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Abstract

Split cuts form a well-known class of valid inequalities for mixed-integer programming prob-

lems. Cook, Kannan and Schrijver (1990) showed that the split closure of a rational polyhedron

P is again a polyhedron. In this paper, we extend this result from a single rational polyhedron

to the union of a finite number of rational polyhedra. We then use this result to prove that

cross cuts yield closures that are rational polyhedra. Cross cuts are a generalization of split cuts

introduced by Dash, Dey and Günlük (2012). Finally, we show that the quadrilateral closure of

the two-row continuous group relaxation is a polyhedron, answering an open question in Basu,

Bonami, Cornuéjols and Margot (2011).

1 Introduction

Cutting planes (or cuts, for short) are crucial for solving mixed-integer programs (MIPs), and

currently the most effective cuts for general MIPs are special cases of split cuts, which are two-term

disjunctive cuts. Given a family of cuts, an important theoretical question is whether only finitely

many cuts from the family imply the rest for a polyhedron. Cook, Kannan and Schrijver [10] proved

such a result for split cuts, by showing that the split closure of a rational polyhedron – that is, the

set of points in the polyhedron that satisfy all split cuts – is again a polyhedron. Earlier, Schrijver

[20] showed that the set of points in a rational polyhedron satisfying all Gomory-Chvátal cuts is a

polyhedron, and Dunkel and Schulz [18] and Dadush, Dey and Vielma [12] proved that this result

holds, respectively, for arbitrary polytopes, and compact convex sets.
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Recently there has been substantial work on generalizing split cuts in different ways to obtain

new and more effective classes of cutting planes, and analogues of the polyhedrality of the split

closure result have been obtained for some of these classes. Andersen, Louveaux, Weismantel and

Wolsey [3] studied cuts for the two-row continuous group relaxation that are obtained from two

dimensional convex lattice-free sets, and Andersen, Louveaux and Weismantel [2] showed that the

set of points in a rational polyhedron satisfying all cuts from convex lattice-free sets with bounded

max-facet-width is a polyhedron. Averkov [4] gave a short proof of this latter result. Del Pia

and Weismantel [15] showed that the closure with respect to cuts obtained from integral lattice-

free sets is a polyhedron. In a recent paper, Basu, Hildebrand and Köeppe [9] showed that the

triangle closure (points satisfying cuts obtained from maximal lattice-free triangles) of the two-row

continuous group relaxation is a polyhedron.

As a different generalization of split cuts, Dash, Dey and Günlük [13] studied cuts that are

obtained by considering two split sets simultaneously. These cuts are called cross cuts and are

equivalent to the 2-branch split cuts of Li and Richard [19]. Dash, Dey and Günlük also define a

subclass of cross cuts called unimodular cross cuts and show that the unimodular cross cut closure

of the two-row continuous group relaxation equals its quadrilateral closure [13, Theorem 3.1]. The

question of whether the quadrilateral closure is a polyhedron or not was posed by Basu, Bonami,

Cornuéjols and Margot [8].

In this paper, we generalize the polyhedrality of the split closure result to the union of a finite

number of rational polyhedra, i.e., we show that the split closure of the union of a finite number

of rational polyhedra is generated by a finite collection of split disjunctions. We use this result to

show that given any list of cross disjunctions, only finitely many yield nonredundant cross cuts for

a rational polyhedron. From this we conclude that the cross cut closure of a rational polyhedron is

a polyhedron. Furthermore, we also use this result to conclude that the unimodular cross closure

of the two-row continuous group relaxation is a polyhedron. This implies that the quadrilateral

closure of this relaxation is also a polyhedron, thus answering a question in Basu et. al. [8].

1.1 Summary of earlier results, proof techniques, and our contribution

We next formally define split sets, split cuts for a given polyhedron (all polyhedra in this paper are

assumed to be rational) and the split closure of a polyhedron. For a given set X ⊆ Rn, we denote

its convex hull by conv(X). Given (π, π0) ∈ Zn × Z, the split set associated with (π, π0) is defined

to be

S(π, π0) = {x ∈ Rn :π0 < πTx < π0 + 1}.

Clearly, S(π, π0) ∩ Zn = ∅ and consequently the integer points contained in a polyhedron P ⊆ Rn

are the same as the ones contained in conv(P \ S(π, π0)) ⊆ P . Linear inequalities that are valid

for conv(P \ S(π, π0)) are called split cuts derived from the split set S(π, π0). Many authors define

split cuts in terms of split disjunctions instead of split sets. A split disjunction derived from

(π, π0) ∈ Zn × Z can be viewed as the set {x ∈ Rn :πTx ≤ π0 or πTx ≥ π0 + 1} = Rn \ S(π, π0).

Let S∗ = {S(π, π0) : (π, π0) ∈ Zn × Z} denote the collection of all split sets and let S ⊆ S∗ be
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given. The split closure of a set P ⊆ Rn, with respect to S, is defined as

SC(P,S) =
⋂
S∈S

conv (P \ S) .

We refer to SC(P,S∗) as the split closure of P and denote it as SC(P ).

Cook, Kannan and Schrijver [10] proved that SC(P,S∗) = SC(P,S) for some finite set S ⊂ S∗.

Theorem 1 ([10]). For any rational polyhedron P , there is a finite collection of split sets S ⊆ S∗

such that any split cut derived from a split set S ∈ S∗ is implied by split cuts derived from split sets

in S. In other words, SC(P,S∗) = SC(P,S).

This result also implies that SC(P ) is a polyhedron as conv(P \S) is polyhedral for all S ∈ S∗,
see [1, 2] and also Lemma 6 for a generalization.

Andersen, Cornuéjols and Li [1] proved the following stronger version of this result. Recall that

a basic relaxation of a polyhedral set is obtained by relaxing all but a linearly independent subset

of inequalities defining it. Here a collection of inequalities aix ≤ bi for i ∈ I is called linearly

independent if the vectors ai for i ∈ I are linearly independent.

Theorem 2 ([1]). For any rational polyhedron P , there is a finite collection of split sets S ⊂ S∗

such that any split cut for P is implied by split cuts obtained from basic relaxations of P using split

sets in S.

Furthermore, Andersen, Cornuéjols and Li’s proof technique is substantially different from that

of Cook, Kannan and Schrijver [10], and is based on an analysis of the possible points of intersection

of edges of a rational, pointed polyhedron with the hyperplanes bounding split sets. Other proofs

of the polyhedrality of SC(P ) can be found in [21], [14] and [2]. The first two of the above three

papers give explicit bounds on the sizes of coefficients defining ‘nonredundant’ split sets thereby

implying that only finitely many split sets can be nonredundant. The last paper builds on the proof

technique in [1] to show that the closure of a polyhedron with respect to cuts from lattice-free sets

having bounded max-facet-width (split sets have max-facet-width 1) is polyhedral. In [4], Averkov

builds on proof techniques in [1] and [2]; his results imply the following strong generalization of

Cook, Kannan and Schrijver’s result.

Theorem 3 ([4]). Given a polyhedron P and any collection of split sets S, there is a finite collection

of split sets S ′ ⊆ S such that any split set S ∈ S is dominated by a split set S′ ∈ S ′ in the sense

that conv(P \ S′) ⊆ conv(P \ S).

In other words, Averkov’s result implies that each split cut derived from one split set is implied

by a nonnegative linear combination of split cuts obtained from a single split set from a finite list

of sets.

One can view the above results as proving that there exists a finite set Ŝ ⊆ S∗ such that

SC(P,S∗) = SC(P, Ŝ). When such Ŝ exists, we say that the split closure is finitely generated. For

a nonpolyhedral set the split closure is not necessarily polyhedral. Even then, in some cases it may

be finitely generated (see for example [11]).
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As a generalization of split cuts, recently Dash, Dey and Günlük [13] studied cross cuts. A

cross set is the union of two split sets {S1, S2}, where S1, S2 ∈ S∗. Let

C∗ =
{
{S1, S2} : S1, S2 ∈ S∗

}
denote the collection of all unordered pairs of split sets from S∗ and let C ⊆ C∗. The cross closure

of a set P ⊆ Rn, with respect to C, is defined as

CC(P, C) =
⋂

{S1,S2}∈C

conv (P \ (S1 ∪ S2)) , (1)

and the cross closure of P is CC(P, C∗), denoted simply by CC(P ). In Section 4, we give our main

result, which generalizes Cook, Kannan and Schrijver’s result to cross cuts and also to an arbitrary

list of cross sets instead of all cross sets.

