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Abstract

We consider the Traveling Salesman Problem with Neighborhoods (TSPN) in doubling met-
rics. The goal is to find a shortest tour that visits each of a given collection of subsets (regions
or neighborhoods) in the underlying metric space.

We give a randomized polynomial time approximation scheme (PTAS) when the regions are
fat weakly disjoint. This notion of regions was first defined when a QPTAS was given for the
problem in [SODA 2010: Chan and Elbassioni]. We combine the techniques in the previous
work, together with the recent PTAS for TSP [STOC 2012: Bartal, Gottlieb and Krauthgamer]
to achieve a PTAS for TSPN. However, several non-trivial technical hurdles need to be overcome
for applying the PTAS framework to TSPN.

(1) Heuristic to detect sparse instances. In the STOC 2012 paper, a minimum spanning
tree heuristic is used to estimate the portion of an optimal tour within some ball. However, for
TSPN, it is not known if an optimal tour would use points inside the ball to visit regions that
intersect the ball.

(2) Partially cut regions in the recursion. After a sparse ball is identified by the heuristic, the
PTAS framework for TSP uses dynamic program to solve the instance restricted to the sparse
ball, and recursively solve the remaining instance. However, for TSPN, it is an important issue
to decide whether each region partially intersecting the sparse ball should be solved in the sparse
instance or considered in the remaining instance.

Surprisingly we show that both issues can be resolved by conservatively making the ball in
question responsible for all intersecting regions. In particular, a sophisticated charging argument
is needed to bound the cost of combining tours in the recursion.
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1 Introduction

We consider the Traveling Salesman Problem with Neighborhoods (TSPN) in a metric space (V, d).
An instance of the problem is given by a collection W of n subsets {P1, P2, . . . , Pn} in V . Each
subset Pj ⊂ V is known as a neighborhood or region. The objective is to find a minimum length
tour that visits at least one point from each region.

This problem generalizes the well-known Traveling Salesman Problem (TSP), for which there are
polynomial time approximation schemes (PTAS) for low-dimensional Euclidean metrics [Mit99,
Aro02, RS99]. For some time, only a quasi-polynomial1 time approximation scheme (QPTAS) is
known for doubling metrics [Tal04], where a metric space has doubling dimension [Ass83, Cla99,
GKL03] at most k, if any ball in the space can be covered by at most 2k balls with half its radius.
It was only recent that Bartal et al. [BGK12] gave a PTAS for TSP on doubling metrics.

The neighborhood version of the problem was first introduced by Arkin and Hassin [AH94], who
gave constant approximation for the case when the regions are in the plane and “well-behaved”
(e.g., disks, parallel and similar length segments, bounded ratio between the largest and smallest
diameters). The general version of the problem was shown to have an inapproximability threshold
of Ω(log2−ε n) for any ε > 0 by Halperin and Krauthgamer [HK03]. There is an almost matching
upper bound of O(logN log k log n)-approximation, using the results of Garg et al. [GKR00] and
Fakcharoenphol et al. [FRT04], where N is the total number of points in V and k is the maximum
number of points in each region.

TSPN on Euclidean Plane. As in the case for TSP, the special case when (V, d) is a subset
of the Euclidean plane is considered to achieve better approximation ratios for TSPN. However,
even if the regions are allowed to be intersecting connected subsets, the problem remains APX-
hard [dBGK+05, SS06].

Restrictions are placed on the regions; examples include diameter similarity, fatness and disjoint-
ness. Intuitively, the fatness of a region measures the ratio between the smallest circumscribing
radius and the largest inscribing radius. For instance, a disk is fat, while a line segment is not.

Different assumptions on the regions in the Euclidean plane are considered, and the following ap-
proximation ratios are achieved: (i) O(log n) [MM95, GL99], (ii) constant ratio [Mit10, dBGK+05,
EFMS05], (iii) (1 + ε)-ratio PTAS [DM03, Mit07].

TSPN on Doubling Metrics. Chan and Elbassioni [CE11] considered (1 + ε)-approximation
for TSPN on doubling metrics. They combined the notions of diameter variation, fatness and
disjointness for geometric spaces, and defined for regions in general metrics the notion of α-fat
weak disjointness (Definition 2.1). Intuitively, the regions are partitioned into ∆ groups, where
regions in each group should have similar diameters and each region designates a point within, such
that these points are far away from one another. The regions can otherwise intersect arbitrarily, and
need not even be convex or connected, where such notions might be inapplicable in the first place.
More motivation and examples for fat weakly disjoint regions are given in [CE11]. The assumption
that there is only a bounded number ∆ of types of region diameters is necessary though, as they
also showed that otherwise TSPN remains APX-hard for doubling metrics.

Using the hierarchical decomposition and dynamic programming techniques by Arora [Aro02] and
Talwar [Tal04], they gave a QPTAS for fat weakly disjoint neighborhoods in doubling metrics. It
should be noted that a PTAS was not yet known even for TSP on doubling metrics then.

1A non-negative function f(n) is quasi-polynomial in n if there exists a constant c such that f(n) ≤ exp(O(logc n)).
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Main Result. We combine the techniques of the dynamic program for TSPN [CE11] and the
PTAS for TSP [BGK12] to give a randomized algorithm that approximates TSPN.

Theorem 1.1 Fix any 0 < c, ε < 1. Suppose in an instance of TSPN, where the underlying metric
space has doubling dimension at most k, there are n regions, which are partitioned into ∆ groups,
each of which is α-fat weakly disjoint. Then, there is a PTAS that for large enough n (depending
on c and ε), with constant probability, gives a TSPN tour of length at most (1 + ε) · OPT in time

n
1
c
·O(1)k · exp[(∆

ε )O(k) ·O(α)2k2 · o(logc n)].

Our running time for the special case ∆ = α = 1, c = 1
2 is comparable to the running time of

nO(1)k · exp[(1
ε )
O(k) ·O(1)k

2 ·
√

log n] for the PTAS for TSP in [BGK12].

Technical Challenges. Our PTAS for TSPN uses the high level idea of the PTAS framework for
TSP [BGK12], and in the core utilizes the dynamic program for TSPN in [CE11]. However, there
are a number of technical hurdles, and we briefly outline how we overcome them.

(1) Heuristic to detect sparse instances. In [BGK12], a minimum spanning tree heuristic
MST is computed on some subset B of points to estimate the weight of the portion within B of
some nearly optimal tour T . We generalize this heuristic to consider a minimum spanning tree
F of representatives picked arbitrarily for all regions W ′ intersecting B. However, the points in
W ′ spanned by F might be different from the points visited by the portion of tour T in B, and
tour T might choose to visit regions W ′ (that partially intersect with B) using points outside B.
Surprisingly, we can relate tree F with tour T in Lemma 4.2, and show that our MST heuristic is
not too pessimistic in Lemma 5.1.

