) +AE(xk)n = 0 ⇔ AE(xk)n = −cE(xk)
cI(xk) +AI(xk)n ≤ 0 ⇔ AI(xk)n ≤ −cI(xk).

However, since we do not want to build the exact Jacobians, we will
work throughout with an inexact normal step. That is, we assume that the
normal step nk satisfies only

‖cE(xk) +AE(xk)n‖ ≤ errE,nk and cI(xk) +AI(xk)n ≤ (errI,nk )e (3)

where e = [1, 1, . . . 1], for suitable bounded errors errE,nk , errI,nk ≥ 0 as de-
scribed below in more detail. Such an inexact step calculation might be
due to an inexact solve of QP(xk). Alternatively, one may use the inexact
representation of the feasible set of QP(xk) given by

cE(xk) +AEknk = 0, cI(xk) +AIknk ≤ 0, (4)

which is based on inexact Jacobians AEk and AIk . In this case, the normal
step nk could be computed as orthogonal projection on the approximation

C̃k :=
{
xk + s | cE(xk) +AEks = 0, cI(xk) +AIks ≤ 0

}
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of the corresponding set Ck in the exact setting.
We will use this approach also for our numerical tests presented in Sect. 5,

but other alternatives are also possible. In fact, as noted in [6] there are a
number of ways to calculate nk that are compatible with the analysis of trust
region filter methods. Examples include Byrd-Omojukun normal steps and
non-orthogonal projections. In analogy to [6], the only requirement we need
is that nk ∈ C̃k and that ‖nk‖ is bounded above as discussed below. Based
on C̃k we also define the following Inexact Trust Region QP, ITRQP(xk,∆k):

min
s∈RN

mk(xk + s) subject to

cE(xk) +AEks = 0,

cI(xk) +AIks ≤ 0,

‖s‖ ≤ ∆k

Note that our analysis is based only on the inexactness given in (3), allowing
for a wide range of inexact step computations.

As in [6], we will use the concept of a compatible trust-region subprob-
lem, i.e., the normal step must not yield a point outside the trust region, and
not too close to the trust-region boundary. In the context of ITRQP(xk,∆k)
this corresponds to the following stronger condition.

Definition 2.1 (Compatibility). We will call the subproblem ITRQP(xk,∆k)
compatible if the corresponding normal step nk satisfies

‖nk‖ ≤ κ∆∆k min{1, κµ∆µ
k} (5)

for constants κ∆ ∈ (0, 1], κµ > 0, and µ ∈ (0, 1).

If the trust-region subproblem ITRQP(xk,∆k) is compatible then

xnk = xk + nk

represents a step towards feasibility in the inexact setting. For the analysis
of our algorithm, we relate the normal step nk with the maximum violation
of the nonlinear constraints at the same iterate θk := θ(xk) given by

θ(x) := max

{
0, max

i∈E
|ci(x)|, max

i∈I
ci(x)

}
(6)

and we require:
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Assumption 2.2 (Existence and Boundedness of Normal Step). Through-
out we assume that the normal step

nk exists and ‖nk‖ ≤ κubnθk if θk ≤ δn (7)

for constants κubn > 0 and δn > 0.

If ITRQP(xk,∆k) is not compatible, i.e., there exists no normal step or
condition (5) is violated, a restoration phase is used to compute a step rk
such that ITRQP(xk+rk,∆k+1) is compatible for some ∆k+1 > 0. This can
be achieved by ensuring that θ(xk + rk) is sufficiently reduced from θ(xk),
for example by solving

min
x∈RN

θ(x) (8)

or an appropriate smoothed version of this nonsmooth problem.
In our algorithm, we will also allow an inexact computation of the tan-

gential step, i.e., tk is computed as solution of the inexact tangential problem

min
t∈RN

(gk +Hknk)
>t+ 1/2t>Hkt subject to (9)

‖AE(xk)t‖ ≤ errE,tk , (10)

cI(xk) +AI(xk)(nk + t) ≤ errIk , (11)

‖nk + t‖ ≤ ∆k (12)

for suitable bounded errors errE,tk , errIk ≥ 0 as described below in more detail.
The tangential step is used to judge the sufficient decrease condition to

obtain convergence. For the corresponding analysis, we will require:

Assumption 2.3 (Sufficient Decrease Condition). If ITRQP(xk,∆k) is
compatible, then

mk(x
n
k)−mk(x

n
k + tk) ≥ κsdtχ̂k min

{
χ̂k
βk
,∆k

}
(13)

holds for a fixed constant κsdt > 0 and βk := 1 + ‖Hk‖.

Note, that for the full step sk = nk + tk one has:

‖cE(xk) +AE(xk)s‖ ≤ errE,nk + errE,tk , cI(xk) +AI(xk)s ≤ errIk .

Similar to the proof in [3, Theo. 12.2.2], one can show that (13) holds for
the inexact setting considered here, when the model reduction exceeds what
would be obtained at the generalized Cauchy point for ITRQP.
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As in [6], one may use the following criticality measure to deduce first-
order optimality

χk :=
∣∣∣min

{
(gk +Hknk)

>t
∣∣∣AE(xk)t = 0,

cI(xk) +AI(xk)(nk + t) ≤ 0, ‖t‖ = 1
}∣∣∣. (14)

Since the feasible set C of ITRQP(xk) is convex, one may alternatively em-
ploy also

χk := ‖xk − PCk(xk −∇f(xk))‖ (15)

as criticality measure, see [3, Section 12.1.4].
In this work we define an inexact criticality measure since we do not have

the exact Jacobians at hand. The inexact version of the criticality measure
(14) is given by

χ̂k :=
∣∣∣min

{
(gk+Hknk)

>t
∣∣∣ ‖AE(xk)t‖ ≤ errE,tk ,

cI(xk)+AI(xk)(nk+t) ≤ (errIk )e, ‖t‖ = 1
}∣∣∣,

again for suitable bounded errors errE,tk , errIk ≥ 0 as described below in more
detail. Hence, if tk = 0 ∈ Rn solves the tangential problem (9), then this
inexact criticality measure is zero indicating that x∗ = xk+nk is a first-order
critical point for the inexact setting.