Theorem 4. Let P be a rational polyhedron and let C ⊆ C∗ be given. Then

CC(P, C) =
⋂

{S1,S2}∈Ĉ

conv (P \ (S1 ∪ S2))

where Ĉ ⊆ C is a finite set. Consequently, CC(P, C) is a polyhedron.

We use this theorem, along with results from [13], to prove the following result, which closes an

open problem from [8].

Theorem 5. The quadrilateral closure of the two-row continuous group relaxation is a polyhedron.

Our proof draws on techniques from the proofs of the highlighted results above, namely from

[10], [1] and [4]. An important intermediate result we prove is the following generalization of

Averkov’s result to a finite union of rational polyhedra.

Theorem 6. Let P =
⋃

k∈K Pk be a finite union of rational polyhedra and S ⊆ S∗. Then, there

exists a finite set Ŝ ⊆ S such that for all S1 ∈ S there exists S2 ∈ Ŝ such that

conv (P \ S2) ⊆ conv (P \ S1) .

Consequently, SC(P,S) = SC(P, Ŝ), and is finitely generated.

Note that Theorem 6 does not always imply that SC (P,S) is polyhedral as it is easy to see that

for P1 = {(0, 0)} and P2 = {x ∈ R2 : x2 = 1} we have SC (P1 ∪ P2,S∗) = conv(P1 ∪ P2) which is

not a polyhedron.

2 Preliminaries

We let Rn,Qn and Zn stand for, respectively, the n-dimensional Euclidean space, the set of all

rational points in Rn and the set of all integer points in Rn. We let Rn
+,Qn

+ and Zn
+ stand for the
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points in, respectively, Rn,Qn and Zn with all components nonnegative. For any subsets A and

B of Rn, we let A + B stand for the set {a + b : a ∈ A, b ∈ B} and for a scalar c ∈ R, we let

cA = {ca : a ∈ A}. For a convex set K ⊆ Rn, we denote its recession cone by rec(K) where

rec(K) = {d ∈ Rn :x+ λd ∈ K ∀x ∈ K and ∀λ ≥ 0}.

The lineality space of K is

ls(K) := rec(K) ∩ −rec(K) = {d ∈ Rn :x+ λd ∈ K ∀x ∈ K,∀λ ∈ R}.

The affine hull of K is denoted by aff(K), and it dimension by dim(K). Let KI , stand for the

convex hull of integer points in K, also called the integer hull of K. Note that given a split set

S(π, π0), its lineality space is {d ∈ Rn :πTd = 0}.
For a linear subspace L of Rn, we denote its orthogonal linear subspace as L⊥. The orthogonal

projection of a set K onto L is denoted as ProjL(K) := {x ∈ L : ∃y ∈ L⊥ such that x + y ∈ K}.
The following result will be used in the next section.

Lemma 1. Let L ⊆ Rn be a linear subspace and let A,B ⊆ L⊥. Then

1. Rn \ (A+ L) = (L⊥ \A) + L.

2. (A+ L) ∩ (B + L) = (A ∩B) + L.

Properties (1) and (2) in the above Lemma do not necessarily hold when A and B are not

contained in L⊥. Note that if L is a linear subspace, then L is contained in the lineality subspace

of a split set S(π, π0) if and only if π ∈ L⊥.

For a rational polyhedron P , we denote its set of vertices by V (P ) ⊆ Qn and its set of extreme

rays by E(P ) ⊆ Qn. When V (P ) 6= ∅, we say that the polyhedron is pointed (equivalently

ls(P ) = {0}). Recall that every rational polyhedron P ⊆ Rn can be written in the form

P = Q+ L,

where L = ls(P ) is a rational linear subspace and Q ⊆ L⊥ is a pointed rational polyhedron.

A unimodular matrix is a square matrix with determinant ±1. If U is an n × n unimodular

matrix, and v ∈ Zn, the affine transformation σ(x) = Ux+v is called a unimodular transformation

and is a one-to-one, invertible, mapping of Rn to Rn with σ−1(x) = U−1(x − v) and is also a

one-to-one invertible mapping of Zn to Zn. If U is an integral unimodular matrix, then so is U−1

Further, if a ∈ Zn, b ∈ Z, the set {x ∈ Rn : aTx = b} is mapped by σ to the set

{x′ ∈ Rn : aTU−1(x′ − v) = b} = {x′ ∈ Rn : aTU−1x′ = b+ aTU−1v},

where aTU−1 ∈ Zn. Therefore, given a split set S(a, b), σ(S(a, b)) and σ−1(S(a, b)) are both split

sets. Finally, given a k-dimensional rational affine subspace A of Rn with 0 < k < n, there exists a

unimodular transformation σ such that σ(A) = Rk × α where α ∈ Qn−k is a rational vector. If in

addition, A contains an integer point, then the transformation can be chosen such that α is zero.
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2.1 Subtracting split sets from a convex set

In this section we analyze the effect of subtracting multiple split sets from a non-pointed polyhedron

and convexifying the remaining points. More precisely, we show that if the lineality space of a split

set does not contain that of the polyhedron, then the split set does not affect the resulting convex

hull. Using this observation, we subsequently show that in order to obtain the convex hull one can

work with the pointed polyhedron given by projecting the original polyhedron onto the orthogonal

complement of its lineality space.

Proposition 2. Let S1, S2, . . . , Sm ∈ S∗, and let P = Q + L, where L is a linear subspace and

Q ⊆ L⊥. Let I = {1, . . . ,m} and let J = {i ∈ I :L ⊆ ls(Si)}. Then

conv(P \ (
⋃
i∈I

Si)) = conv(P \ (
⋃
i∈J

Si)).

Furthermore, if it is not empty, then

conv(P \ (
⋃
i∈J

Si)) = conv(Q \ (
⋃
i∈J

Si)) + L.

Proof. If L = ∅, both parts of the claim hold trivially and therefore we assume that L 6= ∅.
Further, if I = J , there is nothing to prove for the first part of the proposition, so assume I 6= J .

The inclusion conv(P \ (
⋃

i∈I Si)) ⊆ conv(P \
⋃

i∈J Si) is straighforward.

We next prove that conv(P \ (
⋃

i∈J Si)) ⊆ conv(P \ (
⋃

i∈I Si)). For all i ∈ I \ J , as L * ls(Si),

we have L ∩ ls(Si) is a linear subspace of Rn with dimension less than that of L. Therefore

L *
⋃

i∈I\J

ls(Si).

If this were not the case, then

L ⊆
⋃

i∈I\J

ls(Si)⇒ L =
⋃

i∈I\J

(L ∩ ls(Si)),

which would imply that L equals the finite union of some sets, each with a lower dimension than

that of L, which is not possible. Therefore, there exists some v0 ∈ L \ ∪i∈I\J ls(Si). Let Si = {x ∈
Rn :πi0 < (πi)Tx < πi0 + 1} for i ∈ I. Note that (πi)T v0 6= 0 for i ∈ I \ J and (πi)T v0 = 0 for i ∈ J .

Let x0 ∈ P \ (
⋃

i∈J Si). We can choose an α > 0 large enough such that

x0 + αv0, x0 − αv0 ∈ P \ Si for all i ∈ I \ J. (2)

Further, we have (πi)T (x0 + αv0) = (πi)Tx0 for i ∈ J . Therefore,

x0 + αv0, x0 − αv0 ∈ P \ Si, for all i ∈ J. (3)

Now, by using (2) and (3) we obtain

x0 + αv0, x0 − αv0 ∈ P \ (
⋃
i∈I

Si). (4)
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As x0 ∈ conv({x0 + αv0, x0 − αv0}), (4) implies that x0 ∈ conv(P \ (
⋃

i∈I Si)). Therefore,

P \
⋃
i∈J

Si ⊆ conv(P \
⋃
i∈I

Si)

and we conclude that conv(P \
⋃

i∈J Si) ⊆ conv(P \
⋃

i∈I Si).

