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using Hölder continuous gradients

C. Cartis∗ N. I. M. Gould† and Ph. L. Toint‡

26 June 2015

Abstract

The worst-case behaviour of a general class of regularization algorithms is considered
in the case where only objective function values and associated gradient vectors are evalu-
ated. Upper bounds are derived on the number of such evaluations that are needed for the
algorithm to produce an approximate first-order critical point whose accuracy is within
a user-defined threshold. The analysis covers the entire range of meaningful powers in
the regularization term as well as in the Hölder exponent for the gradient. The resulting
complexity bounds vary according to the regularization power and the assumed Hölder
exponent, recovering known results when available.

1 Introduction

The complexity analysis of algorithms for smooth, possibly non-convex, unconstrained op-
timization has been the subject of a burgeoning literature over the past few years (see the
contributions by Nesterov [12, 15], Gratton, Sartenaer and Toint [11], Cartis, Gould and Toint
[3, 5, 6, 7], Ueda [17], Ueda and Yamashita[18, 19], Grapiglia, Yuan and Yuan [9, 10], and
Vicente [20], for instance). The present contribution belongs to this active trend and focuses
on the analysis of the worst-case behaviour of regularization methods where only objective
function values and associated gradient vectors are evaluated. It proposes upper bounds on
the number of such evaluations that are needed for the algorithm to produce an approximate
first-order critical point whose accuracy is within a user-defined threshold.

An analysis of this type is already available for the case where the objective function’s
gradient is assumed to be Lipschitz-continuous and where the regularization uses the second or
third power of the norm of the computed step at a given iteration (see the paper by Nesterov
[13] for the former and those of Cartis et al. [5, 6] for both cases). The novelty of the present
approach is to extend the analysis to cover problems whose objective gradients are simply
Hölder continuous and methods that allow weaker regularization than in the Lipschitz case.
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The resulting complexity bounds vary according to the regularization power and the assumed
Hölder exponent, providing a unified view and recovering known results when available.

The paper is organized as follows. Section 2 presents the problem and the class of algo-
rithms considered. The complexity analysis itself is given in Section 3 and the sharpeness of
the obtained result is discussed in Section 4. Section 5 finally provides some comments of the
results.

Notations: In what follows, ‖ · ‖ denotes the Euclidean norm and the T superscript
denotes transposition. If v is a vector in IRn, [v]i denotes its i-th component.

2 The problem and algorithm

We consider the problem of finding an approximate solution of the optimization problem

min
x
f(x) (2.1)

where x ∈ IRn is the vector of optimization variables and f is a function from IRn into IR
that is assumed to be bounded below and continuously differentiable with Hölder continuous

gradients. If we denote g(x)
def
= ∇xf(x), the latter says that the inequality

‖g(x)− g(y)‖ ≤ Lβ‖x− y‖β (2.2)

holds for all x, y ∈ IRn, where Lβ ≥ 0 and β > 0 are constants independent of x and y and
where ‖ · ‖ is the Euclidean norm on IRn. As explained in Lemma 3.1 below, we will assume,
without loss of generality, that β ≤ 1. Problems involving functions with Hölder continuous
gradients are interesting on their own rights, but can also be found in engineering practice,
such as in the design of gas pipelines (the Panhandle law which governs such flows states
that the gas flow rate in a pipeline is a power between 1 and 2 of the difference in squared
pressures, see [16, Section 17], for instance). Such functions also appear in the solution of
certain nonlinear PDE problems (see Bensoussan and Frehse [1]).

In our context, an approximate solution for problem (2.1) is a vector xε such that

‖g(xε)‖ ≤ ε or f(x) ≤ ftarget (2.3)

where ε > 0 is a user-specified accuracy threshold and ftarget is a threshold value – independent
of ε – under which the reduction of the objective function is deemed sufficient by the user.
The first case in (2.3) corresponds to finding an approximate first-order-critical point. If a
suitable value for ftarget is not known, minus infinity can be used instead, in effect making
the second part of (2.3) impossible to satisfy and reducing this condition to its first part.

The class of regularization methods that we consider for computing an x satisfying (2.3)
consists of iterative algorithms where, at each iteration, a local (linear or quadratic) model
of f around the current iterate xk is constructed, regularized by a term using the p-th power
of the norm of the step, and then approximately minimized (in the ”Cauchy point” sense)
to provide a trial step sk. The quality of this step is then measured in order to accept the
resulting trial point xk + sk as the next iterate, or to reject it and adjust the strength of the
regularization.

More specifically, a regularized model of f(xk + s) of the form

mk(xk + s) = f(xk) + gTk s+ 1
2
sTBks+

σk
p
‖s‖p (2.4)
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is considered around the k-th iterate xk, where we have defined gk
def
= g(xk), where Bk is a

symmetric n × n matrix, where σk > 0 is the regularization parameter at iteration k and
where p > 1 is the (iteration independent) user-defined regularization power. In practice, the
matrix Bk may be chosen to provide suitable scaling of the variables (if known), for instance
using quasi-Newton formulae. The model (2.4) is then approximately minimized in the sense
that the trial step sk is computed such that

mk(xk + sk) ≤ mk(xk + sCk ), (2.5)

where the ”Cauchy step” sCk is defined by

sCk = −αCk gk with αCk = arg min
α≥0

mk(xk − αgk). (2.6)

We will choose the regularization power p in (2.4) in order to guarantee that mk is bounded
below and grows at infinity, thereby ensuring that (2.6) is well-defined. In particular, this
imposes the restriction p > 1 and furthermore

p > 2 whenever Bk is allowed to not be positive semi-definite. (2.7)

Notice that (2.5) and (2.6) together imply that

mk(xk + sk) ≤ mk(xk + sCk ) < f(xk) (2.8)

provided g(xk) 6= 0. We may now describe our class of algorithms more formally as Algo-
rithm 2.1 on the following page.

Iterations of Algorithm 2.1 where ρk ≥ η1 are called ”successful” and their index set is
denoted by S. Note that the mechanism of the algorithm ensures that σk > 0 for all k ≥ 0.
Note also that each iteration of the algorithm involves a single evaluation of the objective
function and (for successful iterations only) of its gradient. The evaluation complexity can
therefore be carried out by measuring how many iterations are needed before an approximate
first-order critical point is found or the objective value decreases below the required target.

If p = 2 or p = 3, the model minimization occuring in Step 2 of the algorithm is typically
easy to compute if one is happy with the minimum requirement that (2.5) and (2.6) hold: an
efficient unidimensional linesearch technique using quadratic or cubic interpolation is all that
is needed. Larger model decrease may be obtained by pursuing the minimization beyond the
Cauchy point, and again efficient algorithms are known for quadratic and cubic regularizations
(see Cartis et al. [4] for the latter case, the former being the well known problem of minimizing
a quadratic function). Good methods are also available for more general values of p (in effect
requiring the one-dimensional minimization of a p-th order polynomial) : see Cartis et al. [2]
for the case of regularized least-norm problems with general p ≥ 2 or Gould, Robinson and
Thorne [8] for even more general cases.

3 Worst-case evaluation complexity analysis

In order to analyze the worst-case complexity of Algorithm 2.1, we need to specify our as-
sumptions.
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Algorithm 2.1: A Class of First-Order Adaptive Regularization Methods

Step 0: Initialization. An initial point x0 , a target objective function value ftarget ≤
f(x0) and an initial regularization parameter σ0 > 0 are given, as well as an
accuracy level ε. The constants η1, η2, γ1, γ2 and γ3 are also given and satisfy

0 < η1 ≤ η2 < 1 and 0 < γ1 < 1 < γ2 < γ3. (2.9)

Compute f(x0) and set k = 0.

Step 1: Test for termination. If ‖gk‖ ≤ ε or f(xk) ≤ ftarget, terminate with the
approximate solution xε = xk.

