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Abstract

It is well-known that optimizing network topology by switching on and off transmission

lines improves the efficiency of power delivery in electrical networks. In fact, the USA En-

ergy Policy Act of 2005 (Section 1223) states that the U.S. should “encourage, as appropriate,

the deployment of advanced transmission technologies” including “optimized transmission line

configurations.” As such, many authors have studied the problem of determining an optimal

set of transmission lines to switch off to minimize the cost of meeting a given power demand

under the direct current (DC) model of power flow. This problem is known in the literature as

the Direct-Current Optimal Transmission Switching Problem (DC-OTS). Most research on DC-

OTS has focused on heuristic algorithms for generating quality solutions or on the application

of DC-OTS to crucial operational and strategic problems such as contingency correction, real-

time dispatch, and transmission expansion. The mathematical theory of the DC-OTS problem

is less well-developed. In this work, we formally establish that DC-OTS is NP-Hard, even if

the power network is a series-parallel graph with at most one load/demand pair. Inspired by

Kirchoff’s Voltage Law, we give a cycle-based formulation for DC-OTS, and we use the new

formulation to build a cycle-induced relaxation. We characterize the convex hull of the cycle-

induced relaxation, and the characterization provides strong valid inequalities that can be used

in a cutting-plane approach to solve the DC-OTS. We give details of a practical implementation,

and we show promising computational results on standard benchmark instances.

1 Introduction

An electric power grid is a complex engineered system whose control and operation is driven by

fundamental laws of physics. The optimal power flow (OPF) problem is to determine a minimum

cost delivery of a given demand for power subject to the power flow constraints implied by

the network. The standard mathematical model of power flow uses alternating current (AC)

power flow equations. The AC power flow equations are nonlinear and nonconvex, which has
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prompted the development of a linear approximation known as the direct current (DC) power

flow equations. DC power flow equations are widely used in the current industry practice, and

the DC OPF problem is a building block of power systems operations planning.

One consequence of the underlying physical laws of electric power flow is a type of “Braess’

Paradox” where removing lines from a transmission network may result in improved network

efficiency. O’Neill et al. (2005) propose exploiting this well-known attribute of power transmis-

sion networks by switching off lines in order to reduce generation costs. Fisher et al. (2008)

formalized this notion into a mathematical optimization problem known as the Optimal Trans-

mission Switching (OTS) problem. The OTS problem is the OPF problem augmented with the

additional flexibility of changing the network topology by removing transmission lines. While

motivated in O’Neill et al. (2005) by an operational problem in which lines may be switched off

to improve efficiency, the same mathematical switching structure appears also in longer-term

transmission network expansion planning problems.

Because of the mathematical complexity induced by the AC power flow equations, nearly

all studies to date on the OTS problem have used the DC approximation to power flow (e.g.

see Fisher et al. (2008), Barrows et al. (2012), Fuller et al. (2012), Wu and Cheung (2013)).

With this approximation, a mixed-integer linear programming (MILP) model for DC-OTS can

be created and input to existing MILP software. In the MILP model, binary variables are used

to model the changing topology and enforce the network power flow constraints on a line if

and only if the line is present. Models with many “indicator constraints” of this form are often

intractable for modern computational integer programming software, since the linear relaxations

of the formulations are typically very weak. Previous authors have found this to be true for DC-

OTS, and many heuristic methods have been developed based on ranking lines (Barrows et al.

(2012), Fuller et al. (2012), Wu and Cheung (2013)), or by imposing an (artificial) cardinality

constraint on the number of lines that may be switched off in a solution (Fisher et al. (2008)).

The solutions found from these heuristics have demonstrated that significant efficiency gains are

possible via transmission switching.

