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Leon Fouché and Palitha Welgama
Rio Tinto Technical Services, Perth, Australia

In the surface mining industry, the Equipment Selection Problem involves choosing an appropriate fleet of

trucks and loaders such that the long-term mine plan can be satisfied. An important characteristic for multi-

location (multi-location and multi-dumpsite) mines is that the underlying problem is a multi-commodity

flow problem. The problem is therefore at least as difficult as the fixed-charge, capacitated multi-commodity

flow problem. For long-term schedules it is useful to consider both the purchase and salvage of the equipment,

since equipment may be superseded, and there is the possibility of used pre-existing equipment. This may

also lead to heterogeneous fleets and arising compatibility considerations. In this paper, we consider two

case studies provided by our industry partner. We develop a mixed-integer linear programming model for

heterogeneous equipment selection in a surface mine with multiple locations and a multiple period schedule.

Encoded in the solution is an allocation scheme in addition to a purchase and salvage policy. We develop

a solution approach, including variable preprocessing, to tackle this large-scale problem. We illustrate the

computational effectiveness of the resulting model on the two case studies for large sets of equipment and

long-term schedule scenarios.

1. Introduction

The selection of an appropriate fleet of trucks and loaders to operate in a surface mine is an

important problem for the mining industry due to the large cost of purchasing and operating the

equipment over many years. A poor choice in the truck and loader fleet, in either types or fleet size,

can lead to unnecessary expense and, in some cases, the inability to satisfy capacity constraints.

As a problem in itself, equipment selection brings together the selection, purchase, replacement

and allocation problems into one optimization problem. It becomes more interesting still when

we consider a mine with multiple locations or routes, where the compatibility of the interacting

fleets is enforced. Although the purchase of equipment is made on a strategic (yearly) time scale,

the equipment must be capable of fulfilling production requirements on a tactical (daily) time
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Figure 1 A multiple-location mine model with 2 loading locations, 2 dump-sites and 3 truck routes.

scale. This mismatch in time fidelity can lead to poorly dimensioned models, which in turn are

computationally cumbersome. The additional dimension of the multiple routes and locations also

exacerbates what is already a large-scale problem.

In this paper, we address this practical optimization problem of choosing equipment for a surface

mine plan. In particular, we wish to select a compatible fleet of trucks and loaders to move mined

materials between multiple mining and dumping sites, at minimum cost. As far as we know, there

has been no literature that addresses multiple period schedules or multiple locations or allows

for pre-existing equipment (and subsequent heterogeneous fleets). Multiple periods and locations

increase the dimension of the problem, but it is the pre-existing equipment that requires compatible

fleet constraints that makes the problem difficult. We seek to address these deficiencies in the

literature. The main features of our model approach are:

• the consideration of a multiple location and multiple period mining plan;

• the consideration of heterogeneous fleets and subsequent compatibility requirements;

• simultaneously optimizing the purchase and salvage policy, and equipment scheduling policy

(i.e. allocation policy);

• providing correction for discretization error;

• variable preprocessing based on a ‘staircase’ structure in the solution;

• development of solving approaches that help to reduce the total number of constraints in the

model;

• illustration of computation effectiveness in a real-world context through two case studies.

In the remainder of this section, we will outline some important background to the equipment

selection problem and discuss relevant related literature.

A typical surface mine may have several mining locations, several dump-sites or several routes

from a location to a dump-site, as illustrated in Figure 1. Different mining locations may have
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capacity requirements that affect the type of loader selected to excavate the material, and conse-

quently alter the rate of production at that site. Along the routes the trucks may alternate between

the mill and dump sites; the routes themselves may also vary significantly in terms of time required

to perform a full cycle. Furthermore, the consideration of multiple locations or routes introduces

the need to allocate equipment to locations. Since the movement of equipment around a network

must be consistent, this feature leads to an underlying problem which can be described as a multi-

commodity flow problem (4). Purchase may occur in any period. The problem is therefore at least

as difficult as the fixed-charge, capacitated multi-commodity flow problem. To see this, consider

Figure 2. In a multi-commodity flow problem defined on a network, there may be several sources,

here s, and several sinks, here t. If we consider trucks moving along routes between sources and sinks

in a single commodity context, then this would be equivalent to fixing homogeneous equipment

to routes. However, in a multi-commodity flow problem, there may also be more than one type of

commodity, or flow, leaving from any source. Furthermore, the flow can split at a node. Carrying

the analogue to equipment selection, this is equivalent to allocating heterogeneous truck flow on

routes, where the flow may separate and switch to other sinks or sources. We obtain fixed-charge

and capacitated from charging a fixed price for equipment at the time of purchase, and limiting the

number of equipment we may use in flow by fleetsize.

s t

t

t

s

s

Figure 2 A simple multi-commodity flow network.

We restrict the focus of this paper to mining equipment selection under the following assump-

tions:

• Multiple locations and multiple routes exist on which the selected fleet may move about;

• Multiple truck cycle times—truck cycle time is fixed for a given route, where the route is

defined as a pair of loading location and dumping destination;

• Known mine plan—an acceptable mine plan has already been derived (including selection of

mining method), and is fixed for optimisation period;

• Salvage—all equipment is salvageable at the start of each period at some depreciated value of

the original capital expense;
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Figure 3 Discretized operating cost function against age brackets. The rise in operating cost reflects the increased

maintenance expense; large drops in the expense occur when a significant maintenance, such as over-

haul, has taken place.

• No auxiliary equipment—wheel loaders and small trucks are not considered in this model,

although can be easily included if the cost and maintenance data is available;

• Known operating hours—the operating hours of the mine are estimated by taking planned

downtime, blasting and weather delays into account;

• Heterogeneous fleets—different types of equipment may work within one fleet, so long as

compatibility requirements are satisfied;

• Fleet retention—all equipment is retained at the end of the last period;

• Full period utilization—operating costs are charged as though the equipment has been fully

utilized for each entire period in which it is owned.

• Age bracket size—the size of an age bracket, B0, used to discretize the availability function,

is strictly larger than the size of a period, i.e. B0 >max{Hk};

• Equipment availability—equipment availability, maintenance requirements and equipment

utilisation change over time, and can be effectively approximated using age brackets.

The first mine plan must use approximate transportation costs, since the equipment selection

solution will not be known. Over the life of the mine, the generation of mine plans at planning

intervals will depend on the selected equipment fleet. Therefore, new plans should be generated if

changes in the equipment fleet are generated at an equipment planning interval.

In the surface mining industry, the generally non-linear non-convex operating cost and availabil-

ity (as functions of the age of the equipment) are commonly discretized to step-wise functions that

are divided into age brackets of size B0, as illustrated in Figure 3. The operating expense reflects

the cost of operating and maintaining the equipment. It takes into account varying maintenance

expenses, availability and productivity levels, which are known to vary with the age of the equip-

ment. In our case studies, we use an age bracket size of 5000 hours (as in (25)). We have similar

factors for the availability of the equipment (the proportion of time it is available to work), utiliza-

tion (the proportion of time it is effective) and maintenance (the proportion of time the equipment
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is available after maintenance). All of these factors are functions of the age bracket the equipment

is in, indicating that the performance of the equipment changes with its use in a non-linear way.

