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Abstract—For index-based hedging design, the scatter plot of 

the hedging contract losses versus the losses to be hedged is 

generally used to visualize and quantify basis risk. While 

studying this scatter plot, which does not cluster along the 

diagonal as desired, a “bundled loss” phenomenon is found. In a 

setting where both the hedging and the hedged contracts have 

100,000 years of simulated losses, this shows that if we need to 

hedge one loss in a year for the hedged contract, we may need to 

pay for other losses in other years in the hedging contract, which 

are unnecessary and unwanted. The reason is that the index used 

in the hedging may have identical loss values in different years 

while the hedged contract may not. This finding is a guiding 

principle for forming the risk measures and solution 

frameworks. To solve the problem so formed, a hybrid multi-

parent and orthogonal crossover genetic algorithm, GA-MPC-

OX, is used and pertinent adjustments are studied. For a 

problem with hundreds of dimensions, using eleven parents 

seems best, while a problem with tens of dimensions would prefer 

nine parents. Depending on the dimensions, relevant best 

strategies of the orthogonal crossover are also suggested by 

experimental results. To combat the stagnation of the algorithm, 

the perturbation by Lévy stable distribution is studied. This 

reveals possible effective parameters and forms. Numerical 

comparison with other algorithms is also conducted that 

confirms its competence for the hedging problem.   

Keywords—hedging problem; genetic algorithm; multi-parent 

crossover; orthogonal crossover; Lévy stable distribution  

I. INTRODUCTION  

In the reinsurance industry, we frequently need to mimic a 
client company’s losses by an insurance industry loss index, 
which are functions of the collective losses from all insurance 
companies across all geography, peril, and line of business. 
The latter is used to construct index-based hedging contracts 
for the client . 

If the index loss is an accurate approximation of the client’s 
actual loss, we should naturally expect their scatter plot closely 
clustered along the diagonal, their expected losses around the 
same, and their empirical CDF and PDF plots not far apart. 
More specifically, we would want the risk as given by 
quantiles of the loss differences distribution for various 
probabilities, or by probabilities of these differences above 
given losses on condition that the client’s losses greater than a 
list of thresholds, are within some expected limit, since these 
differences, especially where the losses from the client contract 

are above the losses from the index-based contract, are the 
residual risk of un-hedged losses. The expected loss of the 
index-based contract is a key determinant of the cost of the 
hedging. So we first attempt to quantify the effectiveness of the 
hedge. Next, we introduce methods to optimally balance the 
effectiveness and the cost of hedging. 

The accompanying mathematical problem is finding the 
forms of the function and the objective value function we 
should use for the index, as well as which algorithm or 
problem-related adjustment we should adopt for solving the 
hedging problem. 

In a previous study of the insurance-linked securities 
portfolio optimization [1], we found a domain specific property 
that many of the candidate contracts are either best or worst 
and their contribution should be kept constant, and a hybrid 
multi-parent crossover, orthogonal crossover genetic algorithm 
and catfish algorithm, GA-MPC-OX, which can utilize said 
property, and through numerical comparison studies, 
established its superiority. For the hedging problem, we also 
found a "bundled-loss" property, which worked as a guiding 
principle in forming our solution framework, and in selecting 
and evolving algorithms for solving it. We will then check its 
efficiency by comparing to results from using such algorithms 
as the Firefly Algorithm, Bat Algorithm, Cuckoo Algorithm, 
Flower Algorithm [6], and Wind Algorithm [5]. 

II. HEDGING PROBLEM SOLUTION 

A. Bundled-loss 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1.  Why does the scatter plot not cluster along the diagonal? The x-
axis is the contract annual loss, and the y-axis is the hedging annual loss, 

in the same year, for a simulated set of 100,000 years. 

 



 

 

 

 

In our experiment, the scatter plot of index loss vs. client 
loss never clusters along the diagonal within a narrow band. 
We always see the points spread out horizontally, such as in  
Fig.1. 