For the second part of the proposition, note that since L ⊆ ls(Si) for i ∈ J , we can write

Si = Ŝi + L where Ŝi ⊆ L⊥, for all i ∈ J.

Using this equality and the properties in Lemma 1, we obtain

P \ (
⋃
i∈J

Si) = (Q+ L) \ [
⋃
i∈J

(Ŝi + L)]

= (Q+ L) ∩ [
⋂
i∈J

Rn \ (Ŝi + L)]

= (Q+ L) ∩ [
⋂
i∈J

((L⊥ \ Ŝi) + L)]

= [Q ∩
⋂
i∈J

(L⊥ \ Ŝi)] + L

= [Q \ (
⋃
i∈J

Ŝi)] + L

= [Q \ (
⋃
i∈J

Si)] + L.

For any two convex sets A,B ⊆ Rn, it is well-known that conv(A + B) = conv(A) + conv(B).

Therefore, conv(P \ (
⋃

i∈J Si)) = conv(Q \ (
⋃

i∈J Si) + L) = conv(Q \ (
⋃

i∈J Si)) + L, as desired.

2.2 Intersection points and Gordan-Dickson Lemma

In [1], Anderson, Cornuejols and Li give an alternate proof of the polyhedrality of the split closure

of polyhedra using a new proof technique. An important ingredient of the proof is the analysis of

intersection points of (closed) split sets and half-lines. We start with defining the point where a

rational half-line intersects for the first time the complement of a split set that contains the end

point of the half-line.

Definition 3 (Intersection point step size). Let v, r ∈ Qn and S ∈ S∗ such that v ∈ S, then

λvr(S) = min{λ : v + λr 6∈ S, λ > 0}.

Given a split set S = S(π, π0), the step size can be explicitly computed as follows:

λvr(S) =


(π0 + 1− πT v)/(πT r) πT r > 0

(πT v − π0)/(−πT r) πT r < 0

+∞ πT r = 0.
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Let p = v+λvr(S) r, then it is easy to see that if πT r > 0, then p is the point where the half-line

H = {v + λr :λ ≥ 0} intersects the hyperplane {x ∈ Rn :πTx = π0 + 1}. Similarly, if πT r < 0 then

p is the intersection point of H with the hyperplane {x ∈ Rn :πTx = π0}. Moreover, it is possible

to bound the intersection point step size when it is finite.

Lemma 4 (Lemma 5 in [1]). Let v, r ∈ Qn and S ∈ S∗ such that v ∈ S. If λvr(S) < +∞, then

λvr(S) < min{z ∈ Z+ : zr ∈ Zn}.

Consequently, if t ∈ Z+ and t · r is integral, then λvr(S) ≤ t provided that it is finite. Note that

for rational r, there always is a finite t such that t · r is integral. We next review some properties

of λvr(S) presented in [1] and [2].

Lemma 5 (Lemma 6 in [1]). Let v, r ∈ Qn, then the set

Λ(λ∗) =
{
λ ∈ R : λ = λvr(S), ∞ > λvr(S) ≥ λ∗, v ∈ S, S ∈ S∗

}
,

is finite for all λ∗ > 0 .

In other words for any fixed number λ∗ > 0, there are only a finite number of step sizes that

are larger than λ∗. This observation can be used to conclude that there are only a finite number

of possible points on the half-line H that can intersect with the complement of a split set provided

that the intersection point is not very close to v. Based on this observation, it is easy to associate

an index with each intersection point with step size λ̂ that corresponds to the cardinality of the

set Λ(λ̂). Therefore, for a given half-line H = {v + λr :λ ≥ 0} where v, r ∈ Qn we can define the

following function

hvr(S) =

0, λvr(S) = +∞

|Λ(λvr(S))|, λvr(S) < +∞

that maps any given split set S ∈ S with v ∈ S to a finite integer.

Next we summarize some of the results originally presented in [1] for polyhedral cones and later

generalized by Andersen, Louveaux, and Weismantel [2] to general polyhedra.

Lemma 6 ([1, 2]). Let Q be a pointed rational polyhedron and let S ∈ S∗. If Q \ S 6= ∅, then

1. conv (Q \ S) is a rational polyhedron with the same recession cone as Q.

2. If u is a vertex of conv (Q \ S), then either u ∈ V (Q) \ S, or, u = v + λvr(S) r, where

v ∈ V (Q) ∩ S and r satisfies one of the following:

(a) r ∈ E(Q) such that {v + λr :λ ≥ 0} is an edge of Q and λvr(S) < +∞, or,

(b) r = v′ − v for some v′ ∈ V (Q) \ S such that conv(v, v′) is an edge of Q

This result essentially asserts that conv (Q \ S) is completely determined by the intersections

of the edges of Q with the two hyperplanes bounding the split set S; more precisely it equals the

convex hull of the portions of the edges of Q which are not contained in S. We next define the

“relevant” edge directions associated with a given vertex of a polyhedron.
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Definition 7 (Relevant directions). Let Q be a pointed polyhedron and v ∈ V (Q). Let

Dv(Q) =
{
v′ − v : v′ ∈ V (Q), and conv(v, v′) is a 1-dimensional face of Q

}
∪
{
r ∈ E(Q) : {v + λr :λ ≥ 0} is a 1-dimensional face of Q

}
denote the set of relevant directions for the vertex v.

The following is a simple observation based on Lemma 6.

Lemma 8. Let Q be a pointed rational polyhedron and S1, S2 ∈ S∗. Let V ′ ⊆ V (Q) be such that

V ′ = V (Q) ∩ Si for i = 1, 2. If

hvr(S2) ≤ hvr(S1)

holds for all v ∈ V ′ and r ∈ Dv(Q), then

conv (Q \ S2) ⊆ conv (Q \ S1) .

Proof. First note that if Q \ S2 = ∅, the claim holds and therefore we only need to consider the

case when Q \ S2 6= ∅. Notice that by Lemma 6 conv(Q \ S2) and conv(Q \ S1) are polyhedral

and have the same recession cone. We will next argue that the vertices of conv(Q \ S2) belong to

conv(Q \ S1). As Q is pointed and conv(Q \ S2) is contained in Q, it has to be pointed as well.

Let u be a vertex of conv(Q \ S2). Clearly, u ∈ Q. If u ∈ V (Q) \ V ′, then u 6∈ S1 and therefore

u ∈ Q \ S1.
If, on the other hand, u 6∈ V (Q) \ V ′, then it is a ‘new’ vertex and by Lemma 6 we have

u = v + λvr(S2) r for some v ∈ V ′ and r ∈ Dv(Q). In addition, λvr(S2) is finite. In this case,

hvr(S2) ≤ hvr(S1)⇒ λvr(S2) ≥ λvr(S1).

Further, as λvr(S2) ≥ λvr(S1), we have u 6∈ S1. Therefore, u ∈ Q \ S1.

By Proposition 2, we have the following corollary.

Corollary 9. Let P = Q+L be a polyhedron where L is a rational linear subspace and Q ⊆ L⊥ is

a pointed rational polyhedron. Let V ′ ⊆ V (Q) and let S1, S2 ∈ S∗ be such that P 6= conv(P \ Si)
and V ′ = V (Q) ∩ Si for i = 1, 2. If

hvr(S2) ≤ hvr(S1),

for all v ∈ V ′ and r ∈ Dv(Q), then

conv (P \ S2) ⊆ conv (P \ S1) .