The full period utilization assumption is really about the granularity of our data—we have set up

this problem with time windows of annual periods, and there are considerations such as budgets and

labour flexibility which are typically annual in nature. Purchase and salvage of equipment typically

occur periodically, so accordingly we define a period to be 1 year in length as a reasonable timeframe

with which to consider purchase and salvage of equipment and any cost benefits associated with

bulk purchases. Smaller periods may be considered, such as quarterly, to generate finer fidelity

schedules and allocation solutions, but purchase and salvage would generally not occur at these

smaller intervals. For this reason, and also to aid the tractability of the problem, we will not

consider periods smaller than 1 year in length in our experiments.

Often the data for costing and even projected demand is imperfect. Since the projection period

itself can be quite long (up to 20 years), a pragmatic approach is to formulate the problem as

a deterministic problem to match the provided mine plan, and perform sensitivity analysis to

understand the robustness of the obtained solutions. Furthermore, since the problem is already

large-scale, the additional consideration of stochasticity and uncertainty would only exacerbate the

difficulty of the problem. In this sense, obtaining solutions via a deterministic modeling approach

such as mixed-integer programming is appropriate for the multi-location equipment selection prob-

lem where truck and loader units are integral and the capacity constraints can be captured linearly.

This problem is closely related to facility material handling equipment selection and machine

selection in manufacturing systems (see, for e.g.,(1, 3, 9, 19, 21, 22)) and equipment replacement

(see, for e.g., (21)). Integer programming and decomposition techniques have been used to model

these problems, such as in (3, 9). Recently, the equipment selection problem has been considered in

the forestry harvesting industry, also with a mixed-integer programming approach (see (2)). This

problem is essentially the same as the surface mining problem, whereby the models must select

the equipment and the number of hours of operation for a given harvesting schedule. In (2) the

decision variables do not capture the age of the equipment as an index, which initially reduces the

overall number of integer or binary variables. However, in order to relate the appropriate operating

cost to equipment activity, the authors developed a piece-wise linear approximation model which

increased the quantity of binary variables dramatically. Another key difference is that, for the

foresting industry, equipment are subdivided into compatible sets: compatible fleets do not need

to be enforced in the model.

Many modelling approaches have been applied to the surface mining equipment selection prob-

lem, including genetic algorithms (19) and queuing theory (22). These approaches aim to obtain
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fast and robust solutions respectively, for short time horizons, but lack the capabilities of obtain-

ing exact solutions for long-term horizon instances of their mixed-integer program counterparts.

The use of integer programming methods to solve operations research problems in surface min-

ing is well established in both the mining and construction literature (15). For example, there

is extensive literature that details mixed-integer programming approaches to finding mine plans

(10, 11, 16, 17, 23). Mixed-integer programming has also been considered for the equipment selec-

tion problem (13, 18, 25), however, much of the focus is on project completion and dispatching

or allocation. This literature in particular commonly has the assumption that equipment types

are given, rather than allowing the models to select these with the fleet size. Fleet homogeneity is

also a common assumption (e.g., see (7)) that is too restrictive for the surface mining application.

(8) describes heterogeneous fleets as “unacceptable or even unthinkable”, although only anecdotal

evidence has supported these claims to date. A common belief is that the cost of training artisans

and storing spare parts far exceeds the benefit obtained through a mixed fleet that better matches

the production schedule. However, to the knowledge of the authors, there is no published study

into these costs. The cost comparison from our case studies provide interesting discussion points

for this debate.

In other equipment selection literature, some solution methods look at optimizing productivity

(24) and equipment matching (20) rather than mining cost. Since maximising productivity is

different to minimizing cost (and can inadvertently lead to higher costs), such objectives are most

useful in the construction industry where earlier completion can be more profitable than finishing

on time. To restrain these higher costs, “budgeting constraints” have been considered where the

maximum permissible budget cash outlay for a given time period is an upper bound (8). In surface

mining, however, we select equipment for a mine plan that must be met. In this sense, there is no

advantage to having a fleet that is more productive than required. In view of this, we choose the

alternate approach—to optimize the cost of the operation in our model.

The development of key equipment selection literature is as follows:

• In (26), the authors formulated the general materials handling problem as an assignment

problem in which they assume all equipment is compatible and the optimization horizon is one

period (i.e., no purchase occurs in this model, and it is unhindered by the time dimension). In

their objective function they minimized the cost of utilization (defined here as the amount of

time the equipment has been used) by using a predetermined utilization matrix—this objective

function is ideal for the mining ESP but is currently not achievable due to the dependency of

costs and equipment availability on equipment age. That is, it leads to a non-linear objective

function.
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• In (14), the authors extended the Webster and Reed model to combine the equipment selec-

tion problem with the allocation problem. They developed this model such that the selected

equipment perform a set of tasks (rather than satisfying productivity requirements) within a

nominated time-frame, thus making it better suited to construction than mining equipment

selection.

• In (8), the authors developed a systematic decision making model for the selection of equip-

ment types under the assumption of homogeneous fleets and single period time horizon.

Another key assumption in the model is that equipment is kept for its entire life, and that we

pay the cost of running it for its entire life regardless of utilization or the number of periods

it is actually required.

• In (18), the authors developed a binary integer programming model to select equipment for a

mine, which was paired with a layer stratification model. A solution to this model determines

equipment types that suit the surrounding environment, rather than fleets to meet a produc-

tion schedule. It is intended to reduce a large set of available equipment types to a satisfactory

set from which optimal equipment selection can take place using other methods.

• In (12), the authors used a linear programming model to select the optimum loader type for

construction use over a short time horizon. Salvage of equipment and productivity changes

with the age of the equipment are therefore not considered;

• In (25), the authors developed a mixed-integer programming model that allocates mining

equipment to a schedule such that the maintenance cost is minimized. This is one of the first

papers to consider how the equipment is utilized across the schedule and the impact this has

on operating cost. The paper does not seek, however, to select the equipment types or fleet

sizes.

We derive our model in Section 2. We begin by describing the model setting, decision variables

and reductions, before deriving the objective function with corrector for discretization error (Sec-

tion 2.1) and constraints (Section 2.2). We describe two surface mining case studies with varying

mining locations and routes in Section 3 with a note on practical implications of our solutions

(Section 3.3). We conclude with a discussion of the research and possible further advancements in

Section 4.

2. Problem formulation

We define the problem using an arc-based representation of the mining locations (i∈ I) and routes,

(i, j), to dumpsites. To simplify notation, we denote a route by j ∈ J . We denote the set of all

truck types by T and loader types by L. Here we adopt three indexes to represent type (t ∈ T ),

period (k ∈ {1,2, . . . ,K}) and age bracket (m ∈ {1,2, . . . ,M}). We use integer variables to track

whole equipment units while continuous variables allocate equipment to routes:
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k

m

Figure 4 As time progresses, the xt,k,m variables move along the ‘steps’ of age-brackets, ending with a single

instance of the variable st,k,m. This staircase structure is important for preprocessing.

xt,k,m : number of trucks of type t owned in period k which are in age bracket m (integer variable);

yl,k,m : number of loaders of type l owned in period k which are in age bracket m (integer variable);

st,k,m : number of trucks of type t salvaged in period k which are in age bracket m (integer

variable);

sl,k,m : number of loaders of type l salvaged in period k which are in age bracket m (integer

variable);

ft,j,k,m : portion of trucks of type t, in age bracket m, that are allocated to route j in period k,

where ft,j,k,m ∈ [0, xt,k,m] (continuous variable),

fl,i,k,m : portion of loaders of type l, in age bracket m, that are allocated to location i in period

k, where fl,i,k,m ∈ [0, yl,k,m] (continuous variable).