A close examination of the points reveals a “bundled loss” 
phenomenon in the hedging problem, and this discovery gives 
us empirical rules on how to address these problems. 

The “bundled loss” principle can be explained most clearly 
in the top end of the to-be hedged client contract loss (called 
V), which occupies more than 30% of the non-zero loss years; 
and all values are the same number, 10

9
. To hedge the 10

9
 loss 

of one of these years of V with a to-be constructed industry 
loss portfolio, called the index or the hedging contract, the 
portfolio needs to have a loss of 10

9
 for that year. At the same 

time, the portfolio (called Y, we will not differentiate between 
the portfolio and the index formed from it) will have many 
other years that have the same loss or almost the same loss as 
that year, possibly in the years where V have zero losses 
because V have zero losses in 90% of the years. The additional 
losses of Y are the “bundled loss”, for hedging the loss of the 
needed year of V, and will be the additional cost in the 
expected payoff of Y. Because of these bundled losses, we will 
see horizontal scatter in the V-Y scatter plot: same Y but 
different V (the special case mentioned of V=0 is in the y-axis 
condensation shown in our results). 

To overcome these bundled losses, we need to improve the 
industry portfolio discrimination power: the most ideal case is 
Y will have different losses for different years (and we can use 
an unlimited number of functions of Y to cut it into slim slices, 
which have values 0 outside of the narrow domains). To 
achieve these we can use two approaches: 

 Using more industry loss contracts, such as by Country 
and by Cresta contracts; when that is not available, we 
can split the industry losses by risk group, and use them 
as our universe. 

 Using multiple portfolios rather than just one to form Y, 
so that each portfolio may address different portions of 
the V loss range (In our study we used 10 portfolios so 
our variable dimension is 480 plus the 10 weights of the 
portfolios); this strategy shifts the difficulty of the 
problem to that of the capability of the algorithm for 
finding high dimensional optimal solutions. 

Since the scatter plot will always have some spill out due to 
the bundled loss, we should not rely on it alone for deciding 
whether we get the good solution; we should also use 
additional means for comparing or checking the results. Other 
than the CDF plot of V-Y on condition that V greater than  
some given threshold losses and the PDF plot of V and Y, we 
can also look at various numerical criteria. 

When it is hard to discern from the scatter plot which 
solution is better, we can check the risk represented by 0.96, 
0.99, 0.996 quantiles of abs(V-Y), we used abs since the 
positive part means un-hedged loss and the negative part means 

over-hedged loss that is the additional cost, the count of years 
with abs(V-Y)  falling into ten different sub intervals of the 
range 0 to 10

9
 with each band a length of 10

8
, and the cost 

represented by E(Y), and vice versa. For example, for two 
solutions with similar risk (and scatter plot), the solution with 
smaller cost E(Y) would be better. If two solutions have similar 
risk and cost, then the one with higher conditional CDF plot is 
better. 

If we want the count of years when abs(V-Y) near the 
higher end of 10

9
 to be small, the count of  years when abs(V-

Y) near the lower end of 0 will be large due to the bundled 
loss. To get an overall number for this trade off, we need a 
weighting scheme to sum up these counts. We can use this 
number as our objective, which tested to be more robust than 
the p-norm or any other forms, considering that a few years’ 
losses may be outliers out of the simulation data generating 
process. 

The 1-norm, 2-norm, or other higher p-norm appear to be 
more sensitive to outliers in the data, and will produce 
solutions with bouncing Y PDF while the original V PDF is 
very smooth and slowly-changing. Various weighting schemes 
are tested with some exponential function the best. 

Using the count of years abs(V-Y) falling to different 
intervals in objective value function increased the stability but 
also may not differentiate solutions accurately. Two solutions 
with objective values so constructed and differing by a few 
percent may not have the property that the better solution will 
have the better objective value, especially when the function 
forms used are different. We then need to consider and 
compare all the different measures discussed above. 

