
A trust-region method for box-constrained nonlinear semidefinite
programs

Akihiko Komatsu 1 and Makoto Yamashita 2

Submitted: November 17, 2014.

Abstract:
We propose a trust-region method for nonlinear semidefinite programs with box-constraints.

The penalty barrier method can handle this problem, but the size of variable matrices available
in practical time is restricted to be less than 500. We develop a trust-region method based on the
approach of Coleman and Li (1996) that utilizes the distance to the boundary of the box-constraints
into consideration. To extend this method to the space of positive semidefinite matrices, we device
a new search direction by incorporating the eigenvectors of the variable matrix into the distance
to the boundary. In this paper, we establish a global convergence of the proposed method, and
preliminary numerical experiments show that our method solves the problems with the size being
larger than 5000, and it is faster than the feasible direction for functions with nonlinearity higher
than quadratic.

Keywords:
Trust-region method, Nonlinear semidefinite programs
AMS Classification:
90 Operations research, mathematical programming, 90C22 Semidefinite programming, 90C30
Nonlinear programming.

1 Introduction

This paper is concerned with a box-constrained nonlinear semidefinite problem (shortly, box-
constrained SDP)

min f(X) subject to O ⪯X ⪯ I. (1)

The variable in this problem is X ∈ Sn, and we use Sn to denote the space of n × n symmetric
matrices. The notationA ⪰ B forA,B ∈ Sn means that the matrixA−B is positive semidefinite.
The matrix I is the identity matrix of the appropriate dimension. We assume through this paper
that the objective function f : Sn → R is a twice continuously differentiable function on an open
set containing the feasible set F := {X ∈ Sn : O ⪯X ⪯ I}.

The feasible set of (1) can express a more general feasible set, {X ∈ Sn : L ⪯ X ⪯ U} with
L,U ∈ Sn such that L ⪯ U . Since we can assume that U − L is positive definite without loss of
generality [21], we use a Cholesky factorization matrix C of U − L that satisfies U − L = CCT

to convert a problem

min f(X) subject to L ⪯X ⪯ U

1 Equities Department, Tokyo Stock Exchange, INC., 2-1, Nihombashi-kabuto-cho, Chuo-ku, Tokyo 103-8220,
Japan.

2 (Corresponding Author) Department of Mathematical and Computing Sciences, Tokyo Institute of Technology,
2-12-1-W8-29 Ookayama, Meguro-ku, Tokyo 152-8552, Japan (Makoto.Yamashita@is.titech.ac.jp). The work of the
second author was supported by JSPS KAKENHI Grant Numbers 24710151.

1

into an equivalent problem

min f(CXCT +L) subject to O ⪯X ⪯ I

via the relation X = C−1(X −L)C−T .
A box-constrained nonlinear optimization problem

min f(x) subject to l ≤ x ≤ u. (2)

is an important case of (1). If the variable matrix X in (1) is a diagonal-block matrix, X is positive
semidefinite if and only if all of the sub matrices are positive semidefinite. In particular, when
the dimension of each sub-matrix is one, the box-constrained nonlinear optimization problem (2)
emerges. In this problem, the variable is x ∈ Rn, and the lower and upper bounds are given by
l ∈ Rn and u ∈ Rn. The problem (2) is a basic problem in constrained optimization and many
methods are proposed. Hei et. al. [11] compared the performance of four active-sets methods and
two interior-point methods. Trust-region methods are also discussed in [4, 5, 20],

On the other hand, the positive semidefinite condition on a matrix (X ⪰ O) is extensively
studied in the context of SDP (semidefinite programs). The range of SDP application is very wide
and includes control theory [3], combinatorial optimization [9], polynomial optimization [13] and
quantum chemistry [8, 14]. A consider number of studies on SDP can be found in the survey of
Todd [19], the handbook edited by Anjos and Lassere [1] and the references therein.

The penalty barrier method [2, 12] can be applied to solve the box-constrained SDP (1).
Though it can handle the problem (1) with/without additional constraints, it requires the full
information of the second derivative of the objective function f(X), and it can solve the problems
in practical time only when the size of variable matrix is small; n ≤ 500. To solve larger problems,
we should prepare methods specialized for solving (1).

As a method specialized for the box-constrained nonlinear semidefinite problem (1), Xu et
al [21] proposed a feasible direction method. This method is an iterative method and it tries to
find a point which satisfies a first-order optimality condition.

We say that X∗ ∈ F satisfies a first-order optimality condition of (1) if

⟨∇f(X∗) | X −X∗⟩ ≥ 0 for ∀X ∈ F . (3)

Here, we use ⟨A | B⟩ to denote the inner-product between A ∈ Sn and B ∈ Sn, and ∇f(X∗) ∈ Sn
is the gradient matrix of f at X∗. In particular, when f(X) is a convex function, X∗ that satisfies
(3) is an optimal solution. When X∗ ∈ F , we can derive an equivalent but more convinient
condition;

f(X∗) = 0

where

f(X̂) := min {⟨∇f(X̂) | X − X̂⟩ : X ∈ F}. (4)

Xu et al [21] proved that the feasible direction method generates an sequence {Xk} ∈ F that
attains limk→∞ f(Xk) = 0.

From some preliminary experiments, however, we found that the feasible direction methods
did not perform well for objective functions with higher nonlinearity. Since the feasible direction
computes the search direction by projecting the steepest direction −∇f(X) to the feasible set F ,
it is difficult to capture the effect of the boundary of F .

In this paper, we propose a trust-region method for solving the box-constrained SDP (1).
Trust-region methods are iterative methods and they compute the search direction by minimizing

2

a quadratic approximate function in the trust-region radius. By adjusting the trust-region radius
in which the quadratic function approximates the objective function well, trust-region methods
are known to attain excellent global convergence properties [6, 10, 17].

We develop the method based on the trust-region method of Coleman and Li [4]. They used the
distance from the current point to the boundary of F to compute the search direction for solving
the simple-bound problem (2). However, we can not directly extend their approach to (1), since
the positive semidefinite condition X ⪰ O involves not only eigenvalues but also eigenvectors, and
the eigenvectors are not always continuous functions on X. Therefore, we devise a new search
direction by taking both the eigenvalues and the eigenvectors into account. This new search
direction guarantees non-zero step length, hence it enables us to establish a global convergence
of the generated sequence. Through preliminary numerical results which will be reported in this
paper, we observe that the proposed trust-region method solve highly nonlinear objective function
faster than the feasible direction method, and it can handle large problems than the penalty barrier
method implemented in PENLAB [7].

This paper is organized as follows. Section 2 investigates equivalent conditions of the first-
optimality conditions. We also introduce the new search direction D(X), and propose the trust-
region method in Algorithm 2.3. Section 3 establishes the global convergence of the proposed
method, limk→∞ f(Xk) = 0. Section 4 reports numerical results on the performance comparison
of the proposed method, the feasible direction, and the penalty barrier method. Finally, Section 5
gives a conclusion of this paper and discusses future directions.

1.1 Notation and preliminaries

The inner-product between A ∈ Rm×n and B ∈ Rm×n is defined by ⟨A|B⟩ := Trace(ATB).
Here, Trace(X) for a matrix X ∈ Rn×n is the summation of its diagonal elements, that is,
Trace(X) :=

∑n
i=1Xii.

For A ∈ Rm×n, we define the Frobenius norm by ||A||F :=
√
⟨A | A⟩. From the Cauchy-

Schwartz inequality, it holds |⟨A | B⟩| ≤ ||A||F ||B||F for ∀A ∈ Rm×n and ∀B ∈ Rm×n. We often
use the relation ⟨A | B⟩ = ⟨B | A⟩. In addition, we use the inequality ⟨A | B⟩ ≥ 0 for two positive
semidefinite matrices A ⪰ O and B ⪰ O.