To simplify prose in this paper, we sometimes just describe constraints for the trucks if a corre-

sponding, and identical, constraint also exists for the loaders in our model. The complete model

(Section 2.3) contains all constraints. The relationship between xt,k,m and st,k,m is illustrated in

Figure 4. The ft,j,k,m variable will trace the ‘staircase’ and allocate portions of the total time to

particular routes, as described in the following section. The analog exists for the loader variables,

though for brevity we restrict the description to trucks.

The precedence characteristic of the solutions elicit a natural ‘staircase’ structure in the possible

values of the decision variables. The possible height and depth of the staircase is limited by the

maximum number of hours the equipment can be used per period in combination with the age of

the pre-existing equipment. We use Mmax
t to denote the maximum age bracket of truck type t—this

value may vary depending on the equipment type. Since B0 >Hk, M
max
t can also be restricted by

the time period as equipment cannot age more than one age bracket in one period. However, we

consider the possibility of pre-existing equipment (which is known a priori), with the starting age

Mmax
t . The maximum age bracket for truck type t in time period k is as follows:

Mk(t) = min{Mmax
t + k− 1,Mmax

t }.

This becomes a reduced limit for index l in any relevant constraint. We note that as salvage occurs

at the start of the period, salvage variables extend to Mk(t) + 1.
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At implementation, we do not permit over-age variables from existing, thus effecting forced

salvage. That is, restricting variable creation in this way is equivalent to the following constraint:

xt,k,m = st,k+1,m+1 ∀ m>Mk(t), t∈ T , k ∈ {1, . . . ,K − 1}.

If we consider the set of pre-existing equipment types, P, there is the possibility of immediate

salvage in the age bracket m = 1. However, for all other equipment types we can prevent the

unbounded salvage variables from dominating:

st,k,1 = 0 ∀ t /∈P, k ∈ {1, . . . ,K}.

This too can be effected during variable creation, thereby reducing the overall number of variables

and constraints required to represent the problem.

2.1. Objective function

We must satisfy demand either by location or route, depending on the nature of the mine plan.

For this formulation, the availability of the equipment throughout the period is determined by the

age bracket. The production capability is determined by its availability (At,m), capacity (Ct) and

cycle time (τt,j) (where the cycle time for a truck is the route cycle time and the cycle time for a

loader is the time required to fill a particular truck type):

Pt,j,k,m =
At,mCt
τt,j

. (1)

In our objective for the mixed-integer program, we minimize the cost of running the fleet for the

entire mine plan, including purchase, operating expense and salvage. We represent the fixed cost of

purchasing truck of type t by Ft and discount this purchase to the present using a discount factor,

D1
k =

1

(1 + I)k

(where k is the current period, starting from 1, and I is the interest rate). Thus, the total capital

expense for a truck of type t is ∑
t,k

FtD
1
kxt,k,1,

with a corresponding term for loaders.

The discretization of the variable costs over age brackets can lead to misleading operating costs,

as the equipment may start the period in one age bracket (and corresponding cost) and move into

another age bracket for the remainder of the period. To illustrate this, consider Figure 5. The best

case is case (a), where the age bracket of the equipment is correct for the entire period. However,

in case (b) the equipment moves into a new age bracket during the period. This will result in a

discretisation error in the model.
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m+1m+1 m

(a) (b)

m

Figure 5 The two cases of equipment age landing between periods. For case (a), the equipment stays in the

same age bracket for the entire period. In case (b), the equipment steps over into the next age bracket

within the period.

In order to provide the most accurate costing possible for this model, we must determine the

proportion of time that the equipment remains in age bracket m within the period, and the pro-

portion it lies in the proceeding age bracket, m+ 1. The process to achieve this in a way that

obtains a constant coefficient for variables, thereby maintaining linearity in the model, is described

over the next page. Although it appears tedious and cumbersome, in practice it is very simple to

implement in a computer program.

To calculate the portion of time that each set of equipment spends in each age bracket, we first

calculate the age of the equipment (in age brackets) in any given period. To do this, we need to know

when the equipment was purchased. We denote the purchase period by k′. The equipment must

also be owned in the current period for this calculation to take place. The availability of equipment

is the proportion of the period that the equipment is available to operate—unavailability is often

due to planned maintenance. Availability as it is used here is calculated using the availability,

utilization and maintenance factors discussed above, and is dependent on the current age bracket

of the equipment. Let Hk be the operating hours for period k and At,m be the availability of truck

type t in age bracket m. We obtain the age of equipment in operated hours using a recursive

formula since the availability of the equipment is a function of equipment age itself. The base of

the recursion is:

β(k′) =At,1Hk′ .

Then, the age of the equipment in operated hours can be obtained for any period k by:

β(k) =
∑

k′≤h′<k

A
t,

⌊
β(h′−1)
B0

⌋Hh′ .

We obtain the age bracket in which equipment lies at the beginning of a period by b(k):

b(k) =

⌊
β(k)

B0

⌋
.

Since B0 >Hk, the equipment may only lie in h∈ {1,2} age brackets within one period. To begin,

we define Bh
t,k,m to be the proportion of total operated hours that truck t spends in age bracket

m+h− 1 in period k (where the incumbent age bracket is m).
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Theorem 1. The proportion of time that any group of machinery spends in any one age bracket

can be represented by the following two expressions:

B1
t,k,m =

{
1, if (m+ 1)B0−β(k)>At,b(k)Hk
(m+1)B0−β(k)
At,b(k)Hk

, otherwise

and

B2
t,k,m = 1−B1

t,k,m.

T he age at the start of the period is given by β(t) as defined above. The quantity of hours

worked in the current period is given by:

At,mHk.

If the equipment stays in the same age bracket for the entire period, we require that the difference

between the marker for the next age bracket, (m+ 1)B0, and the age at the start of the period

exceeds the quantity of hours worked in the current period. That is, if:

(m+ 1)B0−β(k)>At,b(k)Hk.

Similarly, if the equipment moves into another age bracket for part of the period, we can simply

look at the difference between the marker for the next age bracket and the age at the start of the

period. Dividing by the operated hours for the current period gives the proportion of total operated

hours, as required.

�

We can easily adjust these formulas for the case of pre-existing equipment, but for the sake of

clarity omit this here. We can now use B1
t,k,m and B2

t,k,m to correct the operating cost (denoted by

Vt,k,m) in the objective function as follows (also with a discount factor):∑
t,k,m,h

Bh
t,k,m

(1 +m)k
Vt,k,b(k)+h−1xt,k,m.