Step 2: Step calculation. Compute the step sk approximately by minimizing the
model (2.4) in the sense that conditions (2.5) and (2.6) hold.

Step 3: Acceptance of the trial point. Compute f(xk + sk) and define

ρk =
f(xk)− f(xk + sk)

mk(xk)−mk(xk + sk)
. (2.10)

If ρk ≥ η1, then define xk+1 = xk + sk and evaluate g(xk+1); otherwise define
xk+1 = xk.

Step 4: Regularization parameter update. Set

σk+1 ∈


[γ1σk, σk] if ρk ≥ η2,
[σk, γ2σk] if ρk ∈ [η1, η2),
[γ2σk, γ3σk] if ρk < η1.

(2.11)

Increment k by one and go to Step 1.

AS.1 The objective function f is continuously differentiable on IRn.

AS.2 g = ∇xf is Hölder continuous in the sense that (2.2) holds for all x, y ∈ IRn and some
constants Lβ ≥ 0 and β > 0.

AS.3 There exists a constant flow (possibly equal to minus infinity) such that, for all x ∈ IRn,

f(x) ≥ flow and f∗
def
= max[flow, ftarget] > −∞

AS.4 There exists constants κgl ≥ 0 and κgu ≥ 1 such that

κgl ≤ ‖g(x)‖ ≤ κgu for all x ∈ IRn such that f∗ ≤ f(x) ≤ f(x0).

AS.5 There exists a constant κB ≥ 0 such that, for all k ≥ 0,

‖Bk‖ ≤ κB.
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AS.1 and AS.2 formalize our framework, as described in the introduction while AS.5 is
standard in similar contexts and avoids possibly infinite curvature of the model, which would
make the regularization irrelevant. Note that the values of Lβ ≥ 0 and β > 0 are often
unknown to the user. AS.3 states that, if no target value is specified by the user, then there
must exist a global lower bound on the objective function’s values to make the minimization
problem meaningful. The role of AS.4 is to take into account that, when f∗ = ftarget > flow,
it may well happen that no single x ∈ IRn satisfies both conditions in (2.3), and thus that the
first termination criterion in (2.3) cannot be satisfied by our minimization algorithm before
the second. We take this possibility into account by allowing κgl > 0, and expresssing the
complexity results in terms of

ε∗
def
= max [ ε, κgl] (3.1)

which is the ”attainable” gradient accuracy for the problem given ftarget. For simplicity of
exposition, we assume for now that ε∗ < 1, but comment on the case ε∗ ≥ 1 at the end of
the paper. We note that AS.4 automatically holds if the set {x ∈ IRn | f∗ ≤ f(x) ≤ f(x0)} is
bounded, but also, as we discuss in Lemma 3.2 below, in the frequent situation where f(x) is
bounded below on the level set {x ∈ IRn | f(x) ≤ f(x0)}.

We start by deriving consequences of our assumptions, which are independent of the
algorithm. The first is intended to explore the consequence of a value of β exceeding 1.

Lemma 3.1 Suppose that AS.1 holds and that AS.2 holds for some β > 1. Then f is
linear in IRn , AS.2 holds for all β > 0 with Lβ = 0 and AS.4 holds with κgl = κgu =
‖g(x0)‖.

Proof. If ei is the i-th vector of the canonical basis and [g(x)]i the i-th component of
the gradient at x, we have, using the Cauchy-Schwarz inequality and the Hölder condition
(2.2), that, for all i = 1, . . . , n and all x ∈ IRn,

|[g(x+ tei)]i − [g(x)]i|
|t|

≤ ‖g(x+ tei)− g(x)‖
‖x+ tei − x‖

≤ Lβ|t|β−1

and β − 1 > 0. Taking the limit when t → 0 gives that the directional derivative of each
[g(·)]i exists and is zero for all i and at all x. Thus the gradient is constant in IRn, f is
linear and AS.2 obviously holds with Lβ = 0 for all β > 0 since ‖g(x)−g(y)‖ is identically
zero for all x, y ∈ IRn. 2

This justifies our choice to restrict our attention to the case where β ∈ (0, 1] for the rest of
our analysis. The second result indicates common circumstances in which AS.4 holds.

Lemma 3.2 Suppose that AS.1 and AS.2 hold, and that there exists a constant flow >
−∞ such that

f(x) ≥ flow (3.2)

for all x ∈ L0
def
= {x ∈ IRn | f(x) ≤ f(x0)} for all x ∈ IRn. Then AS.4 holds.
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Proof. Let x ∈ L0. AS.1, the mean-value theorem, and AS.2 then ensure that, for all
s,

flow ≤ f(x+ s)

≤ f(x) + g(x)T s+

∫ 1

0
(g(x+ ξs)− g(x))T s dξ

≤ f(x) + g(x)T s+
Lβ

1 + β
‖s‖β+1 def

= h(s)

(3.3)

Given that the minimizer of the convex function h(s) is given by

s∗ = − g(x)

L
1/β
β

‖g(x)‖
1−β
β ,

we obtain that

min
s
h(s) = h(s∗) = f(x)−

β L
− 1
β

β

1 + β
‖g(x)‖1+

1
β .

As a consequence, we obtain, using the fact that f(x) ≤ f(x0) since x ∈ L0 and (3.3),
that

flow ≤ f(x0)−
β L
− 1
β

β

1 + β
‖g(x)‖1+

1
β ,

which in turn implies that

‖g(x)‖ ≤

[
Lβ

(
1 +

1

β

)β
(f(x0)− flow)β

] 1
1+β

def
= κgu,

irrespective of the value of ftarget. This and the choice κgl = 0 yield the desired conclusion.
2

Note that (3.2) is indeed very common. For instance, flow = 0 for all nonlinear least-squares
problems. Hence the form of AS.4 should not be viewed as overly restrictive and also allows
for the case where (3.2) fails but the objective function’s gradient remains reasonably well-
behaved. For instance, problems whose objective function is an indefinite quadratic are
allowed provided ftarget > −∞.

We now turn to the analysis of the algorithm’s properties. But, before we start in earnest,
it is useful to introduce some specific notation. In a number of occurrences, we need to
include some of the terms in formulae only if certain conditions apply. We will indicate this
by underbracing the conditional part of the formula, the text below the underbrace then
specifying the relevant condition. For instance we may have an expression of the type

max[a−1︸︷︷︸
a>0

, b, c],

meaning that the maximum should include the first term if and only if a > 0 (making the
term well-defined in this case).

We first derive two bounds of the step length, generalizing Lemma 2.2 in [4].
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Lemma 3.3 We have that, for all k ≥ 0,

‖sk‖ ≤ max

[(
p

σk
‖Bk‖

) 1
p−2

︸ ︷︷ ︸
Bk 6�0

,

(
2p

σk
‖gk‖

) 1
p−1

]
. (3.4)

Moreover,

‖sk‖ ≤
(

2p

σk
‖gk‖

) 1
p−1

(3.5)

provided

σk ≥
(p‖Bk‖)p−1

(2p‖gk‖)p−2
. (3.6)

Proof. Observe first that (2.4), (2.8) and gk 6= 0 ensure that

mk(xk + sk)− f(xk) = gTk sk + 1
2
sTkBksk +

σk
p
‖sk‖p < 0 (3.7)

Assume first that sTkBksk > 0. Then we must have that

gTk sk +
σk
p
‖sk‖p < 0,

and therefore (remembering that σk > 0 and that gTk sk ≥ −‖gk‖ ‖sk‖)

‖sk‖ <
(
p

σk
‖gk‖

) 1
p−1

<

(
2p

σk
‖gk‖

) 1
p−1

. (3.8)