In Figure 1, the first picture depicts intersection points of split set boundaries with rays incident

with the vertex v. The second one shows two splits S1 and S2 with hvr1(S1) = 3, hvr2(S1) =

1, hvr1(S2) = 1, hvr2(S2) = 2. The third picture shows the split set S1 and S3, where hvr1(S3) =

4, hvr2(S3) = 6. As hvri(S1) ≤ hvri(S3) for i = 1, 2, the intersection points of S1 with the rays r1 and

r2 are further away from v then the corresponding intersection points of S3, and Lemma 8 implies

9



1

2

3

4
5

1
2

3
4

5

6

r1

r2

v

... ...
7

8
et
c.etc.

1

2

3

4
5

1
2

3
4

5

6

... ...

7
8

S1S2

r1

r2

v

1

2

3

4
5

1
2

3
4

5

6

... ...

7
8

S1S3

r1

r2

v

Figure 1: Indices of intersection points and three split sets S1, S2, S3.

that conv (Q \ S1) ⊆ conv (Q \ S3) as can be seen in the figure. On the other hand, we se that

hvr1(S1) > hvr1(S2) but hvr2(S1) < hvr2(S2), therefore neither of conv (Q \ S1) or conv (Q \ S2) is

a subset of the other set.

We next state a very simple and useful lemma that shows that for any positive integer p, every

set of p-tuples of natural numbers has finitely many minimal elements.

Lemma 10 (Gordan-Dickson Lemma). Let X ⊆ Zp
+. Then there exists a finite set Y ⊆ X such

that for every x ∈ X there exists y ∈ Y satisfying x ≥ y.

This observation together with Corollary 9 can be used to show that the split closure of a

polyhedron is again a polyhedron. In [4], Averkov uses a similar argument to show the polyhedrality

of more general closures that include the split closure.

3 Split Closure of a Finite Collection of Polyhedral Sets

In this section, we prove Theorem 6, namely we show that given a finite collection of rational

polyhedra, there exists a finite set of splits that define the split closure of their union. Let Pk ⊂ Rn

for k ∈ K be a finite collection of rational polyhedra where Pk = Qk+Lk, and Lk is a rational linear

subspace and Qk ⊆ L⊥k is a pointed rational polyhedron. In addition, let S ⊆ S∗ be a collection

of split sets of appropriate dimension. We are interested in the split closure of P =
⋃

k∈K Pk with

respect to S:

SC(P,S) =
⋂
S∈S

conv (P \ S) .

Note that for any S ∈ S∗

conv (P \ S) = conv

(⋃
k∈K

conv(Pk \ S)

)
. (5)

Furthermore, note that by Proposition 2 we have

conv(Pk \ S) =

conv(Qk \ S) + Lk if Lk ⊆ ls(S)

Pk otherwise.

10



for any k ∈ K. Therefore, in the context of split cuts for Pk, it suffices to consider splits sets whose

lineality space contains the lineality space of Pk.

A natural question (and one posed to us by a referee) is whether the split sets that define the

split closure of Pk for each k ∈ K can be combined to give the split closure of P . More formally,

if Sk is a finite collection of split sets such that SC(Pk,S∗) = SC(Pk,Sk) for each k ∈ K, is it the

case that SC(P,S∗) = SC(P,
⋃

k∈K Sk)? If the answer were affirmative, then the split closure of P

would be polyhedral as each Sk is a finite collection of split sets. However, we next show that this

is not the case with the following example.

Example 1. Let P1 = {(x, y) ∈ R2 : 1 ≤ x ≤ 5, 1 ≤ y ≤ 1.5} and P2 = {(x, y) ∈ R2 : 2 ≤ x ≤
5, 2 ≤ y ≤ 2.5} be two polyhedra depicted in Figure 2(a) by the shaded regions. The bold lines

represent the respective integer hulls; the integer hull of P1 is the set {(x, y) : 1 ≤ x ≤ 5, y = 1}. It

is easy to see that the split closure of P1 is given by the split set S1 = {(x, y) ∈ R2 : 1 < y < 2}
as conv(P1 \ S1) equals the integer hull of P1. Similarly, if S2 = {(x, y) ∈ R2 : 2 < y < 3},
then conv(P2 \ S2) equals the integer hull of P2 and thus SC(Pi, {Si}) = SC(Pi,S∗) for i = 1, 2.

Furthermore, Si is the only nonredundant split set for Pi.

However, when we let P = P1 ∪P2, then conv(P \ S1)∩ conv(P \ S2) does not equal the integer

hull of P . In Figure 2, conv(P \ S1) is depicted by the polyhedron with the blue boundary, and

conv(P \ S2) is the polyhedron with the red boundary. If we let S3 = {(x, y) ∈ R2 : 0 < y − x < 1},
then it is easy to see that conv(P \S2)∩ conv(P \S3) gives the integer hull of P , shown in grey. To

see this note that y− x ≤ 1.5 is a valid inequality for P , and therefore the inequality y− x ≤ 1 is a

split cut for P derived from S3. See Figure 2(b). Therefore the split closure of P equals its integer

hull and SC(P,S∗) = SC(P, {S2, S3}) 6= SC(P, {S1, S2}).

P1

P2

x

y

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

(a)

x

y

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

S3 = {(x, y) : 1 ≥
y − x ≥ 0}

(b)

Figure 2: The split sets giving the split closures of P1, P2 do not give the split closure of P1 ∪ P2

11



3.1 Split closure of a union of polyhedra

We start by partitioning the split sets in S into subcollections based on which polyhedra Pk they

yield nontrivial split cuts for. More precisely, for all K ′ ⊆ K including K ′ = ∅, we define

S(K ′) = {S ∈ S : conv(Pk \ S) 6= Pk for k ∈ K ′, conv(Pk \ S) = Pk for k 6∈ K ′}.

Clearly, S =
⋃

K′⊆K S(K ′). Also notice that if Lk 6⊆ ls(S), for some S ∈ S, then S 6∈ S(K ′)

whenever k ∈ K ′.
We next partition S(K ′) further into smaller subsets depending on which vertices of the poly-

hedra Qk they contain. For a fixed set K ′ ⊆ K, let V ′ ⊆
⋃

k∈K′ V (Qk) be given, then we define

S(K ′, V ′) = {S ∈ S(K ′) : S ∩ V = V ′}

where V =
⋃

k∈K′ V (Qk). Note that for any K ′ ⊆ K

S(K ′) =
⋃

V ′⊆
⋃

k∈K′ V (Qk)

S(K ′, V ′).

Consequently,

S =
⋃

K′⊆K

⋃
V ′⊆

⋃
k∈K′ V (Qk)

S(K ′, V ′). (6)

Also note that given K ′,K ′′ ⊆ K and V ′, V ′′ ⊆ V , we have S(K ′, V ′)
⋂
S(K ′′, V ′′) = ∅ unless

K ′ = K ′′ and V ′ = V ′′. We next show that SC(P,S(K ′, V ′)) is finitely generated for any K ′ ⊆ K

and V ′ ⊆
⋃

k∈K′ V (Qk).

Proposition 11. Let S ⊆ S∗, K ′ ⊆ K and V ′ ⊆
⋃

k∈K′ V (Qk) be given. Then, there exists a finite

set SY ⊆ S(K ′, V ′) such that for all S1 ∈ S(K ′, V ′) there exists S2 ∈ SY such that

conv (Pk \ S2) ⊆ conv (Pk \ S1) for all k ∈ K ′.

Proof. If S(K ′, V ′) = ∅, there is nothing to prove so we assume that S(K ′, V ′) 6= ∅. In this case,

if K ′ = ∅, then it is easy to see that conv(Pk \ S) = Pk for all k ∈ K. Thus, we can take take

SY = {S}, where S ∈ S(K ′, V ′) can be chosen arbitrarily.

We now consider the case when K ′ 6= ∅. As we assumed S(K ′, V ′) is nonempty, V ′ must be

nonempty too. Let V ′k = V ′ ∩ V (Qk) for k ∈ K ′. Using the function hrv defined earlier, we now

define a function H : S → Zp where p =
∑

k∈K′
∑

v∈V ′
k
|Dv(Qk)|. More precisely, for S ∈ S(K ′, V ′),

the p-tuple H(S) has a component for each k ∈ K ′, v ∈ V ′k, and r ∈ Dv(Qk) that equals hvr(S).