Lastly, we consider the income from salvaging old equipment. We apply a combined depreciation

(at rate J per period) and discount factor (at rate I per period):

D2
k,m =

(1−J)l

(1 + I)k
,

where l is the age of the equipment at the start of period t. Since Fe is the original capital expense,

the salvage ‘cost’ is:

−
∑
t,k,m

FtD
2
k,mst,k,m,

with a corresponding term for loaders.
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2.2. Constraints

We require the loaders to satisfy the productivity demand, Di,k, at location i ∈ I, giving us the

following capacity demand constraints:∑
l,m

Pl,k,mfl,i,k,m ≥Di,k ∀ k ∈ {1, . . . ,K}, i∈ I, (2)

where Pl,k,m is the maximum possible productivity of loader l that is aged m in period k. This

expression is obtained by considering equipment capacity, swing time (time to deliver one load

to the truck), number of required swings (truck to loader capacity ratio), and downtime due to

maintenance and other factors. Similarly, we require the trucks to satisfy the demand for each

route or dump site, j ∈J :∑
t,m

Pt,k,mft,j,k,m ≥Dj,k ∀ k ∈ {1, . . . ,K}, j ∈J . (3)

The trucks must also match the capacity demand of the mining locations. For each location i,

we are only interested in the routes, j, that connect to the location. We denote the set of routes

that connect to location i by J (i). Then we have:∑
t,m;j∈J (i)

Pt,k,mft,j,k,m ≥Di,k ∀ k ∈ {1, . . . ,K}, i∈ I. (4)

The capacity constraints must be satisfied with the set of compatible trucks and loaders for each

location. That is, from the chosen fleet of trucks we must consider whether the set of trucks that

are compatible with the loaders are capable of fulfilling the capacity constraints.

Theorem 2. Suppose we model the equipment selection problem as a mixed-integer linear pro-

gram with a minimizing cost objective function. Then production feasibility is not guaranteed with

constraints 2 and 4 alone.

C onsider one loading location. Let there be exactly two types of loaders operating at this

location, λ1 and λ2. From constraint 2, we have:

Pλ1 +Pλ2 ≥D.

That is, the productivity of the loader fleets of type λ1 and λ2 meet the productivity requirements at

the location. Suppose we have two types of trucks servicing the location, τ1 and τ2. From constraint

4 we have:

Pτ1 +Pτ2 ≥D.

That is, the productivity of the truck fleets of type τ1 and τ2 meet the productivity requirements

of the location.



Christina Burt, Louis Caccetta, Leon Fouché and Palitha Welgama: Equipment Selection Case Studies
13

Next, suppose that the compatibility sets of loader types with truck types are different for

each type of loader. Specifically, loader λ1 is only compatible with truck τ1, and loader λ2 is only

compatible with truck τ2.

Let Pτ2 = D and Pλ1 = Pλ2 = D
2

. Then, since it is a minimization problem, the constraints 2

and 4 are met minimally and the actual productivity capability of the trucks and loaders (when

working together) is D
2

and the productivity requirements of the mine are not met.

�

Therefore, we must ensure that the weak productivity constraint is satisfied for every possible

subset of truck and loader fleets. To capture this in a constraint set, we first recall that the set of

loader types is denoted by L. Next, we define the set T (L′) to be the set of truck types that are

compatible with the subset of loader types L′ ⊂L.

Theorem 3. The compatibility of the selected fleets is ensured, in combination with constraint

2, by the following superset constraint set:∑
t∈T (L′),m

Pt,k,mft,j,k,m ≥
∑
l∈L′,m

Pl,k,mfl,i,k,m ∀ L′ ⊂L, k, i. (5)

S uppose it is not sufficient. Then there exists some combination of equipment such that the

compatibility prevents satisfaction of productivity requirements. Let this set of equipment be rep-

resented by L1 and T (L1). From constraint 5 we know that:∑
t∈T (L1),m

Pt,k,mft,j,k,m ≥
∑

l∈L1,m

Pl,k,mfl,i,k,m.

That is, the productivity of the set of trucks at least matches the productivity of its compatible

loader set. This truck set cannot be the only equipment, otherwise∑
t,m

Pt,k,mft,j,k,m ≥Dt,k

and we are done. Therefore the selected truck set includes the subset T (L1) and some other subset

T (L2).

That is, we have ∑
l∈L1,m

Pl,k,mfl,i,k,m +
∑

l∈L2,m

Pl,k,mfl,i,k,m ≥Dk,i,

for all i, k. That is, we have∑
t∈T (L1),

m

Pt,k,mft,j,k,m +
∑

t∈T (L2),
m

Pt,k,mft,j,k,m ≥
∑
l∈L1,
m

Pl,k,mfl,i,k,m +
∑
l∈L2,
m

Pl,k,mfl,i,k,m

≥D,

and the requirements are met. ⇒⇐
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�

Since L′ comes from the power set of L, the compatibility constraint set will generate K|I|(2|L|−1)

constraints (where K is the total number of periods and |I| is the total number of locations). As a

power set constraint, it should be implemented using a separation algorithm. However, for a given

case study the number of loaders possible in the final solution will generally be much lower than

the complete set. In this case we can limit the generation of constraints to a maximum of α loader

types. This will produce K|I|
∑α

a=1(
|L|!

a!(|L|−a)!) constraints. To further reduce the overall number of

these constraints in the solver, we use a separation algorithm. With this branch-and-cut method,

we begin with no compatibility constraints in the model. We iteratively solve the model and check

for feasibility—any violated constraints are then added into the model before it is resolved.

We link the equipment tracking variables, xt,k,m, to the allocation variables ft,j,k,m by placing an

upper bound on the allocation in the following coupling constraints (with a corresponding constraint

for loaders):

xt,k,m ≥
∑
j

ft,j,k,m ∀ t∈ T , k ∈ {1, . . . ,K},m∈ {1, . . . ,M}. (6)

We ensure that, in each period, we can only own non-new equipment if we owned it in the previous

period, as captured in the following precedence constraints (with a corresponding constraint for

loaders):

xt,k,m = xt,k−1,m−1− st,k,m ∀ t∈ T , k ∈ {2, . . . ,K},m∈ {2, . . . ,M}, (7)

xt,k−1,m−1 ≥ st,k,m ∀ t∈ T , k ∈ {2, . . . ,K},m∈ {2, . . . ,M}. (8)

In this model we consider pre-existing equipment. We only need to consider pre-existing trucks

and loaders which are drawn from the subset P ⊂ T ∪L. Recall that b(1) is the starting age of the

pre-existing truck type t. Then, if x̄t,1,b(1) is the number of pre-existing truck of type t, with age

b(1), we have (with a corresponding constraint for loaders):

xt,1,b(1) + st,1,b(1) = x̄t,1,b(1) ∀ t∈P. (9)
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2.3. Complete model

min
∑
t,k

FtD
1
kxt,k,1 +

∑
l,k

FtD
1
kyl,k,1 +

∑
t,k,m,h

Bh
t,k,mD

1
kVt,k,b(k)+h−1ft,j,k,m

+
∑
l,k,m,h

Bh
t,k,mD

1
kVl,k,b(k)+h−1fl,i,k,m−

∑
t,k,m

FtD
2
k,mst,k,m−

∑
l,k,m

FlD
2
k,msl,k,m

subject to
∑
l,m

Pl,k,mfl,i,k,m ≥Di,k ∀ i, k, (10)∑
t,m;j∈J (i)