If sTkBksk ≤ 0, we may rewrite (3.7) as[
gTk sk +

σk
2p
‖sk‖p

]
+

[
1
2
sTkBksk +

σk
2p
‖sk‖p

]
< 0

and the left-hand side of this inequality can only be negative if at least one of the bracketed
expressions is negative, giving that

‖sk‖ ≤ max

[(
p

σk
‖Bk‖

) 1
p−2

,

(
2p

σk
‖gk‖

) 1
p−1

]
,

where we also used that gTk sk ≥ −‖gk‖ ‖sk‖ and sTkBksk ≥ −‖Bk‖ ‖sk‖2. Combining this
with (3.8) then yields (3.4). Checking (3.5) subject to (3.6) is straightforward. 2

We now turn to the task of finding a lower bound on the model decrease f(xk)−mk(xk + sk)
resulting from (2.5)-(2.6). The first step is to find a suitable positive lower bound on the step
αCk as defined in (2.6).
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Lemma 3.4 We have that

mk(xk + sCk ) ≤ mk(xk − α∗kgk) < f(xk) (3.9)

where

α∗k
def
= min

[
‖gk‖2

2gTk Bkgk︸ ︷︷ ︸
gTk Bkgk>0

,

(
p

2σk

1

‖gk‖p−2

) 1
p−1

]
(3.10)

Proof. Substituting the definition s = −αgk into (2.4), we obtain from (2.5)-(2.6) that,
for all α > 0,

mk(xk − αgk)− f(xk) = α

(
−‖gk‖2 + 1

2
αgTk Bkgk +

σk
p
αp−1‖gk‖p

)
. (3.11)

Assume first that gTk Bkgk ≤ 0. Then

−‖gk‖2 +
σk
p
αp−1‖gk‖p < 0

for all α ∈ (0, ᾱk] where

ᾱk =

(
p

σk

1

‖gk‖p−2

) 1
p−1

(3.12)

and, because α > 0 and gTk Bkgk ≤ 0, we also obtain from (3.11) that mk(xk−αgk) < f(xk)
for all α ∈ (0, ᾱk]. In particular, this yields that mk(xk − α∗kgk) < f(xk), where

α∗k =

(
p

2σk

1

‖gk‖p−2

) 1
p−1

. (3.13)

Condition (2.6) then ensures that (3.9) holds as desired.

Assume next that gTk Bkgk > 0 and, in this case, define

α∗k
def
= min

[
‖gk‖2

2gTk Bkgk
,

(
p

2σk

1

‖gk‖p−2

) 1
p−1

]

Then it is easy to verify that both bracketed expressions in[
− 1

2
‖gk‖2 + 1

2
α∗kg

T
k Bkgk

]
+
[
− 1

2
‖gk‖2 +

σk
p

(α∗k)
p−1‖gk‖p

]
=

1

α∗k

(
mk(xk−α∗kgk)− f(xk)

)
are negative and thus, because α∗k > 0, thatmk(xk−α∗kgk) < f(xk). The desired conclusion
can now be obtained by invoking (2.6). 2
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We now translate the conclusions of the last lemma in terms of the model reduction at
the Cauchy point and beyond, generalizing Lemma 2.1 in [4].

Lemma 3.5 We have that

f(xk)−mk(xk + sk) ≥
1

4
min

[
‖gk‖4

2gTk Bkgk︸ ︷︷ ︸
gTk Bkgk>0

,

(
p

2σk
‖gk‖p

) 1
p−1

]
. (3.14)

Proof. If gTk Bkgk ≤ 0, substituting (3.13) into (3.11) immediately yields that

f(xk)−mk(xk − α∗kgk) ≥
(

p

2σk

1

‖gk‖p−2

) 1
p−1 [

‖gk‖2 − 1
2
‖gk‖2

]
=

1

2

(
p

2σk
‖gk‖p

) 1
p−1

.

(3.15)
If gTk Bkgk > 0, we have from (3.11) and (3.10) that

f(xk)−mk(xk − α∗kgk)

≥ α∗k

[
‖gk‖2 −

1

2

(
‖gk‖2

2gTk Bkgk

)
gTk Bkgk −

σk
p

(
p

2σk

1

‖gk‖p−2

)
‖gk‖p

]

= min

[
‖gk‖2

2gTk Bkgk
,

(
p

2σk

1

‖gk‖p−2

) 1
p−1

] [
‖gk‖2 − 1

4
‖gk‖2 − 1

2
‖gk‖2

]

=
1

4
min

[
‖gk‖4

2gTk Bkgk
,

(
p

2σk
‖gk‖p

) 1
p−1

]
.

Combining this last inequality with (3.15) and using (2.5) then gives (3.14). 2

The model decrease specified by (3.14) turns out to be useful if the value of σk (appearing at
the denominator of the second term in the min) can be bounded above across all iterations.
We obtain this result in two stages, the first being to determine conditions under which an
iteration must be very successful.
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Lemma 3.6 Suppose that AS.1, AS.2 and AS.5 hold. Then ρk ≥ η2, iteration k is very
successful and σk+1 ≤ σk

(i) if 1 + β ≥ p and

σk ≥ κ1‖gk‖
1+β−p
β (3.16)

where

κ1
def
= 2p

(
Lβ

1 + β

) p−1
β

,

(ii) if 1 + β < p and

σk ≥ κ2 max

[
‖gk‖2−p, ‖gk‖

1+β−p
β

]
(3.17)

where

κ2
def
= max

[
2p

(
2κB

)p−1
, 2

2+β
β p κ

1
β

3 , 8 p κ3

]
(3.18)

with

κ3
def
=

([
Lβ

1 + β
+ 1

2
κB

][
4

1− η2

])p−1
. (3.19)

Proof. First notice that AS.1, the mean-value theorem and (2.4) imply that

f(xk + sk)−mk(xk + sk) =

∫ 1

0
(g(xk + ξsk)− gk)T sk dξ − 1

2
sTkBksk −

σk
p
‖sk‖p.

Using now AS.2, we obtain that

f(xk + sk)−mk(xk + sk) ≤
Lβ

1 + β
‖sk‖1+β − 1

2
sTkBksk −

σk
p
‖sk‖p. (3.20)

Assume first that p ≤ 1+β (which implies that B � 0 because of (2.7)). Then f(xk+sk) ≤
mk(xk + sk) (and thus ρk ≥ 1 > η2) if

σk ≥
pLβ

1 + β
‖sk‖1+β−p,

which, in view of (3.4) and Bk � 0, holds if

σk ≥
pLβ

1 + β

(
2p

σk
‖gk‖

) 1+β−p
p−1

,

that is if

σk ≥ 2p

(
Lβ

1 + β

) p−1
β

‖gk‖
1+β−p
β , (3.21)

proving the first item in the lemma’s statement.
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Assume now that p > 1 + β, in which case Bk is allowed to be indefinite if p > 2 and we
cannot guarantee that sTkBksk ≥ 0 in (3.20). Then ρk ≥ η2 if

rk
def
= f(xk + sk)−mk(xk + sk)− (1− η2)(f(xk)−mk(xk + sk)) < 0.

Note that a lower bound on f(xk)−mk(xk+sk) is given by Lemma 3.5. If we now assume
that, whenever gTk Bkgk > 0,

σk ≥
p

2
(2κB)p−1 ‖gk‖2−p, (3.22)

then we obtain that the minimum occurring in the right-hand side of (3.14) is achieved
by the second term, yielding that

f(xk)−mk(xk + sk) ≥
1

4

(
p

2σk
‖gk‖p

) 1
p−1

.

As a consequence, we obtain from (3.20), the Cauchy-Schwarz inequality and AS.5 that

rk ≤
Lβ

1 + β
‖sk‖1+β + 1

2
κB‖sk‖2 −

1− η2
4

(
p

2σk
‖gk‖p

) 1
p−1

.