Now consider the following set that contains all possible values of H(S) for S ∈ S(K ′, V ′):

X =
{
t ∈ Zp

+ : t = H(S), S ∈ S(K ′, V ′)
}
.

By Lemma 10, the set X contains a finite set of minimal elements. Let Y ⊆ X be a finite set such

that for every x ∈ X there exists y ∈ Y satisfying x ≥ y. For each y ∈ Y , let Sy ∈ S(K ′, V ′) be a

12



split set such that H(Sy) = y and let SY = {Sy : y ∈ Y }. In other words, for each y ∈ Y the set

SY contains a set Sy such that H(Sy) = y.

Now let x = H(S1) and y ≤ x be such that y ∈ Y . Further let S2 ∈ SY be such that H(S2) = y.

Clearly weK ′ ⊆ K have H(S2) ≤ H(S1) and therefore

hvr(S1) ≥ hvr(S2), for all r ∈ Dv(Qk) and v ∈ V ′k

for all k ∈ K ′. Consequently, by Corollary 9 we obtain that

conv(Pk \ S2) ⊆ conv(Pk \ S1)

for all k ∈ K ′.

Using Proposition 11 we now generalize Theorem 3 for the split closure of a union of polyhedra.

Theorem 6. Let P =
⋃

k∈K Pk be a finite union of rational polyhedra and S ⊆ S∗. Then, there

exists a finite set Ŝ ⊆ S such that for all S1 ∈ S there exists S2 ∈ Ŝ such that

conv (P \ S2) ⊆ conv (P \ S1) .

Consequently, SC (P,S) is finitely generated.

Proof. For k ∈ K let Pk = Qk + Lk, where Lk is a rational linear subspace and Qk ⊆ L⊥k is a

pointed rational polyhedron and let

S =
⋃

K′⊆K

⋃
V ′⊆

⋃
k∈K′ V (Qk)

S(K ′, V ′) (7)

be the finite partition of S as defined in (6). By Proposition 11, there exists a finite set SY (K ′, V ′) ⊆
S(K ′, V ′) for each K ′ ⊆ K and V ′ ⊆

⋃
k∈K′ V (Qk) with the property that for each for S1 ∈

S(K ′, V ′) there exists S2 ∈ SY (K ′, V ′) such that

conv (Pk \ S2) ⊆ conv (Pk \ S1) for all k ∈ K ′,

implying conv(P \ S2) ⊆ conv(P \ S1) by equation (5). Consequently, taking

Ŝ =
⋃

K′⊆K

⋃
V ′⊆

⋃
k∈K′ V (Qk)

SY (K ′, V ′)

completes the proof.

4 Cross Closure of a Polyhedral Set

Let P ⊆ Rn be a rational polyhedron of the form P = Q+ L, where L := ls(P ) is a rational linear

subspace of Rn and Q ⊆ L⊥ is a pointed, rational polyhedron. Recall that C∗ = S∗ × S∗ denotes

13



the set of all pairs of split sets and a cross set is simply the union of two split sets. In this section

we will show that for a given C ⊆ C∗

CC(P, C) =
⋂

{S1,S2}∈C,

conv (P \ (S1 ∪ S2))

is a polyhedron. Let S = {S ∈ S∗ : S ∈ C, for some C ∈ C} denote the collection of split sets that

appear in at least one of the cross sets defined by C. Furthermore, let S = SL ∪ So be a partition

of S such that SL contains S ∈ S with L ⊆ ls(S) and So contains S ∈ S with L 6⊆ ls(S). Clearly,

CC(P, C) ⊆ SC(P,S) = SC(P,SL).

Furthermore, by Proposition 2, for a given C ∈ C we have

conv (P \ C) =


conv(Q \ C) + L if |C ∩ SL| = 2,

conv(Q \ S) + L if C ∩ SL = {S},

conv(P ) if C ∩ SL = ∅.

Consequently, for C ∈ C,

conv (P \ C) + SC(P,S)⇒ |C ∩ SL| = 2.

Therefore, if we let CL ⊆ C to denote set of C ∈ C with the property that |C ∩SL| = 2, we have

the following observation

CC(P, C) = SC(P,SL) ∩

 ⋂
C∈CL

conv(P \ C)

 , (8)

where SC(P,SL) is a polyhedral set. Furthermore, as conv(P \C) = conv(Q\C)+L for all C ∈ CL,

we also have ⋂
C∈CL

conv(P \ C) = L+
⋂

C∈CL
conv(Q \ C) = L+ CC(Q, CL). (9)

Consequently, CC(P, C) is polyhedral, if and only if CC(Q, CL) is a polyhedron. Therefore, we

conclude that to prove the polyhedrality of the cross closure for any rational polyhedron, it is

sufficient to study the special case when the polyhedron is pointed.

4.1 Cross closure of pointed polyhedra

In this section, we show that the cross closure of a pointed, rational polyhedron is again a poly-

hedron. We combine the proof technique of Cook, Kannan and Schrijver [10] for showing that the

split closure of a polyhedron is polyhedral along with the results we derived in earlier sections based

on proof techniques of Anderson, Cornuéjols, Li [1], and Averkov [4]. We need some definitions

to discuss the overall techniques used. Let ‖ · ‖ denote the usual Euclidean norm. Define the
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width of a split set S(π, π0) as w(S(π, π0)) = 1/‖π‖ (this is the geometric distance between the

parallel hyperplanes bounding the split set). Then w(S(π, π0)) > η for some η > 0 implies that

‖π‖ < 1/η. Therefore, for any fixed η > 0 and π0 ∈ Zn, there are only finitely many π ∈ Zn such

that w(S(π, π0)) > η.

For a given pointed polyhedron P , Cook, Kannan, Schrijver prove the polyhedrality of SC(P,S∗)
using the following idea. Let S ⊆ S∗ be a finite list of split sets and consider the set SC(P,S) =⋂

S∈S conv(P \ S). Suppose that for every face F of P , SC(P,S) ∩ F = SC(F,S∗). Then (i) there

are only finitely many split sets beyond the ones contained in S which yield split cuts cutting off

points of SC(P,S) (they show that if S(π, π0) is such a split set, then π must have bounded norm).

Therefore, (ii) if one assumes (by induction on dimension) that the number of split sets needed to

define the split closure of each face of a polyhedron is finite, then so is the number of split sets

needed to define the split closure of the polyhedron.

Santanu Dey [17] observed that idea (i) in the Cook, Kannan, Schrijver proof technique can also

be used in the case of some disjunctive cuts which generalize split cuts. We apply a modification

of idea (i) to cross cuts. Let C ⊆ C∗ be a finite list of pairs of split sets (that define cross sets)

and recall that CC(P, C) =
⋂
{S1,S2}∈C conv(P \ (S1 ∪S2)). We show in Lemma 16 that if CC(P, C)

intersected with each face of P equals the cross closure of the face, then there exists a number

η > 0 such that any cross set S1 ∪S2, where both w(S1) and w(S2) are at most η, only yields cross

cuts valid for CC(P, C), and are therefore not needed to define the cross closure of P . We then only

need to consider cross sets S1 ∪ S2 where at least one of w(S1), w(S2) is greater than η (such cross

sets are still infinitely many in number).

We first need a generalization of Lemma 6, property (1).

Lemma 12. Let P ⊆ Rn be a polyhedron and let Si ∈ S∗ be split sets for i ∈ {1, . . . ,m} where m

is a positive integer. Then, conv (P \ (
⋃m

i=1 Si)) is a polyhedron, which, if nonempty, has the same

recession cone as P .

Proof. Let P∞ denote the recession cone of P . Let Si = {x ∈ Rn : πi0 < (πi)Tx < πi0 + 1} for

i ∈ {1, . . . ,m}. Then Rn \ Si = D0
i ∪D1

i where D0
i = {x ∈ Rn : (πi)Tx ≤ πi0} and D1

i = {x ∈ Rn :

(πi)Tx ≥ πi0 + 1}.
We first write P \ (

⋃m
i=1 Si) as a union of polyhedral sets. To this end, let B = {0, 1}m and

consider sets P b = P ∩Db for b ∈ B where

Db = Db1
1 ∩D

b2
2 ∩ . . . ∩D

bm
m .