(2) Resolving partially cut regions in sparse instances in the recursion. In [BGK12],
loosely speaking, after a sparse instance is identified on a subset S1 of points (by the MST heuristic),
the sparse sub-instance on S1 is solved with a dynamic program DP similar to [Aro02, Tal04] in
polynomial time to give a partial tour, which is combined with the tour solved recursively in
the remaining instance. However, when regions are involved, it is an important issue to decide
whether regions partially intersecting S1 should be solved in the sparse instance, or considered in
the remaining instance. Since throughout the recursion, the dynamic program DP might be called
nΩ(1) times, we cannot split cases to assign partially intersected regions in each level of recursion,
as even two cases per recursion will lead to a running time of 2n

Ω(1)
.

Surprisingly, we can conservatively let the sparse instance handle all regions that have non-empty
intersections with S1. Indeed, a very technical patching argument is made in Lemma 5.3 to ensure
that the recursion can be applied as in [BGK12].

(3) Bounding the number of ambiguous regions in sparse DP. In the dynamic program
for TSPN in [CE11], the number H of ambiguous regions each cluster needs to keep track of is
poly-logarithmic in n. However, there is a factor 2O(H) in the running time, which gives a quasi-
polynomial overhead in [CE11]. We improve the analysis (Corollary 6.1 and Lemma 6.2) such that
H is independent of n. Hence, the dynamic programs in [CE11] and [BGK12] can be combined
together to run in time polynomial in n.

2 Preliminaries

We consider a finite metric space M = (V, d). (For basic properties of metric spaces, we refer the
reader to standard texts [DL97, Mat02].) A ball B(x, ρ) is the set {y ∈ V | d(x, y) ≤ ρ}. The
diameter Diam(Z) of a set Z is the maximum distance between points in Z. A set Z of points is
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a ρ-packing, if any two distinct points in Z are at a distance more than ρ away from each other.
Given a positive integer m, we denote [m] := {0, 1, 2, . . . ,m − 1}. In this paper, we work with
metric spaces with doubling dimension [Ass83, GKL03] at most k; this means that for all x ∈ V ,
for all ρ > 0, every ball B(x, 2ρ) can be covered by the union of at most 2k balls of the form B(z, ρ),
where z ∈ V .

Fact 2.1 (Packing in Doubling Metrics [GKL03]) Suppose Z is a ρ-packing contained in
some ball of radius 2sρ in a metric space with doubling dimension at most k. Then, |Z| ≤ 2(s+1)k.

Problem Definition. An instance of the metric TSP with neighborhoods (TSPN) is given by a
metric space M = (V, d) with doubling dimension at most k and a collection of n neighborhoods or
regions W := {Pj | j ∈ [n]}, where each Pj is a subset of V , and V = ∪jPj . The objective is to
find a minimum TSP tour that visits at least one point from each region. As in [CE11], the regions
are partitioned into ∆ groups {Wl}l∈[∆], such that for some α ≥ 1, each group Wl satisfies some
α-fat weak disjointness condition as follows.

Definition 2.1 (α-Fat Weakly Disjoint Regions) [CE11] For α ≥ 1, a group Wl of regions
are α-fat weakly disjoint if for some ρ > 0 the following conditions hold.

1. For each region P ∈Wl, there exists some point z(P ) ∈ P such that the set {z(P )}P∈Wl
is a

ρ-packing. We say that P has center z(P ) and the regions in Wl have core radius ρ.
2. Every region P in Wl is contained in the ball B(z(P ), αρ).

Lemma 2.1 (Lower Bound on Tour Length: Corollary 3.2 in [CE11]) Suppose Wl is a group
of regions as in Definition 2.1 such that |Wl| > (8α)k. Then, any tour that visits all regions in Wl

must have length at least 1
2(8α)k

∑
P∈Wl

Diam(P ).

Corollary 2.1 (Sum of Truncated Diameters) Suppose T is a tour visiting all regions in W ,
which consists of ∆ groups of α-fat weakly disjoint regions. Then, for any real D > 0,∑

P∈W min{Diam(P ), D} ≤ ∆ · (8α)k ·max{2w(T ), D}.

Remark 2.1 (Assumptions on the Partition {Wl}l∈[∆]) As in [CE11], we assume that the
partition {Wl}l∈[∆] of regions and the parameter α are given to us such that each group is guaran-
teed to be α-fat weakly disjoint. Within each group Wl, our algorithm does not need to know the
core radius or how the centers of the regions are assigned in Definition 2.1.

We denote by OPT(S,W ) be an optimal tour using points in S that visits every region in W ; when
the context is clear, we also use OPT(S,W ) (or just OPT) to denote the length of the tour.

Restricting the Tour inside B0. We assume that there is a region P0 which contains only one
point p0. For finite metrics, we can have this assumption because we can try each p0 in P0, and
consider those TSPN tours that pass through p0. We let R be the minimum radius of a ball centered
at p0 that intersects all regions. Suppose OPT is the length of an optimal tour. Then, it follows
that 2R ≤ OPT ≤ 2nR. Hence, an optimal tour must be contained in the ball B0 := B(p0, nR).
Therefore, without loss of generality, we only need to consider the points in B0.

Remark 2.2 Since we consider PTAS, we fix ε > 0, and consider sufficiently large n such that
1
ε < n. Suppose an optimal tour visits pj in each Pj. If we replace each pj by p′j ∈ Pj such that

d(pj , p
′
j) ≤ εR

2n , then we change the length of the tour by at most εOPT. Hence, we can assume that

each region has radius of either 0 or at least εR
2n . We can rescale distances such that the minimum

inter-point distance is 1, and the maximum distance is at most n2

ε < n3. By Fact 2.1, we can
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assume that |V | ≤ nO(k). For simplicity, we often argue that tour returned by the algorithm has
expected length at most 1 + ε times the optimal length; by using standard repetition argument, one
can show this implies that with constant probability, approximation ratio 1 + ε can be obtained.

Given ρ > 0, recall that a ρ-net for a set U of points is a subset S such that S is a ρ-packing, and
every point in U is within a distance of ρ from some point in S.

Hierarchical Nets. Fix c > 0. As in [BGK12], we consider some parameter s = (log n)
c

2k2 ≥ 4

(i.e., n ≥ 22Ω(k2)
). Set L := O(logs n) = O( k2 logn

c log logn). A greedy algorithm can construct NL−1 ⊆
· · · ⊆ N1 ⊆ N0 = V such that for each i ∈ [L], Ni is an si-net for V , where we say distance
scale si is of height i. As in [BGK12], we use the randomized decomposition scheme defined
in [Bar96, ABN11].