Pt,k,mft,j,k,m ≥Di,k ∀ i, k, (11)

∑
t∈T (L′),m

Pt,k,mft,j,k,m ≥
∑
l∈L′,m

Pl,k,mfl,i,k,m ∀ L′ ⊂L, i, k, (12)

xt,k,m ≥
∑
j

ft,j,k,m ∀ t, k,m, (13)

yl,k,m ≥
∑
i

fl,i,k,m ∀ l, k,m, (14)

xt,k,m = xt,k−1,m−1− st,k,m ∀ t, k > 1,m> 1, (15)

xt,k−1,m−1 ≥ st,k,m ∀ t, k > 1,m> 1, (16)

yl,k,m = yt,k−1,m−1− sl,k,m ∀ l, k > 1,m> 1, (17)

yt,k−1,m−1 ≥ sl,k,m ∀ l, k > 1,m> 1, (18)

xt,1,b(1) + st,1,b(1) = x̄t,1,b(1) ∀ t∈P, (19)

xt,k,m, yl,k,m, st,k,m, sl,k,m ∈Z+,

ft,j,k,m, fl,i,k,m ∈R+.

3. Results

We consider two case studies provided by our industry partner. The first is for a planned mine with

no comparative solution. The second is for a mine with pre-existing equipment and a comparative

solution. These case studies illustrate that the difficulty in solving the model is not wholly influenced

by the size of K or the number of routes in the mine plan. In both case studies, we deal with mine

progression over time by allocating a cycle time of zero to those routes that are inaccessible in a

given time period.

3.1. Case study 1

Our industry partner wish to select a fleet of trucks and loaders for an open pit iron ore mine

operating under a truck-loader hauling system. This mine is in the planning stages and begins with

no pre-existing equipment.
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3.1.1. Locations and routes For this mine, there are only two mining locations. Each loca-

tion produces ore which should be delivered to the mill, and waste which should be delivered to a

dump site. Figure 6 describes the two mining locations and four routes which connect them to the

waste dump site and the mill.

(c)

(1)

(2)

(1) (2)

(b)

(a)

(d)

Dump sites and Mill

Mining locations

Figure 6 The locations for case study two.

3.1.2. Production requirements This case study considers a mine operating under a truck-

loader hauling system and mines ore and waste in an open pit. Our industry partner provided

the production requirement data for both the mining locations and the truck routes. For this case

study, we consider K = 9 periods in total, each of length 1 year. This new mine is simple in terms

of the number of mining locations. The overall production requirements change drastically as the

overburden is removed, and as the routes become longer (Table 1). For example, in period one, the

production requirements are only 2.13 million tonnes. This grows to around 19 million tonnes for

the subsequent 3 years. The estimated truck cycle times (also provided by the industry partner)

also demonstrates great variability from period to period, and between locations (Table 2). For

example, the smallest truck cycle time is 2.64 minutes, while the longest is 23.82 minutes.

3.1.3. Case specific parameters We have the following parameters supplied by our industry

partner:

• The mine is removing ore and waste, and operates under a shovel-truck system.

• The mine operates for 7604 hours in each period (accounting for blasting days, holidays and

other non-operational days);

• The loaders are selected from a set of 20 loader types.

• The trucks are selected from a set of 8 truck types.
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Period

Route 1 2 3 4 5 6 7 8 9

(a) 51701 668713 1602777 1463289 2227402 1657740 2031283 2230192 2474503
(b) 2082800 8843227 7294449 5837564 5356417 8051374 4582733 4666783 2001808
(c) 0 0 1189184 1120125 337101 1073245 1106596 455511 235810
(c) 0 9412391 9063476 10593225 11355932 4091566 530276 84354 94315

Total (MT) 2.13 18.92 19.14 19.01 19.27 14.87 8.25 7.43 4.80

Key for routes:
(a) M1 to Mill
(b) M1 to Dump site (1)
(c) M2 to Mill
(d) M2 to Dump site (1)

Table 1 The production requirements for the routes for the second case study.

Route

Period (a) (b) (c) (d)

1 8.24 2.64 0.0 0.0
2 8.3 3.48 0.0 8.24
3 9.28 3.84 5.74 10.23
4 10.52 4.88 8.73 10.45
5 11.16 6.01 10.38 12.6
6 12.47 7.23 11.71 16.72
7 12.05 8.49 13.82 19.6
8 15.77 10.11 15.49 21.37
9 17.74 12.05 16.52 22.82

Table 2 The truck cycle times for the second case study.

• There are K = 9 periods in total, each of length 1 year.

• The cost-bracket length, B0, is 5000 hours.

• The interest rate for all periods is 8%.

• The depreciation rate is set to 50%.

• The maximum value for any truck variable is 30, i.e., maximum 30 trucks of a given type, in

any age bracket, in any period;

• The maximum value for any loader variable is 10, i.e., maximum 10 loaders of a given type,

in any age bracket, in any period.

Note that the depreciation value is used to estimate the sale (or salvage) value of used equipment,

rather than for tax offset purposes. We choose a high depreciation value to lessen the impact of a

sale on the decisions, as the second hand market is unreliable.

Our industry partner also provided Utilisation Factors, which are reducing factors to account

for lost hours to inefficiency, maintenance, and availability of the equipment; and, a compatibility

matrix between all equipment types. However, we choose to suppress this information, along with

the truck and loader types, to protect our industry partners contractual relationships.

3.1.4. Computational results We implemented this case study on a Pentium 4 PC with

3.0GHz and 2.5GB of RAM. The model was implemented in C++ using Ilog Concert Technology

v 2.5 objects and Ilog Cplex v 11.0 libraries to solve the problem with default settings. The
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Periods Variables Constraints Time (seconds) Quality Solution

7 9100 4242 + 2044 5331 Optimal 1.88599× 107

8 11648 5473 + 1484 12049 Optimal 1.97785× 107

9 14502 6858 + 2380 19477 3% 2.05244× 107

Table 3 The results summary for the first case study solutions with varying periods.