We can then write

P \ (
m⋃
i=1

Si) =
⋃
b∈B

P b. (10)

To prove the Lemma, we will show that the convex hull of the right-hand-side of equation (10) is

polyhedral. If P∞ = {0}, then this claim is trivially true. Therefore, assume P∞ 6= {0} and let

P b
∞ = P b + P∞. Note that, by definition, P b

∞ = ∅ if P b = ∅.
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We first show that the recession cone of conv(P \ (
⋃m

i=1 Si)) equals P∞ when P \ (
⋃m

i=1 Si) is

nonempty. Let x ∈ conv(P \ (
⋃m

i=1 Si)). Then, for some t > 0 we have

x =
t∑

j=1

λjxj where x1, . . . , xt ∈ P \ (
m⋃
i=1

Si),

0 ≤ λ1, . . . , λt ≤ 1 and λ1 + · · ·λt = 1.

Let d ∈ P∞. Then, for all j = 1, . . . , t we have xj +αd ∈ P for all α ≥ 0. Furthermore, xj +αd 6∈ Si
for all α ≥ αij where

αij =


0 if dTπi = 0

(πi0 + 1− xTj πi)/dTπi if dTπi > 0

(πi0 − xTj πi)/dTπi if dTπi < 0.

Consequently, letting α∗ ≥ 0 be an upper bound on all αijs, we conclude that

t∑
j=1

λj(xj + αd) = x+ αd ∈ conv(P \ (
m⋃
i=1

Si)) for all α ≥ α∗.

As x is contained in conv(P \ (
⋃m

i=1 Si)), it follows that so is x + αd for all α ≥ 0. Therefore

rec(conv(P \ (
⋃m

i=1 Si))) = rec(conv(
⋃

b∈B P
b)) = P∞. Then

conv(
⋃
b∈B

P b) = conv(
⋃
b∈B

P b) + P∞ = conv(
⋃
b∈B

P b) + conv(P∞)

= conv((
⋃
b∈B

P b) + P∞) = conv(
⋃
b∈B

(P b + P∞)).

But the last convex hull is a polyhedron as each P b + P∞ is a polyhedron with the same recession

cone P∞. The result follows.

We next make an elementary observation, the proof of which follows from [10].

Lemma 13. Let P be a polyhedron and let F be a face of P . For any set B, conv(P \ B) ∩ F =

conv(F \B).

We next extend a result of Cook, Kannan and Schrijver [10] to handle polyhedra which are not

full-dimensional. We denote the dimension of a polyhedron P by dim(P ). We let B(u, r) = {x ∈
Rn : ||x − u|| ≤ r} stand for a closed ball of radius r centered at the point u. If the set K is not

full-dimensional, then we refer to a ball in K as a set of the form B(u, r)∩ aff(K) for some u ∈ K;

its radius is the distance of its boundary from u.

Lemma 14. Let Q,W ⊂ Rn be pointed polyhedra such that W ⊂ Q. Let x̂ ∈ relint(Q) ∩ V (W )

and cTx ≤ γ be a valid inequality for W but not for Q such that cT x̂ = γ. Then there exists a

dim(Q)−dimensional ball B ⊂ Q \W of radius r > 0 (where r is independent of x̂ and c) such that

cTx > γ for all x ∈ B.
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Proof. Let V = relint(Q) ∩ V (W ). Further, let L denote the linear subspace parallel to the affine

hull of Q and let L⊥ be the orthogonal linear subspace. Without loss of generality,

Q =
{
x : aTi x ≤ bi for i = 1, . . . ,m

}
∩ aff(Q)

where ai ∈ L and ||ai|| = 1 for all i = 1, . . . ,m. Note that m > 0, as Q is pointed and has a

nonempty relative interior. Furthermore, as aTi v < bi for all v ∈ V and i = 1, . . . ,m, there exists

an ε > 0 such that

bi − aTi v ≥ ε

for all v ∈ V and i = 1, . . . ,m.

The vector c defining the valid inequality can be written as c = ĉ+ c̄ where c̄ ∈ L and ĉ ∈ L⊥.

By scaling, we assume that ||c̄|| = 1. Clearly, for any point x ∈ aff(Q) we have ĉTx = µ for some

constant µ ∈ R, and consequently cTx− µ = c̄Tx for all x ∈ Q. As cTx ≤ γ is valid for W but not

for Q, the same holds for the inequality c̄Tx ≤ γ − µ and therefore

zW = max{c̄Tx : x ∈W} < max{c̄Tx : x ∈ Q} = zQ.

Let the first maximum be obtained at a vertex vW , and let the second maximum be obtained at a

vertex vQ.

By LP duality, there exists multipliers λ ∈ Rm
+ such that c̄ =

∑m
i=1 λiai and zQ =

∑m
i=1 λibi.

Furthermore as ||c̄|| = ||ai|| for all i = 1, . . . ,m, we have
∑m

i=1 λi ≥ 1 and therefore,

zQ − zW = zQ − c̄T vW =
m∑
i=1

λi(bi − aTi vW ) ≥ ε.

As ||c̄|| = 1, , the distance between the hyperplanes c̄Tx = zW and c̄Tx = zQ is at least ε. Therefore,

any point x in the n-dimensional ball B(vQ, ε/2) satisfies c̄Tx > c̄T vW (and also cTx > cT vW ).

Note that the diameter of the ball B(vQ, ε/2) does not depend on the vector c̄ but only on Q

and W . Now consider B(vQ, ε/2)∩Q which has dimension dim(Q) and notice that it must contain

a dim(Q)-dimensional ball in aff(Q) of radius δ(vQ) > 0. Letting r denote the smallest δ(v) over

vertices v ∈ V (Q), it follows that there exists a collection of balls B of common radius r, one per

each vertex of Q, such that any inequality that satisfies the conditions of the lemma must separate

one of the balls in B from W .

A (open) strip in Rn is the set of points (strictly) between a pair of parallel hyperplanes, i.e.,

a set of the form {x ∈ Rn : b ≤ aTx ≤ b′} for some a ∈ Rn and b < b′ ∈ R. The width of a

strip is the distance between its bounding hyperplanes. The topological closure of a split set is a

strip. The minimum width of a bounded closed convex set A is defined as the minimum width of

a strip containing A and is denoted by w(A). It is known (Bang [7]) that the sum of widths of

a collection of strips containing A must exceed its minimum width. The following statement is a

trivial consequence of Bang’s result.

Lemma 15. Let B be a ball of radius r > 0, and let S1, S2 be split sets such that B ⊆ S1 ∪ S2.

Then,

w(S1) + w(S2) ≥ 2r.
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The next result generalizes a result in Cook, Kannan and Schrijver [10] on the action of split

sets on full-dimensional polyhedra to the action of cross sets on polyhedra which may not be

full-dimensional. We need some definitions. Given a list of pairs of split sets C ⊆ C∗ we define

splits(C) =
⋃

{S1,S2}∈C

{S1, S2}.

Thus splits(C) is simply the list of all split sets contained in the sets in C.

Lemma 16. Let Q ⊂ Rn be a pointed polyhedron and let C ⊆ C∗ be such that Q 6⊆ S1 ∪ S2 for any

{S1, S2} ∈ C. Let W ⊆ Q be a polyhedron such that W ∩F = CC(F, C) for each proper face F of Q.

Then there exists a finite set S ⊆ splits(C) such that if a cross cut derived from {S1, S2} ∈ C is not

valid for W , then there is an S′ ∈ S such that either S1 ∩ aff(Q) or S2 ∩ aff(Q) equals S′ ∩ aff(Q).

Proof. Let cTx ≤ µ be a cross cut derived from {S1, S2} ∈ C. Suppose cTx ≤ µ is not valid for W .