If we also assume that, whenever Bk 6� 0, (3.6) also holds, then we may substitute the
upper bound (3.5) in this equation and obtain that rk < 0 if

Lβ
1 + β

(
2p

σk
‖gk‖

) 1+β
p−1

+ 1
2
κB

(
2p

σk
‖gk‖

) 2
p−1

<
1− η2

4

(
p

2σk
‖gk‖p

) 1
p−1

.

Now, if, on one hand, (
2p

σk
‖gk‖

) 1+β
p−1

≥
(

2p

σk
‖gk‖

) 2
p−1

, (3.23)

then we obtain that rk < 0 if(
Lβ

1 + β
+ 1

2
κB

)(
2p

σk
‖gk‖

) 1+β
p−1

<
1− η2

4

(
p

2σk
‖gk‖p

) 1
p−1

.

Taking the (p− 1)-th power and rearranging, we obtain that rk < 0 if

σk ≥ 2
2+β
β p

(
Lβ

1 + β
+ 1

2
κB

) p−1
β
(

4

1− η2

) p−1
β

‖gk‖
1+β−p
β . (3.24)

If, on the other hand, (3.23) fails, then rk < 0 if(
Lβ

1 + β
+ 1

2
κB

)(
2p

σk
‖gk‖

) 2
p−1

<
1− η2

4

(
p

2σk
‖gk‖p

) 1
p−1

.

Once more taking the (p− 1)-th power and rearranging, we obtain that rk < 0 if

σk ≥ 8p

(
Lβ

1 + β
+ 1

2
κB

)p−1( 4

1− η2

)p−1
‖gk‖2−p. (3.25)
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Thus rk < 0 (and therefore ρk ≥ η2) when p > 1 + β provided (3.24) and (3.25) hold
together with (3.6) (when Bk 6� 0) and (3.22) (when gTk Bkgk > 0). This proves the second
item in the lemma’s statement if we note that

(pκB)p−1

(2p)p−2
= 2p

(
1

2
κB

)p−1
< 2p

(
2κB

)p−1
and

p

2
(2κB)p−1 < 2p

(
2κB

)p−1
.

2

Note that the second part of the lemma extends the result of Lemma 3.1 in [5] to general p
and β. We are now in position to prove an iteration-independent upper bound on the value
of σk.

Lemma 3.7 Suppose that AS.1–AS.5 hold and that ε∗ < 1. Then, as long as the
algorithm does not terminate, we have that, for all k ≥ 0,

(i) if 1 + β ≥ p,
σk ≤ κσ1 , (3.26)

where
κσ1

def
= max

[
γ3κ1κ

1+β−p
gu , σ0

]
(3.27)

(ii) if 1 + β < p,

σk ≤ max
[
κσ2 , κ

σ
3 ε

1+β−p
β

∗

]
, (3.28)

where

κσ2
def
= max

[
0, γ3κ2κ

2−p
gu︸ ︷︷ ︸

p≤2

, σ0

]
and κσ3

def
= γ3κ2. (3.29)

with κ1 and κ2 defined in (3.18).

Proof. We again distinguish two cases. Assume first that 1 + β ≥ p, which in turn
implies that p ∈ (1, 2] and thus, in view of (2.7), that Bk � 0 for all k. Then AS.4 and
condition Lemma 3.6 (i) imply that σk+1 ≤ σk provided

σk ≥ κ1κ
1+β−p
β

gu , (3.30)

which is a constant independent of k and ε.

The second case is when 1 + β < p. We first consider the subclass where p ≤ 2 where,
using AS.4,

‖gk‖2−p ≤ κ2−pgu . (3.31)

This bound, part (ii) of Lemma 3.6 and the fact that ‖gk‖ > ε∗ as long as the algorithm
has not terminated then imply that σk+1 ≤ σk provided

σk ≥ κ2 max

[
κ2−pgu︸︷︷︸
p≤2

, ε
1+β−p
β

∗

]
(3.32)
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where we have used that 1 + β − p < 0. Alternatively, if p > 2, part (ii) of Lemma 3.6
and the fact that ‖gk‖ > ε∗ as long as the algorithm has not terminated then give that
σk+1 ≤ σk provided

σk ≥ κ2 max

[
ε2−p∗ , ε

1+β−p
β

∗

]
= κ2ε

1+β−p
β

∗ , (3.33)

where the last equality now results from the fact that , because β ≤ 1,

0 > 2− p ≥ 2− p
β
≥ 1 + β − p

β
.

The proof of (3.26) and (3.28) is then completed by taking into account that the initial
parameter σ0 may exceed the bound given by the right-hand side (3.30) (if 1 + β ≥ p)
or (3.32) (if 1 + β < p), and also that these bounds may just fail by a small margin at
an unsuccessful iteration, resulting in an increase of σk by a factor γ3 before the relevant
bound applies. 2

Having now derived an iteration independent upper bound on σk, we may return to the model
decrease given by Lemma 3.5.

Lemma 3.8 Suppose that AS.1– AS.5 hold and that ε∗ < 1. Then, as long as the
algorithm does not terminate,

• if 1 + β ≥ p, then

f(xk)−m(xk + sk) ≥ κm1 ε
p
p−1
∗ . (3.34)

where

κm1
def
=

1

4
min

[ 1

2κB
,

(
p

2κσ1

) 1
p−1 ]

, (3.35)

• if 1 + β < p, then

f(xk)−m(xk + sk) ≥ κm2 ε
1+ 1

β
∗ . (3.36)

where

κm2
def
=

1

4
min

[ 1

2κB
,

(
p

2κσ2

) 1
p−1 ]

. (3.37)

Proof. Assume first that 1 + β ≥ p. As above, this implies that p ∈ [1, 2] and hence,
because of (2.7), that gTk Bkgk ≥ 0. Taking into account that, in this case,

gTk Bkgk ≤ κB‖gk‖2
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because of AS.5, substituting (3.26) into (3.14) and using (3.26) and the fact that ‖gk‖ ≥ ε∗
as long as the algorithm has not terminated, yields that

f(xk)−mk(xk + sk) ≥ 1
4 min

[
ε2∗

2κB
,

(
p

2κσ1

) 1
p−1

ε
p
p−1
∗

]

≥ 1
4 min

[
1

2κB
,

(
p

2κσ1

) 1
p−1

]
min

(
ε2∗, ε

p
p−1
∗

)
and (3.34) follows since ε∗ < 1 and

p

p− 1
≥ 2 for p ∈ [1, 2].

Consider now the case where 1 + β < p. Substituting now (3.28) into (3.14), using (3.28),
AS.5 and the fact that ‖gk‖ ≥ ε∗ as long as the algorithm has not terminated, we obtain
that

f(xk)−mk(xk + sk) ≥ 1
4 min

[
ε2∗

2κB︸︷︷︸
gTk Bkgk>0

,

 p εp∗

2 max

[
κσ2 , κ

σ
3 ε

1+β−p
β

∗

]


1
p−1 ]

≥ 1
4 min

[
1

2κB
,

(
p

2 max [κσ2 , κ
σ
3 ]

) 1
p−1

]
min

(
ε2∗, ε

p
p−1
∗ , ε

1+ 1
β

∗

)
.

which yields (3.36) since ε∗ < 1 and, for 1 + β < p and β ∈ (0, 1],

1 +
1

β
≥ p

p− 1
and 1 +

1

β
≥ 2.

2

We now recall an important technical lemma which, in effect, gives a bound on the total
number of unsuccessful iterations before iteration k as a function of the number of successful
ones.

Lemma 3.9 The mechanism of Algorithm 2.1 guarantees that, if

σk ≤ σmax, (3.38)

for some σmax > 0, then

k ≤ |Sk|
(

1 +
| log γ1|
log γ2

)
+

1

log γ2
log

(
σmax

σ0

)
. (3.39)

Proof. See [5]. 2



Cartis, Gould, Toint: Complexity of unconstrained optimization of C1,β functions 15

We are now ready to prove our main result on the worst-case complexity of Algorithm 2.1.