The paper by Coffrin et al. (2014) offers a criticism of the use of the DC-approximation

to model power flow for the OTS problem. The paper demonstrates that a direct application

of the DC power flow equations may not be accurate enough to recover useful AC operation

solutions in the context of the OTS. They thus argue for the use of the AC-power flow equations

in the OTS problem. The authors employ a convex quadratic relaxation of the AC power flow

equations proposed in Hijazi et al. (2013) and embed the relaxation in a branch-and-bound

method to solve the AC-OTS problem. The recent papers by Barrows et al. (2014) and Soroush

and Fuller (2014) also develop methods and heuristics for AC-OTS.

Despite the criticism of the DC power flow model for optimal transmission switching, there

are many planning problems where the DC power flow model may be an acceptable approx-

imation when combined with network topology changes. A survey in Hedman et al. (2011)

enumerates applications of transmission switching to improve voltage profiles, reduce conges-

tion and losses in the system, and to increase reliability of the power grid. A standard reliability

criterion for the power grid is that the system must be able to withstand an “N − 1” event—in
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an interconnection network with N elements, the system will operate reliably following the fail-

ure of any one of them. Hedman et al. (2009) augment the DC-OTS model to ensure that the

N − 1 reliability criteria is satisfied. Heuristics are used to iteratively decide which lines to be

switched off, while preserving N − 1 reliability for standard test cases. The authors show that

significant cost savings from transmission switching is still possible even if the N−1 contingency

is required.

Transmission switching is also an important subproblem in power grid capacity expansion

planning. In Khodaei et al. (2010), a large MILP model is constructed to solve an expansion

planning problem with contingencies, the DC power flow equations are used, and transmission

switching is allowed in finding the best configuration. Villumsen and Philpott (2012) develop

a slightly different model for expansion planning that also relies on the DC-power flow approxi-

mation and transmission switching. They employ their method on a case study for a real power

system expansion plan in Denmark (see Villumsen et al. (2013)). In the context of expansion

planning, it is important to note that the mathematical structure of line addition is exactly the

same as line removal.

Authors who have combined the DC-approximation to power flow with the flexibility of

modifying the network topology have found that the resulting MILP programming model is very

challenging and called for a more systematic study on its underlying mathematical structure.

For example, the authors of Hedman et al. (2010) state that

“When solving the transmission switching problem, . . . the techniques for closing the

optimality gap, specifically improving the lower bound, are largely ineffective.”

A primary focus of our work is an attempt to change this reality by developing strong classes

of valid inequalities that may be applied to power systems planning problems that involve the

addition or removal of transmission elements. Our paper makes the following contributions:

• Using a formulation based on Kirchoff’s Voltage Law, we give a cycle-based linear mixed

integer programming (MIP) formulation for DC-OTS.

• We formally establish that the DC-OTS problem is NP-Hard, even if the interconnection

network is a series-parallel graph and there is only one generation/demand pair. (Ad-

ditional complexity results were recently independently established by Lehmann et al.

(2014)).

• Using the cycle-based formulation as inspiration, we derive classes of strong valid inequali-

ties for a cycle–relaxation of the DC-OTS. We additionally establish that inequalities define

the convex hull of the cycle-relaxation, and we show how to separate the inequalities over

a given cycle in polynomial time.

• We perform computational experiments focusing on improving performance of integer

programming-based methods for the OTS using the DC power flow approximation. We

show that the new inequalities can help improve solution performance of commercial MIP

software.
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Although our valid inequalities are new, they add to the wide body of literature that has made

productive use of cycles in a graph to derive valid inequalities for discrete optimization problems;

see e.g., (Padberg 1973, Barahona and Mahjoub 1986, Ferreira et al. 1996, Van Vyve 2005) for

just a few examples.