As for the forms or the formulas that define Y, we get these 
empirical principles: the best form is mimicking the V payoff 
function, i.e., using event limit, annual limit and big annual 
aggregate deductible (better than any piecewise linear, 
piecewise constant, power, and other highly nonlinear 
functions such as combing min and max functions); when 
designing the multiple portfolios, each portfolio is better to 
cover a different loss range and has tens of times less non-zero 
loss years than V. 

There is also another empirical finding of giving different 
weighting to V>Y and V<Y losses: if we consider the un-
hedged V>Y portion as worse than the over-hedged portion 
where V<Y, and want to give a relative large factor to it, we 
then can find that we will reduce the un-hedged conditional 
probability such as 1-F(V-Y<=4e8|V>7.5e8). At the same time 
it will increase the cost as given by E(Y). The relationship 
between the factor and the probability is almost linear. For 
example, when using a factor of 1.1, we get a probability of 1-
0.81 and when we use a factor of 1.35, we get a probability of 
1-0.85. 

When the objective values of solutions only differ by a 
small percentage, their risk measures and costs, as well as the 
scatter plots, CDF and PDF plots will be similar. It seems that 
a decrease in some portions of the risk curve will be offset by 
increases in other portions. However, to reveal some emerging 
pattern in the solution form, the tiny difference matters. Only 



 

 

the best solution has a low enough noise to show the true 
figure. 

The search for good Y form and a good algorithm is a 
reciprocal process. We do not want the noise in the algorithm 
to affect the decision about which form is better, and we want 
the adjustment of the algorithm to be pertinent to the objective 
function form. So we first fix several forms of the Y and test 
the algorithm; the settings that are constantly better are 
adopted, and with the new algorithm, we test more Y forms 
using the criteria of various plots and abs(V-Y) counts. This 
process is then repeated. 

B. GA-MPC-OX adjusted 

In [1], the GA-MPC-OX algorithm, which performed better 
than any of the other algorithm tested for the portfolio 
optimization problem, such as PSwarm, MOEAD, 
ENSMOEAD, DyHF, CMODE, ICDE, PSO-DE, DSA, 
DECC-G, CoDE, ETLBO, OXDE, MBA, IRM-MEDA, 
TLBO, MMEA, RM-MEDA, ABC, IABC, NBIPOPaCMA, 
SHADE_CEC2013, DRMA-LSCh-CMA, and iCMAES-ILS, 
[10]-[30], is proposed. This prompts us to adopt it to the 
hedging problem.  

Numerical experiments showed that the GA-MPC-OX can 
become stagnant easily, so we adjusted the number of parents 
used in its crossover operator. We found that the strategy of 
using nine parents generating nine children is best in a problem 
with 59 free-to-change variables, followed by eleven parents, 
and then by six, seven, or fourteen parents. These numbers 
seem related to the dimension, for example, for problem with 
490 dimensions, using eleven parents is best.  

The Catfish Algorithm from [3] as used in [1] is akin to the 
dominance property of the portfolio optimization problem, and 
may not work in our hedging problem. Replacing it with the 
original normal perturbation operator from [4] produced better 
results. 

The original interpolation method for orthogonal crossover 
in [2] tested better than [1]'s shortcut of table lookup method. 
So we followed the original method. However, instead of using 
Catfish Algorithm's method of taking candidates from the 
lower half, we took those from the upper half of the candidates 
pool. For the levels used, we tested methods of using 
increasing, decreasing, or equal probabilities of selecting a 
level from a number of levels. The three best strategies are 
using three levels with equal probabilities, always taking three 
levels, and using six levels with equal probabilities. But for 
higher dimensions, the last strategy seems best, followed by the 
first and then the second; adding randomness in selecting levels 
appears more effective. 

With the four combinations of parent and levels numbers 
when each selected the best two, for 58 dimensional problems, 
the precedence is, (9,3),(9,6),(11,3), and (11,6). For 590 
dimensional problems the order is reversed. 