For symmetric matrices, the 2-norm ||A||2 is defined by the largest absolute eigenvalue of
A ∈ Sn. The notation diag(κ1, κ2, . . . , κn) stands for the diagonal matrix whose diagonal elements
are κ1, κ2, . . . , κn. When A = QKQK is the eigenvalue decomposition of A with the diagonal
matrix K = diag(κ1, κ2, . . . , κm), the rth power of A for r ∈ R is the symmetric matrix defined
by Ar := Qdiag(κr1, κ

r
2, . . . , κ

r
n)Q

T .
The gradient matrix ∇f(X) ∈ Sn and the Hessian map ∇2f(X) at X ∈ Sn are defined in the

way that the Taylor expansion for D ∈ Sn holds by

f(X +D) = f(X) + ⟨∇f(X) | D⟩+ 1

2
⟨D | ∇2f(X) | D⟩+O(||D||2F),

where O(d) is of the order of d. For example, for the function f̂(X) = ⟨X | X⟩, we have
∇f̂(X) = 2X and ⟨D| ∇2f̂(X) |D⟩ = 2⟨D | D⟩ from the relation ⟨X + D | X + D⟩ =
⟨X | X⟩+2 ⟨X | D⟩+ ⟨D | D⟩. In particular, ∇f(X) corresponds to the Fréchet derivative, and

for A,B ∈ Sn we have ⟨A | ∇2f(X) | B⟩ =
∑n

i,j,k,l=1
∂2f(X)
∂Xkl∂Xij

AijBkl.

Though this paper, we use the matrices P (X) and Λ(X) to denote the eigenvalue decomposi-
tion of ∇f(X) as ∇f(X) = P (X)Λ(X)P (X)T . The matrix Λ(X) is the diagonal matrix whose
diagonal elements are the descending-order eigenvalues of ∇f(X), denoted by λ1(X) ≥ λ2(X) ≥
. . . ≥ λn(X). The jth column of P (X), denoted by pj(X), is the associated eigenvector of λj(X).
We use n+(X) and n−(X) to denote the number of positive and non-positive eigenvalues of∇f(X),

3

respectively. We divide Λ(X) into the two blocks, Λ+(X) := diag(λ1(X), λ2(X), . . . , λn+(X)),

Λ−(X) := diag(λn+(X)+1(X), λn+(X)+2(X), . . . , λn). Note that the sizes of Λ+(X) and Λ−(X)

can be zero, but the total is kept n+(X) + n−(X) = n. We also divide P (X) into the two
matrices P+(X),P−(X) by collecting the corresponding vectors, so the columns of P+(X) are
p1(X), . . . ,pn+

(X) in this order. We can write the eigenvalue decomposition in another form,

∇f(X) = P+(X)Λ+(X)P+(X)T + P−(X)Λ−(X)P−(X)T . From properties of eigenvectors,
we have P+(X)TP−(X) = O. We also know that P+(X)TP+(X) is the identity matrix of
dimension n+(X) and P−(X)TP−(X) is the identity matrix of dimension n−(X). Finally,
we define λmax(X) := max{|λ1(X)|, |λn(X)|}. From a property of the 2-norm, it holds that
λmax(X) = ||∇f(X)||2.

2 Trust-region method for box-costrained SDP

For the simple bound problem (2), Coleman and Li [4] proposed a trust-region method which
measures the distance from the current feasible point x(l ≤ x ≤ u) to the boundary of feasible
set by the vector v(x) ∈ Rn defined as

vi(x) =

{
xi − li if ∂f(x)

∂xi
> 0

ui − xi if ∂f(x)
∂xi

≤ 0.

This vector is used to control the approach to the boundary, and the key property in the discussion
of [4] is that x∗ satisfies the first-order optimality condition if and only if ∂f(x)

∂xi
vi(x) = 0 for each

i = 1, . . . , n.
We should emphasize that we can not directly extend the definition of v(x) to box-constrained

SDPs (1) using the conditions on the eigenvalue of X, since the distance to the boundary of F
relates to not only the eigenvalues but also the eigenvectors. If we ignore the eigenvectors, it is
difficult to ensure the non-zero step length. To take the effect of eigenvectors into account, we
define two positive semidefinite matrices for X ∈ F ;

V +(X) := P+(X)TXP+(X), V −(X) := P−(X)T (I −X)P−(X).

The definition of these matrices brings us other properties of the first-order optimality condition
in Lemma 2.1. In the lemma, we use a matrix D(X) ∈ Sn and a scalar N(X) defined by

D(X) := P (X)

(
V +(X)1/2Λ+(X)V +(X)1/2 λmaxP+(X)TXP−(X)

λmaxP−(X)TXP+(X) V −(X)1/2Λ−(X)V −(X)1/2

)
P (X)T (5)

N(X) := ⟨∇f(X) | D(X)⟩. (6)

In particular, the definition of the matrix D(X) enables us to extend the trust-region method of
Coleman and Li [4] to the space of symmetric matrices, since we can ensure the positiveness of the
step length for the direction D(X) as shown in Lemma 2.2.

Using the relations ∇f(X) = P+(X)Λ+(X)P+(X)T + P−(X)Λ−(X)P−(X)T , V +(X) =
V +(X)1/2V +(X)1/2, V +(X)1/2 = V +(X)1/4V +(X)1/4, V −(X) = V −(X)1/2V −(X)1/2, and
V −(X)1/2 = V −(X)1/4V −(X)1/4, we can compute ||D(X)||2F and N(X) as follow;

||D(X)||2F = ||V +(X)1/2Λ+(X)V +(X)1/2||2F + ||V −(X)1/2Λ−(X)V −(X)1/2||2F
+2λ2

max||P+(X)TXP−(X)||2F , (7)

N(X) = ||V +(X)1/4Λ+(X)V +(X)1/4||2F + ||V −(X)1/4Λ−(X)V −(X)1/4||2F . (8)

4

Lemma 2.1. For a matrix X∗ ∈ F , the following conditions are equivalent.

(a) X∗ satisfies the first-order optimality condition (3).

(b) ⟨Λ+(X
∗) | V +(X

∗)⟩ = ⟨Λ−(X
∗) | V −(X

∗)⟩ = 0.

(c) N(X∗) = 0.

(d) ||D(X∗)||F = 0.

Proof: For simplicity, we use Λ+ := Λ+(X
∗),Λ− := Λ−(X

∗),P+ := P+(X
∗),P− := P−(X

∗),V + :=
P+(X

∗)TX∗P+(X
∗),V − := P−(X

∗)TX∗P−(X
∗),D := D(X∗) in this proof.

[(a)⇒ (b)] When we set X̂ = P+P
T
+X

∗P+P
T
+ + P−P

T
− ⪰ O, the property I − X̂ = (P+P

T
+ +

P−P
T
−)− (P+P

T
+X

∗P+P
T
+ + P−P

T
−) = P+P

T
+(I −X∗)P+P

T
+ ⪰ O indicates X̂ ∈ F . Substi-

tuting X̂ into the inequality ⟨∇f(X∗) | X −X∗⟩ ≥ 0 leads to

⟨∇f(X∗) | X̂ −X∗⟩ = ⟨P+Λ+P
T
+ + P−Λ−P

T
− | P+P

T
+X

∗P+P
T
+ + P−P

T
− −X∗⟩

= ⟨Λ− | I⟩ − ⟨Λ− | P T
−X

∗P−⟩ = ⟨Λ− | V −⟩ ≥ 0.

In the above equalities, we used ⟨A | B⟩ = Trace(ATB) = Trace(BTA), P T
+P+ = I and

P T
+P− = O. Since −Λ− ⪰ O and V − ⪰ O, we also have ⟨−Λ− | V −⟩ ≥ 0, so that we obtain

⟨Λ− |V −⟩ = 0. Similarly, the usage of X̂ = P−P
T
−X

∗P−P
T
− ∈ F shows ⟨Λ+ |V +⟩ = 0.