The inexact version

χ̂k := ‖xk − PĈk(xk −∇f(xk))‖

for the alternative (15) projects once more onto the feasible set of ITRQP(xk),
i.e.,

Ĉk :=
{
xnk + t | ‖AE(xk)t‖ ≤ errE,tk , cI(xk)+AI(xk)(nk+t) ≤ (errIk )e

}
.

The analysis of the algorithm presented in the next section is independent
of the choice of the criticality measure and builds on upper bounds for the
errors errE,tk , errIk ≥ 0

For the proof of convergence in the inexact setting, we need a certain
quality of the approximate solutions as stated next.

Assumption 2.4 (Accuracy Requirement). The step sk = nk + tk fulfills
the accuracy requirement if

max
{
‖cE(xk) +AE(xk)nk‖, cI(xk) +AI(xk)nk

}
≤ κen∆1+µ

k (16)
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as well as

max
{
‖cE(xk)+AE(xk)sk‖, cI(xk)+AI(xk)sk

}
≤κes min

{
∆1+µ
k ,∆1+σ

k

}
(17)

hold for constants σ > µ > 0 and κen, κes > 0 independent of k.

We note that the requirement (16) is the same as presented in [6], while
(17) is a relaxation from [6] to reflect the effect of the inexactness in de-
termining tk. These requirements can be verified easily if one works with
the inexact Jacobians AEk and AIk , and assumes that Jacobian-vector prod-
ucts can be efficiently evaluated. Using (4), the requirements (16) and (17),
respectively, can be tested using

max
{
‖AEknk −AE(xk)nk‖, AIknk −AI(xk)nk

}
≤ κen∆1+µ

k

and

max
{
‖AEksk−AE(xk)sk‖, ‖AIks−AI(xk)sk‖

}
≤κes min

{
∆1+µ
k ,∆1+σ

k

}
.

3 An Inexact Trust-Region SQP-Filter Algorithm

For the globalization of our inexact approach, we apply a filter technique to
decide whether a point xk + sk (or xk + rk in the restoration phase) is in
some sense better than the current iterate xk. For this purpose, we build
a collection F of pairs (θj , fj) known as filter. More details about the idea
and the background of the filter method can be found in [3, Chapter 15.5]
and [6]. For a given filter F , the following criterion is used to judge the
progress provided by the next iterate:

Definition 3.1 (Acceptance for the filter). A point x is acceptable for the
filter F if and only if

θ(x) ≤ (1− γθ)θj or f(x) ≤ fj − γθθj for all (θj , fj) ∈ F

for a constant γθ ∈ (0, 1). Furthermore, a point x is acceptable for the filter
F and xk if and only if

θ(x) ≤ (1− γθ)θj or f(x) ≤ fj − γθθj for all (θj , fj) ∈ F ∪ {(θk, fk)}

with the same constant γθ ∈ (0, 1).
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During the optimization process, we will use the term that a point xk is
added to the filter, although one adds the pair (θk, fk) to the set F . In this
case, one also removes all pairs (θj , fj) with

θj ≥ θk and fj − γθθj ≥ fk − γθθk

from the filter.
The inexact trust-region algorithm below builds heavily on the ability to

generate an exact modelmk within a bounded number of steps. For instance,
specialized quasi-Newton updates for inexact Jacobians were developed in
[14]. This ability is required by the so-called Improvement Algorithm in the
optimization process, so that one can compute exact steps such that

errE,nk = errI,nk = errE,tk = errIk = 0 (18)

and the inequalities (16) and (17) are valid. The model mk, where (18)
is satisfied is called a good model. A discussion of the improvement algo-
rithm will be given below when the calling structure from the trust-region
algorithm is known.

Algorithm I: Trust-Region SQP-Filter Algorithm

0. Initialization. Choose an initial point x0, initial values ∆0 > 0, AE0 ,
AI0 , H0, and constants 0 < γ0 < γ1 ≤ 1 ≤ γ2; 0 < η1 ≤ η2 < 1;
εc > 0; γθ, κθ ∈ (0, 1); κ∆, κsdt ∈ (0, 1]; κµ, κej > 0; σ, µ ∈ (0, 1),
σ > µ; ψ > 1/(1 + µ), κen, κes > 0. Compute f(x0), cE(x0), cI(x0).
Set F = ∅ and k = 0.

1. Model quality. If χ̂k < εc then apply Improvement Algorithm and
update χ̂k.

2. Optimality test. If θk = 0 and χ̂k = 0: STOP

3. Compatibility test. Attempt to compute nk
If nk exists and ITRQP(xk,∆k) is compatible go to 5.

4. Model Improvement/Restoration Check. If mk is not a good
model apply Improvement Algorithm, go to 3.
Else, if mk is a good model then

add xk to the filter and attempt to compute a restoration step rk
for which ITRQP(xk+rk,∆k+1) is compatible for some ∆k+1 > 0,
and xk + rk is acceptable for the filter.
If this is not possible: STOP.
Otherwise, set xk+1 = xk + rk and go to 9.
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5. Step computation. Compute tk and set sk := nk + tk

6. Accuracy test. If (16) and (17) do not hold then
apply Improvement Algorithm and go to 3.

7. Acceptance test. Compute f(xk + sk) and c(xk + sk).
If xk + sk is not acceptable for the filter and xk then

set xk+1 = xk, nk+1 = nk, choose ∆k+1 ∈ [γ0∆k, γ1∆k], set k = k+1,
go to 3.
If

mk(xk)−mk(xk + sk) ≥ κθθψk (19)

and ρk :=
f(xk)− f(xk + sk)

mk(xk)−mk(xk + sk)
< η1

then set xk+1 = xk, nk+1 = nk, choose ∆k+1 ∈ [γ0∆k, γ1∆k], set
k = k + 1, go to 3.