Theorem 3.10 Suppose that AS.1–AS.5 hold and that ε∗ defined in (3.1) satisfies ε∗ < 1.

1. If 1 + β ≥ p, there exist constants κsp, κ
a
p and κcp such that, for any ε > 0, Algo-

rithm 2.1 requires at most ⌊
κsp
f(x0)− f∗

ε
p
p−1
∗

⌋
(3.40)

successful iterations (and gradient evaluations),and a total of⌊
κap

f(x0)− f∗

ε
p
p−1
∗

+ κcp

⌋
(3.41)

iterations (and objective function evaluations) before producing an iterate xε such
that ‖g(xε)‖ ≤ ε∗ or f(xε) ≤ ftarget.

2. If 1 + β < p, there exist constants κsβ, κaβ, κbβ and κcβ such that, for all ε > 0,
Algorithm 2.1 requires at most κsβ f(x0)− f∗

ε
1+ 1

β
∗

 (3.42)

successful iterations (and gradient evaluations) and a total ofκaβ f(x0)− f∗

ε
1+ 1

β
∗

+ κbβ | log ε∗|+ κcβ

 (3.43)

iterations (and objective function evaluations) before producing an iterate xε such
that ‖g(xε)‖ ≤ ε∗ or f(xε) ≤ ftarget.

In the above statements the constants are given by

κsp = κsβ
def
=

1

η1κm
, (3.44)

κap
def
=

1

η1κm

(
1 +
| log γ1|
log γ2

)
, κcp

def
=

1

log γ2
log

(
κσ1
σ0

)
, (3.45)

κaβ
def
=

1

η1κm

(
1 +
| log γ1|
log γ2

)
, κbβ

def
=

p− β − 1

β log γ2
(3.46)

and

κcβ
def
=

1

log γ2

(
log (max[1, κσ2 , κ

σ
3 ]) + | log(σ0)|

)
, (3.47)
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where

κ1
def
= 2p

(
Lβ

1 + β

) p−1
β

, κ2
def
= max

[
2p

(
2κB

)p−1
, 2

2+β
β p κ

1
β

3 , 8 p κ3

]
(3.48)

with

κ3
def
=

([
Lβ

1 + β
+ 1

2
κB

][
4

1− η2

])p−1
, (3.49)

κσ1
def
= γ3κ1κ

1+β−p
gu , κσ2

def
= γ3 max

[
0, κ2κ

2−p
gu︸ ︷︷ ︸

p≤2

]
, κσ2

def
= max γ3κ2. (3.50)

and

κm1
def
=

1

4
min

[ 1

2κB
,

(
p

2κσ1

) 1
p−1 ]

and κm2
def
=

1

4
min

[ 1

2κB
,

(
p

2κσ2

) 1
p−1 ]

(3.51)

Proof. Consider first the case where 1 + β ≥ p. We then deduce from AS.3, the
definition of a successful iteration and (3.34) in Lemma 3.8, that, as long as the algorithm
has not terminated,

f(x0)− f∗ ≥ f(x0)− f(xk+1)

=
∑
j∈Sk

[
f(xj)− f(xj + sj)

]
≥ η1

∑
j∈Sk

[
f(xj)−mj(xj + sj)

]
> η1 κm ε

p
p−1
∗ |Sk|,

(3.52)

where |Sk| is the cardinality of Sk
def
= {j ∈ S | j ≤ k}, that is the number of successful

iterations up to iteration k. This provides an upper bound on |Sk| which is independent of
k and ε∗, from which we obtain the bound (3.40) with (3.44). Calling now upon Lemma 3.9
and (3.26), we deduce that the total number of iterations (and function evaluations) cannot
exceed

κsp
f(x0)− f∗

ε
p
p−1
∗

(
1 +
| log γ1|
log γ2

)
+

1

log γ2
log

(
κσ1
σ0

)
,

which then gives the bound (3.41) with (3.45).

The proof for the case where 1+β < p is derived in a manner entirely similar to that used

for the case where 1 +β ≥ p , replacing ε
p
p−1 by ε

1+ 1
β in (3.52) since (3.34) is used instead

of (3.36), and also noting that, when using (3.28) instead of (3.26) in Lemma 3.9,

log

max
[
κσ2 , κ

σ
3 ε

1+β−p
β

∗

]
σ0

 ≤ ∣∣∣∣1 + β − p
β

∣∣∣∣ | log ε∗|+ log(max[1, κσ2 , κ
σ
3 ]) + | log(σ0)|.
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We may thus deduce that (3.42) and (3.43) hold with (3.46)–(3.51). 2

A close look at the expressions of the constants in (3.44)-(3.51) reveals that the global upper
bound on the gradient norm, κgu, only occurs in the case where p < 2. Therefore, AS.4 is
only needed in this case since the existence of κgl ≥ 0 is always ensured by the non-negativity
of ‖g(x)‖.

4 Sharpness

We now show that the bound specified by part (ii) of Theorem 3.10 is essentially sharp in
the sense that we exhibit a class of one-dimensional examples where the number of iterations
necessary to produce an approximate first-order critical point is arbitrarily close to the the-
orem’s bound(1). To achieve this goal, we first establish sequences of iterates {xk}, function
values {f(xk)}, gradient values {gk} and regularization parameter values {σk} which can be
generated by Algorithm 2.1 and such that the gradient values converge to zero sufficiently
slowly to attain the desired lower bound on the number of iterations (and evaluations). Once
these are defined, we construct a function f(x) which interpolates these function and gradi-
ent values and finally prove that all our assumptions are satisfied. Because the derivation
of the complexity bound involves an increasing sequence of regularization parameters {σk},
our example is unfortunately somewhat complicated because it has to include both success-
ful and unsuccessful iterations. We choose to construct it such that all even iterations are
unsuccessful and all odd ones are successful.

Consider the gradient sequence defined, for p > 1 + β, any arbitrarily small τ ∈ (0, 1), a
positive integer q and all k ≥ 0, by

g2k = −
(

1

k + q

) β
1+β

+τ

, g2k+1 = g2k. (4.1)

and observe that the sequence of gradient norms {‖gk‖} is non-increasing for any choice of q.
Assume first that q = 1. This definition implies that

|g2k+3|
|g2k+1|

→ 1 (4.2)

when k tends to infinity, and thus that

ω2k−1
def
=

(
|g2k+1|

1
β

|g2k+1|
1
β + 1

2
|g2k+3|

1
β

)p−1(
|g2k|

1
β

|g2k−1|
1
β

)1+β−p

→
(

2

3

)p−1
. (4.3)

Hence, there exists an integer ` ≥ 2 such that

ω2k−1 ∈

[
1

2

(
2

3

)p−1
,

(
5

6

)p−1]
⊂ (0, 1) for k ≥ `. (4.4)

We now (re)define q in (4.1) by setting q = `, in effect shifting the {k} sequence by ` such
that (4.2)-(4.4) holds with (4.1) for the complete shifted sequence. Note that q only depends

(1)Whether this can also be achieved for part (i) of the theorem is still unknown at this point.
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on β and τ and is independent of ε. Observe also that the rate of (monotonic) convergence
of the sequence {gk} to zero ensures that, for any ε ∈ (0, 1), |gk| ≤ ε only for k larger than

2(bε−
1+β

β+τ(1+β) c − q).
In order to ensure the proper rate of increase of σk, we choose to set

σ2k+1 = |g2k+1|
1+β−p
β (4.5)

for all k ≥ 0 (remembering that odd iterations are successful), while the value of σ2k is still to
be determined within the constraints of (2.11). Associated with the sequence {gk}, we define
the sequence of iterates {xk} by

x0 = x1 = 0, x2k+2 = x2k+1 + s2k+1 = x2k+3 (k ≥ 0).