[(b)⇒ (a)] Since P T
+XP+ ⪰ O and P T

−(I −X)P− ⪰ O for any X ∈ F , it holds that

⟨∇f(X∗) | X −X∗⟩
= ⟨P+Λ+P

T
+ + P−Λ−P

T
− | X −X∗⟩

= ⟨Λ+ | P T
+XP+⟩ − ⟨Λ+ | V +⟩ − ⟨Λ− | P T

−(I −X)P−⟩+ ⟨Λ− | V −⟩
= ⟨Λ+ | P T

+XP+⟩+ ⟨−Λ− | P T
−(I −X)P−⟩ ≥ 0.

For the last equality, we used ⟨Λ+ | V +⟩ = ⟨Λ− | V −⟩ = 0 from (b).

[(b) ⇒ (c)] Since ⟨Λ+ | V +⟩ = Trace(V
1/2
+ Λ+V

1/2
+) and V

1/2
+ Λ+V

1/2
+ ⪰ O, ⟨Λ+ | V +⟩ = 0 is

equivalent to V
1/2
+ Λ+V

1/2
+ = O. From V

1/4
+ ⪰ O, the condition V

1/2
+ Λ+V

1/2
+ = O is further

equivalent to V
1/4
+ Λ+V

1/4
+ = O. Similarly, ⟨Λ− | V −⟩ = 0 is equivalent to V

1/4
− Λ−V

1/4
− = O.

Hence, we obtain (c) by (8).

[(c)⇒ (d)] From (c), we obtain V
1/2
+ Λ+V

1/2
+ = O and V

1/2
− Λ−V

1/2
− = O. Since all the eigenvalues

in Λ+ are positive, the conditions ⟨Λ+ | V +⟩ = 0 and V + ⪰ O, indicate V + = O. Furthermore,
the decomposition V + = P T

+(X
∗)1/2(X∗)1/2P+ = O implies P T

+(X
∗)1/2 = O. Therefore, it

holds that P T
+X

∗P− = P T
+(X

∗)1/2(X∗)1/2P− = O. Hence, we conclude ||D||F = 0 from (7).

[(d) ⇒ (b)] From the relation (7), ||D||F = 0 indicates V
1/2
+ Λ+V

1/2
+ = O and V

1/2
− Λ−V

1/2
− = O.

By taking these traces of these matrices, we obtain (b). □
Lemma 2.1 and (8) indicate that when X does not satisfy the first-order optimality condition,

we can take − D(X)

||D(X)||F
as a descent direction of f(X), that is, ⟨∇f(X) | − D(X)

||D(X)||F
⟩ < 0.

Hence, we can expect that the decrease of the objective function f(X − α D(X)

||D(X)||F
) < f(X) for

a certain value α > 0. The next lemma gives a range of α to ensure X − α D(X)

||D(X)||F
∈ F .

Lemma 2.2. If X ∈ F does not satisfy the first-order optimality condition, then X−α D(X)

||D(X)||F
∈

F for α ∈ [0, ||D(X)||F
λmax(X)

].

5

Proof:
In this proof, we drop (X) from P (X),D(X),V +(X),V −(X), λmax(X) for simplicity. From

the definition of λmax, the matrix I− Λ+

λmax
is a diagonal matrix with nonnegative diagonal elements,

hence this matrix is positive semidefinite. Using the property PP T = I, it holds

X − D

λmax
= PP T

(
X − D

λmax

)
PP T

= P

{
P TXP −

(
V

1/2
+

Λ+

λmax
V

1/2
+ P T

+XP−

P T
−XP+ V

1/2
−

Λ−
λmax

V
1/2
−

)}
P T

= P

{(
V

1/2
+

(
I − Λ+

λmax

)
V

1/2
+ O

O V
1/2
−

(−Λ−)
λmax

V
1/2
−

)}
P T ⪰ O.

Due to the linear combination X − α D
||D||F

=
(
1− α λmax

||D||F

)
X + αλmax(X)

||D||F

(
X − D

λmax

)
, we

obtain X − α D
||D||F

⪰ O for α ∈ [0, ||D||F
λmax

].

In a similar way, we can show that I − (X − D
λmax

) ⪰ O, and this leads to X −α D
||D||F

⪯ I for

α ∈ [0, ||D||F
λmax

].
□

We propose a trust-region method for the box-constrained SDP (1) as Algorithm 2.3. Based on

the property that − D(X)

||D(X)||F
is a descent direction of f(X), we can set a matrix −S(X), where

S(X) := D(X)

||D(X)||F
, as a normalized search direction to find a local minimizer. In Algorithm 2.3,

we use a quadratic approximation of f with the direction S(X);

q(α,X) := f(X)− α⟨∇f(X) | S(X)⟩+ α2

2
⟨S(X) | ∇2f(X) | S(X)⟩.

From Lemma 2.2, the generated sequence by Algorithm 2.3 remains in F , that is, {Xk} ⊂ F .

3 Convergence properties

As noted in Section 1, X∗ ∈ F satisfies the first-order optimality condition (3) if and only if
f(X∗) = 0. In this section, we show that the sequence {Xk} ⊂ F generated by Algorithm 2.3

with the stopping threshold ϵ = 0 attains limk→∞ f(Xk) = 0. We divide the proof into two parts.

The first part shows there exists a subsequence of {N(Xk)} that converges to zero. The second part
shows limk→∞N(Xk) = 0 in Theorem 3.6, and finally the global convergence limk→∞ f(Xk) = 0
in Theorem 3.7.

Though we can employ similar approaches in the proof of the first part as [4] by the usage of
D(X), we can not directly apply the results of [4] to the second part. This is mainly because that
the eigenvector matrices P+(X) and P−(X) are not always continuous functions of X. Instead,
our proof relies on the boundedness of ⟨Λ+(X

k) | V +(X
k)⟩ and ⟨−Λ−(X

k) | V −(X
k)⟩.

3.1 Convergence of subsequence

To analyze Algorithm 2.3, we define constant values

M1 := max
X∈F

||∇f(X)||2,

6

Algorithm 2.3. Trust-region method for the box-constrained SDP

Step 1: Choose an initial point X0 ∈ F . Set an initial trust-region radius ∆0 > 0. Choose
parameters 0 < µ1 < µ2 < 1, 0 < γ1 < 1 < γ2. Set an iteration count k = 0. Set a
stopping threshold ϵ > 0.

Step 2: If N(Xk) < ϵ, output Xk as a solution and stop.

Step 3: Solve a one dimensional optimization problem with respect to α;

min q(α,Xk) subject to 0 ≤ α ≤ min

{
||D(Xk)||F
λmax(X

k)
,∆k

}
, (9)

and let the step length αk be the minimizer of (9).

Step 4: Let X
k
:= Xk − αkS(X

k). Compute the ratio

rk :=
f(Xk)− f(X

k
)

f(Xk)− q(αk,X
k)
, (10)

and set

Xk+1 =

{
X

k
if rk ≥ µ1

Xk otherwise.

Step 5: Update the trust-region radius ∆k by

∆k+1 =


γ1∆k if rk < µ1

∆k if µ1 ≤ rk ≤ µ2

γ2∆k if rk > µ2.

Step 6: Set k ← k + 1 and return to Step 2.

M2 := max
X∈F ,D∈Sn

,D ̸=O

∣∣∣∣⟨D|∇2f(X)|∇D⟩
⟨D|D⟩

∣∣∣∣ .
Note that M1 and M2 are finite from the assumptions that the feasible set F is a bounded closed
set and the objective function f(X) is a twice continuously differentiable function on an open
set containing F . We can assume that M1 > 0 and M2 > 0 without loss of generality. When
M1 = 0, f(X) is a constant function; and if M2 = 0, then ∇f(X) is a constant matrix, so
that the global minimizer can be obtained as X∗ = P−(X)P−(X)T from the constant matrix
∇f(X) = P (X)Λ(X)P (X)T .