Definition 2.2 (Single-Scale Decomposition [ABN11]) At height i, an arbitrary ordering πi
is imposed on the net Ni. Each net-point u ∈ Ni corresponds to a cluster center and samples random

hu from a truncated exponential distribution Expi having density function t 7→ χ
χ−1 ·

lnχ
si
· e−

t lnχ

si for

t ∈ [0, si], where χ = O(1)k. Then, the cluster at u has random radius ru := si + hu.

The clusters induced by Ni and the random radii form a decomposition Πi, where a point p ∈ V
belongs to the cluster with center u ∈ Ni such that u is the first point in πi to satisfy p ∈ B(u, ru).
We say that the partition Πi cuts a set P if P is not totally contained within a single cluster.

The results in [ABN11] imply that the probability that a set P is cut by Πi is at most β·Diam(P )
si

,
where β = O(k).

Definition 2.3 (Hierarchical Decomposition) Given a configuration of random radii for {Ni}i∈[L],
decompositions {Πi}i∈[L] are induced as in Definiton 2.2. At the top level L − 1, the whole space
is partitioned by ΠL−1 to form height-(L − 1) clusters. Inductively, each cluster at height i + 1 is
partitioned by Πi to form height-i clusters, until height 0 is reached. Observe that a cluster has
K := O(s)k child clusters.

Hence, a set P is cut at height i iff the set P is cut by some partition Πj such that j ≥ i; this

happens with probability at most
∑

j≥i
β·Diam(P )

si
= O(k)·Diam(P )

si
.

Net-Respecting Tour. As defined in [BGK12], a tour T is net-respecting with respect to {Ni}i∈[L]

and ε > 0 if for every transition (x, y) in the tour, both x and y belong to Ni, where si ≤
ε · d(x, y) < si+1. Given a subset S ⊆ V and a set W of regions, let OPTnr(S,W ) be an optimal
net-respecting tour using points in S that visits every region in W ; when the context is clear, we
also use OPTnr(S,W ) to denote the length of the tour.

It is shown in [BGK12, Lemma 1.11] that net-points can be inserted between every transition of a
tour T to make the tour net-respecting, while increasing the length by only a factor of 1 +O(ε).
Hence, we can assume that the optimal TSPN tour is net-respecting, but observe that the approx-
imation algorithm needs not return a net-respecting tour.

However, this notion alone cannot be directly applied to TSPN (see remark after Lemma 4.2), and
in addition, we also make the distinction of different scales of portals as follows.

Portals. As in [Aro02, Tal04, BGK12], each height-i cluster is equipped with portals such that
a tour is portal-respecting if it enters and exits a cluster only through its portals. As mentioned
in [BGK12], the portals of a cluster need not be points of the cluster itself, but are just used as
entry or exit points.
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A transition (x, y) in a tour can be made portal-respecting in the following way. Suppose height
i is the highest scale that separates the pair (x, y), and px and py are the closest height-i portals
in the clusters containing x and y, respectively. Then, the transition (x, y) is replaced by (i) a
portal-respecting tour from x to px found recursively, (ii) px to py, (iii) a portal-respecting tour
from py to y found recursively. The difference here is that there are two scales of portals for each
cluster.

• Coarse Portals. At height i, the coarse portals for a cluster C is the subset of net-points in
Ni′ that cover C, where i′ is the maximum index such that si

′ ≤ max{1, ε8 · s
i}. In the above

transition (x, y), if d(x, y) ≥ si, then the closest coarse portals px and py are used.
• Fine Portals. At height i, the fine portals for a cluster are defined similarly, except that i′

is the maximum index such that si
′ ≤ max{1, ε

4βL · s
i}; observe that the fine portals include

the coarse portals. In the above transition (x, y), if d(x, y) < si, then the closest fine portals
px and py are used.

Lemma 2.2 (Portal-Resepcting Tour) Any tour T can be converted to a portal-respecting tour
(that visits all the points in T ) whose expected length is at most 1 + ε times that of the original
tour, where the randomness is over the hierarchical decomposition

Proof: It suffices to show that each transition (x, y) in a tour can be made portal-respecting.
Suppose sj ≤ d(x, y) < sj+1. Consider the case when (x, y) is first cut at height-i, which happens
with probability min{1, β

si
· d(x, y)}.

For i ≤ j, this probability is at most 1, and the extra routing cost is at most ε
4 · s

i; summing over
i ≤ j gives ε

2 · d(x, y).

For i > j, the probability is at most β
si
· d(x, y), in which case the extra routing cost is at most

O( ε
4βL · s

i); summing over i > j, the expected contribution is at most ε
2 · d(x, y).

Hence, the expected length of the portal-respecting segment from x to y is at most (1 + ε) · d(x, y).

Since a height-i cluster has diameter O(si), by Fact 2.1, the cluster has at most m := O(βLsε )k fine
portals, of which at most O( sε )

k are coarse portals.

(m, r)-Light Tour. An (m, r)-light tour is a portal-respecting tour that visits each cluster only
through its m portals (following rules for coarse/fine portals), and crosses each cluster at most r
times; a tour crosses a cluster when it either enters or exits a cluster.

A dynamic program can be used [Tal04, CE11] to find the best (m, r)-light tour whose length is at
most (1 + ε) times the optimal with r = O(m), which leads to only a QPTAS. The idea in [BGK12]
is to exploit some sparsity conditions to reduce r in order to obtain a PTAS.

3 Overview of Method

We adopt the PTAS framework for TSP in [BGK12], and apply it to TSPN. Given a net-point
u ∈ Ni at height i and a set W of regions, we shall define a heuristic MSTW (u, i) that measures
the sparsity around u at scale si with respect to the regions W .

Given a set S of points and a set W of regions, we give a high level description of our main algorithm
ALG(V,W ) that returns a tour in V visiting all regions in W .

It uses a subroutine DP(S,W ), which can be applied when the instance is “sparse”; it is a dynamic
program that returns a tour in S visiting all regions W . Recall that k is an upper bound on the
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doubling dimension.

1. Base Case. If |W | = n is smaller than some constant threshold, solve the problem by brute

force, recalling that |V | ≤ O(n
2

ε )k.
2. Sparse Instance. If for all i ∈ [L], for all u ∈ Ni, MSTW (u, i) is at most q0 · si (where

the reason for choosing q0 := (∆2

ε )k · Θ(α2s)k
2

is given in Lemma 5.3), call the subroutine
DP(V,W ) to return a tour, and terminate.

3. Identify Critical Instance. Otherwise, let i be the smallest height such that there exists
u ∈ Ni with critical MSTW (u, i) > q0 · si.

4. Remove Critical Instance. Decompose (possibly using randomness) W := W1 ∪W2 such
that loosely speaking W1 are the regions around u at distance scale si, and pick S1 ⊆ V to
be some set of points around u with diameter O(si) such that (S1,W1) is “sparse” enough.

5. Call the subroutine T1 := DP(S1,W1 + {u}), and solve T2 := ALG(V,W2 + {u}) recursively;
combine the tours T1 and T2 at the point u to return a tour.