2 DC OPF and OTS Formulations

A power network consists of a set of buses B, transmission lines L, and generators G ⊆ B. We

assume that the graph G = (B,L) is connected. Each line (i, j) ∈ L is given an (arbitrary)

orientation, with the convention that power flow in the direction from i → j is positive, while

power that flows along line (i, j) in the direction j → i is negative. Each bus i ∈ B has a set

of adjacent buses δ(i) ⊆ B. We use the standard notation that δ+(i) := {j ∈ B : (i, j) ∈ L}
and δ−(i) := {j ∈ B : (j, i) ∈ L}. The required load at each bus is given as pdi , i ∈ B. In the

DC model, power flow on a transmission line is proportional to the difference in phase angles of

voltages at the two ends of the line. The constant of proportionality is known as the susceptance

of line (i, j) ∈ L, which we denote as Bij . Each transmission line (i, j) ∈ L has an upper bound

f̄ij on the allowed power flow. Finally, the power produced at each generator i ∈ G is constrained

to lie in the interval [pmin
i , pmax

i ] with an associated unit production cost of ci. We assume that

there is at most one generator at each bus. This assumption is without loss of generality, since

the models we present can be extended to the case with multiple generators by replacing the

dispatch variable by the sum of different dispatch variables attached to a particular bus. We

also assume that the cost is a linear function of the production quantities at the generators.

This assumption, while standard in the literature surrounding the DC-OTS (Fisher et al. 2008,

Fuller et al. 2012), ignores the convex quadratic portion of generation costs. As we discuss in

Section 4, our formulation and valid inequalities can still be applied when the cost is a nonlinear

function.

2.1 Angle Formulation of DC-OPF

The standard formulation of DC OPF has three classes of decision variables. The variable pgi is

the power generation at generator i ∈ G, and the variable θi is the voltage angle at bus i ∈ B.

The variable fij represents the power flow along line (i, j) ∈ L. With these decision variables,

we can write a linear programming problem to minimize the generation cost of meeting power
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demands pdi as follows:

min
∑
i∈G

cip
g
i (1a)

s.t. pgi − p
d
i =

∑
j∈δ+(i)

fij −
∑

j∈δ−(i)

fji i ∈ B (1b)

Bij(θi − θj) = fij (i, j) ∈ L (1c)

− f̄ij ≤ fij ≤ f̄ij (i, j) ∈ L (1d)

pmin
i ≤ pgi ≤ p

max
i i ∈ G. (1e)

By substituting the definition of power flow from (1c) into equations (1b) and (1d), the f

variables may be projected out of the formulation.

2.2 Cycle Formulation of DC-OPF

The DC power flow model gets its name from the fact that the equations describing the power

flow in network are the same as those that describe current flow in a standard direct current

electric network. The constraints (1b) describe Kirchoff’s Current Law (KCL) at each bus, and

the equations (1c) that define the branch current follow from Ohm’s Law. With this analogy,

it is natural to think about the alternative way to represent power flows in a DC circuit—using

the branch current fij and Kirchoff’s Voltage Law (KVL). Kirchoff’s Voltage Law states that

around any directed cycle C, the voltage differences must sum to zero:

∑
(i,j)∈C

(θi − θj) =
∑

(i,j)∈C

fij
Bij

= 0. (2)

If the directed cycle C contains arc (i, j), but the transmission line has been given the alternate

orientation ((j, i) ∈ L), we adjust (2) by flipping the sign of the susceptance:

B̄C
ij =

{
Bij if (i, j) ∈ C, (i, j) ∈ L
−Bij if (i, j) ∈ C, (j, i) ∈ L

Our formulation of the DC-OPF relies on the notion of a cycle basis.

Definition 2.1. (Hariharan et al. 2008) Let v ∈ {0,±1}|L| be an incidence vector for a cycle

C in graph G = (B,L), where

vij =


1 if (i, j) is traversed in the right direction by C

−1 if (i, j) is traversed in the opposite direction by C

0 if (i, j) is not in C.

The cycle space of G is the vector space that is spanned by the incidence vectors of its cycles. A

set of cycles is called a cycle basis if it forms a basis for this vector space.
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A cycle basis of G is then a minimal set of cycles of G with the property that all cycles of G

are linear combinations of the cycles in the basis.

In this equivalent representation, the power flow should satisfy the KVL (2) for each cyle.