We now evaluate the quadratic approximate function q(αk,Xk) compared with f(Xk).

Lemma 3.1. The step length αk in Step 3 satisfies

q(αk,X
k) ≤ f(Xk)− 1

2
min

{
N(Xk)2

M2||D(Xk)||2F
,

N(Xk)

λmax(X
k)
,
∆kN(Xk)

||D(Xk)||F

}
.

7

Proof:
In this proof, we use D := D(Xk),S := S(Xk), N := N(Xk), λmax := λmax(X

k).

We define a quadratic function ϕ(α) := −α N
||D||F

+ α2

2 M2. From the definitions of N and M2,

we have q(α,Xk) ≤ f(Xk) + ϕ(α), hence,

q(αk,X
k) ≤ f(Xk) + min

α∈
[
0,min

{
||D||F
λmax

,∆k

}]ϕ(α).

Since N = ⟨∇f(Xk) | D⟩ > 0 (otherwise, Xk already satisfies the first-order optimality
condition from Lemma 2.1) and ϕ(α) is a quadratic function with respect to α, the minimum of ϕ

is attained at one of the three candidates ||D||F
λmax

,∆k or α̂ := N
M2||D||F

. Let αmin be the minimizer

of ϕ(α) subject to 0 ≤ α ≤ min
{

||D||F
λmax

,∆k

}
.

If αmin = α̂, we have ϕ(α̂) = −1
2

N2

M2||D||2F
. For the case when αmin = ||D||F

λmax
, we have ||D||F

λmax
≤ α̂,

therefore,
||D||2F
λmax

M2 ≤ N . Hence, it holds that ϕ
(
||D||F
λmax

)
= − N

λmax
+ 1

2
||D||2F
λ2
max

M2 ≤ −1
2

N
λmax

.

Finally, when αmin = ∆k, the inequality ∆k ≤ α̂ indicates that ∆k ≤ N
M2||D||F

. Hence, it holds

that ϕ(∆k) = −∆k
N

||D||F
+ 1

2∆
2
kM2 ≤ −∆k

N
||D||F

+ 1
2∆k

N
||D||F

≤ −1
2

∆kN
||D||F .

Taking the maximum of the three cases, we obtain the inequality of this lemma. □
To simplify the inequality of Lemma 3.1, we replace λmax(X

k) and ||D(Xk)||F by convenient
upper bounds. Since λmax(X

k) is bounded by M1, we will seek an upper bound of ||D(Xk)||F .

Lemma 3.2. For X ∈ F , it holds that ||D(X)||2F ≤ N(X) + 1
2M

2
1n

3.

Proof: In this proof, we use simplified notationD := D(X),V + := V +(X),V − := V −(X),Λ+ :=
Λ+(X),Λ− := Λ−(X), n+ := n+(X), n− := n−(X),P+ := P+(X),P− := P−(X). Let
V + = QKQT be the eigenvalue decomposition of V + such that K = diag(κ1, κ2, . . . , κn+) is
the diagonal matrix with the eigenvalues of V +. Since O ⪯X ⪯ I, we have O ⪯ V + ⪯ I, hence,
0 ≤ κi ≤ 1 for i = 1, 2 . . . , n+. Using a matrix W ∈ Sn+ defined by W := QTΛ+Q, we compare

||V 1/2
+ Λ+V

1/2
+ ||F and ||V 1/4

+ Λ+V
1/4
+ ||F ;

||V 1/4
+ Λ+V

1/4
+ ||2F − ||V

1/2
+ Λ+V

1/2
+ ||2F

= ⟨Λ+ | V 1/2
+ Λ+V

1/2
+ ⟩ − ⟨V

1/2
+ Λ+V

1/2
+ | V 1/2

+ Λ+V
1/2
+ ⟩

= ⟨Λ+ − V
1/2
+ Λ+V

1/2
+ | V 1/2

+ Λ+V
1/2
+ ⟩

= ⟨Λ+ −QK1/2QTΛ+QK1/2QT | QK1/2QTΛ+QK1/2QT ⟩
= ⟨W −K1/2WK1/2 | K1/2WK1/2⟩
= ||K1/4WK1/4||2F − ||K1/2WK1/2||2F

=

n+∑
i=1

n+∑
j=1

(Wijκ
1/4
i κ

1/4
j)2 −

n+∑
i=1

n+∑
j=1

(Wijκ
1/2
i κ

1/2
j)2 ≥ 0.

The last inequality comes from 0 ≤ κi ≤ κ
1/2
i ≤ κ

1/4
i ≤ 1. In a similar way, we also have

||V 1/2
− Λ−V

1/2
− ||2F ≤ ||V

1/4
− Λ−V

1/4
− ||2F . We evaluate the last term of (7) by the property of the

Frobenius norm;

||P T
+XP−||2F ≤ ||P+||2F · ||X||2F · ||P−||2F ≤ n+ · n · n− ≤

n3

4
.

8

For the last inequality, we used the relation n+ + n− = n to derive n+ · n− ≤ n2

4 .
Consequently, it holds from (7) that

||D||2F = ||V 1/2
+ Λ+V

1/2
+ ||2F + ||V 1/2

− Λ−V
1/2
− ||2F + 2λ2

max||P+XP−||2F

≤ ||V 1/4
+ Λ+V

1/4
+ ||2F + ||V 1/4

− Λ−V
1/4
− ||2F + 2λ2

max

n3

4

≤ N +
1

2
M2

1n
3.

□
We put Lemma 3.2 into Lemma 3.1 to obtain a new upper bound of q(αk,X

k);

q(αk,X
k) ≤ f(Xk)− 1

2
min

 N(Xk)2

M2

(
N(Xk) + 1

2M
2
1n

3
) , N(Xk)

M1
,

∆kN(Xk)√
N(Xk) + 1

2M
2
1n

3

 .(11)

In Algorithm 2.3, we call the kth iteration a successful iteration if Xk+1 is set X
k
in Step 4,

that is, rk ≥ µ1. Otherwise, the kth iteration is called an unsuccessful iteration. For a successful
iteration, we obtain a decrease in the objective function

f(Xk+1) ≤ f(Xk)− µ1(f(X
k)− q(αk,X

k))

≤ f(Xk)− µ1

2
min

 N(Xk)2

M2

(
N(Xk) + 1

2M
2
1n

3
) , N(Xk)

M1
,

∆kN(Xk)√
N(Xk) + 1

2M
2
1n

3

 .(12)

Since f(Xk+1) = f(Xk) in the unsuccessful iterations, the objective value f(Xk) is non-
increasing in Algorithm 2.3.

We are now prepared to show that there exists a subsequence of {N(Xk)} that converges to
zero.

Theorem 3.3. When {Xk} is the sequence generated by Algorithm 2.3 with the stopping threshold
ϵ = 0, it holds that

lim inf
k→∞

N(Xk) = 0.

Proof: We assume that there exists ϵ̂ > 0 and k0 such that N(Xk) ≥ ϵ̂ for any k ≥ k0, and we
will derive a contradiction.

Let K = {k1, k2, . . . , ki, . . .} be the successful iterations. If K is a finite sequence, let ki be the
last iteration of K. Since all of the iterations after ki are unsuccessful, the update rule of ∆k (Step
5 of Algorithm 2.3) implies ∆ki+j = γj1∆ki . Hence, we obtain limj→∞∆j = 0. Next, we consider

the case when K is an infinite sequence. The function x2

x+ 1
2
M2

1n
3 is an increasing function for x > 0,

so that it holds from (12) that for ki ∈ K,

f(Xki+1) ≤ f(Xki)− µ1

2
min

 N(Xki)2

M2

(
N(Xki) + 1

2M
2
1n

3
) , N(Xki)

M1
,

∆kiN(Xki)√
N(Xki) + 1

2M
2
1n

3


≤ f(Xki)− µ1

2
min

 ϵ̂2

M2

(
ϵ̂+ 1

2M
2
1n

3
) , ϵ̂

M1
,

∆ki ϵ̂√
ϵ̂+ 1

2M
2
1n

3

 .