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

Period

v1×T6 fqv1×T8 fqv1×T15 fq 1×T15

v1×T15

v fq1×T15

v1×L3

Keyv
Purchasefq
Salvage

Figure 7 The first case study 9-period purchase and salvage policy with depreciation 50%.

constraints (12) were implemented as lazy constraints—i.e., we separated the constraints from the

model and only added those which were violated by feasible MIP solutions. We implemented this

problem with 14502 variables (3672 integers) and 6858 constraints. The separation algorithm added

a further 2380 compatibility constraints. We ran the 9-period problem for 34 hours before the

computer memory was exhausted and achieved a solution within 3% of optimality. The computation

times for single solves of the problem with 7, 8 and 9 periods is presented in Table 3. The solution

obtained is given in Figure 7. In this figure, a black circle depicts a purchase, while an empty circle

depicts a salvage. For this case study, the optimal solution was to purchase one loader of type

three, and operate these for the entire nine periods. Only five trucks were purchased for the entire

9 periods. The purchasing pattern is indicative of the dramatic increase in production requirements

in the first few periods—in the beginning, one truck is sufficient. In reality, this would not be a

suitable solution, because if that truck is in maintenance, the mine no longer produces. Also, it

means that the loader is not utilized while the truck is delivering its load. In the subsequent two

periods, three further trucks are purchased. By period four, there are three types of trucks working

in the fleet. In period five, the productivity of the existing trucks has fallen sufficiently so that

a new purchase is worthwhile. The fifth truck is then salvaged only 1 year later. While is it not

realistic that the truck is sold after only one year, it is conceivable that the truck is relocated to

another mine in need of a relatively new truck. The remaining trucks are gradually salvaged as the

needs of the mine decrease, leaving only one truck until the end of the final period.

The truck allocation solution is presented in Table 4. It is difficult to identify the slack in the

allocation of equipment because the model did not motivate a minimum utilisation value—i.e., it
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does not cost more (in terms of the objective function value) to allocate trucks to locations for

more time than necessary. Some routes receive every type of truck in the fleet. This could have an

impact on cycle time, as some trucks will be faster than others or will be served faster at the loader.

However, this level of detail is not captured in our model. The loader allocation solution splits one

loader across two mining locations [Table 5]. In some mining scenarios where loader movement

across the mine is prevented, this solution would be unrealistic. It is likely that one loader at each

location is preferred. In this case, it is easy to add constraints that reflect node-disjointed flow for

the loaders—for example, this can be achieved by forcing fl,i,k,m ∈Z.

This case study seems small with respect to the number of periods and the number of routes

and locations. However, the symmetry in this problem—arising because of the number of identical

equipment which can be allocated to the same decisions—makes it difficult to solve with default

settings. We will defer comparisons with the second case study to the Discussion section (3.3).
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Dump sites and Mill

Stockpiles

Mining locations

Figure 8 Routes from mining locations to dump sites for the second case study.

3.2. Case Study 2

Our industry partner provided a second case study from an ongoing mining operation with pre-

existing equipment and a more complex route structure. This case study considers a surface mine

operating under a truck-loader hauling system, and mines ore and waste in an open pit.

3.2.1. Locations and routes The mine for this case study has eight loading locations—four

mining locations and four stockpiles, as depicted in Figure 8. Mixing constraints are the quantity of

different grades of ore required to make up the final grade. Typically the final grade is determined

by market demand. The mixing constraints are not considered in this model, as they are assumed

to be pre-optimized when the mine plan is produced. In this case study the stockpiles are old, and

newly mined ore or waste is not dumped in these locations. Instead, they are used to create the

appropriate mix at the mill—so the flow from these locations is unidirectional. There are also four

dump sites including one mill. Connecting these mining locations, stockpiles and dump site, are 13

routes in total (route key provided in Table 6).

3.2.2. Production requirements Our industry partner provided the production require-

ment data for both the mining locations and the truck routes. Tables 6 and 7 describe the quantity

of material (tonnes) to be moved from each location, to each dump site. Our industry partner also

provided pre-estimated truck cycle times for each route, presented in Table 8.
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Period

Route 1 2 3 4 5 6 7 8 9 10 11 12 13

(a) 2598 0 0 0 0 0 0 0 0 0 0 0 0
(b) 455 0 0 0 0 0 0 0 0 0 0 0 0
(c) 203 10141 7659 0 0 0 0 0 0 0 0 0 0
(d) 741 7060 2964 0 0 0 0 0 0 0 0 0 0
(e) 221 827 5928 12797 9919 0 0 0 13990 13990 13990 5184 11
(f) 2592 22935 41035 26948 19873 0 0 0 8901 18191 12589 5572 32
(g) 0 650 0 0 0 0 0 0 0 0 0 0 0
(h) 0 270 809 0 0 0 0 0 0 0 0 0 0
(i) 0 1142 0 0 0 0 0 0 0 0 0 0 0
(j) 0 0 0 737 4071 12990 12890 13990 0 0 0 7713 0
(k) 0 0 0 17051 24126 8984 8583 12836 0 0 0 6251 0
(l) 0 0 0 0 0 799 0 0 0 0 0 0 0
(m) 0 0 0 0 0 0 798 0 0 0 0 0 0

Req. kT 23125 28102 36102 38484 42450 43329 45000 43329 42450 38484 36102 28102 23125

Key for routes
(a) Mining location (1) to Dump site (3) (h) Stockpile (2) to Dump site (3)
(b) Mining location (1) to Dump site (1) (i) Stockpile (3) to Dump site (3)
(c) Mining location (2) to Dump site (3) (j) Mining location (4) to Dump site (1)
(d) Mining location (2) to Dump site (1) (k) Mining location (4) to Dump site (2)
(e) Mining location (3) to Dump site (3) (l) Mining location (4) to Dump site (3)
(f) Mining location (3) to Dump site (4) (m) Stockpile (4) to Dump site (3)
(g) Stockpile (1) to Dump site (3)

Table 6 The production requirements (tonnes) for the truck routes for case study two. Dump site (3) is the

mill—we treat this dump site as the others.

Period

Location 1 2 3 4 5 6 7 8 9 10 11 12 13

M(1) 3053 0 0 0 0 0 0 0 0 0 0 0 0
M(2) 944 17201 10624 0 0 0 0 0 0 0 0 0 0
M(3) 2813 23762 46963 39746 29792 0 0 0 22891 32181 26579 10756 43
M(4) 0 650 0 0 0 0 0 0 0 0 0 0 0
S(1) 0 270 809 0 0 0 0 0 0 0 0 0 0
S(2) 0 1142 0 0 0 0 0 0 0 0 0 0 0
S(3) 0 0 0 17789 28197 22773 21474 26826 0 0 0 13964 0
S(4) 0 0 0 0 0 0 798 0 0 0 0 0 0

Req. kT 23125 28102 36102 38484 42450 43329 45000 43329 42450 38484 36102 28102 23125

Key for locations
M(i) Mining location i S(j) Stockpile j

Table 7 The production requirements (tonnes) for the mining locations for case study two.

Routes

Period (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m)

1 35.56 35.17 38.49 37.89 11.23 10.62 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 38.03 37.42 14.97 17.23 16.05 60.00 20.00 0.0 0.0 0.0 0.0
3 0.0 0.0 40.09 40.77 25.02 22.08 0.0 60.00 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0 27.18 25.09 0.0 0.0 0.0 34.39 34.27 0.0 0.0
5 0.0 0.0 0.0 0.0 28.58 26.25 0.0 0.0 0.0 26.57 27.38 0.0 0.0
6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 32.20 33.51 37.43 0.0
7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 34.48 35.71 0.0 15.00
8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 37.66 38.76 0.0 0.0
9 0.0 0.0 0.0 0.0 32.64 29.41 0.0 0.0 0.0 0.0 0.0 0.0 0.0
10 0.0 0.0 0.0 0.0 36.42 32.47 0.0 0.0 0.0 0.0 0.0 0.0 0.0
11 0.0 0.0 0.0 0.0 38.53 36.49 0.0 0.0 0.0 0.0 0.0 0.0 0.0
12 0.0 0.0 0.0 0.0 43.54 43.57 0.0 0.0 0.0 39.52 46.67 0.0 0.0
13 0.0 0.0 0.0 0.0 46.93 45.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 8 Truck cycle times for case study two.
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Equipment i.d. LP
7 LP

7 LP
17 TP

12 TP
12 TP

12

Quantity 1 1 1 3 2 6
Capacity (tonnes) 34 34 42 172 172 172
Age (years) 16 17 16 7 8 11

Table 9 Pre-existing equipment for case study two.