Although the number of cycles in a network can be large, it is sufficient to enforce (2) over any

set of cycles that forms a cycle basis Cb of the network. if angle differences sum up to zero over

the cycle basis, they also must sum up to zero over any other cycle (e.g. see Bollobás (2002)).

Thus, the KVL-inspired formulation for the DC OPF is the following:

min
∑
i∈G

cip
g
i (3a)

s.t. (1b), (1d), (1e) (3b)∑
(i,j)∈C

fij

B̄C
ij

= 0 C ∈ Cb. (3c)

The voltage angles may be recovered using the equations (1c).

Proposition 2.1. Formulations (1) and (3) are equivalent.

Proof. In order to prove the equivalence of the formulations, it suffices to show that

∑
(i,j)∈C

fij

B̄C
ij

= 0, C ∈ Cb ⇐⇒ there exists θ such that fij = Bij(θi − θj), (i, j) ∈ L. (4)

(⇒) First observe that because Cb is a cycle basis, equations (3c) imply
∑

(i,j)∈C
fij
B̄C

ij
= 0 for

any cycle C. Now let T = (B,L′) be a spanning tree of G. Clearly, the following system in θ

has a solution:

Bij(θi − θj) = fij , (i, j) ∈ L′. (5)

Therefore, it suffices to check if a solution of (5) satisfies Bij(θi − θj) = fij for (i, j) ∈ L \ L′.
Note that for any (k, l) ∈ L \ L′, there exists a unique path Pkl from k to l in T and a cycle

C = Pkl ∪ {(l, k)}. Then, we have

(θk − θl) =
∑

(i,j)∈Pkl

(θi − θj) =
∑

(i,j)∈Pkl

fij

B̄C
ij

=
fkl
B̄C
kl

, (6)

which implies Bkl(θk − θl) = fkl.

(⇐) Suppose there exist θ such that fij = Bij(θi − θj), for each (i, j) ∈ L. Then, for each

cycle C, we have

∑
(i,j)∈C

fij

B̄C
ij

=
∑

(i,j)∈C

Bij(θi − θj)
B̄C
ij

=
∑

(i,j)∈C

(θi − θj) = 0, (7)

which concludes the proof.
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2.3 Angle Formulation of DC-OTS

The angle-based DC-OPF formulation (1) can be easily adapted to switching by introducing

binary variables xij that takes the value 1 if line (i, j) ∈ L is on, and 0 if the line is disconnected.

A direct nonlinear formulation of DC-OTS is

min
∑
i∈G

cip
g
i (8a)

s.t. (1b), (1d), (1e) (8b)

Bij(θi − θj)xij = fij (i, j) ∈ L (8c)

xij ∈ {0, 1} (i, j) ∈ L. (8d)

The constraints (8c) ensure both that Ohm’s Law (1c) is enforced if the line is switched on

and that power flow fij = 0 if the line is switched off. However, these constraints (8c) contain

nonlinear, nonconvex terms of the form θixij . The standard way to linearize the inequalities

(8c) is employed by Fisher et al. (2008) to produce the following formulation:

min
∑
i∈G

cip
g
i (9a)

s.t. (1b), (1e), (8d) (9b)

Bij(θi − θj)−Mij(1− xij) ≤ fij ≤ Bij(θi − θj) +Mij(1− xij) (i, j) ∈ L (9c)

− f̄ijxij ≤ fij ≤ f̄ijxij (i, j) ∈ L, (9d)

where Mij is chosen sufficiently large to make the inequalities (9c) redundant if xij = 0.