In order to complete the description of the algorithm and prove that it has the desired properties
(approximation ratio and running time), we need to supply the following details.

Define MSTW (u, i). We define the heuristic as follows. Let W ′ be the subset of regions in W
that have non-empty intersection with B := B(u, 3si). For each P ∈ W ′, pick a representative
by choosing a point in P ∩ B (for instance, one that is nearest to u); suppose R is the set of
representatives of W ′. Then, return the weight of the minimum spanning tree MSTu(R) for R∪{u}.
Define DP to handle “sparse” instance (V,W ). We define a dynamic program in Section 4
that handles sparse instances, and in particular, has the following meta-property.

(MP1) If (S,W ) is “sparse” enough, then DP(S,W ) runs in polynomial time, and with high
probability (say at least 1 − 1

2n), returns a tour in S visiting all regions in W whose length is at
most (1 + ε) times OPT(S,W ). The formal version is Theorem 6.1.

Define decomposition procedure to remove critical instance. Suppose i is the smallest
height such that there exists MSTW (u, i) > q0 · si. Let B be a ball centered at u with radius
sampled uniformly from [3si, 4si]. Define S1 := B(u, 5si), W1 := {P ∩ S1 : P ∩ B 6= ∅, P ∈ W},
and W2 := {P ∈ W : P ∩ B = ∅}; observe that if q0 > 10, then |W1| ≥ 2. We shall prove that the
decomposition has the following meta-property.

(MP2) The above randomized procedure produces a “sparse” enough instance (S1,W1 +{u}) such
that E[OPT(S1,W1 + {u})] ≤ 1

1−ε · (OPT
nr(V,W )−E[OPTnr(V,W2 + {u})]), where expectation is

over the random radius of B. The formal version is Corollary 4.1 and Lemma 5.3.

Proof of Theorem 1.1: We show how (MP1) and (MP2) imply our main result.

Analysis of approximation ratio. We follow the inductive proof as in [BGK12] to show that
with constant probability (where the randomness comes from DP), ALG(V,W ) returns a tour with
expected length at most 1+ε

1−ε · OPT
nr(V,W ), where expectation is over the randomness of decom-

posing critical instances in (MP2).

Observe that in ALG(V,W ), the subroutine DP is called at most n = |W | times. Hence, with
constant probability, all the tours returned by all instances of DP have appropriate lengths in (MP1).

Suppose T1 and T2 are the tours returned by DP(S1,W1 +{u}) and ALG(V,W2 +{u}), respectively.
By (MP1), T1 has length at most (1 + ε) ·OPT(S1,W1 +{u}), while the induction hypothesis states
that E[T2] ≤ 1+ε

1−ε · OPT
nr(V,W2 + {u}).

By (MP2), E[OPT(S1,W1+{u})] ≤ 1
1−ε ·(OPT

nr(V,W )−E[OPTnr(V,W2+{u})]). Hence, it follows
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that E[T1 + T2] ≤ 1+ε
1−ε · OPT

nr(V,W ) = (1 +O(ε)) · OPT(V,W ), achieving the desired ratio.

Analysis of running time. We see that the decomposition procedure in (MP2) is carried out at
most O(n) times. Hence, the running time is dominated by the calls to the dynamic program DP
in (MP1). We shall show the argument in [BGK12] can be augmented with regions to still achieve
polynomial time. In the rest of the paper, we shall prove formal versions of (MP1) and (MP2).

4 Sparse MST Gives Sparse Optimal Tour

In this section, we give formal treatments for (MP1) in Section 3. A tour T can be interpreted
as a set of edges with end-points in V ; given B ⊆ V , T |B is the set of edges in T such that both
end-points are in B.

Sparse Tour [BGK12]. A tour T is q-sparse with respect to {Ni}i∈[L], if for all i ∈ [L], for all
u ∈ Ni, the weight w(T |B(u,3si)) of the portion of tour T within the ball B(u, 3si) is at most q · si.
We modify the previous result in [BGK12, Lemma 3.1] as follows.

Lemma 4.1 (q-Sparsity Allows (m, r)-Lightness [BGK12]) Suppose a tour T (not necessar-
ily net-respecting) is q-sparse with respect to {Ni}i∈[L]. Moreover, for each i ∈ [L], for each u ∈ Ni,
point u samples O(log |V |) = O(k log n) independent random radii as in Definition 2.2. Then, with
constant probability, there exists a configuration from the sampled radii that defines a hierarchical
decomposition, under which there exists an (m, r)-light tour T ′ that visits all the points in T and has

weight w(T ′) ≤ (1+ε) ·w(T ), where m := O( sk logs n
ε )k and r := O(1)k ·q logs log n+O(kε )k+O( sε )

k.

Proof: The only difference from [BGK12, Lemma 3.1] is that the given tour T might not be
net-respecting, and we use both coarse and fine portals. The cost incurred to make the tour
portal-respecting (following rules for using coarse/fine portals) is analyzed in Lemma 2.2.

To bound the number r times that the tour crosses a cluster at height i, we carefully observe where
the net-respecting property is used in [BGK12, Lemma 3.1]. Precisely, it is used to argue that when
an edge of length at least si crosses a cluster, then it must do so via net-points of scale around
ε · si. However, this is guaranteed exactly by our rule of using coarse portals when the cross edge
has length at least si.

We next show that the heuristic MSTW (u, i) can be used to detect sparse tours visiting regions,
which is analogous to [BGK12, Lemma 1.12(i)]. Given a tour T that visits all regions in W , a
designated mapping f : W → V (T ) maps each region to a point visited by T such that for each
P ∈ W , f(P ) is a point in region P . The set f(W ) is known as the designated points of W with
respect to f . Given a subset B ⊆ V , recall that T |B consists of path segments of T that are totally
inside B. For each such path segment, we start from each end, and discard nodes until the first
designated point is reached; we denote by T |fB the union of these truncated path segments.

Lemma 4.2 (MST Heuristic Gives Sparse Optimal Tours) Suppose T is an optimal (not nec-
essarily net-respecting) or optimal net-respecting tour visiting all regions in W , and let f : W →
V (T ) be a designated mapping. Then, for each height i, and each u ∈ Ni, w(T |f

B(u,3si)
) ≤

∆ ·O(α)k ·max{MSTW (u, i), si}.
In particular, if T is an optimal tour visiting all regions in W , then f is a surjection (without loss

of generality), and hence T |f
B(u,3si)

= T |B(u,3si) in this case.

Remark. For optimal net-respecting T , Lemma 4.2 could only give a weaker notion of sparsity (in

terms of truncated path segments T |fB with respect to designating function f), which is not enough
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for Lemma 4.1. Hence, we apply Lemma 4.1 to an optimal tour, and use the idea of coarse/fine
portals to replace the net-respecting property in the proof of Lemma 4.1. On the other hand, the
weaker sparsity notion for net-respecting tours is enough for the proof of Lemma 5.3 in Section 5.