3.2.3. Pre-existing equipment We begin the mine plan with some pre-existing equipment,

as listed in Table 9. This includes eleven 172 tonne trucks of varying age in hours; and three loaders,

namely two 34 tonne hydraulic shovels and one 42 tonne hydraulic shovel.

3.2.4. Case-specific parameters Some parameters are defined by the industry partner:

• The mine operates for 7604 hours in each period (accounting for blasting days, holidays and

other non-operational days);

• The loaders are selected from a set of 20 loader types;

• The trucks are selected from a set of 8 truck types;

• The cost-bracket partition, B0, is 5000 hours;

• The schedule is 13 years long;

• The discount rate for all periods is 8% (the approximate interest rate obtainable on invest-

ments).

We define the following parameters:

• There are 13 periods, K, each of length 1 year;

• The depreciation rate is set to 50% (a rate of 40-60% is common for this application due to

unreliability in the second hand equipment market);

• The maximum value for any truck variable is 30, i.e., maximum 30 trucks of a given type, in

any age bracket, in any period;

• The maximum value for any loader variable is 10, i.e., maximum 10 loaders of a given type,

in any age bracket, in any period.

3.2.5. Computational results We implemented this case study on a Pentium 4 PC with

3.0GHz and 2.5GB of RAM. The model was implemented in C++ using Ilog Concert Technology

v 2.5 objects and Ilog Cplex v 11.0 libraries to solve the problem. The mixed-integer program

contained 63433 variables (5304 integer) and 19366 constraints; we set up the 13-period problem

with just 15571 constraints before the compatibility constraints were taken into account.

Table 10 shows the number of constraints that were added by the separation algorithm overall

for the full problem and versions of the problem with a reduced schedule length (namely, 10, 11

and 12 years).

After 7.5 hours of algorithm run-time, we obtained a solution within 3% of the optimal solu-

tion for the 50% depreciation case study. When the algorithm was permitted to run for a longer
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1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9

Period

10 11 12 13

v2×T8 fq 1×T8,0fq v1×T8fqv2×T9 fqv1×T9 fq v1×T9 fqv2×T9 fqv3×TP
12 fqv2×TP
12 fqv6×TP
12 fqv15×T15 fqv5×T15 fq 1×T15,0

v1×T15 fqv2×T15 fq
v1×L2 fqv1×L3

v1×L3 fqfq 1×LP
7,16

fq 1×LP
7,17

fq 1×LP
17,16

Keyv
Purchasefq
Salvage

Figure 9 The 3% optimal 13-period solution for case study two with the depreciation parameter set to 50%.

period, the computer memory was exhausted. However, this is a satisfactory optimality gap for

this application, as we will illustrate later with a retrospective solution comparison.

The purchase and salvage policy for this multi-location mine is complicated by the capacity

requirements, which contain several significant changes from period to period. This leads to short-

term ownership of some trucks. For example a type-8 truck was purchased in period 8 and salvaged

at the start of period 9. The complete purchase and salvage policy is sketched in Figure 9, where

pre-existing equipment is indicated by the P index.

The allocation policy is shown in Tables 11–14. In the allocation policy for this case study, we

represent the age of the equipment in parentheses as an equipment tracking tool. Since the age of

the equipment is a factor in the cost of operating the equipment, it is important to allocate the

correct age equipment as dictated by the policy.

Periods Variables Constraints Time (seconds) Quality Solution

10 39855 9814 + 3319 5643 3% 1.26292× 108

11 47166 11599 + 3043 3979 3% 1.31263× 108

12 55032 13521 + 4043 17656 3% 1.37168× 108

13 63433 15571 + 3795 26662 3% 1.37249× 108

Table 10 The results summary for the second case study with depreciation 50% and 13 periods.
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Period

R
o
u
te
s

1 2 3 4 5 6 7

(a) 1.81 T12(8)
6.00 T12(12)

(b) 0.35 T12(8)

(c) 0.17 T12(8) 9.42 T15(1) 6.00 T12(14)
0.97 T15(1)

(d) 2.00 T12(9) 5.90 T12(13) 0.68 T12(10)
2.00 T12(11)

(e) 0.05 T12(8) 0.18 T12(9) 3.70 T15(1) 2.65 T9(2) 0.42 T12(13)
0.09 T12(13) 1.50 T8(2) 6.00 T12(16)

6.73 T15(3)

(f) 0.61 T12(8) 2.32 T12(9) 2.00 T9(1) 1.00 T9(1) 3.00 T12(12)
2.00 T12(10) 2.32 T12(10) 2.00 T9(2) 1.58 T12(13)
4.87 T15(1) 0.32 T15(1) 3.00 T12(11) 1.00 T15(2)

15.0 T15(2) 1.97 T12(12) 5.00 T15(3)
0.99 T8(1) 6.00 T12(15) 0.67 T15(4)

(g) 0.31 T15(1)

(h) 0.40 T15(1) 1.00 T8(1)

(i) 0.50 T12(9)

(j) 0.50 T8(2) 2.67 T15(4) 12.84 T15(5) 13.115 T15(6)
0.03 T12(12)

(k) 1.00 T15(1) 11.7 T15(4) 1.00 T15(3) 1.00 T15(4)
5.00 T15(2) 4.26 T15(4) 5.00 T15(5)
8.27 T15(3) 2.16 T15(5) 1.59 T15(6)

(l) 0.74 T15(4)

(m) 0.30 T15(6)

Key: xTt(m) indicates that x trucks of type t and age m operate on the route in the given period.

Table 11 The truck allocation policy for case study two with 13 periods and 50% depreciation (first 7 periods).

For the purposes of mine management, it would be a simple task to create a spreadsheet that

can reflect the flexibilities in the policy and allow dynamic changes in the policy without affecting

the objective function value.
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Period

Routes 8 9 10 11 12 13

(a)

(b)

(c)

(d)

(e) 1.00 T9(2) 1.00 T15(7) 2.00 T9(2) 2.00 T9(3) 0.01 T15(11)
15.00 T15(8) 5.00 T15(8) 1.00 T9(4) 1.00 T9(5)

6.85 T15(9) 2.00 T15(4) 0.72 T15(5)
1.00 T15(8) 1.00 T15(9)
5.00 T15(9)
0.83 T15(10)

(f) 2.00 T15(2) 2.00 T9(1) 14.2 T15(10) 6.16 T15(11) 0.99 T15(11)
1.00 T15(6) 1.00 T9(3)
5.00 T15(7) 2.00 T15(3)

8.15 T15(9)

(g)

(h)

(i)

(j) 1.00 T8(1) 1.28 T15(5)
1.00 T9(1) 6.43 T15(11)
10.6 T15(7)

(k) 2.00 T15(1) 5.00 T15(10)
1.00 T15(5) 2.41 T15(11)
5.00 T15(6)
4.37 T15(7)

(l)

(m)

Key: xTt(m) indicates that x trucks of type t and age m operate on the route in the given period.