In this definition, the step s2k+1 at a successful iterations is computed by minimizing the
model (2.4) with B2k+1 = 0, that is

m2k+1(x2k+1 + s) = f(x2k+1) + g2k+1 s+
σ2k+1

p
|s|p,

over s, where the function value f(x2k+1) is still to be defined. A simple calculation shows
that

s2k+1 =

(
|g2k+1|
σ2k+1

) 1
p−1

= |g2k+1|
1
β ≤ |g0|

1
β < 1, (4.6)

where we substituted (4.5) to obtain the last equality, and that

∆m2k+1
def
= m2k+1(x2k+1)−m2k+1(x2k+1 + s2k+1)

=
(

1− 1
p

)
|g2k+1|

1+β
β

=
(

1− 1
p

)
|g2k+1s2k+1|.

(4.7)

Similarly, we also define the step s2k as the minimizer of m2k(x2k + s) with B2k = 0, yielding

s2k =

(
|g2k|
σ2k

) 1
p−1

(4.8)

and

∆m2k
def
= m2k(x2k)−m2k(x2k + s2k) =

(
1− 1

p

)(
|g2k|p

σ2k

) 1
p−1

=

(
1− 1

p

)
|g2ks2k|. (4.9)

The sequence of function values is then defined by

f(x0) = f(x1) = 0, f(x2k+2) = m2k+1(x2k+1 + s2k+1) = f(x2k+3) (k ≥ 0), (4.10)

where the second part guarantees the very successful nature of iteration 2k + 1. We observe
that, for k ≥ 0,

f(x2k)− f(x2k+1) = 0
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since iteration 2k is unsuccessful, and

f(x2k+1)− f(x2k+2) = ∆m2k+1 =

(
1− 1

p

)
|g2k+1|

1+β
β , (4.11)

yielding that, for every k ≥ 0, that

f(x0)− f(x2k+2) =
k∑
j=0

[f(x2j+1)− f(x2j+2)]

=
(

1− 1
p

) k∑
j=0

|g2j+1|
1+β
β

=
(

1− 1
p

) k∑
j=0

(
1

j + q

)1+ 1+β
β
τ

.

Hence the sequence {f(xk)} is bounded below by

f∞
def
=

(
1− 1

p

)−ζ (1 +
1 + β

β
τ

)
+

q−1∑
j=1

(
1

j

)1+ 1+β
β
τ
 > −∞, (4.12)

where ζ(·) is the Riemann zeta function. We conclude the definition of the sequences involved
in our example by selecting σ2k in order to impose that, for all k ≥ 0,

s2k = s2k+1 + 1
2
s2k+3 (4.13)

where 1
2
∈ [ 1

2
, 1) is chosen as when defining q above. Using (4.8), this is equivalent to asking

that
|g2k|
σ2k

= (s2k+1 + 1
2
s2k+3)

p−1 ,

which, in view of (4.5), is equivalent to requiring that

σ2k
σ2k−1

=
|g2k|

|g2k−1|
1+β−p
β

(
1

s2k+1 + 1
2
s2k+3

)p−1
.

If we now take (4.6), (4.3) and (4.4) into account, this amounts to imposing that

σ2k
σ2k−1

= ω2k−1 ∈

[
1

2

(
2

3

)p−1
,

(
5

6

)p−1]
,

therefore satisfying (2.11) at successful iterations for a choice of γ1 ≤ 1
2

(
2
3

)p−1
. (In order to

start the recursion, we (arbitrarily) define σ−1 by (4.5) with k = −1 and g−1 = −[1/(q −
1)]

β
1+β

+τ
.) We also observe that, for large enough k,

σ2k+1

σ2k
=
|g2k+1|

1+β−p
β

ω2k−1σ2k−1
=

(
s2k+1 + 1

2
s2k+3

s2k+1

)p−1
∈

[(
s1 + 1

2
s3

s1

)p−1
,

(
3

2

)p−1]
(4.14)

and (2.11) therefore also holds at unsuccessful iterations. As a consequence of this somewhat
lengthy description, we may therefore deduce that the sequences {xk}, {gk} {σk} and {f(xk)}
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may be generated by Algorithm 2.1 provided only that iteration 2k is indeed unsuccessful,
that is if

f(x2k)− f(x2k + s2k) < η1∆m2k,

where f(x2k+s2k) is the still undefined value of our putative objective function at x2k+s2k =
x2k+3+ 1

2
s2k+3. This condition is obviously satisfied if we also impose that f(x2k+3+ 1

2
s2k+3) =

f2k2k+3, where

f2k2k+3
def
= max[ f(x2k+3), f(x2k)− 0.99 η1∆m2k, f(x2k+4)− 1

2
g2k+4s2k+3 ]. (4.15)

Note that this last condition ensures that

f(x2k+2) = f(x2k+3) ≤ f2k2k+3. (4.16)

and also, since f(x2k) = f(x2k+1) > f(x2k+3), that

f2k2k+3 ≥ f(x2k+4)− 1
2
g2k+4s2k+3 ⇒ f2k2k+3 ∈ [f(x2k+3), f(x2k+1)]. (4.17)

We now turn to the definition of the objective function f(x) which must interpolate
function and gradient values at the iterates. We start by noting that, for arbitrary a > 0 and
s > 0, function values fa and fb and gradient values ga and gb, it is possible to construct a
function

fas(t) = fa + gat+ cas [sin(φast)]
1+β (4.18)

on the interval [a, a + s] where the parameters cas and φas ∈ (0, π] can be determined to
ensure that

fas(0) = fa, gas(0) = ga, fa(s) = fb and gas(s) = gb.

Indeed, since
gas(t) = ga + cas(1 + β)φas [sin(φast)]

β cos(φast), (4.19)

we deduce that
gb − ga = cas(1 + β)φas [sin(φass)]

β cos(φass), (4.20)

which may substitute in (4.18) to obtain that

fb − fa = gas+
(gb − ga) sin(φass)

(1 + β)φas cos(φass)
,

and hence conclude that φass is the smallest positive root θas of the nonlinear equation

sin(θ)

θ
= νas cos(θ), where νas = (1 + β)

fb − fa − gas
(gb − ga)s

. (4.21)

It is easy to check that such a root always exist in (0, π2 ] if νas > 1. Given φas, or, equivalently,
θas = φass, we also obtain that

cas =
fb − fa − gas

[sin(θas)]
1+β

.

We now use this interpolation technique on each of the sequence of intervals specified in
Table 4.2. Observe that the function is interpolated for every successful step in two pieces with
an intermediate point corresponding (for all iterations beyond the first) to the penultimate
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unsuccessful trial point, where condition (4.15) is imposed as well as a zero gradient. We also
choose (arbitrarily)

f−21 = |g−1|(1+β)/β − 0.99
3η1
2

(
|g−1|p

σ−1

)1/(p−1)

(corresponding to a fictitious unsuccessful iteration of index k = −2 with g−2 = g−1 and
σ−2 = σ−1/(1 + 1

2
)p−1).

Iteration Interpolation interval Interpolated values
k [a, a+ s] fa ga fb gb
1 [x1, x1 + 1

2
s1] f(x0) = f(x1) g1 f−21 0

1 [x1 + 1
2
s1, x2] 0 0 f(x2) g2

3 [x3, x3 + 1
2
s3] f(x2) = f(x3) g3 f03 0

3 [x3 + 1
2
s3, x4] f03 0 f(x4) g4

5 [x5, x5 + 1
2
s5] f(x4) = f(x5) g5 f25 0

5 [x5 + 1
2
s5, x6] f25 0 f(x6) g6

...
...

...
...

...
...