9

Since f is continuous on a closed set F and Xk ∈ F for each k, f(Xki) is bounded below, therefore
limi→∞∆ki = 0. From the update rule of ∆k (Step 5 of Algorithm 2.3), it holds that ∆j ≤ γ2∆ki

for the unsuccessful iterations j = ki+1 . . . , ki+1−1. Hence, we obtain limj→∞∆j = 0, regardless
of the finiteness of K.

Now, we will take a close look at the ratio rk. From the Taylor expansion, there exists ξ ∈ [0, 1]
such that

f(Xk − αkS(X
k)) = f(Xk)− αk⟨∇f(Xk) | S(Xk)⟩+

α2
k

2
⟨S(Xk) | ∇2f(Xk − ξαkS(X

k)) | S(Xk)⟩.

Therefore,

|f(Xk
)− q(αk,Xk)| ≤

α2
k

2

∣∣∣⟨S(Xk) | ∇2f(Xk − ξαkS(X
k)) | S(Xk)⟩ − ⟨S(Xk) | ∇2f(Xk) | S(Xk)⟩

∣∣∣
≤

∆2
k

2
(M2 +M2) = ∆2

kM2.

On the other hand, from (11), N(Xk) > ϵ̂ and limk→∞∆k = 0, it holds for large value k that

f(Xk)− q(αk,X
k) ≥ 1

2

∆k ϵ̂√
ϵ̂+ 1

2M
2
1n

3
> 0.

Consequently, the ratio rk can be evaluated by

|rk − 1| = |f(X
k
)− q(αk,X

k)|
|f(Xk)− q(αk,X

k)|
≤

∆2
kM2

1
2

∆k ϵ̂√
ϵ̂+ 1

2
M2

1n
3

= ∆k

2M2

√
ϵ̂+ 1

2M
2
1n

3

ϵ̂
.

Therefore, limk→∞∆k = 0 leads to limk→∞ rk = 1. From the update rule of ∆k, we have ∆k+1 ≥
∆k for large value k. Thus, there exists k0 such that ∆k ≥ ∆k0 for ∀k ≥ k0, but this contradicts
limk→∞∆k = 0. Hence, lim infk→∞N(Xk) = 0. □

3.2 Convergence of the whole sequence

Using the convergence of the subsequence, we will show in Theorem 3.6 that the whole sequence
of {N(Xk)} converges to zero. We will use the following two lemmas to prove Theorem 3.6.

Lemma 3.4. For X ∈ F and A,B ∈ Sn, we have

|⟨∇f(X) | A⟩| ≤
√
nM1||A||F∣∣⟨A | ∇2f(X) | B⟩

∣∣ ≤ 3M2||A||F ||B||F

Proof: The first inequality holds, since |⟨∇f(X) | A⟩| ≤ ||∇f(X)||F ||A||F for ∀A ∈ Sn and we
employ the inequality ||A||F ≤

√
n||A||2 from [18, (1.2.27)].

For the second inequality, we start with the the following inequality derived from the definition
of M2; ∣∣⟨D | ∇2f(X) | D⟩

∣∣ ≤M2||D||2F for ∀D ∈ Sn.

Therefore, we get
∣∣⟨A | ∇2f(X) | A⟩

∣∣ ≤ M2||A||2F and
∣∣⟨B | ∇2f(X) | B⟩

∣∣ ≤ M2||B||2F . Fur-
thermore, we put A− tB into D to obtain the following inequality, which holds for any t ∈ R;∣∣⟨A− tB | ∇2f(X) | A− tB⟩

∣∣ ≤M2||A− tB||2F .

10

Therefore, the inequality

(M2||B||2F − ⟨B | ∇2f(X) | B⟩)t2 − 2(M2⟨A | B⟩ − ⟨A | ∇2f(X) | B⟩)t
+(M2||A||2F − ⟨A | ∇2f(X) | A⟩) ≥ 0

holds for ∀t ∈ R, and we can derive

(M2⟨A | B⟩ − ⟨A | ∇2f(X)| B⟩)2

≤
(
M2||A||2F − ⟨A | ∇2f(X) | A⟩

) (
M2||B||2F − ⟨B | ∇2f(X) | B⟩

)
≤ (2M2||A||2F)(2M2||B||2F).

Consequently, it holds that

⟨A | ∇2f(X) | B⟩ ≤ M2⟨A | B⟩+
√

(2M2||A||2F)(2M2||B||2F)
≤ M2||A||F ||B||F + 2M2||A||F ||B||F = 3M2||A||F ||B||F

We replace A with −A to obtain

⟨−A | ∇2f(X) | B⟩ ≤ 3M2||A||F ||B||F .

By combining these inequalities, we get
∣∣⟨A|∇2f(X) |B⟩

∣∣ ≤ 3M2||A||F ||B||F .
□

Lemma 3.5. For Xk ∈ F , it holds that f(Xk) ≥ −n
√

N(Xk).

Proof: In this proof, we use P+ := P+(X
k),P− := P−(X

k),Λ+ := Λ+(X
k),Λ− := Λ−(X

k),V + :=
V +(X

k),V − := V −(X
k), n+ := n+(X

k), n− := n−(X
k). Since all of the eigenvalues of V + and

V − are between 0 and 1, we have ||V 1/4
+ ||F ≤

√
n+ and ||V 1/4

− ||F ≤
√
n−.

The objective function of (4) at X ∈ F can be evaluated from below by

⟨∇f(Xk) | X −Xk⟩ = ⟨P+Λ+P
T
+ + P−Λ−P

T
− | X −Xk⟩

= ⟨Λ+ | P T
+XP+⟩ − ⟨Λ− | P T

−(I −X)P−⟩ − ⟨Λ+ | V +⟩+ ⟨Λ− | V −⟩
≥ −⟨Λ+ | V +⟩+ ⟨Λ− | V −⟩.

We can obtain an upper bound on ⟨Λ+ | V +⟩;

⟨Λ+ | V +⟩ = Trace(V
1/4
+ V

1/4
+ Λ+V

1/4
+ V

1/4
+)

≤ ||V 1/4
+ ||F ||V

1/4
+ Λ+V

1/4
+ ||F ||V

1/4
+ ||F ≤ n+||V 1/4

+ Λ+V
1/4
+ ||F .

In a similar way, it also holds ⟨−Λ− | V −⟩ ≤ n−||V 1/4
− Λ−V

1/4
− ||F .

Consequently, we obtain

f(Xk) ≥ −n+||V 1/4
+ Λ+V

1/4
+ ||F − n−||V 1/4

− Λ−V
1/4
− ||F

≥ −(n+ + n−)

√
||V 1/4

+ Λ+V
1/4
+ ||2F + ||V 1/4

− Λ−V
1/4
− ||2F

= −n
√

N(Xk).

□
We are now ready to prove the convergence of the whole sequence.

11

Theorem 3.6. When {Xk} is the sequence generated by Algorithm 2.3 with ϵ = 0, it holds that

lim
k→∞

N(Xk) = 0.

Proof:
We take a small positive number ϵ1 such that 0 < ϵ1 ≤ 16n2M2

1 . We assume that there is an
infinite subsequence K := {k1, k2, . . . , ki, . . .} ⊂ {1, 2, . . .} such that N(Xki) ≥ ϵ1 for ∀ki ∈ K, and
we will derive a contradiction.

From Theorem 3.3, we can take a subsequence L := {l1, l2, . . . , li, . . .} ⊂ {1, 2, . . .} such that{
N(Xk) ≥ ϵ22 for k = ki, ki + 1, . . . , li − 1

N(X li) < ϵ22.

where ϵ2 :=
ϵ1

4nM1
. Note that this is consistent with N(Xki) ≥ ϵ1, since we took 0 < ϵ1 ≤ 16M2

1 .