8. Filter update: If (19) does not hold add xk to the filter F .

9. Next iterate: Set xk+1 = xk + sk. If (19) holds choose

∆k+1 ∈
{

[γ1∆k,∆k] if ρk ∈ [η1, η2)
[∆k, γ2∆k] if ρk ≥ η2

10. Updates: Determine Hk+1, AEk+1, AIk+1, set k = k + 1, go to Step 1.

We will call an iterate xk together with the step sk successful, if xk + sk
passes all tests to reach step 8 of Algorithm I, i.e., xk is not added to the
filter.

This enforced accuracy given by (18) is required for the calls of the Im-
provement Algorithm in Step 1, i.e., near a possible first-order critical point,
cf. the proof of Theorem 4.15. This is similar to the exactness requirements
used in [4]. Furthermore, there is an obvious relation to inexact Newton
methods where exact solutions are enforced and required only near the so-
lution point.

For all other calls of the improvement algorithm, one may for example
increase the accuracy repeatedly as long as (18) is valid after a certain fixed
number of calls to the improvement algorithm at the same point xk. In the
setting of the inexact Jacobians the enforced accuracy (18) could be achieved
by computing the exact Jacobians each time when the accuracy tests (16)
and (17) fail. Alternatively, one may employ a suitable update strategy in
the steps 3 and 5 to improve the inexact Jacobians as long as (18) is valid
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after a certain fixed number of calls to the improvement algorithm at the
same point xk.

For these relaxed updating strategies, it is important to note that the
iteration point xk itself is not updated if the accuracy test fails. Hence, we
apply the Improvement Algorithm to ensure that (18) holds after a fixed
number of updates. For instance, specialized quasi-Newton updates for in-
exact Jacobians from [14] could be applied here. The modified updating in
Steps 4 and 6 would allow faster progress of the algorithm, but each up-
dating step is then more expensive due to the computation of intermediate
results. These might become useless when repeated failure of the tests (16)
and (17) occurs. It follows that there is a wide range of possibilities to ex-
plore. For this reason, we leave the details of Algorithm II open. These can
be adapted based on where the model improvement algorithm is invoked.

Algorithm II: Improvement Algorithm

Improve the model mk such that after a finite number K of iterations the
good model mk allows the computation of exact steps fulfilling (18).

4 Convergence analysis

Definition 4.1 (Sets of Iterates). We define

S := {k |xk+1 = xk + sk}

as the set of indices of successful iterations and

R :=
{
k |nk does not satisfy (7) or ‖nk‖ > κ∆∆ min{1, κµ∆µ

k}
}

as the set of indices of restoration iterations. Furthermore let

Z := {k |xk is added to the filter }

be the set of the iterates where the filter is modified.

For the proof of the global convergence result, we will need the following
properties as in [6]:

Assumption 4.2.

AS1 The target function f as well as the constraint functions cE and cI are
twice continuously differentiable.
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AS2 The Hessian approximations Hk of all iterates are bounded from above,
i.e., there exists a constant κubh > 1 such that

‖Hk‖ ≤ κubh − 1 for all k.

AS3 The iterates {xk} remain in a closed, bounded domain X.

From these assumptions, one can directly derive that there exists a con-
stant κef bounding the error in the model from above in the following way:

|f(xk + sk)−mk(xk + sk)| ≤ κef∆2
k.

Furthermore, one obtains from the smoothness of the functions and the
boundedness of X that there exist constants fmin ∈ R and θmax ≥ 0 with

fmin ≤ f(xk) and 0 ≤ θk ≤ θmax for all k.

Hence the (θ, f)-space containing all filter iterates can be restricted to the
rectangle

A := [0, θmax] × [fmin,∞] .

Lemma 4.3 (First upper bound on θ). Assume that Algorithm I is applied
to the NLP (1) and that finite termination does not occur. Suppose that
AS1 and AS3 hold and that

θk ≤ δn

is valid. Then, the normal step nk exists. Furthermore, there is a constant
κubj > 0 independent of k such that one has

θk ≤ κen∆1+µ
k + κubj‖nk‖. (20)

Proof: The existence of the normal step follows from Assumption 2.2 since
θk ≤ δn. Defining

Vk := {j ∈ E | θk = |cj(xk)|}
⋃
{j ∈ I | θk = −cj(xk)}

as the set of indices of the most violated constraints, one obtains from the
definition of θk in (6), the normal step nk in (3), the accuracy requirement
(16) and the Cauchy-Schwarz inequality that

θk = |cj(xk)| ≤ ‖cj(xk) + (AE(xk))jnk‖+ ‖(AE(xk))jnk‖
≤ κen∆1+µ

k + ‖(AE(xk))j‖ ‖nk‖
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for all j ∈ E ∩ Vk, where Bj denotes the row j of the matrix B. Then
Assumption AS3 yields the existence of a constant κubj1 > 0 such that

θk ≤ κen∆1+µ
k + κubj1‖nk‖

for all j ∈ E ∩ Vk. For j ∈ I ∩ Vk, one obtains in a similar way that

θk = cj(xk) ≤ ‖cj(xk) + (AI(xk))jnk‖+ ‖(AI(xk))jnk‖
≤ κen∆1+µ

k + κubj2‖nk‖.

With κubj := max{κubj1, κubj2}, one obtains the assertion.

Lemma 4.4 (Limit of θk for Filter Iterates). Assume that Algorithm I is
applied to the NLP (1) and that finite termination does not occur. Suppose
that AS1 and AS3 hold and that |Z| =∞. Then

lim
k→∞
k∈Z

θk = 0.

Proof: This lemma can be shown along the lines of [6, Lemma 3.3] or [7,
Lemma 1 and Corollary 1] since the proofs in these papers only rely on the
filter mechanism, which is here exactly the same as in these papers.