Proof: Observe that T |f
B(u,3si)

consists of path segments. Let Z be the set of end-points of these

path segments. Our goal is to construct a subgraph G that spans Z and covers all designated points
covered by T |f

B(u,3si)
.

Observe that it is possible to replace T |f
B(u,3si)

by routing on G with weight 2w(G) to form a tour to

visit all regions in W ; moreover, it is possible to convert each edge in G to be net-respecting with a
multiplicative factor 1 +O(ε). The optimality of T implies that w(T |f

B(u,3si)
) ≤ 2(1 +O(ε)) ·w(G).

We next construct G and analyze its weight.

Let X be the set of designated points in T |f
B(u,3si)

. For each x ∈ X, pick Px to be any region in

f−1(x) using x as its designated point. Let WX be the collection of the regions Px’s over x ∈ X.

Recall the definition of MSTW (u, i). Suppose W ′ is the subset of regions in W that intersect
B := B(u, 3si). Observe that if a region is in WX , then it will be included in W ′. For each P ∈W ′,
a representative is picked to form the set of representatives R. Then, MSTW (u, i) is the weight of
the minimum spanning tree MSTu(R) spanning R and u.

The subgraph G is formed as follows.

1. Include MSTu(R), which has weight MSTW (u, i).
2. Each point x ∈ X is connected to G via the representative of Px in R with an edge of weight

at most min{Diam(Px), 6si}.
We next analyze the weight of G. Recall that there are ∆ groups, each of which is α-fat weakly
disjoint. Observing that the Euler tour on MSTu(R) visits all regions in WX and has weight at most
2MSTW (u, i), Corollary 2.1 gives

∑
x∈X min{Diam(Px), 6si} ≤ ∆ · (8α)k ·max{4MSTW (u, i), 6si}.

Hence, it follows that the weight of G is at most ∆ ·O(α)k ·max{MSTW (u, i), si}.
The next corollary is analogous to [BGK12, Lemma 3.3(a)]; however, we simplify the analysis by
disregarding decomposition at the critical height i.

Corollary 4.1 If ALG in Section 3 is running with threshold q0 to determine critical instances,
then instances (S1,W1+{u}) passed to DP will have q-sparse optimal tours, where q := ∆·O(α)k ·q0.

Proof: Observe that for S1, it is sufficient to consider net-points up to height i− 1, where there
are still at most O(s)k height-(i−1) clusters covering S1. Since we do not consider height-i clusters,
the value of the MSTW heuristic at height i is irrelevant.

Recall that in Section 3, each region P in W1 is restricted to S1. Hence, for each height-j (where
j < i) net-point vj covering S1, the heuristic MSTW1(vj , j) and MSTW (vj , j) might be different
because a region P might intersect B(vj , 3s

j) and B(vj , 3s
j) ∩ S1 at different points.

We see how this affect the proof in Lemma 4.2. The change is that the subgraph G might involve
points that are not in S1. However, since we are using G for routing the tour, when a point not
in S1 is encountered, we can simply skip it and move on to the next point, without increasing the
cost of the tour; observe that we need not ensure that the tour is net-respecting. Hence, the same
proof gives the sparsity of an optimal tour in (S1,W1 + {u}).
Lemma 4.1 and Corollary 4.1 ensure the existence of an (m, r)-light TSPN tour that is (1 + ε)-
optimal. We describe a dynamic program in Section 6 to compute such a tour.
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5 Identifying and Removing Critical Instances

We recall how a critical instance is removed in the description of ALG(V,W ) defined in Section 3.

Removing Critical Instance. Recall that i is the smallest height such that there exists u ∈ Ni

with MSTW (u, i) > q0 ·si. Sample h ∈ [0, si] uniformly at random (as opposed to using distribution
Expi as in Definition 2.2); let B := B(u, 3si + h).

We define S1 := B(u, 5si), W1 := {P ∩ S1 : P ∩B 6= ∅, P ∈W}, and W2 := {P ∈W : P ∩B = ∅}.
Recall that (S1,W1 + {u}) is passed to DP, while (V,W2 + {u}) is solved recursively by ALG.

Lemma 5.1 (MST Gives a Lower Bound on Tour Length) Suppose T1 is a tour that visits
all regions in W1 and u, and q0 ≥ 12 · (8α)k. Then, q0 · si < MSTW (u, i) ≤ w(T1) · (1 + 2∆ · (8α)k),
where ∆ is the number of groups of regions, each of which is α-fat weakly disjoint.

Proof: Recall that MSTW (u, i) is the weight of the minimum spanning tree MSTu(R) spanning
u and R, where R ⊂ B(u, 3si) is some set of representatives of regions W ′ in W that intersect
B(u, 3si).

We construct a subgraph spanning R and u by (i) including T1 (which visits every region in W ′

and u), and (ii) connecting each representative in R for each region P ∈W ′ with the corresponding
point in T1 using an edge of weight at most min{Diam(P ), 6si}.
The cost of (i) is w(T1). To bound the cost of (ii), we observe that T1 visits all regions in W ′, use
Corollary 2.1 to obtain

∑
P∈W ′ min{Diam(P ), 6si} ≤ ∆ · (8α)k ·max{2w(T1), 6si}.

Hence, it follows that q0 · si < MSTW (u, i) = w(MSTu(R)) ≤ w(T1) + ∆ · (8α)k ·max{2w(T1), 6si}.
We first show that w(T1) > 3si. Otherwise, q0 · si < w(T1) + ∆ · (8α)k · 6si ≤ w(T1) + q0

2 · s
i, which

implies that w(T1) > q0
2 · s

i > 3si, a contradiction.

Hence, we have q0 · si < MSTW (u, i) ≤ w(T1) · (1 + 2∆ · (8α)k), as required.

Lemma 5.2 There exists a tour that visits all regions that intersect B(u, 4si) with length at most
O(s)k · q0 · si.

Proof: Let W ′ be the set of regions that intersect B(u, 4si), and let N̂i−1 ⊂ Ni−1 be the subset
of height-(i − 1) net-points that cover B(u, 4si). Observe that |N̂i−1| ≤ O(s)k, and each region in
W ′ must be covered by the minimum spanning tree Tv defining MSTW (v, i− 1) for some v ∈ N̂i−1.
Observe that since MSTW (u, i) is critical, MSTW (v, i− 1) ≤ q0 · si−1.

We next construct a subgraph that intersects all regions in W ′. First, we include all the minimum
spanning trees Tv over v ∈ N̂i−1; this has cost O(s)k · q0 · si−1. Second, for each v ∈ Ni−1, pick any
point in Tv and connect it to u; this has cost O(s)k · si. Hence, there exists a tour with length at
most O(s)k · q0 · si visiting all regions in W ′, as required.