2k + 1 [x2k+1, x2k+1 + 1
2
s2k+1] f(x2k) = f(x2k+1) g2k+1 f2k−22k+1 0

2k + 1 [x2k+1 + 1
2
s2k+1, x2k+2] f2k−22k+1 0 f(x2k+2) g2k+2

...
...

...
...

...
...

Table 4.2: Interpolation conditions for successful iterations

For the function (4.18) and its gradient (4.19) to be well-defined, we still need that νas > 1
for each interpolation interval. Consider the first such interval at iteration 2k+ 1 (k ≥ 0) and
ν12k+1, the value of νas corresponding to that interval. Using (4.16), we obtain that

ν12k+1 = (1 + β)
f2k−12k+1 − f(x2k+1) + 1

2
|g2k+1s2k+1|

1
2
|g2k+1s2k+1|

≥ 1 + β > 1 (4.22)

as desired. For the second interpolation interval at iteration 2k + 1, we have that

ν22k+1 = (1 + β)
f2k−22k+1 − f(x2k+2)

(1− 1
2
)|g2k+2s2k+1|

≥ (1 + β)
1
2
|g2k+2s2k+1|

1
2
|g2k+2s2k+1|

= 1 + β > 1 (4.23)

where we have used (4.15) to derive the inequality. We therefore obtain from (4.22) and (4.23)
that, for all k ≥ 0, the desired roots θ12k+1 and θ22k+1 exist and satisfy

θ12k+1 ≤
π

2
and θ22k+1 ≤

π

2
. (4.24)

As a consequence sin(φi2k+1t) is positive on each interpolation interval (i = 1, 2), and our
interpolating function and its gradient are also well-defined for each interval. Moreover, since
both ν12k+1 and ν22k+1 are bounded below by 1 + β, we obtain that there is a constant κθ > 0
such that

θ12k+1 ∈ [κθ,
π

2
] and θ22k+1 ∈ [κθ,

π

2
], (4.25)



Cartis, Gould, Toint: Complexity of unconstrained optimization of C1,β functions 22

and thus that there exists a constant κsin > 0 independent of k such that

sin(θ12k+1) ≥ κsin and sin(θ22k+1) ≥ κsin. (4.26)

Figure 4.1 shows the shape of the resulting function and Figure 4.2 the shape of its
gradient, whose construction implies that AS.1 holds. Figure 4.1 also shows the shape of the
models m2k(x2k + s) on the intervals [x2k, x2k + s2k] = [x2k, x2k+3 + 1

2
s2k+3] (dashed lines),

illustrating that the model is a bad predictor of the objective function value at the point
x2k + s2k, causing the unsuccessful nature of iteration 2k. Note that f(x) may be extended
smoothly into a decreasing function for x < 0.

0 0.5 1 1.5 2 2.5
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Figure 4.1: The shape of f(x) for the first 8 successful iterations and the shape of the model
at each unsuccessful iteration (dashed) for β = 0.45, p = 2.1, τ = 0.001, η1 = 0.6 and q = 3

As can be checked in these figures, f(x) is nonconvex and continuously differentiable.
The form (4.19) implies that g(x) varies very quickly at the beginning of each interpolation
interval, which is visible in Figure 4.2.

We now investigate the properties of our interpolant further, and observe that, because
of (4.11), (4.17), (4.7), the fact that f(x2k) = f(x2k+1) and the inequality |g2k+2s2k+1| ≤
|g2k−1s2k−1|,

f2k−22k+1 − f(x2k+1) ≤ max[f(x2k−1)− f(x2k+1), f(x2k+2)− 1
2
g2k+2s2k+1 − f(x2k+1) ]

< max[ ∆m2k−1, 1
2
|g2k+2s2k+1| ]

< max[ |g2k−1s2k−1|, |g2k+2s2k+1| ]

x < |g2k−1s2k−1|
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Figure 4.2: The shape of g(x) for the first 8 successful iterations for β = 0.45, p = 2.1,
τ = 0.001, η1 = 0.6 and q = 3

and hence that

ν12k+1 = (1 + β)
f2k−22k+1 − f(x2k+1) + 1

2
|g2k+1s2k+1|

1
2
|g2k+1s2k+1|

≤ 2(1 + β)
|g2k+1s2k+1|

(
|g2k−1s2k−1|+ 1

2
|g2k+1s2k+1|

)
<

2(1 + β)
|g2k+1s2k+1|

(
2|g2k−1s2k−1|

)
= 4(1 + β)

∣∣∣g2k−1g2k+1

∣∣∣ 1+ββ
→ 4(1 + β)

(4.27)

where we used (4.2). Similarly, using (4.17), (4.10), (4.7), (4.11) and (4.1) in succession, we
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obtain that

ν22k+1 = (1 + β)
f2k−22k+1 − f(x2k+2)

1
2
|g2k+2s2k+1|

≤ 2(1 + β) max[ f(x2k−1)− f(x2k+2), 1
2
|g2k+2s2k+1| ]

|g2k+2s2k+1|

≤ 2(1 + β) max[ ∆m2k−1 + ∆m2k+1, 1
2
|g2k+2s2k+1| ]

|g2k+2s2k+1|

≤ 2(1 + β) max

[
2∆m2k−1
|g2k+2s2k+1|

, 1
2

]
= 2(1 + β) max

[
2
(

1− 1
p

)
∆m2k−1
∆m2k+1

|g2k+1s2k+1|
|g2k+2s2k+1|

, 1
2

]
= 2(1 + β) max

[
2
(

1− 1
p

) ∣∣∣g2k−1g2k+1

∣∣∣ 1+ββ |g2k+1s2k+1|
|g2k+2s2k+1|

, 1
2

]
= 2(1 + β) max

[
2
(

1− 1
p

) ∣∣∣g2k−1g2k+1

∣∣∣ 1+ββ |g2k+1|
|g2k+2|

, 1
2

]
→ 2(1 + β) max

[
2
(

1− 1
p

)
, 1
2

]
.

(4.28)

We may therefore deduce from (4.27) and (4.28) that there exists a constant κν > 0 indepen-
dent of k such that, for all k ≥ 0,

ν12k+1 ≤ κν and ν22k+1 ≤ κν .

As a consequence, and since the nonlinear equation in (4.21) can be written in the form

tan(θ) = νasθ,

we obtain that θas is uniformly bounded away from π
2 and hence that there exists a constant

κcos > 0 such that
cos(θas) = cos(φass) ≥ κcos (4.29)

for every interpolation interval.
Consider now 0 ≤ t1 < t2 ≤ s for a given interpolation interval [a, a + s]. Because of

(4.24), we then have that

|g(t2)− g(t1)| = |cas|(1 + β)φas
{∣∣[sin(φast2)]

β cos(φast2)− [sin(φast1)]
β cos(φast1)

∣∣}
≤ |cas|(1 + β)φas

{∣∣[sin(φast2)]
β cos(φast2)− [sin(φast2)]

β cos(φast1)
∣∣

+
∣∣[sin(φast2)]

β cos(φast1)− [sin(φast1)]
β cos(φast1)

∣∣}
= |cas|(1 + β)φas

{∣∣[sin(φast2)]
β
∣∣ |cos(φast2)− cos(φast1)|

+ |cos(φast1)|
∣∣[sin(φast2)]

β − [sin(φast1)]
β
∣∣}

≤ |cas|(1 + β)φas
{
|cos(φast2)− cos(φast1)|+

∣∣[sin(φast2)]
β − [sin(φast1)]

β
∣∣}

Now, using the mean-value theorem,

|cos(φast2)− cos(φast1)| = |sin(ξ)| φas|t2 − t1| ≤
(π

2

)1−β
φβas|t2 − t1|β (4.30)
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where ξ ∈ (φast1, φast2) and where we have used the fact

φas|t2 − t1| =
π

2

(
2φas|t2 − t1|

π

)
≤ π

2

(
2φas|t2 − t1|

π

)β
.

because φas|t2 − t1| ≤ φass ≤ π
2 . Moreover, using the inequality

|uβ − vβ| ≤ |u− v|β for all u, v ∈ [0, 1], (4.31)

and the fact that

sin

(
φas
2

(t2 − t1)
)
<
φas
2

(t2 − t1)

since φas(t2 − t1) ≤ φass ≤ π
2 , we deduce that∣∣[sin(φast2)]

β − [sin(φast1)]
β
∣∣ ≤ |sin(φast2)− sin(φast1)|β

= 2β
∣∣∣cos

(
φas
2 (t2 + t1)

)∣∣∣β ∣∣∣sin(φas2 (t2 − t1)
)∣∣∣β

≤ 2β
∣∣∣sin(φas2 (t2 − t1)

)∣∣∣β
< φβas|t2 − t1|β.