Lemma 4.5 (Further upper bound on θ). Assume that Algorithm I is ap-
plied to the NLP (1) and that finite termination does not occur. Suppose
that AS1 and AS3 hold, that k /∈ R, and that nk satisfies (20). Then there
exists a constant κubt > 0 such that

θk ≤ κubt∆1+µ
k (21)

and

θ(xk + sk) ≤ κubt max{∆1+σ
k ,∆1+µ

k ,∆2
k}.

Proof: Since k /∈ R, one obtains from (5) and (20) that

θk ≤ κen∆1+µ
k + κubj‖nk‖ ≤ (κen + κubjκ∆κµ)∆1+µ

k .

The jth constraint function at xk + sk can be expressed as

cj(xk + sk) = cj(xk) +∇xcj(xk)>sk +
1

2
s>k∇xxcj(ξk)sk
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for j ∈ E ∪ I applying AS1 and the mean-value theorem for ξk ∈ {x |x =
xk + αsk, α ∈ [0, 1]}. One obtains from the accuracy requirement (17) in
step 5 of Algorithm I that

|cj(xk) + (AE(xk))jsk| ≤ κes min{∆1+µ
k ,∆1+σ

k }

for all j ∈ E . Furthermore, AS3 gives a bound κ1 for the Hessian of the con-
straint functions. Therefore, one obtains from ‖sk‖ ≤ ∆k and the Cauchy-
Schwarz inequality that

|1
2
s>k∇xxcj(ξk)sk| ≤ κ1∆2

k.

Combining both upper bounds, it follows that

|cj(xk + sk)| ≤ (κes + κ1) max
{

∆1+σ
k ,∆1+σ

k ,∆2
k

}
.

For j ∈ I, it follows from the accuracy requirement (17) in step 5 of Algo-
rithm I and AS3 that

cj(xk + sk) = cj(xk) +∇xcj(xk)>sk +
1

2
s>k∇xxcj(ξk)sk

≤ κes∆1+σ
k + ‖1

2
s>k∇xxcj(ξk)sk‖

≤ (κes + κ2) max
{

∆1+σ
k ,∆1+σ

k ,∆2
k

}
for a constant κ2 > 0 independent of k. This gives the required bound with

κubt = max{κen + κubjκ∆κµ, κes + κ1, κes + κ2}.

Lemma 4.6 (Lower Bound on Model Improvement I). Assume that Algo-
rithm I is applied to the NLP (1) and that finite termination does not occur.
Suppose that AS1–AS3, (5), and (13) hold, that k /∈ R, that

χ̂k ≥ ε

for a constant ε > 0, and that

∆k ≤ min

{
ε

κubh
,

(
2

κubg
κubhκ∆κµ

) 1
1+µ

,

(
κsdtε

4κubgκ∆κµ

) 1
µ

}
=: δm,

where κubg := maxx∈X ‖∇xf(x)‖. Then

mk(xk)−mk(xk + sk) ≥
1

2
κsdtε∆k.



4 CONVERGENCE ANALYSIS 15

Proof: This is the same proof as in [6, Lemma 3.5]. One only has to
substitute the exact criticality measure χk used in [6] with the inexact one
χ̂k considered here.

Lemma 4.7 (Very Successful Steps). Assume that Algorithm I is applied
to the NLP (1) and that finite termination does not occur. Suppose that
AS1–AS3, and (13) hold, that χ̂k ≥ ε for a constant ε > 0, k /∈ R, and that

∆k ≤ min

{
δm,

(1− η2)κsdtε

2κef
, 1

}
=: δρ,

where δm was defined in Lemma 4.6. Then

ρk ≥ η2

Proof: One can use exactly the same argument as in [6, Lemma 3.6].

Lemma 4.8 (Lower Bound on Model Improvement II). Assume that Algo-
rithm I is applied to the NLP (1) and that finite termination does not occur.
Suppose that AS1–AS3, (5), and (13) hold, that χ̂k ≥ ε for a constant ε > 0,
that nk satisfies (20), that k /∈ R, and that

∆k ≤ min

δm,
(

κsdtε

2κθκ
ψ
ubt

) 1
ψ(1+µ)−1

 =: δf .

where δm was defined in Lemma 4.6. Then

mk(xk)−mk(xk + sk) ≥ κθθψk .

Proof: One can use exactly the same argument as in [6, Lemma 3.7].

Lemma 4.9 (Decrease in Target Function). Assume that Algorithm I is
applied to the NLP (1) and that finite termination does not occur. Suppose
that AS1–AS3, (13) hold, that χ̂k ≥ ε for a constant ε > 0, that nk satisfies
(20), that k /∈ R, ∆k ≤ δρ where δρ is defined in Lemma 4.7 and that

θk ≤ κ
− 1
µ

ubt

(
η2κsdtε

2γθ

) 1+µ
µ

=: δθ.

Then

fk(xk + sk) ≤ f(xk)− γθθk.
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Proof: One can use exactly the same argument as in [6, Lemma 3.8].

Lemma 4.10 (Compatibility). Assume that Algorithm I is applied to the
NLP (1) and that finite termination does not occur. Suppose that AS1–AS3,
and (7) hold, that χ̂k ≥ ε for a constant ε > 0, that (13) holds for k /∈ R,
and that

∆k ≤ min
{
γ0δρ, (1/κµ)

1
µ , ∆̂, ∆̄

}
=: δR. (22)

with ∆̂ :=

(
γ2

0(1− γθ)κ∆κµ
κubnκubt

) 1
σ−µ

, ∆̄ =

(
γ2

0(1− γθ)κ∆κµ
κubnκubt

) 1
1−µ

and δρ as defined in Lemma 4.7. Furthermore, suppose that k > 0 and that

θk ≤ min{δθ, δn}.

Then k /∈ R.

Proof: This is an adapted version of the proof for [6, Lemma 3.9] that
takes the inexactness into account.