If the kth iteration is a successful iteration and ki ≤ k < li, we put N(Xk) ≥ ϵ22 into (12) and
obtain

f(Xk+1) ≤ f(Xk)− µ1

2
min

 ϵ42
M2

(
ϵ22 +

1
2M

2
1n

3
) , ϵ22

M1
,

∆kϵ
2
2√

Nϵ22 +
1
2M

2
1n

3

 .

Since f is bounded below, when the kth iteration (ki ≤ k < li) is a successful iteration and k is
large enough, it holds that

f(Xk+1) ≤ f(Xk)−∆kϵ3

where ϵ3 :=
µ1

2
ϵ22√

Nϵ22+
1
2
M2

1n
3
. Since we update the matrix by Xk+1 = Xk−αkS(X

k) in a successful

iteration, we use αk ≤ ∆k and ||S(Xk)||F = 1 to derive

||Xk −Xk+1||F ≤ ∆k ≤
f(Xk)− f(Xk+1)

ϵ3
.

This inequality is also valid when the kth iteration is an unsuccessful iteration, since the matrix
is kept by Xk+1 = Xk. Hence, it holds that

||Xki −X li ||F
≤ ||Xki −Xki+1||F + ||Xki+1 −Xki+2||F . . .+ ||X li−1 −X li ||F

≤ 1

ϵ3

(
(f(Xki)− f(Xki+1)) + (f(Xki+1)− f(Xki+2)) + · · ·+ (f(X li−1)− f(X li))

)
=

f(Xki)− f(X li)

ϵ3
.

Since the objective function f(Xk) is non-increasing and bounded below, this implies that limi→∞ ||Xki−
X li ||F = 0. Therefore, for ϵ4 :=

√
nϵ2

M1+3M2
> 0, there exists i0 such that ||Xki −X li ||F < ϵ4 for

∀i ≥ i0.
Since −I ⪯ X − Xki ⪯ I for X ∈ F , we have an inequality ||X − Xki ||F ≤

√
n. From

Lemma 3.4, it holds for X ∈ F and i ≥ i0 that∣∣∣⟨∇f(Xki) | X −Xki⟩ − ⟨∇f(X li) | X −X li⟩
∣∣∣

12

=
∣∣∣⟨∇f(X li + (Xki −X li)) | X −Xki⟩ − ⟨∇f(X li) | X −X li⟩

∣∣∣
=

∣∣∣∣⟨∇f(X li) | X −Xki⟩+
∫ 1

0
⟨Xki −X li | ∇2f(X li + ξ(Xki −X li)) | X −Xki⟩dξ

−⟨∇f(X li) | X −X li⟩
∣∣∣

=

∣∣∣∣∫ 1

0
⟨Xki −X li | ∇2f(X li + ξ(Xki −X li)) | X −Xki⟩dξ − ⟨∇f(X li) | Xki −X li⟩

∣∣∣∣
≤

∫ 1

0

∣∣∣⟨Xki −X li | ∇2f(X li + ξ(Xki −X li)) | X −Xki⟩
∣∣∣ dξ + ∣∣∣⟨∇f(X li) | Xki −X li⟩

∣∣∣
≤ 3M2||Xki −X li ||F ||X −Xki ||F +

√
nM1||Xki −X li ||F

≤ 3M2ϵ4
√
n+
√
nM1ϵ4 =

√
n(3M2 +M1)ϵ4 = nϵ2.

Hence, we have

⟨∇f(Xki) | X −Xki⟩ ≥ ⟨∇f(X li) | X −X li⟩ − nϵ2. (13)

From the assumption N(Xki) ≥ ϵ22 we know that λmax(X
ki) > 0 (If λmax(X

ki) = 0, then
N(Xki) = 0 from Lemma 2.1, and this means Xki already satisfies the first-order optimality

condition). Since Xki − D(Xki)

λmax(X
ki)
∈ F from Lemma 2.2, we can put Xki − D(Xki)

λmax(X
ki)

into (13) to

get

⟨∇f(Xki) | − D(Xki)

λmax(X
ki)
⟩ ≥ ⟨∇f(X li) |

(
Xki − D(Xki)

λmax(X
ki)

)
−X lj ⟩ − nϵ2 ≥ f(X lj)− nϵ2.

With Lemma 3.5 and N(X li) < ϵ22, we have an upper bound on N(Xki);

N(Xki) = ⟨∇f(Xki) | D(Xki)⟩ ≤ λmax(X
ki)(−f(X lj) + nϵ2)

≤ λmax(X
ki)(n

√
N(X lj) + nϵ2) ≤M1(nϵ2 + nϵ2) = 2M1nϵ2.

Now, we reach the contradiction;

ϵ1 ≤ N(Xki) ≤ 2M1ϵ2 =
1

2
ϵ1 < ϵ1.

Hence, limk→∞N(Xk) = 0.
□

Combining Lemma 3.5 and Theorem 3.6, we derive a property for the first-order optimality
condition.

Theorem 3.7. When {Xk} is the sequence generated by Algorithm 2.3 with ϵ = 0, it holds that

lim
k→∞

f(Xk) = 0.

Proof: From Lemma 3.5 and the definition of f(X), we know that −n
√

N(Xk) ≤ f(Xk) ≤ 0.

Hence, Theorem 3.6 indicates limk→∞ f(Xk) = 0.
□

To make the generated sequence {Xk} itself converge, we need a stronger assumption on the
objective function, for example, strong convexity.

13

Corollary 3.8. If the objective function f is strongly convex, that is, there exists ν > 0 such that

f(Y) ≥ f(X) + ⟨∇f(X) | Y −X⟩+ ν

2
||Y −X||2F for ∀X,∀Y ∈ F ,

then the sequence {Xk} generated by Algorithm 2.3 with ϵ = 0 converges. Furthermore, the
accumulation point X∗ := limk→∞Xk satisfies the first-order optimality condition (3).

Proof:
FromXk ∈ F and the definition of f(Xj), we have an inequality f(Xj) ≤ ⟨∇f(Xj) |Xk−Xj⟩.

By swapping Xk and Xj , we also obtain the inequality f(Xk) ≤ ⟨∇f(Xk) | Xj −Xk⟩. The
addition of these two inequalities results in

⟨∇f(Xk)−∇f(Xj) | Xk −Xj⟩ ≤ −f(Xk)− f(Xj).

Theorem 2.1.9 of [16] gives equivalent conditions of strongly-convexity, and one of them is

⟨∇f(Y)−∇f(X) | Y −X⟩ ≥ ν||Y −X||2F ∀X, ∀Y ∈ F .

Due to this inequality, we get

||Xk −Xj ||F ≤
1

ν

√
−f(Xk)− f(Xj).

Theorem 3.7 implies that the sequence {Xk} is a Cauchy sequence. Since {Xk} is generated in
the closed and bounded set F , it converges to a point of F . Consequently, the accumulation point
X∗ = limk→∞Xk satisfies the first-order optimality condition. □

4 Numerical Results

To evaluate the performance of the proposed trust-region method, we conducted preliminary nu-
merical experiments. We used Matlab R2014a and the computing environment was Debian Linux
run on AMD Opteron Processor 4386 (3 GHz) and 128 GB of memory space.

The test functions used in the experiments are listed below and they are classified into the two
groups. The functions of Group I were selected from the test functions in [21]. We added new
functions as Group II. In particular, Function 5 and 6 are an extension of Generalized Rosenbrock
function [15] and its variant with cosine functions.