Then

γ = max{cTx : x ∈ conv(Q \ (S1 ∪ S2))} ≤ µ < max{cTx : x ∈W} <∞. (11)

The last inequality above follows from Lemma 12 which implies that rec(Q) = rec(conv(Q \ (S1 ∪
S2))) and from the fact that rec(W ) ⊆ rec(Q).

Suppose the second maximum above is obtained at a vertex v of W . If v is contained in a

proper face F of Q, then using Lemma 13,

cT v = max{cTx : x ∈W} = max{cTx : x ∈W ∩ F}
= max{cTx : x ∈ CC(Q, C) ∩ F}
≤ max{cTx : x ∈ CC(Q, C)}
≤ max{cTx : x ∈ conv(Q \ (S1 ∪ S2))} = γ,

a contradiction to the fact that γ < cT v, stated in equation (11).

Therefore, we can assume v is in the relative interior of Q. As W is contained in Q and is a

pointed polyhedron, Lemma 14 implies that there exists a ball B of radius r (for some fixed r > 0)

in the relative interior of Q with all points in the ball satisying cTx > cT v.

Case 1: Q is full-dimensional. In this case, for any S ∈ S∗, S∩aff(Q) = S. Clearly B ⊆ S1∪S2,
otherwise there exists an x ∈ B \ (S1∪S2) ⊆ conv(Q\ (S1∪S2)); such an x satisfies cTx > cT v > γ,

a contradiction to (11). Let Si = S(πi, πi0). Lemma 15 implies that w(S1) + w(S2) ≥ 2r which

implies that for either i = 1 or i = 2 we have (a) Si ∩ B 6= ∅ and (b) w(Si) ≥ r, i.e., ||πi|| ≤ 1/r.

There are only finitely many split sets in S∗ which satisfy properties (a) and (b). Let S stand for

the set of such split sets in splits(C). Thus either S1 ∈ S or S2 ∈ S.

Case 2: Let k = dim(Q) < n. By applying a unimodular transformation to Q, we can assume

that aff(Q) = {x ∈ Rn : xk+1 = α1, . . . , xn = αn−k}, where α ∈ Rn−k is a rational vector, and

αi = pi/∆ where pi is an integer, for i = 1, . . . , n− k and ∆ is a positive integer. Recall that any

unimodular transformation maps split sets to split sets and therefore the cross sets are mapped
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to cross sets as well. Assume S1 = S(π, π0). For π ∈ Zn we define π̄ ∈ Zk to denote the first k

components of π and π̂ ∈ Zn−k to denote the remaining components. Then

S1 ∩ aff(Q) = S̄1 × {α} where S̄1 = {x ∈ Rk : π0 − αT π̂ < π̄Tx < π0 + 1− αT π̂}.

Therefore S̄1 is a strip in Rk with w(S̄1) = 1/||π̄||. Let S̄2 be defined similarly in terms of S2 =

S(π′, π′0).

Since B is contained in the relative interior of Q, we can write B = B̄ × {α}, where B̄ ⊆ Rk

is a full-dimensional ball of radius r. Now any point x in B̄ \ (S̄1 ∪ S̄2) satisfies cTx > γ, and

therefore B̄ ⊆ S̄1∪ S̄2, which implies that either (i) w(S̄1) ≥ r and S̄1∩ B̄ 6= ∅ or (ii) w(S̄2) ≥ r and

S̄2 ∩ B̄ 6= ∅. Without loss of generality, assume (i) holds and therefore ||π̄|| ≤ 1/r. Consequently,

the first k coefficients of π come from a bounded set, but the last n−k coefficients can be arbitrary

integers. However, as α is rational, αT π̂ is an integral multiple of 1/∆. In other words, the set S̄1
has the form

S(τ, τ0, δ) = {x ∈ Rk : τ0 − δ < τTx < τ0 + 1− δ}, (12)

where τ ∈ Zk, τ0 ∈ Z and 1 > δ ≥ 0 is an integral multiple of 1/∆. Furthermore, there are only

finitely many choices of tuples (τ, τ0, δ). Let

Φ =

{
(τ, τ0, δ) ∈ Zk × Z× 1

∆
Z : S(τ, τ0, δ) ∩ B̄ 6= ∅, w(S(τ, τ0, δ)) ≥ r

}
be the collection of such tuples. Each S(π, π0) ∈ splits(C) is associated with a unique tuple

(τ, τ0, δ) ∈ Φ, where δ = aTπ −
⌊
aTπ

⌋
, τ0 = π0 −

⌊
aTπ

⌋
and τ = π̄ (i.e the first k compo-

nents of π). Let Φ̄ ⊆ Φ be the collection of tuples that have an associated split set in splits(C).
Now construct a set S ⊆ splits(C) that contains exactly one split set S for each φ ∈ Φ̄. Clearly, S
is a finite set and it contains a split set S ∈ S for the tuple φ associated with S̄1. In other words,

S1 ∩ aff(Q) = S ∩ aff(Q) and the proof is complete.

We now prove our main result using the previous Lemma.

Theorem 4. Let P ⊆ Rn be a rational polyhedron and let C ⊆ C∗ be given. Then

CC(P, C) =
⋂

{S1,S2}∈Ĉ

conv (P \ (S1 ∪ S2))

where Ĉ ⊆ C is a finite set. Consequently, CC(P, C) is a polyhedron.

Proof. If P = ∅, the claim clearly holds and therefore we consider the case when P 6= ∅. In addition,

by equations (8) and (9), we only need to show the result for pointed polyhedra and therefore we

can assume that P is pointed. Furthermore, if P is contained in S1∪S2 for some {S1, S2} ∈ C, then

CC(P, C) = CC(P, {{S1, S2}}) = ∅ and the result follows. We therefore assume that this condition

does not hold.

The proof is by induction on dim(P ) ≤ n. For the base case, let dim(P ) = 0, i.e., P has a single

point. As P is not contained in S1∪S2 for any {S1, S2} ∈ C, we have CC(P, C) = P = CC(P, {C ′})
where C ′ is an arbitrary element in C.
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For the inductive step, we assume that CC(Q, C) is defined by a finite set of cross sets for

all polyhedra Q of dimension strictly less than dim(P ). Let F be a proper face of P . Since

dim(F ) < dim(P ), by the induction hypothesis we infer that there exists a finite set C(F ) ⊆ C such

that CC(F, C) = CC(F, C(F )). Let

C̃ =
⋃

F is a proper face of P

C(F ),

and note that C̃ is finite. Then for any proper face F of P , we have

CC(P, C̃) ∩ F = CC(F, C)

as CC(P, C̃) ∩ F = CC(F, C̃) by Lemma 13 and CC(F, C̃) = CC(F, C) follows from CC(F, C(F )) =

CC(F, C) and C(F ) ⊆ C̃ ⊆ C. Note that CC(P, C̃) ⊆ P is a pointed polyhedron.

Applying Lemma 16 with P in place of Q and CC(P, C̃) in place of W , we infer that there is a

finite set S ⊆ splits(C) such that if a cross cut derived from {S1, S2} ∈ C is not valid for CC(P, C̃),
then there is an S′ ∈ S such that either S1 ∩ aff(P ) or S2 ∩ aff(P ) equals S′ ∩ aff(P ).

Therefore,

CC(P, C) =
⋂

{S1,S2}∈C

conv (P \ (S1 ∪ S2))

= CC(P, C̃) ∩
⋂
S∈S

{S1,S2}∈match(S,C)

conv (P \ (S1 ∪ S2)) (13)

where

match(S, C) = {{S1, S2} ∈ C : S1 ∩ aff(P ) = S ∩ aff(P ) or S2 ∩ aff(P ) = S ∩ aff(P )}.

Note that the last convex hull in (13) satisfies

conv (P \ (S1 ∪ S2)) =

{
conv ((P \ S) \ S2)) if S1 ∩ aff(P ) = S ∩ aff(P ),

conv ((P \ S) \ S1)) if S2 ∩ aff(P ) = S ∩ aff(P ).

Therefore, for any S ∈ S,⋂
{S1,S2}∈match(S,C)

conv (P \ (S1 ∪ S2)) = SC(P \ S,partner(S, C))

where

partner(S, C) = {S1 ∈ S∗ : ∃S2 ∈ S∗ such that {S1, S2} ∈ C and S2 ∩ aff(P ) = S ∩ aff(P )}.