2.4 Cycle Formulation of DC-OTS

Inspired by the cycle formulation (3) for the DC-OPF, we can formulate the DC-OTS problem

without angle variables as well. The full formulation enforces Kirchoff’s Voltage Law only if all

arcs in a cycle are switched on.

min
∑
i∈G

cip
g
i (10a)

s.t. (1b), (1e), (8d), (9d) (10b)

−MC

∑
(i,j)∈C

(1− xij) ≤
∑

(i,j)∈C

fij

B̄C
ij

≤MC

∑
(i,j)∈C

(1− xij) C ∈ C. (10c)

The value MC must be selected so that the inequalites (10c) are redundant if
∑

(i,j)∈C(1−xij) ≥
1. In formulation (10), C is the set of all cycles in the graph G = (B,L). The cardinality of C is

in general quite large, so we do not propose using (10) directly. Rather, we use the formulation

(10) as the starting point for deriving strong valid inequalities in Section 4. Furthermore, the

inequalities (10c) could be added as cuts within a branch-and-cut algorithm. These inequalities

are required to define the feasible region, so the branch-and-cut procedure would search for a
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violated inequality from the class (10c) any time it identifies a candidate solution with the x

components binary. (Inequalities added as cuts in this way are sometimes referred to as “lazy

cuts”.)

3 Complexity of DC-OTS

In this section, we discuss the complexity of the DC optimal transmission switching problem.

The input to the problem is a power network as described at the beginning of Section 2. In

the feasibility version of DC-OTS, we ask if there exists a subset of lines to switch off such that

the DC-OPF is feasible for the induced topology. The feasibility version of DC-OTS with a

cardinality constraint has been proven to be NP-Complete in Bienstock and Mattia (2007) by

reduction from the Exact 3-Cover Problem. Recently, many complexity and approximability

results on DC-Switching problems were given in Lehmann et al. (2014), including the result that

DC-OTS is NP-Hard, even if the underlying graph is a cactus. Our results were established

independently, and complement the results of Lehmann et al. (2014) by formally establishing

that the DC-OTS problem is easy if the graph is a tree and NP-Hard even if there is one

generation/load pair on series-parallel graphs.

Proposition 3.1. In the DC-OTS, there exists an optimal solution in which the lines switched

on form a connected network.

Proof. Consider the Cycle Formulation (10) of the DC-OTS, and let L′ be the active lines in

an optimal solution. Assume that the network corresponding to this solution has k connected

components. Since the original network G(B,L) is connected, we can find a set of transmission

lines L′′ with cardinality k − 1 such that G′ = (B,L′ ∪ L′′) is connected. Now, let xij = 1 and

fij = 0 for all (i, j) ∈ L′′. By construction, no new cycles are created by switching on lines in

L′′. Further, the balance constraints (1b) and bound constraints (9d) are satisfied. Hence, we

have demonstrated a new solution with the same objective value where the network formed by

the active lines is connected.

Corollary 3.1. If G = (B,L) is a tree, the DC-OTS problem is solvable in polynomial time.

Proof. Due to Proposition 3.1, there exists an optimal solution which induces a connected

network. Since removing any line disconnects the tree, there exists an optimal solution in which

all lines are active. But this is exactly the DC-OPF problem without switching, which can be

solved via linear programming, a problem known to be polynomially solvable.

Theorem 3.1 establishes that DC-OTS is NP-Complete even if the power network is a series-

parallel graph, and there is only one demand-supply pair.

Theorem 3.1. The feasibility version of DC-OTS is NP-complete even when G = (B,L) is a

series-parallel graph, there is |G| = 1 generator, and one node i ∈ B such that pdi 6= 0.
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Proof. We prove this result by a reduction from the subset sum problem, which is known to be

NP-Complete (Garey and Johnson (1990)). Consider an instance of a subset problem as: Given

ai ∈ Z++ for i ∈ {1, . . . , n} and b ∈ Z++, does there exist a subset I ⊆ {1, . . . , n} such that∑
i∈I ai = b? We construct an instance of switching problem as follows:

1. There are n+ 3 buses {0, 1, . . . , n, n+ 1, n+ 2}.

2. Following are the lines: (0, i) for all i ∈ {1, . . . , n}; (i, n + 1) for all i ∈ {1, . . . , n}; (n +

1, n+ 2); (0, n+ 2).