Table 12 The truck allocation policy for the second case study solution with 13-periods and 50% depreciation

(last 6 periods).
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Period

Locations 1 2 3 4 5 6 7

M1 0.13 L3(1)

M2 0.04 L3(1) 0.70 L3(1) 0.43 L3(3)

M3 0.12 L3(1) 0.21 L3(1) 0.51 L2(1) 1.00 L2(2) 0.33 L2(3)
0.76 L3(2) 1.00 L3(2) 0.93 L3(4) 1.00 L3(4)

0.56 L3(3)

M4 0.26 L3(1)

S1 0.01 L3(1) 0.05 L2(1)

S2 0.05 L3(1)

S3 0.73 L3(3) 0.67 L2(3) 0.93 L3(5) 0.89 L3(6)
0.68 L3(5) 0.13 L3(6)

S4 0.03 L3(6)

Key: xLl(m) indicates that x loaders of type l and age m operate on the route in the given period.

Table 13 The loader allocation policy for the second case study with 13 periods and 50% depreciation (first 7

periods).

Period

Locations 8 9 10 11 12 13

M1

M2

M3 0.34 L3(8) 0.38 L3(9) 0.26 L3(10) 0.47 L3(12) 0.01 L3(13)
0.97 L3(9) 1.00 L3(10) 1.00 L3(11)

M4

S1

S2

S3 0.13 L3(7) 0.07 L3(11)
1.00 L3(8) 0.53 L3(12)

S4

Key: xLl(m) indicates that x loaders of type l and age m operate on the route in the given period.

Table 14 The loader allocation policy for the second case study with 13 periods and 50% depreciation (last 6

periods).
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3.3. Discussion

In the final solutions for the case studies, the model has selected 3 and 4 truck types respectively.

However, it is considered unusual in industry to have more than three types of trucks, and generally

this number would only arise due to pre-existing equipment. This suggests that the models are not

reflecting the true penalties associated with the fixed costs of owning different types of equipment, or

conversely, that the reasoning behind homogeneous or small mixes of fleet need further justification.

Also, operating different truck types on the same route may influence the accuracy of the cycle times

due to bunching of equipment. This issue is usually addressed during dispatching of equipment, but

ideally should be considered during equipment selection—i.e., to account for the interactive effect

of the selected equipment. It is not obvious how to incorporate this into the current deterministic

mixed-integer program, but it makes an interesting question for future research.

As some of the data for the case studies was limited or unknown (such as the requirement for

stockpiles to have their own loaders, or when locations are mined simultaneously within a period)

the solutions generated by our model sometimes requires that one loader move from one location

to another. This may not be realistic and in this case can be amended by enforcing integrality

constraints on the loader decision variables.

The first case study had many less routes than the first, which made the overall size of the

problem significantly smaller. However this problem was still difficult to solve, demonstrating the

difficulty in differentiating between similar pieces of equipment over long-term schedules. The

problem exhibits a lot of symmetry, which, if addressed, would lead to faster solving times.

One form of validation is to compare our solutions with the actual solution implemented in the

mine. We are fortunate to have obtained this information for the second of the two case studies.

We do not know the complete process behind the derivation of the industry solutions we present

here. However, from discussions with our partner combined with our knowledge of the literature,

we will describe our understanding of the process.

For the second case study, three equipment selection alternative solutions were given to us.

The first and cheapest solution was created on an in-house equipment selection spreadsheet. This

spreadsheet was not designed to consider mixed fleets—i.e. all trucks selected must be compatible

with all loaders. Furthermore, the truck fleet must be homogeneous. The spreadsheet functioned

by first selecting the loaders by minimizing the cost of operation such that the capacity constraints

were met. Then a match factor equation (such as that discussed in (6)) was used to determine

the best fleet size for trucks, whose type was pre-determined by the pre-existing truck fleet. This

solution kept one 34T loader but salvaged the other two pre-existing loaders. Two new 40T loaders

were purchased to meet the capacity constraints. The existing truck fleet was kept, and further

trucks (of the same type) were added in period one (five trucks), period two (two trucks) and
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period five (one truck). This selection policy cost $1.51483× 108 (using our objective function) for

the full 13 period schedule. In comparison, our policy yielded a saving of $14,234,000—a saving

of 9.4%.

The second solution provided by the industry partner contained the same truck purchase and

salvage policy. However, an equipment selection manager believed that all loaders should be sal-

vaged, and that a new 42T and two 57T loaders should be purchased instead. In this solution, the

choice of loaders is restricted in that they must be compatible with the existing truck fleet. This

policy yielded a cost of $1.55241× 108. Comparatively, our solution saved $17,992,000 or 11.6%.

Finally, the third solution purchased a loader fleet that maintained full homogeneity—three 57T

loaders. The truck purchase and salvage policy was the same as above. This was the actual solution

adopted for the mine, and cost $1.66550× 108. Comparatively our solution saved $29,301,000 or

17.6%.

It is interesting to observe that the industry partner selected the most expensive of their three

solutions. This indicates that they attribute a value to having homogeneous fleets. Since we did

not account for the cost of ancillary equipment, on-costs for spares and the training of artisans

for maintenance and equipment use, it is difficult to make a true comparison of these solutions.

However, it is clear that there is an advantage to using an integer programming approach if all the

relevant data is available.

4. Conclusions

In this paper, we have captured the truck and loader equipment selection problem for surface

mines in a large-scale mixed-integer program, developing preprocessing and adopting a separation

algorithm to improve the tractability. We used a continuous allocation variable that suggested the

optimal portion of the fleet that should work at each location. These variables created a flexible

allocation policy alongside the purchase and salvage policy generated by the model. This is a useful

tool for mining engineers, who may take the allocation policy as further evidence that the selected

fleet would be able to perform the required tasks under uncertainty, or simply use the policy as a

guide to manage the fleet.

In our formulation, we paid particular attention to reducing the discretization error in the objec-

tive function. We provided a formula that accurately accounts for cost shifts that occur when

equipment moves from one age bracket to the next within a period. We solved two case studies over

the entire mine plan, demonstrating the model is computationally effective for real world problems.

We have adopted similar assumptions for this model as our work in (5)—a full discussion of the

validity of the assumptions can be found there. One important assumption is that the mine plan

is deterministic. However, the mine plan is dependent on future demand. Ideally, the equipment
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selection model would be robust to uncertainty in the market and other stochastic elements, such

as machine breakdown, maintenance and truck cycle times. Modelled as a stochastic mixed-integer

program, this would decrease the tractability of the model as it stands. However, capturing the

uncertainty, stochasticity and interactive effects of truck types are important starting points for

future research on this topic.
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