The following result is the formal version of (MP2) in Section 3; it is an analogue of [BGK12,
Lemma 3.3], and turns out to be the most technical part to adapt the argument for TSPN.

Lemma 5.3 (Removing Critical Instance) Suppose S1, W1 and W2 are as defined above, and

T is an optimal net-respecting tour in V visiting regions in W . We set q0 := (∆2

ε )k · Θ(α2s)k
2
.

Then, for each random h ∈ [0, si], there exist tours T1 and T2 such that the following holds.

1. Tour T1 is in S1 and visits all regions in W1 and u.
2. Tour T2 is net-respecting and visits all regions in W2 and u.
3. E[w(T1)] ≤ 1

1−ε · (w(T )− E[w(T2)]), where the expectation is over random h ∈ [0, si].
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Proof: Let B := B(u, 3si + h), where h ∈ [0, si] is drawn uniformly at random.

Since T visits all regions in W , we choose a designated mapping f : W → V (T ) such that for all
regions P that are visited by T |B, f(P ) is covered by T |B.

We partition the edges in T into three sets: (i) Ein: edges totally within B, (ii) Ecr: edges crossing
B, (iii) Eout: edges totally outside B. Let Zin be the end-points of edges Ecr that are inside B,
and Zout be those that are outside B.

Let δ := ε
∆2β·O(α2s)k

, and l be the largest height such that sl ≤ max{1, δsi}.

Let N̂l be the subset of net-points Nl that cover S1. Observe that |N̂l| ≤ O( sδ )k , and let Fl be a

minimum spanning tree of N̂l, which has weight at most O( sδ )k · si.
Patching Construction. We construct T1 that visits all designated points in T |B, as well as
regions intersecting B and the point u ∈ N̂l; we also construct net-respecting T2 that visits all
points covered by Eout and the point u. Hence, T1 visits all regions in W1 + {u}, and T2 visits all
regions in W2 + {u}. Ideally, T1 should use edges in Ein, and T2 should use edges in Eout. Then,
the cross points are patched up to complete the tours, where the cost is charged to Ecr and the
sparsity of the space in B(u,O(si)). However, the situation for the cross edges are actually more
complicated, and we need a sophisticated procedure to enable the charging argument.

In the below procedure, special attention must be paid such that the weight of each edge e ∈ T
is charged in exactly one of the cases: (i) e appears in T1, (ii) e appears in T2, (iii) if there is a
path segment in T from x to y of length at least 5δsi such that none of the edges in the segment
appears in T1 or T2, then the exact weight (with no increase in (1+ ε) factor) of these edges can be
used to pay for connecting x and y to the corresponding nearest net-points in N̂l (and subsequent
routing). We use G to denote other edges not in T that are used for patching, and they can be
used a constant number of times for patching cross points as follows; some of them are charged
directly to edges in T that do not appear in T1 or T2, while others are charged to the tree Fl and
the sparsity of B(u,O(si)) via Lemma 4.2.

1. The edges in Fl are used to patch both T1 and T2.
2. We consider cross edges Ecr. Suppose (x, y) ∈ Ecr, where x ∈ Zin and y ∈ Zout. We start

at x, and travel along the path segment Ts in T |B inside B until the first designated point
vP = f(P ) (for some region P ) is reached; if no such designated point vP is found, the whole
path segment Ts (together with the cross edges) is not necessary to visit regions in W1, and
will be used in T2. A similar designated point vP ′ is found from the cross edge at the other
end of the path segment Ts; it is possible that vP = vP ′ . The path segment between vP and
vP ′ belongs to T1; we next describe how patching is performed at vP (and similarly at vP ′).
We start at vP and travel along T towards cross point x. We perform case analysis on when
the next designated point is encountered.
(i) Suppose no designated point is encountered after traveling a distance within 5δsi. (We
can assume that when the tour T leaves B, it must travel a distance at least 10δsi outside
B before re-entering; otherwise, the short segment outside B must be contained in B(u, 5si),
and we concatenate it with the preceding and succeeding segments in T |B together as a single
path segment.)
Let a and b be adjacent points on T such that dT (vP , a) < 5δsi ≤ dT (vP , b). If d(a, b) >
δ
ε · s

i, then a must be a height-l net-point in N̂l (already connected to Fl), because T is
net-respecting; in this case, point a is used in both T1 and T2, where the portion from vP
to a belongs to T1 and the portion after a towards b belongs to T2. If d(a, b) ≤ δ

ε · s
i, then
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b ∈ B(u, 5si) and the exact weight of the portion of T between vP and b is enough to connect
vP and b to the corresponding closest net-points in N̂l, and also allows these connections to
be used once more during tour patching.
(ii) Suppose another designated point vQ is found on T such that dT (vP , vQ) ≤ 5δsi. In this
case, observe that vQ is outside B; vP belongs to T1 and vQ belongs to T2. The designated

points vP and vQ are connected to their corresponding closest net-points in N̂l. However, since
dT (vP , vQ) is small, we cannot charge the patching cost O(δ) · si directly to dT (vP , vQ), but
instead will charge this cost to the sparsity of B(u,O(si)) via Lemma 4.2. When such charging
occurs for the pair {vP , vQ} of designated points, we say that the path segment T (vP , vQ) is

activated ; note that the probability that vP and vQ are separated by B is at most
dT (vP ,vQ)

si
,

which also gives an upper bound on the probability that T (vP , vQ) is activated.
3. For each region P in W1 that intersects with B (that is not already covered by the designated

points in T |B), pick the point in P closest to u and connect it with the closest point in N̂l.

Observe that each edge e ∈ T is already net-respecting, and we emphasize that its weight w(e) is
used exactly once with no extra (1 + ε) factor. On the other hand, each edge added in G can be
used a constant number of times, and may be replaced by a net-respecting path (in the case for
patching T2) whose length is a factor at most 1 +O(ε) of the original edge length.

Patching Cost. We next analyze the expected cost of adding edges in G (that are not charged
directly to T ), where the randomness is over h ∈ [0, si].

We start from bounding the expected cost due to a region being cut by B. Let W ′ be the set of
regions in W that intersect with B(u, 4si); observe that W1 ⊆ W ′. Each region P ∈ W ′ is cut by

the random ball B with probability at most min{1, Diam(P )
si
}, in which case the cost to connect a

point in P to the nearest net-point in N̂l is at most δ · si. Hence, each region P ∈W ′ has expected
contribution of at most O(δ) ·min{Diam(P ), si}.
By Lemma 5.2, there exists a tour TW ′ that visits all regions in W ′ and has weight at most
O(s)k · q0 · si. Hence, Corollary 2.1 gives

∑
P∈W ′ min{Diam(P ), si} ≤ ∆ · (8α)k · 2 ·O(s)k · q0 · si.