Five other algorithms are used to solve the same problem as 
ours, the WDO [5], Firefly Algorithm, Bat Algorithm, Cuckoo 
Search Algorithm, and Flower Pollination Algorithm [6]. In 
one form of the objective function, which is a weighted sum of 
the counts of the differences in loss belonging to different 

intervals, so that the smaller the objective value, the better the 
hedging should be, our algorithm finds the objective value after 
100,000 function evaluations of 100,394, and after 1.4 million 
function evaluations of 64,169. The WDO gets the objective 
value after 100,000 function evaluations of 262,557, 2.61 times 
our number, and is stagnant after 40,000 function evaluations. 

For another form of the objective function, our algorithm 
finds the objective value after 150,000 function evaluations of 
109,551, after 200,000 function evaluations of 101,110, after 
500,000 function evaluations of 85,781, and after one million 
function evaluations of 83,648. The Firefly Algorithm finds the 
objective value after 200,000 function evaluations of 372,697, 
stagnant after 150,000 function evaluations. The Bat Algorithm 
gets the objective value after 160,000 function evaluations of 
327,017. The Cuckoo Search Algorithm gets the objective 
value after one million function evaluations of 130,405, 55.9% 
larger than that of 83,648. The Flower Pollination Algorithm 
gets the objective value after 500,000 function evaluations of 
126,181, 47% larger than that of 85,781. 

These comparisons may not show the superiority of our 
algorithm due to their example implementation, but they do 
show the importance of fine adjusting of the strategies and 
parameters used. Dr. Yang [6] emphasized the benefit of Lévy 
stable distribution, so we will try applying it in our algorithm. 

C. Gauss or Lévy 

The normal perturbation in the original GA-MPC algorithm 
is of the form 0.5U+0.25U*N, where U is the uniform 
distribution in (0,1) and N is the standard normal distribution. 
The Lévy flight perturbation Dr. Yang used is of the form 
0.01N*S(1.5,0)*(x-best), where S(1.5,0) is the Lévy alpha-
stable distribution (http://en.wikipedia.org/wiki/Stable_ 
distribution) with stability parameter 1.5, skewness parameter 
0, scale parameter 1,  and location parameter 0. 

We performed three runs and saw one run using Lévy flight 
perturbation obtained better results than when using normal 
perturbation while the other two runs were worse. It seems the 
Lévy flight has effect but it is not trivial to harness its power, 
or it is purely caused by chance and more due to the randomly 
selected initial population. We tested on the following 
additional forms of the perturbation: U-0.5+0.25U*N, U-
0.5+0.25U*tan(π*(U-0.5)), U-0.5+0.25U*S(0.5,0), 
0.5U+0.25U*tan(π*(U-0.5)), 0.5U+0.25U*S(0.5,0), 
0.5U+0.25U*S(α,0), α*N*S(0.5,1), α*(U-0.5)*S(0.5,1), and 
α*N*S(0.5,0), using the stable distribution code from [7], since 
it is faster than the other two implementations [8] and [9]. The 
test results are collected in Table I. 

TABLE I.  EFFECTS OF PERTURBATION FORMS 

Perturbation Form Objective Value 

0.5U+0.25U*N 58369.3129228756a 

0.01N*S(1.5,0)*(x-best) 58588.2094140444 

U-0.5+0.25U*N 58626.7825481966 

U-0.5+0.25U*tan(π*(U-0.5)) 59253.6826758084 

http://en.wikipedia.org/wiki/Stable_%20distribution
http://en.wikipedia.org/wiki/Stable_%20distribution


 

 