The existence of the normal step follows from Assumption 2.2 since θk ≤
δn. Now assume for deriving a contradiction that k ∈ R, i.e.,

‖nk‖ > κ∆κµ∆1+µ
k (23)

using κµ∆µ
k ≤ 1 due to the bound on ∆k. Then, Algorithm I ensures that

k − 1 /∈ R. Suppose that iteration k − 1 is not successful. From Lemma
4.7 we obtain that ρk−1 ≥ η2. Furthermore, Lemma 4.9 holds at iteration
k − 1 due to (7), the bound (22) on the trust-region radius, the fact that
θk = θk−1, θk ≤ δθ, and because k − 1 /∈ R. This yields

f(xk−1 + sk−1) ≤ f(xk−1)− γθθk−1.

Since xk−1 is acceptable for the filter at the beginning of iteration k−1, this
iteration can only be not successful if xk−1 + sk−1 is not acceptable for the
filter and xk−1. Due to the last estimate for the reduction in the objective
function, the only way that this point can be unacceptable to the filter is if

θ(xk−1 + sk−1) > (1− γθ)θk−1 = (1− γθ)θk.

However using γ0 ∈ (0, 1), Lemma 4.5, ∆k−1 ≤ 1 and the mechanism of
Algorithm I imply that

(1− γθ)θk ≤ κubt max
{

∆1+σ
k−1 ,∆

2
k−1

}
≤ κubt max

{
∆1+σ
k

γ1+σ
0

,
∆2
k

γ2
0

}
≤ κubt

γ2
0

max
{

∆1+σ
k ,∆2

k

}
.
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Combining this inequality with (23) and (7), one can conclude that

κ∆κµ∆1+µ
k < ‖nk‖ ≤ κubnθk ≤

κubnκubt
γ2

0(1− γθ)
max

{
∆1+σ
k ,∆2

k

}
(24)

and therefore that

max
{

∆1−µ
k ,∆σ−µ

k

}
>
γ2

0(1− γθ)κ∆κµ
κubnκubt

.

Hence, at least one of the inequalities

∆k >

(
γ2

0(1− γθ)κ∆κµ
κubnκubt

) 1
σ−µ

and ∆k >

(
γ2

0(1− γθ)κ∆κµ
κubnκubt

) 1
1−µ

.

must hold. However, both inequalities contradict (22), the assumed bound
on ∆k. Hence, the assumption that iteration k − 1 is not successful cannot
be true. Therefore, iteration k − 1 must be successful yielding

κ∆κµ∆1+µ
k < ‖nk‖ ≤ κubnκubt max

{
∆1+σ
k−1 ,∆

2
k−1

}
≤ κubnκubt

γ2
0

max
{

∆1+σ
k ,∆2

k

}
.

Since 1 − γθ < 1 this contradicts once more the assumed bound on ∆k

yielding that the assumption (23) must be false and, the original assertion
is proved.

Lemma 4.11 (Convergence of θ and χ̂ for Infinite Filter). Assume that
Algorithm I is applied to the NLP (1) and that finite termination does not
occur. Suppose that AS1–AS3, and (7) hold, and that (13) holds for k /∈ R.
Suppose that |Z| =∞. Then there exists a subsequence {ki} ⊂ Z such that

lim
i→∞

θki = 0

and

lim
i→∞

χ̂ki = 0.

Proof: This is the same proof as in [6, Lemma 3.10], which builds on
Lemma 4.4, Lemma 4.8, and Lemma 4.10. One only has to substitute the
exact criticality measure χk used in [6] with the inexact one χ̂k considered
here.

From now on, let k0 denote the last iteration for which xk0−1 is added to
the filter.
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Lemma 4.12 (Convergence of θk for Finite Filter). Assume that Algorithm I
is applied to the NLP (1) and that finite termination does not occur. Suppose
that AS1–AS3, and (7) hold, and that (13) holds for k /∈ R. Suppose that
|Z| <∞. Then one has

lim
k→∞

θk = 0.

Proof: One can use exactly the same argument as in [6, Lemma 3.11].

Lemma 4.13 (Bounded Trust-region Radius). Assume that Algorithm I is
applied to the NLP (1) and that finite termination does not occur. Suppose
that AS1–AS3, and that (13) holds for k /∈ R. Suppose that |Z| < ∞ and
that χ̂k ≥ ε hold for a constant ε > 0 and all k ≥ k0. Then there exists a
∆min > 0 such that

∆k ≥ ∆min

Proof: This is an adapted version of the proof for [6, Lemma 3.12] to take
the inexactness into account.

Using Lemma 4.12, we know that there exists an index k1 ≥ k0 such
that θk ≤ min{δn, δθ} for all k ≥ k1. Then, (7) holds for all k ≥ k1. Using
(24), we now now assume, for the purpose of deriving a contradiction, that
iteration j is the first iteration following k1 for which

∆j ≤ γ0 min

{
δρ,

(
(1− γθ)θF

κubt

) 1
2

,

(
(1− γθ)θF

κubt

) 1
1+σ

,∆k1

}
=: γ0δs (25)

and θF := mini∈Z θi denotes the smallest constraint violation in the filter.
Since we have ∆j ≤ γ0∆k1 it follows that j ≥ k1 +1 and therefore j−1 /∈ R.
Then, Algorithm I and the bound on ∆j ensure that

∆j−1 ≤
1

γ0
∆j ≤ δs.

Due to the bounds on ∆j and ∆j−1 we can apply Lemma 4.7 yielding ρj−1 ≥
η2. Since (7) holds also for j − 1, Lemma 4.3 ensures that we use Lemma
4.5 to obtain with the bound (25)

θ(xj−1 + sj−1) ≤ κubt max
{

∆1+σ
j−1 ,∆

2
j−1

}
≤ (1− γθ)θF .
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Due to the bound on ∆j we can also apply Lemma 4.9 such that we get

f(xj−1 + sj−1) ≤ f(xj−1)− γθθj−1.