For any split set S ∈ S, the set P \ S is a union of two pointed rational polyhedra (possibly

empty), and therefore Theorem 6 implies that SC(P \ S, partner(S, C)) is finitely generated. We

can conclude from this that⋂
{S1,S2}∈match(S,C)

conv (P \ (S1 ∪ S2)) =
⋂

{S1,S2}∈C(S)

conv (P \ (S1 ∪ S2))
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for some finite C(S) ⊆ match(S, C). Finally, as the set S is finite, we conclude that CC(P, C) is

finitely generated and

CC(P, C) = CC

(
P, C̃ ∪

⋃
S∈S
C(S)

)
.

Furthermore, by Lemma 12, CC(P, C) is a polyhedron.

5 Mixed-integer Sets

Consider a mixed-integer set defined by a polyhedron PLP ⊆ Rn+l and the mixed-integer lattice

Zn × Rl where n and l are positive integers:

P I = PLP ∩ (Zn × Rl). (14)

We next present the extension of the main results from the earlier sections to mixed-integer sets.

5.1 Split closure of a union of mixed-integer sets

An inequality is called a split cut for PLP with respect to the lattice Zn × Rl if it is valid for

conv(PLP \ S) for some S ∈ S∗n,l where

S∗n,l = {S(π, π0) ∈ S∗ : π ∈ Zn × {0}l}.

The split closure is then defined in the usual way as the intersection of all such split cuts. A

straightforward extension of Theorem 6 is the following:

Corollary 17. Let Pk ∈ Rn+l be a rational polyhedron for k ∈ K where K is a finite set and let

P =
⋃

k∈K Pk. Then SC (P,S) is finitely generated for any S ⊆ S∗n,l.

5.2 Cross closure of mixed-integer sets

Similarly, an inequality is called a cross cut for PLP with respect to the lattice Zn×Rl if it is valid

for conv(PLP \ (S1 ∪ S2)) for some S1, S2 ∈ C∗n,l, where C∗n,l denotes the collection of pairs of split

sets from S∗n,l. For any given subset of C∗n,l, the cross closure is then defined in the usual way. A

straightforward extension of Theorem 4 is the following:

Corollary 18. Let P ∈ Rn+l be a rational polyhedron, then CC (P, C) is finitely generated for any

C ⊆ C∗n,l.

6 The quadrilateral closure of the two-row continuous group set

A recent topic of interest is the generation of cutting planes for mixed-integer programs from

canonical k-row mixed-integer sets where k is a small integer. These sets resemble the simplex

tableau of a k-row MIP where all basic variables are free integer variables and all nonbasic variables
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are nonnegative continuous variables. Clearly, these sets can be obtained simply by selecting some

of the rows of the simplex tableau associated with the LP relaxation of an MIP. In this case, the

resulting relaxation can be viewed as a relaxation of the corner polyhedron associated with the basis

defining the tableau. These relaxations are also called k-row continuous group relaxations. All the

nontrivial valid inequalities for the canonical k-row set are intersection cuts (a concept introduced

by Balas [6]) that are derived using maximal lattice-free convex sets in Rk. We next discuss the

case when k = 2 in more detail.

6.1 The two-row continuous group relaxation

Andersen, Louveaux, Weismantel and Wolsey [3] studied the two-row continuous group relaxation

T =
{

(x, s) ∈ Z2 × Rn : x− rs = f, s ≥ 0
}
, (15)

where r = [r1, r2, ..., rn] ∈ R2×n and f ∈ R2 \ Z2 and both r and f are rational. Furthermore,

assume that no column of r is equal to the zero vector. Let TLP denote the continuous relaxation

of T . Andersen et. al. showed that all facet-defining inequalities of conv(T ) are two-dimensional

lattice-free cuts for T , and we discuss this family of cuts shortly.

Such a set T can be viewed as a relaxation of an integer program obtained by taking two rows

of an optimal simplex tableau of its LP relaxation corresponding to basic integer variables, and

then relaxing all bounds on the basic variables, and relaxing the upper bounds and integrality

restrictions on the nonbasic variables.

A lattice-free convex set in R2 is one which contains no integer point in its interior. We denote

the interior of a convex set B by int(B), the boundary by bnd(B), and also recall that recession

cone if B is denoted by rec(B). A set B is called a maximal lattice-free convex set if B is lattice-free

and there does not exist a convex set B′ such that B′ is lattice-free and B′ ⊇ B. Let B be any

lattice-free convex set in R2 containing f in its interior. The set B yields the cut
∑n

i=1 αisi ≥ 1,

valid for T , where the coefficients αi are computed as follows:

αi =

{
0 if ri ∈ rec(B),

1/λ : λ > 0 and f + λri ∈ bnd(B) if ri 6∈ rec(B).
(16)

More precisely,
∑n

i=1 αisi ≥ 1 is a valid inequality for the set TLP \ (int(B)× Rn); see [3].

In R2, any maximal, full-dimensional, lattice-free convex set is a polyhedron with at most 4

facets and is one of the following sets [16], see Figure 3.

1. A split set {(x1, x2) : b ≤ a1x1 + a2x2 ≤ b+ 1} where a1 and a2 are coprime integers and b

is an integer.

2. A triangle with at least one integral point in the relative interior of each of its sides which in

is either

(a) A type 1 triangle, i.e., a triangle with integral vertices and exactly one integral point in

the relative interior of each side;
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(b) A type 2 triangle, i.e., one with at least one fractional vertex v, exactly one integral point

in the relative interior of the two sides incident to v and at least two integral points on

the third side;

(c) A type 3 triangle, i.e., a triangle with exactly three integral points on the boundary.

3. A quadrilateral containing exactly one integral point in the relative interior of each of its

sides.

If a maximal lattice-free convex set B with f in its interior is a quadrilateral, then the cut

generated using B via (16) is called a quadrilateral cut. Similarly, if B is a maximal lattice-free

triangle of type 1, 2, or 3, the associated cut is called a triangle cut of type 1, 2, or 3, respectively.

Dash, Dey and Günlük [13] show that the quadrilateral cuts and triangle cuts of type 1 or 2 are

cross cuts, based on the fact that lattice-free sets of these types are contained in an appropriately

chosen cross set, see Figure 3. Andersen et. al. [3] showed that the convex hull of T is given by

split cuts, quadrilateral cuts, and triangle cuts.

Figure 3: Maximal lattice free sets in R2: a quadrilateral and triangles of type 1, 2, and 3.

6.2 The quadrilateral closure

Basu, Bonami, Cornuéjols and Margot [8] define the triangle closure of T as the set of points in TLP

satisfying all triangle cuts, and the quadrilateral closure of T as the set of points in TLP satifying all

quadrilateral cuts for T , and ask whether these sets are polyhedra. Basu, Bonami, Cornuéjols and

Margot [8] show that the quadrilateral closure of T satisfies all split cuts for T . Awate, Cornuéjols,

Guenin and Tuncel [22, Theorems 1.3,1.4] further show that the quadrilateral closure also satisfies

all triangle cuts of types 1 and 2. Basu, Hildebrand and Köeppe [9] also show that the triangle

closure of T is a polyhedron. We next show that the quadrilateral closure of T is a polyhedron as

well.

Theorem 5. The quadrilateral closure of T is a polyhedron.

Proof. In [13], Dash, Dey and Günlük show that the quadrilateral closure is equivalent to the

closure with respect to unimodular cross cuts, which they define to be the family of cross cuts
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defined by two split sets S(π1, π10) and S(π2, π20) where π1, π2 ∈ Z2 and the 2 × 2 matrix with

columns consisting of π1 and π2 has determinant ±1. Let

CU =
{
{S1, S2} ∈ C : Si = S(πi, πi0), i = 1, 2; det([π1, π2]) = ±1

}
and notice that the quadrilateral closure of T equals CC(TLP , CU ) and therefore it is a polyhedron

by Theorem 4.
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