Perturbation Form Objective Value 

U-0.5+0.25U*S(0.5,0), 1st run 58417.5946349593 

U-0.5+0.25U*S(0.5,0), 2nd run 58836.9978332785 

U-0.5+0.25U*S(0.5,0), 3rd run 58903.4202994694 

0.5U+0.25U*tan(π*(U-0.5)) 58454.9400481151 

0.5U+0.25U*S(0.01,0) 58533.4400598268 

0.5U+0.25U*S(0.05,0) 58365.6438802964 

0.5U+0.25U*S(0.1,0) 58487.5490576022 

0.5U+0.25U*S(0.3,0) 58846.7701952340 

0.5U+0.25U*S(0.5,0) 58437.9835642726 

0.5U+0.25U*S(0.7,0) 58921.7782284960 

0.5U+0.25U*S(0.9,0) 58595.5569928767 

0.5U+0.25U*S(1.01,0) 58721.6837996683 

0.5U+0.25U*S(1.05,0) 58356.6284969962 

0.5U+0.25U*S(1.1,0) 58396.0031511394 

0.5U+0.25U*S(1.3,0) 58446.7420494971 

0.5U+0.25U*S(1.5,0) 59143.4785428433 

0.5U+0.25U*S(1.7,0) 58577.2452540111 

0.5U+0.25U*S(1.9,0) 58334.9363537724 

0.5U+0.25U*S(1.95,0) 58390.6540507207 

0.5U+0.25U*S(1.99,0) 58798.0866233763 

0.01*N*S(0.5,1) 58623.7008885335 

0.01*(U-0.5)*S(0.5,1) 59379.2371618059 

0.01*N*S(0.5,0) 58489.2841485367 

0.05*N*S(0.5,0) 58782.6471115213 

0.075*N*S(0.5,0) 58468.6686062425 

0.1*N*S(0.5,0) 58412.1454721504 

0.15*N*S(0.5,0) 58472.1776203138 

0.2*N*S(0.5,0) 58399.2953524066 

0.25*N*S(0.5,0) 58465.769182205 

0.3*N*S(0.5,0) 58874.2030665987 

0.35*N*S(0.5,0) 58653.8876928435 

0.4*N*S(0.5,0) 59082.81743882 

0.45*N*S(0.5,0) 58556.6515104805 

0.5*N*S(0.5,0) 59047.7318800064 

1*N*S(0.5,0) 59020.9476755368 

0.1*N*S(0.05,0) 58442.6398141161 

Perturbation Form Objective Value 

0.1*N*S(1.05,0) 58436.1462185919 

0.1*N*S(1.5,0) 59154.7577594512 

0.1*N*S(1.9,0) 59028.6114845251 

a. 58 dimensional problem, used 9-parent MPC and 3-levels orthogonal crossover operators.  

 

Out of all the tested cases, the Gauss or normal distribution 
used by the original GA-MPC is at the higher quantile end, 
outperformed only by three cases that used general Lévy alpha-
stable distribution for which the stability parameter α is near 
the Gauss end 2 or the Cauchy end 1, or near 0: 1.9, 1.05, and 
0.05. The middle point of (1,2) 1.5 was the worst for that 
range, but 0.5 was the second best for the interval (0,1). 
Adding the symmetry perturbation term U-0.5 is not as good as 
adding the shifted-up term 0.5U, for the hedging problem: 
using more weights would match more losses with added costs. 
It may also be possible that our cases are mainly stochastic 
noises, and more experiments are needed for a definite 
conclusion. 

 

 

 

III. CONCLUSION 

For the hedging problem, a bundled-loss property is found, 
which explained why the scatter plot is always blurred and 
cannot be used for fine selection of the solution, except when 
the algorithms used are too inefficient or solutions found are  
deviated too much from each other. When we cannot 
distinguish two solutions by their scatter plot, we can still 
differentiate between them by other means such as using 
weighted counts of their differences for objective value, 
conditional probability plots, and etc. This property also guided 
us in adjusting the hybrid multi-parent, orthogonal crossover 
genetic algorithm GA-MPC-OX for the hedging problem, 
which tested far better than several example algorithms which 
may not have been fine-tuned or problem-tuned for 
performance. The normal perturbation used in the GA-MPC-
OX generally performed well, but can be surpassed by some 
parameter Lévy alpha-stable distribution in some tests. Studies 
suggest some parameter values are effective, but a perturbation 
scheme that always performs better still requires more 
research. 
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