The last two inequalities yield that xj−1+sj−1 is acceptable for the filter and
xj−1. Combining this with ρj−1 ≥ η2 and the mechanism of Algorithm I, we
obtain ∆j ≥ ∆j−1. However, then iteration j cannot be the first iteration
following k1 such that (25) holds. This contradiction yields ∆k ≥ γ0δs for
all k > k1 and the assertion follows with

∆min = min{∆0, . . . ,∆k1 , γ0δs}.

Lemma 4.14 (Limit of χ̂k). Assume that Algorithm I is applied to the NLP
(1) and that finite termination does not occur. Suppose that AS1–AS3 and
(13) holds for k /∈ R. Suppose that |Z| <∞. Then

lim inf
k→∞

χ̂k = 0

Proof: This is the same proof as in [6, Lemma 3.13], which is based also
on Lemma 4.13. One only has to substitute the exact criticality measure χk
used in [6] with the inexact one χ̂k considered here.

Theorem 4.15 (Convergence to First-order Critical Point). Assume that
Algorithm I is applied to the NLP (1) and that finite termination does not
occur. Suppose that AS1–AS3, and that (13) holds for k /∈ R. Suppose that
|Z| < ∞. Then either the restoration procedure terminates unsuccessfully
by converging to an infeasible first-order critical point of the subproblem (8)
or there exists a subsequence {ki} for which

lim
i→∞

xki = x∗

and x∗ is a first-order critical point for (1).

Proof: Suppose that the restoration iteration always terminates success-
fully since otherwise nothing is to show. Now, consider a subsequence {ki}
such that x∗ is the limit of the subsequence xki . Then, Lemmas 4.11, 4.12,
and 4.14 ensure that there exists a subsequence {kj} ⊂ {ki} such that

lim
j→∞

χ̂kj = 0 (26)
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and

lim
j→∞

xkj = x∗

Step 2 of Algorithm I ensures that mk is a good model if χ̂kj < εc. Therefore,
one obtains from (26) for j0 chosen such that χ̂kj < εc hold for all j0 ≥ j
that

lim
j→∞
j≥j0

χkj = lim
j→∞
j≥j0

χ̂kj = 0.

It follows that χ(x∗) = 0. Hence, x∗ is first-order critical.

5 Numerical Results

To assess the performance of the inexact algorithm, we implemented an
initial, simple version in C++ and present some preliminary results. We
compare the inexact trust region aproach with an exact version as well as
with IPOPT. Default parameters were specified following mostly the sug-
gestion in [6], that is,

γ0 = 0.1, γ1 = 0.2, γ2 = 2, η1 = 0.01, η2 = 0.9
γθ = 10−4, κ∆ = 0.7, κµ = 100, µ = 0.01, κθ = 10−4,
κtmd = 0.01, ∆0 = 0.5

together with

σ = 0.02, ψ = 2.0, κen = 1, κes = 2 and ε = 0.01

but no parameter tuning was performed to improve performance. We also
used the AD tool ADOL-C [13] to provide exact Jacobian-vector and vector-
Jacobian products. Since only Hessian-vector products are needed during
the step computation we also provide this second-order information exactly.
Furthermore, we use the exact derivative matrices as initializations for AE0
and AI0 . To approximate the Jacobian matrices during the optimization
process, we use the TR1 quasi-Newton update as proposed in [8].

In our implementation, if the accuracy test (Step 6 of Algorithm I) fails
we just compute exact Jacobians for the current iterate for the Improvement
Algorithm. This is a simple but expensive approach. A more sophisticated
implementation should provide a less expensive algorithm in this case. This
is the subject of ongoing research and will be considered in a future study.
Instead, these preliminary numerical results illustrate the viability and po-
tential of the new inexact approach rather than a comprehensive evaluation
and comparison.
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IPOPT
N M P opt. value it #AE #AI

1 hs014 2 1 1 1.3935 7 8 8
2 hs032 3 1 4 1.0000 16 17 17
3 hs035mod 3 1 4 0.2500 15 0 16
4 hs041 4 1 4 1.9257 9 10 0
5 hs053 5 3 10 4.0930 6 7 0
6 hs054 6 1 6 0.1929 7 8 0
7 hs060 3 1 6 0.0326 7 8 0
8 hs062 3 1 6 -26272.5145 7 8 0
9 hs073 4 1 6 29.8944 8 9 9

10 hs074 4 3 10 5126.4980 9 10 10
11 hs075 4 3 10 5174.4127 9 10 10
12 hs080 5 3 10 0.0539 6 7 0
13 hs081 5 3 10 0.0539 7 8 0
14 hs107 9 6 7 5055.0118 10 11 0
15 hs112 10 3 10 -47.7611 17 18 0
16 hs119 16 8 32 244.8997 14 15 0

Table 1: Data for CUTEr Test Problems

5.1 CUTEr Test Problems

We tested 20 CUTEr test problems that have both equalities and inequali-
ties as constraints. Here, we report the results for 16 problems, where the
variants of our trust region algorithm and IPOPT yield the same optimal
values as shown in Tab. 1. We also include the IPOPT results as a baseline
comparison. On two of the remaining four problems, the filter trust-region
approach terminates in the restoration phase; options to improve the restora-
tion phase were not explored in this work. The third problem terminated
with an error in the solution of the QP subproblem, and the fourth problem
converged to a different solution.