Thus, combining this inequality with (4.30), we obtain that

|g(t2)− g(t1)| ≤
[(π

2

)1−β
+ 1

]
(1 + β) |cas|φ1+βas |t2 − t1|β. (4.32)

But we know from (4.6) that, for all k ≥ 0,

|g2k+1| = sβ2k+1 and |g2k+2| = |g2k+3| = sβ2k+1

|g2k+3|
|g2k+1|

≤ sβ2k+1.

As a consequence, we deduce using Table 4.2 that, for every interpolation interval,

|gb − ga| ≤ 2βsβ

because the length s of each interval is equal to half that of the corresponding successful step.
Using this inequality and (4.20), we obtain that

|cas|φ1+βas ≤ φβas|gb − ga|
(1 + β)[sin(θs)]

β cos(θs)

≤ 2βφβass
β

(1 + β)[sin(θs)]
β cos(θs)

≤
(
π
2

)β 2β

(1 + β)[κsin]βκcos

(4.33)

where we used the equality φass = θas, (4.24), (4.26), and (4.29) to derive the last inequality.
Hence, we deduce from (4.32) that, for x and y belonging to the same interpolation interval,

|g(x)− g(y)| ≤
[
π

2
+
(π

2

)β] 2β

[κsin]βκcos
|x− y|β def

= 1
2
Lβ|x− y|β. (4.34)
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Consider now 0 ≤ x < y where x and y belong to different interpolation intervals and
assume first that y belongs to the interpolation interval following that containing x. Then, if
z ∈ (x, y) is the junction point between the two successive intervals,

|g(x)− g(y)| ≤ |g(x)− g(z)|+ |g(z)− g(y)|
≤ 1

2
Lβ|x− z|β + 1

2
Lβ|z − y|β

≤ Lβ|x− y|β
(4.35)

where we use the triangle inequality, (4.34) on each interval, and the fact that uβ + vβ ≤
2(u+ v)β for all u, v ∈ [0, 1].

Consider finally 0 ≤ x < y where x and y belong to different interpolation intervals, where
y does not belong to the interval following that containing x. Let us denote by rx the smallest
root of g larger than x and by ry the largest root smaller than y. Note that the existence of
these roots is guaranteed by the construction of the interpolating function f which ensures
that stationary point occurs at the junction between to two interpolation intervals covering
a single successful step. It is easy to verify that x and rx must belong either to the same
interpolation interval or to two successive intervals. The same is true of ry and y, yielding
that

|x− rx| ≤ 1 and |ry − y| ≤ 1. (4.36)

Moreover, using either (4.34) or (4.35), we have that

|g(x)− g(rx)| ≤ Lβ|x− ra|β and |g(ry)− g(y)| ≤ Lβ|rb − y|β

and we may deduce, using (4.36) and (4.31), that

|g(x)− g(y)| ≤ |g(x)− g(rx)|+ |g(ry)− g(y)|
≤ Lβ

(
(rx − x)β + (y − ry)β

)
≤ Lβ(rx − x+ y − ry)β

≤ Lβ|y − x|β

(4.37)

It then results from (4.34), (4.35) and (4.37) that g(x) is Hölder continuous and AS.2 is
satisfied in our example. This is illustrated in Figure 4.3.

We also note that, because of (4.25), the definition of θas, the fact that 1
2
< 1, (4.6) and

the decreasing nature of {‖gk‖}, we have that, for every interpolation interval,

φβas >
(κθ
s

)β
≥

κβθ
|ga|
≥

κβθ
|g0|

.

Hence (4.19) and (4.33) ensure that g(x) is bounded above for x ≥ 0, which, together with the
inequalities f(xk) ≥ f∞ > −∞, sk ≤ 1 and the mean-value theorem applied in each interval,
guarantees that there exists a constant flow > −∞ such that f(x) ≥ flow for all x ≥ 0. Thus
AS.3 holds with ftarget = −∞ and f∗ = flow. Moreover, AS.4 trivially follows with κgl = 0,
κgu = 1 and ε∗ = ε. AS.5 is satisfied by construction with κB = 0 since we set Bk = 0 for all
k ≥ 0.

We therefore conclude that all our assumptions hold and that our example is valid, in that
Algorithm 2.1 applied on f(x) with arbitrarily small τ ∈ (0, 1) in the case where p > 1 + β
needs at least

2(bε−
1+β

β+τ(1+β) c − q)
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Figure 4.3: The shape of the function |g(x) − g(y)|/|x − y|β for the interval spanned by the
first 8 successful iterations for β = 0.45, p = 2.1, τ = 0.001, η1 = 0.6 and q = 3

iterations (and function evaluations) to obtain an iterate xε such that ‖g(xε)‖ ≤ ε. Since q is
independent of ε, this shows that the complexity bound stated by part (ii) of Theorem 3.10
is essentially sharp.

5 Discussion

Which power of ε∗ < 1 dominates in the complexity bounds of Theorem 3.10 is illustrated in
Figure 5.4 as a function of p and β. It is interesting to note that the worst-case evaluation
complexity of our general class of regularized method does depend on the relative values of p

and β. Observe also that, when ε∗ < 1, ε
− p
p−1 > ε

−(1+ 1
β
)

in the triangle for which 1 + β ≥ p
and p ≤ 2.

As can be seen in this figure, there is little incentive for a user to choose a regularization
power p < 2, at least from the worst-case complexity point of view (not to mention the need
of AS.4). It is also interesting to observe that, if p ≥ 2, the complexity no longer depends
on the precise value of p, but only depends on the smoothness of the objective function as
measured by the Hölder exponent β (whose knowledge is not required a priori). In that sense,
the algorithm adapts itself to the problem at hand without any further user tuning (see also
the “universal” gradient methods by Nesterov for the convex case [14]).

If ε∗ ≥ 1 (that is if either ε ≥ 1 or κgl ≥ 1), the results above simplify because negative
powers of ε∗ are bounded above by one. As a consequence, all terms involving such powers
(which we kept explicit in the analysis for ε∗ < 1) are absorbed in the constants, and the
complexity bounds of Theorem 3.10 essentially reduce to multiples of the difference f(x0)−f∗.

Note also that Lemma 3.1 allows us to equate β > 1 with β = 1 and κgl = ‖g(x0)‖. In
this case, either ε∗ = ε > ‖g(x0)‖ and Algorithm 2.1 stops at iteration 0, or ε∗ = ‖g(x0)‖ and
the bounds of Theorem 3.10 become independent of ε, resulting in a bound on the number of
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Figure 5.4: Worst-case evaluation complexity as a function of β and p in the cases where
ε∗ < 1

iterations and evaluations directly proportional to f(x0)− ftarget, as expected.
We conclude by observing that the theory presented above recovers known results (see [5]

for the case where p = 3 and β = 1 and [13, 6] for the case where p = 2 and β = 1); these
cases correspond to the thick dots in Figure 5.4.
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