3. The capacities of the lines are: ai
b for the line (0, i) and (i, n + 1) for all i ∈ {1, . . . , n}; 1

for (n+ 1, n+ 2) and (0, n+ 2).

4. The susceptances of the lines are: 2ai for the line (0, i) and (i, n+ 1) for all i ∈ {1, . . . , n};
1 for (n+ 1, n+ 2); b

b+1 for (0, n+ 2).

5. There is a generation of 2 at bus 0 and load of 2 at bus n+ 2.

Clearly, the size of the instance of the switching problem is polynomial in the size of the given

instance of the subset sum problem. Also note that the graph is a series parallel graph and

there is only one demand supply pair.

We now verify that the subset sum problem is feasible if and only if the switching problem

is feasible.

(⇒): Since the subset sum problem is feasible, let
∑

i∈I ai = b where I ⊆ {1, . . . , n}. Then

construct a solution to the switching problem as follows: Switch off the lines (0, i), (i, n + 1)

for i ∈ {1, . . . , n} \ I. It is straightforward to establish that a feasible solution to the DC-OTS

exists. (In the solution, the angle at bus 0 is 1 + 1
b , the angle at bus i is 1 + 1

2b for all i ∈ I, the

angle at bus n+ 1 is 1, and the angle at bus n+ 2 is 0).

(⇐): The subset sum problem is infeasible and assume by contradiction that the switching

problem is feasible. Then note that the flow in arcs (0, n+ 2) and (n+ 1, n+ 2) are 1 each (and

these lines are not switched off). WLOG, let the angle at bus n+ 2 be 0. This implies that the

angle at bus 0 is 1 + 1
b and at bus n + 1 is 1. Then note that if a pair of lines (0, i), (i, n + 1)

is not switched off, this implies that the angle at bus i is 1 + 1
2b and the resulting flow is ai

b

along the path (0, i), (i, n + 1). Therefore, as a switching solution exists, we have that there

exists some I ⊆ {1, . . . , n} such that the paths (0, i), (i, n + 1) for i ∈ I are switched on (and

others are switched off). Then
∑

i∈I
ai
b = 1 (by flow conservation at bus n + 1), the required

contradiction.

4 Valid Inequalities

In this section, we give two (symmetric) classes of inequalities for DC-OTS that are derived by

considering a relaxation of the cycle formulation (10). The inequalities are derived by projecting

an extended formulation of our chosen relaxation. We additionally show that the inequalities

define the convex hull of the relaxation and that each of the inequalities defines a facet of the

relaxation. The separation problem for the new class of inequalities is a knapsack problem, but

9



we show in Section 4.2 how to exploit the special structure of the knapsack to give a closed-form

solution.

We remind the reader that the objective function is assumed to be linear, as opposed to

convex quadratic. In general, finding the convex hull of the feasible region may not be as useful

algorithmically when the objective function is nonlinear convex as the optimal solution may lie

in the interior of the convex hull. However, the generation cost functions are usually convex

increasing functions of pgi over the interval [pmin
i , pmax

i ] and, therefore, the optimal solutions of

any convex relaxation will lie on the boundary of the relaxation. Thus, finding the convex hull of

the feasible solutions may still be useful in improving bounds when we are working with a convex

quadratic increasing objective function instead of a linear objective function. Nevertheless, we

also point out that when the optimal solution is not an extreme point, the bound obtained by

this approach might be weak. As a future work, numerical experiments should be carried out

to analyze this case empirically.

4.1 Derivation

Consider the constraints (10c), (9d) and (8d) in the cycle-based formulation for DC-OTS for

one specific cycle C ∈ C and define the following relaxation of the feasible region of (10).

SC = {(f, x) : −MC

∑
(i,j)∈C

(1− xij) ≤
∑

(i,j)∈C

fij

B̄C
ij

≤MC

∑
(i,j)∈C

(1− xij),

− f̄ijxij ≤ fij ≤ f̄ijxij (i, j) ∈ C, xij ∈ {0, 1} (i, j) ∈ C}.
(11)

In the remainder of this section, we assume that C is a directed cycle and hence, B̄C
ij = Bij .