Tab. 1 shows the IPOPT results as a baseline. It includes the dimension
of the test problems, the optimal values obtained, the iteration count (it), the
number of times the exact Jacobian of the equality constraints was evaluated
and the number of times the exact Jacobian of the inequality constraints was
evaluated. Since we used AMPL models as interfaces to IPOPT, a presolve
phase could be used to identify that some Jacobians need not be evaluated at
all, as can be observed from the iteration counts in the table. Table 2 shows
the iteration counts and evaluation counts of the Jacobians for the exact



5 NUMERICAL RESULTS 22

ex. TR inex. TR V1 inex. TR V2 inex. TR V3
it #AE #AI it #AE #AI it #AE #AI it #AE #AI

1 7 8 8 8 6 6 8 9 6 7 6 8
2 3 4 4 3 2 2 3 4 2 3 2 4
3 3 4 4 3 2 2 3 4 2 3 2 4
4 15 12 12 15 10 10 15 12 10 15 10 12
5 14 15 15 18 13 13 18 15 13 18 13 15
6 4 5 5 5 3 3 5 6 3 5 3 6
7 11 12 12 21 8 8 11 12 6 21 8 13
8 10 9 9 10 5 5 10 9 5 10 5 9
9 7 8 8 7 5 5 7 7 5 7 5 8

10 20 21 21 77 28 28 20 21 21 77 28 34
11 14 15 15 15 13 13 14 15 12 15 13 16
12 21 14 14 50 26 26 21 14 9 50 26 41
13 24 17 17 29 14 14 24 17 14 29 14 21
14 8 9 9 20 5 5 10 11 6 20 5 18
15 12 13 13 12 7 7 12 13 7 12 7 13
16 41 17 17 21 13 13 16 17 13 21 13 17

Table 2: Iteration Counts for CUTEr Test Problems

trust-region filter approach as proposed in [6] and the inexact trust-region
filter algorithm as proposed in this paper. We consider three variants of this
inexact approach. First, we approximate both the Jacobian of the equality
constraints and inequality constraints. Second, only the approximation of
the Jacobian of the equality constraints is considered together with an exact
evaluation of the Jacobian of the inequalities. Finally we approximate the
Jacobian of the inequality constraints together with an exact evaluation of
the Jacobian of the equalities.

For all test problems we use the same parameters to handle the inexact-
ness. Also all other parameters remain the same, except in hs074 and hs075
we set the ∆0 = 5.0 and γ2 = 10.0 to avoid the restoration phase. As can
be observed for most of the problems the iteration count does not increase
much. On the other hand, the number of Jacobian evaluation is reduced and
is quite pronounced on some of the problems. For a few test problems (e.g.,
hs074 and hs080) the iteration count increased but the number of Jacobian
evaluation is still reduced. Since reducing Jacobian calculations is the focus
of our problem class, this situation is still acceptable as long as the increase
in the iteration count is not too large.
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5.2 Binary Simulated Moving Bed Problem

We now consider the optimization of a Periodic Adsorption Process (PAP)
through a simplified model for a Simulated Moving Bed (SMB) process,
which separates components A and B from a liquid feed stream. Optimiza-
tion of PAPs is particularly challenging because the Jacobian evaluations
can require over 90% of the total cost of the optimization process [12].

As shown in Fig. 1 the process consists of six chromatographic columns,
packed with solid adsorbent and arranged in four zones. The four zones are
delimited by two input streams, feed Fe and desorbent De, and two exit
streams, raffinate Ra (which has a high concentration of A) and extract Ex
(which has a high concentration of B). Note that the first zone has one
column, with flow Q1, the second zone has two columns, with flows Q2 and
Q3, the third zone has two columns, with flows Q4 and Q5 and the fourth
zone has a single column, with flow Q6. To simulate the countercurrent flow
of liquid and solid in the columns, these streams are switched in a counter-
clockwise direction at regular time intervals of length T ; this constitutes a
step in the operation of the SMB. As a result, the process is never at steady
state and requires periodic boundary conditions to reflect cyclic steady state
(CSS) isotherm [12].
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Figure 1: Simplified model of an SMB unit
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The isotherm of the chromatographic columns, identified by i = 1, . . . , Qcol,
is described through an equilibrium assumption between solid and liquid
phases along with a simple spatial discretization. Here, the mass balance in
the liquid phase is given by:

εb
∂c`i(x, t)

∂t
+ (1− εb)

∂q`i (x, t)

∂t
+ (Qi(t)/Si)

∂c`i(x, t)

∂x
= 0 (27)

with equilibrium between the liquid and solid phases given by the following
isotherm:

q`i (x, t) = K`(c
`
i)c

`
i(x, t) (28)

Here εb is the void fraction, c`i(x, t) is the concentration in the liquid phase
of component ` ∈ {A,B} in column i = 1, . . . 6, q`i is the concentration in the
solid phase, K`(c

`
i) is the equilibrium constant, Qi(t) and Si are the flowrate

and cross-sectional area in the ith column. We can combine (27) and (28)
and rewrite the model as:

∂c`i(x, t)

∂t
= −(Qi(t)/SiK̄`)

∂c`i(x, t)

∂x
(29)

where K̄` = εb + (1− εb)(K` + dK`
dc`i

c`i). Dividing the column into Ndis com-

partments and applying a simple backward difference with ∆x = L/Ndis

leads to:

dc`i,j
dt

=
Qi(t)Ndis

SiK̄`L
[c`i,j−1(t)− c`i,j(t)] = k`(c`i,j)Qdis[c

`
i,j−1(t)− c`i,j(t)] (30)

for j = 1, . . . , Ndis with c`i,0(t) = c`i(0, t) and c`i(L, t) = c`i,Ndis
(t). Also, we

initially choose a linear isotherm with kA = 2, kB = 1.
In addition, we define the state variables for this system, c`i,j = xm(t),m =

1, . . . , 12Ndis, as the concentrations of A and B in the jth compartment for
the six columns where the index is ordered as: m = j+(i−1)∗Ndis for A and
m = j+6∗Ndis +(i−1)∗Ndis for B. Referring to Fig. 1, one can choose the
switching time T and the constant stream flows u = [Q1, QDe, QEx, QFe]

T ,
as independent decision variables, with the remaining flows determined from
a linear mass balance: Q3 = Q2 = Q1 −QEx, Q5 = Q4 = Q1 −QEx +QFe
and Q6 = Q1 − (QEx +QRa) +QFe.