(1) Hence, we conclude that the expected contribution from the regions in W ′ is at most

δ ·∆ ·O(αs)k · q0 · si ≤ ε
3 · w(T1), by the choice of δ and Lemma 5.1.

(2) The edges in Fl are deterministic, and the cost is O( sδ )k · si ≤ δ · ∆ · O(αs)k · q0 · si, since

q0 ≥ (∆2

ε )k · Ω(α2s)k
2
. Hence, the contribution is also at most ε

3 · w(T1), as in (1).

(3) We next bound the expected cost associated with activated path segments. Define T to be
the collection of path segments T (vP , vQ) between successive designated points in T such that
dT (vP , vQ) ≤ 5δsi and at least one of the designated points is in B(u, 4si). Observe that the

probability that the path segment T (vP , vQ) is activated is at most
dT (vP ,vQ)

si
, in which case the

patching cost is O(δ) · si. Hence, the total expected cost due to activated path segments is O(δ) ·∑
T (vP ,vQ)∈T dT (vP , vQ).

To analyze the sum of the weights of the potential path segments, it suffices to observe that the
union of those path segments is in T |f

B(u,5si)
. However, since MSTW (u, i) is critical, we will cover

those path segments instead by the union of T |f
B(v,3si−1)

over v ∈ N̂i−1.

Since T is an optimal net-respecting tour visiting all regions in W , it follows from Lemma 4.2 that
w(T |f

B(v,3si−1)
) ≤ ∆ ·O(α)k · q0 · si−1.

Observing that |N̂i−1| ≤ O(s)k, we conclude that the expected cost associated with activated path
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segments is at most δ ·∆ ·O(αs)k · q0 · si ≤ ε
3 · w(T1), as in (1).

Therefore, combining cases (1) to (3), we have E[w(T1) + w(T2)] ≤ w(T ) + ε · w(T1). Taking
expectation and rearranging, we have E[w(T1)] ≤ 1

1−ε · (w(T )− E[w(T2)]), as required.

6 Dynamic Program for TSPN

In Section 4, we see that the MSTW heuristic can ensure that the instance (S,W ) received by DP
defined in Section 3 has a sparse optimal tour, which by Lemma 4.1 implies the existence of an
(m, r)-light (1 + ε)-optimal tour for appropriate values of m and r. In this section, we describe
details of the dynamic program DP(S,W ) that finds such a tour in S visiting all regions in W .
The dynamic program is a combination of the ones in [CE11] and [BGK12], which are themselves
extensions of the ones in [Aro02, Tal04]. We first review some properties for TSPN as in [CE11].

6.1 Structural Properties of TSPN

Common and Rare Groups. Recall that the set W of regions are grouped into sets {Wl}l∈[∆].

We say a group Wl is common if |Wl| > (8α)k, and otherwise is rare. Let Wc := ∪l:|Wl|>(8α)kWl

be the regions in common groups, and let Wr := W \Wc be those in rare groups. By Lemma 2.1,∑
P∈Wc

Diam(P ) ≤ 2∆ · (8α)kOPT, and observe that |Wr| ≤ ∆ · (8α)k.

Configuration of Random Radii. In Lemma 4.1, we see a procedure that samples O(k log n)
random radii for each net-point at each height. By a configuration of random radii, we mean picking
some radius for each net-point at each height. Recall that a configuration of random radii induces
a hierarchical decomposition in Definition 2.3.

Given a hierarchical decomposition, the idea of anchor points and potential sites are used in [CE11]
to give an efficient way to keep track of which clusters are responsible for which regions. Since later
we shall consider different configurations of random radii, we give an alternative description here.
Let 0 < γ < 1 be some parameter associated with the detour made when a region is visited via an
anchor point.

Anchor Points for Making Detours for Common Regions Wc. Consider some tour T that
visits all regions in W . Given a hierarchical decomposition induced by a configuration of random
radii, we show how anchor points are assigned to a region P in a common group. Moreover, we
describe the detour made to T in each case.

Suppose that region P is first divided at height-i, i.e., it is totally contained in some height-(i+ 1)
cluster.

1. Suppose Diam(P ) ≤ γsi. Then, we pick an arbitrary point p ∈ P and replace the region P
with the singleton {p}; we emphasize that in this case p is NOT an anchor point for the region
P . Observe that visiting the region via p will cost a detour of length at most 2Diam(P ).

2. Suppose j is the largest height such that sj ≤ max{1, γsi}. For each height-j cluster Cu
(centering at some u ∈ Ni) that intersects region P , assign u as an anchor point from cluster
Cu for region P . We say that u is the potential site for the cluster Cu. Observe that u might
not be a point in Cu; when the potential site u is activated, point u acts like a special portal
for the cluster Cu to visit regions as follows. If the tour T visits a point p in Cu, then a
detour can be made to visit the activated potential site u, and then to a point in P closest to
u, after which we backtrack to p to finish the detour; since the cluster Cu has radius at most
2sj , this detour has length at most 8sj ≤ 8γsi.
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Note that we do not know which point in the region the optimal tour would visit, but we can ensure
that the correct point would have an anchor point within a distance of 2γsi.

The following lemma gives a slightly better analysis than [CE11, Lemma 3.3]. This simple im-
provement later removes the dependence of γ on L = O(logs n), which ensures that the number of
regions each cluster needs to keep track of is independent of n.

Lemma 6.1 (Approximate Point Location for Divided Regions) Suppose a hierarchical par-
tition is sampled as in Definition 2.3. Suppose a detour is made to visit a common region P as
above. Then, the expected increase in the length of the tour is at most O(βγ logs

1
γ ) · Diam(P ).

Proof: First, observe that the probability that a region P with D := Diam(P ) is first divided at
the height-i is at most min{1, O(β) · D

si
}, as stated in Definition 2.2. We consider different cases

for i.

1. Case si ≥ D
γ . We have D ≤ γsi, and so P is replaced by a singleton, and the detour has

length at most 2D. Suppose l is the smallest height such that sl ≥ D
γ . Then, summation over

i ≥ l gives contribution
∑

i≥lO(β) · D
si
· 2D ≤ O(β) · D

sl
·O(D) ≤ O(βγ) ·D.

2. Case D ≤ si < D
γ . There are logs

1
γ such i’s, each of which gives contribution at most

O(β) · D
si
·γsi = O(βγ) ·D. Summation over i in this range gives contribution O(βγ logs

1
γ ) ·D.

3. Case si < D. In this case, the probability of P cut at height-i is at most 1; and the sum of
contribution over such i’s is at most O(γ) ·D.

Hence, the expected increase in length after the detour is at mostO(βγ logs
1
γ )·Diam(P ), as required.

Combining Lemma 2.1 and Lemma 6.1, we show that γ can be chosen such that the detour will
cause the tour to increase by only ε fraction of the optimal tour.