Our main result in this section concerns the inequalities

−∆(S)(|C| − 1) +
∑

(i,j)∈S

[∆(S)− wij ]xij + ∆(S)
∑

(i,j)∈C\S

xij

≤
∑

(i,j)∈S

fij
Bij
≤

∆(S)(|C| − 1)−
∑

(i,j)∈S

[∆(S)− wij ]xij −∆(S)
∑

(i,j)∈C\S

xij

S ⊆ C s.t. ∆(S) > 0,

(12)

where wij :=
f̄ij
Bij

, and

w(S) :=
∑

(i,j)∈S

wij for S ⊆ C

∆(S) := w(S)− w(C \ S) = 2w(S)− w(C) for S ⊆ C.

We show that the inequalities (12) are the only non-trivial inequalities defining conv(SC).
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Theorem 4.1.

conv(SC) = {(f, x) : (12),−f̄ijxij ≤ fij ≤ f̄ijxij , xij ≤ 1 (i, j) ∈ C} (13)

In proving this result, for ease of presentation, we assume without loss of generality that

Bij = 1 for all (i, j) ∈ L by appropriately scaling f̄ij . The result is proven through a series of

propositions using disjunctive arguments. Let us start with the following linear system

− f̄ijx1
ij ≤ f1

ij ≤ f̄ijx1
ij (i, j) ∈ C (14a)∑

(i,j)∈C

x1
ij = |C|yC (14b)

∑
(i,j)∈C

f1
ij = 0 (14c)

0 ≤ x1
ij ≤ yC (i, j) ∈ C (14d)

− f̄ijx0
ij ≤ f0

ij ≤ f̄ijx0
ij (i, j) ∈ C (14e)∑

(i,j)∈C

x0
ij ≤ (|C| − 1)(1− yC) (14f)

0 ≤ x0
ij ≤ 1− yC (i, j) ∈ C (14g)

xij = x1
ij + x0

ij (i, j) ∈ C (14h)

fij = f1
ij + f0

ij (i, j) ∈ C (14i)

0 ≤ yC ≤ 1, (14j)

and define the polytope

EC = {(f, f1, f0, x, x1, x0, y) : (14)}.

Proposition 4.1. System (14) is an extended formulation for conv(SC). Furthermore, polytope

EC is integral so that we have conv(SC) = projf,xEC .

Proof. Let us first consider the following disjunction for cycle C: Either every line is active or

at least one line is disconnected. If all the lines are active, then we have

− f̄ijxij ≤ fij ≤ f̄ijxij (i, j) ∈ C (15a)∑
(i,j)∈C

xij = |C| (15b)

∑
(i,j)∈C

fij = 0 (15c)

0 ≤ xij ≤ 1 (i, j) ∈ C (15d)

Define polytope S1
C = {(f, x) : (15)}. Note that S1

C is integral in x since constraint (15b) forces

xij = 1 for all (i, j) ∈ C in a feasible solution.

11



Otherwise, at least one of the lines is inactive and we have

− f̄ijxij ≤ fij ≤ f̄ijxij (i, j) ∈ C (16a)∑
(i,j)∈C

xij ≤ |C| − 1 (16b)

0 ≤ xij ≤ 1 (i, j) ∈ C (16c)

Define polytope S0
C = {(f, x) : (16)} , which is again integral in x.

By construction, we have conv(SC) = conv(S1
C ∪ S0

C). Let us duplicate variables (f, x) as

(f1, x1) and (f0, x0) in the descriptions of S1
C and S0

C , respectively. Then, by assigning a binary

variable yC to S1
C and 1 − yC to S0

C , we get system (14). So, it is an extended formulation for

conv(SC).