Group I: Function 1. f(X) = −2⟨C1,X⟩+ ⟨X,X⟩;
Function 2. f(X) = 3 cos(⟨X,X⟩) + sin(⟨X +C1,X +C1⟩);
Function 3. f(X) = log(⟨X,X⟩+ 1) + 5⟨C1,X⟩;

Group II: Function 4. f(X) = ⟨X ,X⟩3
n3 ;

Function 5. f(X) = 1 +
∑n

i=1

∑n
j=i(Aij −Xij)

2

+100
∑n−1

i=1

∑n−1
j=i

(
A2

ij

Ai,j+1
Xi,j+1 −X2

ij

)2

+100
∑n−1

i=1

(
A2

in
Ai+1,i+1

Xi+1,i+1 −X2
i,n

)2
;

Function 6. f(X) = 1
n2

∑n
i=1

(∑n
j=1,j ̸=i

Xij

Aij
− (n− 1)

X2
ii

A2
ii

)2
− 1

n2

∑n
i=1

∑n
j=1 cos((Xij −Aij)

2);

14

Function 7. f(X) = ⟨C1,X⟩ − log det(X + ϵ̄I)− log det((1 + ϵ̄)I −X);

To generate the matrix C1, we chose the eigenvalues κ1, . . . , κn randomly from the interval
[−1, 2] and multiply a randomly-generated orthogonal matrixQ, that is,C1 := Qdiag(κ1, . . . , κn)Q

T .
The matrix A appeared in Functions 5 and 6 was set by Aii =

1
2 for i = 1, . . . , n and Aij =

1
2(n−1)

if i ̸= j. The parameter ϵ̄ of Function 7 determines the effect of the boundary of the feasible set
F , and we used ϵ̄ = 0.02.

We compared the peformance of three methods, TR (Algorithm 2.3), FEAS (the feasible di-
rection method of Xu et. al. [21]), and PEN (the penalty barrier method [2, 12] implemented in
PENLAB [7]). We started TR and FEAS with the initial point X0 = 1

2I, while PEN automatically
chose its initial point. We used the following condition as the stopping criterion;

TR N(Xk) < 10−7 or |f(Xk
)−f(Xk−1

)|
max{|f(Xk

)|,1}
< 10−6

FEAS |Trace(Λ−(X
k))− ⟨f(Xk) | Xk⟩| < 10−6 or |f(Xk

)−f(Xk−1
)|

max{|f(Xk
)|,1}

< 10−6

PEN the default parameter of PENLAB.

For details of the stopping conditions on FEAS and PENLAB, refer to [21] and [7], respectively.
Tables 1 and 2 report the numerical results of Group I and Group II, respectively. The first

column is the function type, and the second column n is the size of the matrix X. The third
column indicates the method we applied. The fourth column is the objective value. The fifth
column is the number of main iterations, and the six column is the computation time in seconds.
The last three columns correspond to the number of the evaluation of the function value f(X),
the gradient matrix ∇f(X), and the Hessian map ∇2f(X).

From these tables, PEN was much slow compared to TR and FEAS, and it is difficult for PEN
to solve large problems with n > 100 in 24 hours. PENLAB [7] handled the symmetric matrix X
as n(n+ 1)/2 independent variables, X11, X12, . . ., X1n, X22, . . ., X2n, . . ., Xnn, and it stored all
the elements of the Hessian map ∇2f(X), so that the computation cost estimated from [12] was
O(n4). This heavy cost restricted PENLAB to the small sizes. TR also used the information of
the Hessian map, but TR stored only the scalar value ⟨S | ∇2f(X) | S⟩. hence, the memory space
required by TR was only O(n2).

In the comparison between TR and FEAS, the computation time of FEAS was shorter than
TR in Table 1, but longer in Table 2. The functions in Group I involved the variable matrix
X in the linear form ⟨C1 | X⟩ or the quadratic form ⟨X | X⟩, and this simple structure was
favorable for the feasible direction that was based on a steepest descent direction. In contrast, the
functions in Group II have higher nonlinearity than Group I. The operation count with respect to
the function value (co.f) shows that this higher nonlinearity demanded that FEAS have a large
number of back-step loop. In particular, FEAS needed many iterations for Ronsenbrock-type
functions (Functions 5 and 6). TR reduced the number of iterations by the properties of the
search direction D(X) and the quadratic approximation with the Hessian map. In particular,
D(X) encompassed the information of the distance to the boundary to the box-constraints as
Λ+(X) and Λ−(X). Consequently, TR was faster than FEAS for the functions of Group II.

5 Conclusions and Future Directions

In this paper, we proposed a trust-region method for a box-constrained nonlinear semidefinite
programs. The search direction D(X) studied in Section 2 enabled us to devise a trust-region
method based on Coleman and Li [4] in the space of positive semidefinite matrices. We presented
the global convergence property of the generated sequence for the first-order optimality condition.

15

Table 1: Numerical results on Group I.
type n method obj iter cpu co.f co.∇f co.∇2f

1 50 TR −3.631× 101 48 0.08 95 48 48
1 50 FEAS −3.633× 101 36 0.04 215 36 0
1 50 PEN −3.633× 101 22 323.70 62 31 22

1 100 TR −7.930× 101 67 0.30 133 67 67
1 100 FEAS −7.932× 101 36 0.11 239 36 0
1 100 PEN −7.932× 101 23 5554.30 64 32 23

1 500 TR −3.572× 102 81 7.70 161 81 81
1 500 FEAS −3.574× 102 37 2.24 250 37 0

1 1000 TR −8.648× 102 64 30.16 127 64 64
1 1000 FEAS −8.651× 102 32 9.62 204 32 0

1 5000 TR −3.861× 103 80 3497.86 159 80 80
1 5000 FEAS −3.862× 103 36 1111.89 232 36 0

1 10000 TR −7.731× 103 73 24730.04 145 73 73
1 10000 FEAS −7.734× 103 34 7782.18 213 34 0

2 50 TR −4.000 23 0.04 45 23 23
2 50 FEAS −4.000 31 0.04 293 31 0
2 50 PEN −4.000 115 1808.54 1857 124 116

2 100 TR −4.000 40 0.19 79 40 40
2 100 FEAS −4.000 13 0.05 122 13 0
2 100 PEN −3.985 15 4581.35 114 21 18

2 500 TR −4.000 26 2.40 51 26 26
2 500 FEAS −4.000 17 1.31 183 17 0

2 1000 TR −4.000 17 6.32 33 17 17
2 1000 FEAS −4.000 10 4.30 134 10 0

2 5000 TR −4.000 28 1205.24 55 28 28
2 5000 FEAS −4.000 13 449.59 161 13 0

2 10000 TR −4.000 27 8461.01 53 27 27
2 10000 FEAS −3.951 8 2009.73 73 8 0

3 50 TR −3.756× 101 201 0.35 401 201 201
3 50 FEAS −3.756× 101 2 0.01 3 2 0
3 50 PEN −3.756× 101 28 418.41 76 36 28

3 100 TR −7.418× 101 208 0.93 415 208 208
3 100 FEAS −7.419× 101 7 0.02 24 7 0
3 100 PEN −7.419× 101 30 7316.99 81 37 30

3 500 TR −3.625× 102 257 25.62 513 257 257
3 500 FEAS −3.625× 102 2 0.13 3 2 0

3 1000 TR −7.739× 102 269 128.23 537 269 269
3 1000 FEAS −7.741× 102 2 0.65 3 2 0

3 5000 TR −4.129× 103 257 11996.45 513 257 257
3 5000 FEAS −4.129× 103 2 74.63 3 2 0

3 10000 TR −8.294× 103 256 92901.29 511 256 256
3 10000 FEAS −8.295× 103 2 575.84 3 2 0

16

Table 2: Numerical results on Group II.
type n method obj iter cpu co.f co.∇f co.∇2f

4 50 TR 4.036× 10−3 12 0.02 23 12 12
4 50 FEAS 3.882× 10−3 18 0.02 81 18 0
4 50 PEN 3.879× 10−3 117 1747.06 420 149 117

4 100 TR 1.426× 10−2 23 0.11 45 23 23
4 100 FEAS 1.412× 10−2 19 0.054 105 19 0
4 100 PEN 1.411× 10−2 42 10210.67 139 61 42