Corollary 6.1 (Low Cost Detours) Suppose a hierarchical decomposition is sampled as in Def-
inition 2.3, and the portal assignment procedure is carried out to make detour for each common
region as described above. Then, the expected increase in the tour length is at most ∆ · (8α)k ·
O(βγ logs

1
γ ) · OPT, where β = O(k). In particular, we can choose 1

γ = ∆β·O(α)k

ε log ∆β·O(α)k

ε
(independent of n) such that this expected increase is at most ε · OPT.

Ambiguous Regions for a Cluster. Recall that, ultimately, we want to limit the number of
regions that intersect a cluster for which the dynamic program has to explicitly consider. Given a
cluster C at height-i, its ambiguous regions are those regions P partially intersecting C that satisfy
one of the following properties.

1. The region P is in Wr, i.e., it is in a rare group; observe that no anchor point is assigned for
regions in a rare group.

2. The cluster C or any of its descendant clusters contain potential sites that can be anchor
points for the region P .

We rephrase the following result from [CE11, Lemma 3.5] to give an upper bound on the number
of ambiguous regions a cluster needs to consider; observe that the improvement due to Lemma 6.1
implies that the number of ambiguous regions for each cluster is independent of n.

Lemma 6.2 (Number of Ambiguous Regions [CE11]) The number of ambiguous regions for
a cluster is at most H := ∆ ·O(αγ )k.
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6.2 Description of Dynamic Program for TSPN

Our dynamic program DP is a combination of the dynamic programs in [CE11] and [BGK12].
In [BGK12], the number of random radii considered by each net-point at each height is O(k log n).
To avoid considering an exponential number of configurations, doubling dimension is used to exploit
the locality of the hierarchical decomposition. We first describe the information needed to identify
each cluster at each height.

Information to Identify a Cluster. Each cluster is identified by the following information.

1. Height i and cluster center u ∈ Ni. This has L · O(nk) combinations, recalling that |Ni| ≤
O(nk).

2. For each j ≥ i, and v ∈ Nj such that d(u, v) ≤ O(sj), the random radius chosen by (v, j).
Observe that the space around B(u,O(si)) can be cut by net-points in the same or higher
heights that are nearby with respect to their distance scales. As argued in [BGK12], the

number of configurations that are relevant to (u, i) is at most O(k log n)L·O(1)k = n
1
c
·O(1)k ,

where L = O(logs n) and s = (log n)
c

2k2 , where c > 0 is fixed in advance.
3. For each j > i, which cluster at height j (specified by the cluster center vj ∈ Nj) contains

the current cluster at height i. This has O(1)L = n
O( k2

c log logn
)

combinations.

Therefore, the whole dynamic program considers at most n
1
c
·O(1)k clusters. As in [Aro02, Tal04], the

dynamic program looks for the best (m, r)-light tour, where the values of m and r are determined
by Lemmas 4.1, Corollary 4.1 and Lemma 5.3 as follows:

m := O( sk logs n
ε )k and r := (∆

ε )O(k) ·O(α2s)k
2 · logs log n+O(kε )k +O( sε )

k.

As in the case [CE11], we look for a tour that visits every region. We describe the attributes used
to index each entry of a cluster.

Attributes of a Cluster Entry. As in [CE11], each cluster C has a number of entries, each of
which is indexed by the following attributes. Suppose C is at height i and has center u ∈ Ni.

1. A collection I of portal entry/exit points. Recall that (m, r)-lightness implies that |I| ≤ r,
and there are at most m2r combinations.

2. A bit vector of length equal to the number of ambiguous regions that cluster C has. Each
such bit indicates whether the cluster is responsible for the corresponding ambiguous region.
Observe that the information used to identify the cluster C specifies how the space in
B(u,O(si)) is cut at height j, for j ≥ i. Hence, it is sufficient to determine which are
the ambiguous regions for C. By Lemma 6.2, the number of ambiguous regions for a cluster
is at most H := ∆ ·O(αγ )k, and so there are at most 2H combinations.

3. A bit indicating whether the potential site of cluster C is activated.

Filling Out Dynamic Program Entries. The dynamic program entries are computed bottom
up in the fashion described in [CE11, Section 4]. Observe that the information identifying a cluster
contains the relevant configuration of random radii that can determine the cluster’s parent and
siblings. The following result can be derived from [CE11, Theorem 4.1] and compares the running
time of the dynamic program for TSPN with that for TSP.

Theorem 6.1 (Comparing Running Times) With constant probability, the dynamic program
gives an (m, r)-light tour for TSPN of length at most (1+ε)OPT in time TIME(TSP)·2O(HK), where
TIME(TSP) is the time for approximating TSP with dynamic program in Bartal et al. [BGK12], H
is an upper bound on the number of ambiguous regions for each cluster, and K = O(s)k is an upper
bound on the number of children for each cluster.
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Corollary 6.2 (Running Time of DP(V,W )) Fix any c > 0, and suppose an instance (S1,W1)
with large enough n = |W1| is passed to DP in Section 3. Then, with high probability, the
dynamic program DP can return a TSPN tour visiting all regions in W1 with length at most
(1 + ε) · OPT(S1,W1) in time n

1
c
·O(1)k · exp[(∆

ε )O(k) ·O(α)2k2 · o(logc n)].

Proof: Repeating the algorithm in Theorem 6.1 for O(log n) times, we can convert constant
success probability to high probability 1− 1

poly(n) . We show our dynamic program runs in polynomial
time in n, and give the dependence of the running time on the parameters.

Recall that the dynamic program for TSP [BGK12] finds the optimal (m, r)-light tour in hierarchical
decompositions where each cluster has at most K children. The number of clusters (induced by

all relevant configurations of radii) from all heights is at most n
1
c
·O(1)k , and the time to process all

entries of a cluster is (mKr)2Kr.

Recall that K = O(s)k, m := O( sk logs n
ε )k = O(k log2 n

ε )k, and

r := (∆
ε )O(k) ·O(α2s)k

2 · logs log n+O(kε )k +O( sε )
k = (∆

ε )O(k) ·O(α)2k2 · sk2 · logs log n.

For any c > 0, for sufficiently large n, we can set s = (log n)
c

2k2 ≥ 4, and the term sk
2

= (log n)
c
2 can

be used to absorb sub-logarithmic terms O(log log n). Hence, ln(mKR)2KR = (∆
ε )O(k) · O(α)2k2 ·

o(logc n).

Finally, H := ∆ ·O(αγ )k and 1
γ := ∆β·O(α)k

ε log ∆β·O(α)k

ε . Hence, HK = (∆
ε )O(k) ·O(α)2k2 · o(logc n).

Therefore, the total running time is

n
1
c
·O(1)k · (mKR)2KR · 2O(HK) = n

1
c
·O(1)k · exp[(∆

ε )O(k) ·O(α)2k2 · o(logc n)].
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