In addition, periodic boundary conditions are defined so that the column
concentration profiles at the beginning of a step are equal to the profiles in



5 NUMERICAL RESULTS 25

the next column at the end of the step. The dynamic SMB model can be
described by the following equations:

dxm
dt

= gm(xm, u), m = 1, . . . 6Ndis

xm(0) = xm+Ndis
(T ), m = 1, . . . 5Ndis (31)

xm(0) = xm−5Ndis
(T ), m = 5Ndis + 1, . . . 6Ndis

Additional information on this optimization problem can be found in [12].
We study optimization problems with two different objective functions.

For the first, we match a desired concentration profile in the system and for
the second we maximize the feed throughput subject to the specifications on
the purities of A and B in the raffinate and the extract streams, respectively.
The corresponding optimization problems have the form

max f(xm(0), u, T ) such that

(31) is satisfied

PurityRa ≥ 0.95

PurityEx ≥ 0.95

0.01 ≤ u ≤ 2,

0.01 ≤ T ≤ 1.1,

where the inequalities have to be understood componentwise. For the first
objective, i.e., the matching of a given profile, the optimizers found different
local minima. Therefore, we modified the target function to include the
required time T by using

f(xm(0), u, T ) = min
xm(0),u,T

Ndis∑
m=1

‖xm(0)− xtar
m (0)‖2 + αT 2,

where the penalty parameter α is chosen as 10−7. The purity requirements
are fulfilled by the target profile. For the second objective, we have

f(xm(0), u, T ) = QFe.

Note that the equality constraint Jacobian from the periodic boundary con-
ditions is dense and each function evaluation requires a forward simulation
of an ODE with 12Ndis states. We have chosen a fourth order Runge-Kutta
integrator with appropriate number of fixed time steps to simulate these
states. This is exactly the type of simulation-based optimization problem,
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exact TR inexact TR
Ndis n m # nnz(AE) iter # AE iter # AE

10 125 120 15000 6 7 15 7
20 245 240 58800 6 7 12 5
30 365 360 131400 6 7 23 9
40 485 480 232800 6 7 37 14
50 605 600 363000 6 7 8 5

Table 3: Iteration Counts for Tracking-type Target, Linear Isotherm

exact TR inexact TR
Ndis n m iter # AE(x) iter # AE(x)

10 125 120 120 107 166 112
20 245 240 98 88 82 59

Table 4: Iteration Counts for Maximizing the Throughput, Linear Isotherm

with many “hidden variables”, expensive function evaluations and dense
Jacobians, for which our novel inexact trust-region algorithm is designed.

For the optimization we set ∆0 = 0.2 and γ2 = 1.2. All other parameter
values were not changed. Table 3 considers the Tracking-type objective with
a linear isotherm. It compares the exact trust-region approach described in
[6] and the inexact trust region approach proposed in this paper with the
iteration counts and the number of times the Jacobian AE has to be evalu-
ated. As can be seen, when using the inexact approach, the iteration count
increases but the number of Jacobian evaluations is reduced in two cases
and stays the same in another case. Only in one situation is a considerable
increase in the number of Jacobian evaluations observed.

On the other hand, the maximization of the throughput is a much harder
optimization problem, as can be observed from the iteration counts in Ta-
ble 4. Here we considered only two discretizations. Otherwise, we would
require a more sophisticated restoration routine, which is beyond the scope
of this paper. For this optimization task, a considerable reduction of the
Jacobian evaluations can be achieved for the finer discretization, whereas
the times of Jacobian evaluation increases only slightly for the coarser dis-
cretization.

Finally, we consider a more complex SMB model with a more realis-
tic adsorption isotherm with nonlinear functions for kA and kB. Here we
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exact TR inexact TR
Ndis n m k iter # AE(x) iter # AE(x)

10 125 120 0.1 6 7 12 11
10 125 120 1 6 7 9 5
10 125 120 2 6 7 10 5
10 125 120 5 7 8 11 5
20 245 240 0.1 6 7 14 6
20 245 240 1 6 7 14 5
20 245 240 2 6 7 25 10
20 245 240 5 66 53 54 32
30 365 360 0.1 6 7 26 11
30 365 360 1 6 7 28 10

Table 5: Iteration Counts for Tracking-type Target, Nonlinear Isotherm

consider a Langmuir isotherm and set

kA = 2
2 + 2k(cA)2

1 + (1 + kcA)2
, kB =

2 + 2k(cB)2

1 + (1 + kcB)2
.

For this nonlinear isotherm with the tracking objective function, Table 5
presents the iteration counts and the number of times the Jacobian AE

has to be evaluated, both for the exact trust-region approach [6] and our
inexact trust region approach. The iteration count for the inexact approach
is once again higher than for the exact approach. However, we also achieve
a decrease in the number of Jacobian AE evaluations in more than half of
the cases.

As a result of these three different optimization cases, we observe po-
tential reduction of Jacobian evaluations with our inexact trust region algo-
rithm, particularly for the more difficult nonlinear cases. These promising
preliminary results motivate the implementation of a more sophisticated
algorithm with more efficient and robust QP and restoration steps.

6 Conclusions and Outlook

We extend a trust-region approach for solving nonlinear optimization prob-
lems with equality and inequality constraints to the situation where only
inexact information with respect to the Jacobian of the constraints is avail-
able. Assuming only that exact Jacobian-vector and vector-Jacobian prod-
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ucts can be evaluated we provide accuracy measures that ensure global con-
vergence to first-order optimal points, We include preliminary numerical
results based on a basic implementation of the proposed algorithm. These
numerical results are encouraging since the number of Jacobian evaluations
can be reduced for several test cases. However, several improvements are
possible and will be the subject of future work. First, an adaptive steer-
ing of the accuracy measure could enhance the efficiency of the proposed
algorithm. Here, the strategy would be similar to the truncated Newton
method where a higher accuracy is only needed near the solution. For the
numerical results we computed a new exact Jacobian each time the accuracy
test fails. Here, more sophiticated model improvement strategies would be
advantageous. This issue will also be the focus of future research.
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