4 500 TR 1.086× 10−2 10 0.98 19 10 10
4 500 FEAS 1.039× 10−2 22 1.28 115 22 0

4 1000 TR 1.072× 10−2 9 4.24 17 9 9
4 1000 FEAS 9.943× 10−3 21 6.12 114 21 0

4 5000 TR 1.240× 10−2 8 367.77 15 8 8
4 5000 FEAS 1.039× 10−2 20 625.73 107 20 0

4 10000 TR 1.438× 10−2 8 2798.12 15 8 8
4 10000 FEAS 1.142× 10−2 23 5329.24 126 23 0

5 50 TR 1.122 4 0.01 7 4 4
5 50 FEAS 1.126 19 0.05 252 19 0
5 50 PEN 1.000 20 294.58 61 30 20

5 100 TR 1.117 6 0.06 11 6 6
5 100 FEAS 1.125 16 0.15 226 16 0
5 100 PEN 1.000 20 4814.74 61 30 20

5 500 TR 1.004 4 0.82 7 4 4
5 500 FEAS 1.125 16 4.28 286 16 0

5 1000 TR 1.008 4 4.02 7 4 4
5 1000 FEAS 1.125 18 26.96 352 18 0

5 5000 TR 1.002 4 192.25 7 4 4
5 5000 FEAS 1.125 90 6345.17 2279 90 0

5 10000 TR 1.013 4 1332.14 7 4 4
5 10000 FEAS 1.124 122 51611.04 3285 122 0

6 50 TR −1.000 20 0.11 39 20 20
6 50 FEAS −1.000 12 0.10 92 12 0
6 50 PEN −1.000 300 4577.01 915 1218 300

6 100 TR −1.000 20 0.358 39 20 20
6 100 FEAS −1.000 16 0.564 150 16 0
6 100 PEN −9.997× 10−1 300 73262.02 1005 1308 300

6 500 TR −1.000 18 10.00 35 18 18
6 500 FEAS −1.000 12 9.36 110 12 0

6 1000 TR −1.000 4 9.42 7 4 4
6 1000 FEAS −1.000 12 56.33 110 12 0

6 5000 TR −1.000 4 406.01 7 4 4
6 5000 FEAS −1.000 13 2046.55 130 13 0

6 10000 TR −1.000 3 2076.17 5 3 3
6 10000 FEAS −1.000 14 10416.77 130 14 0

7 50 TR 7.817× 101 10 0.03 19 10 10
7 50 FEAS 7.817× 101 15 0.06 108 15 0
7 50 PEN 7.817× 101 13 195.41 38 19 13

7 100 TR 1.583× 102 10 0.11 19 10 10
7 100 FEAS 1.583× 102 17 0.302 13 17 0
7 100 PEN 1.583× 102 14 3427.86 40 20 14

7 500 TR 7.825× 102 10 2.73 19 10 10
7 500 FEAS 7.825× 102 16 6.22 116 16 0

7 1000 TR 1.556× 103 10 12.02 19 10 10
7 1000 FEAS 1.556× 103 10 15.79 60 10 0

7 5000 TR 7.707× 103 11 1708.11 21 11 11
7 5000 FEAS 7.707× 103 16 4931.70 115 16 0

7 10000 TR 1.533× 104 11 13379.96 21 11 11
7 10000 FEAS 1.533× 104 14 32643.49 94 14 0

17

The preliminary numerical experiments in Section 4 showed that the proposed trust-region method
was more favorable than the feasible direction method for functions with high nonlinearity, mainly
due to the properties derived from the search direction D(X). Since our method did not hold the
Hessian map in memory space, it handled the larger problems than the penalty barrier method.

The combination of the feasible direction and trust-region method will be a next step of the
research direction, since the feasible direction method fits simple functions. Such a combination,
however, would require a more complicated scheme to ensure the positive semidefinite condition as
Lemma 2.2. Coleman and Li [4] proved the convergence for a second-order optimality condition.
Since the proof in [4] required further stronger assumptions than this paper, we remain it as a
matter to be discussed further.

References

[1] M. F. Anjos and J. B. Lasserre, editors. Handbook on Semidefinite, Cone and Polynomial
Optimization: Theory, Algorithms, Software and Applications. Springer, NY, USA, 2012.

[2] A. Ben-tal and M. Zibulevsky. Penalty/barrier multiplier methods for convex programming
problems. SIAM J. Optim., 7:347–366, 1997.

[3] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in System
and Control Theory. SIAM, PA, USA, 2004.

[4] T. F. Coleman and Y. Li. An interior trust region approach for nonlinear minimization subject
to bounds. SIAM J. Optim., 6(2):418–445, 1996.

[5] A. R. Conn, N. I. M. Gould, and P. L. Toint. Global convergence of a class of trust region
algorithms for optimization with simple bounds. SIAM J. Numeric. Anal., 25:433–460, 1988.

[6] A. R. Conn, N. I. M. Gould, and P. L. Toint. Trust-region methods. SIAM, PA, USA, 2000.

[7] J. Fiala, M. Kočvara, and M. Stingl. PENLAB - a solver for nonlinear semidefinite program-
ming. http://web.mat.bham.ac.uk/kocvara/penlab/, October 2013.

[8] M. Fukuda, B. J. Braams, M. Nakata, M. L. Overton, J. K. Percus, M. Yamashita, and
Z. Zhao. Large-scale semidefinite programs in electronic structure calculation. Math. Program.
Series B, 109(2-3):553–580, 2007.

[9] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. J. Assoc. Comput. Mach.,
42(6):1115–1145, 1995.

[10] I. Griva, S. G. Nash, and A. Sofer. Linear and Nonlinear Optimization. SIAM, PA, USA,
2009.

[11] L. Hei, J. Nocedal, and R. A. Waltz. A numerical study of active-set and interior-point
methods for bound constrained optimization. In H. G. Bock, E. Kostina, H. X. Phu, and
R. Rannacher, editors, Modeling, Simulation and Optimization of Complex Processes, pages
273–292. Springer, Berlin, Germany, 2008.

[12] M. Kočvara and M. Stingl. PENNON: A code for convex nonlinear and semidefinite program-
ming. Optim. Methods Softw., 18(3):317–333, 2003.

18

[13] J. B. Lasserre. Global optimization with polynomials and the problems of moments. SIAM
J. Optim., 11(3):796–817, 2001.

[14] K. Nakata, K. Fujisawa, M. Fukuda, M. Kojima, and K. Murota. Exploiting sparsity in
semidefinite programming via matrix completion II: implementation and numerical results.
Math. Program., Ser B, 95:303–327, 2003.

[15] S. Nash. Newton-type minimization via the lanczos method. SIAM J. Numer. Anal, 21(4):770–
788, 1984.

[16] Y. E. Nesterov. Introductory Lectures on Convex Optimization: A Basice Course. Kluwer
Academic Publishers, Dordrecht, The Netherlands, 2004.

[17] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, NY, USA, 2006.

[18] W. Sun and Y. X. Yuan. Optimization Theory and Methods Nonlinear Programming. Springer,
NY, USA, 2006.

[19] M. J. Todd. Semidefinite optimization. Acta Numerica, 10:515–560, 2001.

[20] X. Wang and Y. X. Yuan. A trust region method based on a new affine scaling technique for
simple bounded optimization. Optim. Methods and Softw., 28(4):871–888, 2013.

[21] Y. Xu, W. Sun, and L. Qi. A feasible direction method for the semidefinite program with box
constraints. Appl. Math. Lett., 24:1874–1881, 2011.

19

	1 Introduction
	1.1 Notation and preliminaries

	2 Trust-region method for box-costrained SDP
	3 Convergence properties
	3.1 Convergence of subsequence
	3.2 Convergence of the whole sequence

	4 Numerical Results
	5 Conclusions and Future Directions