Further, observe that EC is the union of two polyhedra that are integral in x: EC = S1
C ∪S0

C .

Therefore, EC must be integral in x as well.

By noticing that x1
ij = yC and x0

ij = xij − yC , we can simplify the notation by immediately

projecting out these variables. Specifically, if we define the linear system

− f̄ijyC ≤ f1
ij ≤ f̄ijyC (i, j) ∈ C (17a)∑

(i,j)∈C

f1
ij = 0 (17b)

− f̄ij(xij − yC) ≤ f0
ij ≤ f̄ij(xij − yC) (i, j) ∈ C (17c)∑

(i,j)∈C

xij − yC ≤ |C| − 1 (17d)

yC ≤ xij ≤ 1 (i, j) ∈ C (17e)

fij = f1
ij + f0

ij (i, j) ∈ C (17f)

0 ≤ yC ≤ 1, (17g)

we have that PC := {(f, f1, f0, x, y) : (17)} = projf,f1,f0,x,yEC . In Proposition 4.2 we can

further project out the f1 and f0 variables by defining

−
∑

(i,j)∈S

wijxij + ∆(S)yC ≤
∑

(i,j)∈S

fij ≤
∑

(i,j)∈S

wijxij −∆(S)yC S ⊆ C s.t. ∆(S) > 0. (18)

Proposition 4.2. projf,x,yPC = {(f, x, y) : (9d), (18), (17d), (17e), yC ≥ 0}.

Proof. We begin by definingQ := {(f, x, y) : (9d), (18), (17d), (17e), yC ≥ 0}, and let (f, f1, f0, x, y) ∈
PC . We claim that (f, x, y) ∈ Q. For each line (i, j) ∈ C, summing (17a) and (17c) and using

(17f) yields (9d). So, it suffices to check constraint (18). We have, for each S ⊆ C,

0 =
∑

(i,j)∈C

f1
ij =

∑
(i,j)∈S

f1
ij +

∑
(i,j)∈C\S

f1
ij

due to (17b). Recall that by scaling f̄ij , we have assumed Bij = 1, and thus wij = f̄ij for all

12



(i, j) ∈ L. Combined with (17f), we have∑
(i,j)∈S

fij =
∑

(i,j)∈S

f0
ij −

∑
(i,j)∈C\S

f1
ij

≤
∑

(i,j)∈S

f̄ij(xij − yC) +
∑

(i,j)∈C\S

f̄ijyC due to (17c) and (17a)

=
∑

(i,j)∈S

wijxij −

 ∑
(i,j)∈S

wij −
∑

(i,j)∈C\S

wij

 yC

=
∑

(i,j)∈S

wijxij −∆(S)yC .

(19)

This is exactly the right inequality of (18). Note that although this inequality is valid for all

S ⊆ C, the ones with ∆(S) ≤ 0 are dominated. In fact, due to (9d) for a subset S̄ with

∆(S̄) ≤ 0, we have ∑
(i,j)∈S̄

fij ≤
∑

(i,j)∈S̄

wijxij ≤
∑

(i,j)∈S̄

wijxij −∆(S̄)yC . (20)

Using a symmetric argument, we can show the validity of the left inequality similarly. Hence,

projf,x,yPC ⊆ Q.

Next, we prove that any solution (f, x, y) ∈ Q can be extended by some (f1, f0) such that it

satisfies (17). First, we can eliminate f0 variables by setting f0
ij = fij − f1

ij . Therefore to show

that projf,x,yPC ⊇ Q, it suffices to show that, for any (f, x, y) ∈ Q, the following system in f1
ij

is always feasible,

− wijyC ≤ f1
ij ≤ wijyC (i, j) ∈ C (21a)

fij − wij(xij − yC) ≤ f1
ij ≤ fij + wij(xij − yC) (i, j) ∈ C (21b)∑

(i,j)∈C

f1
ij = 0, (21c)

which is the intersection of a hypercube defined by (21a)-(21b) and a hyperplane (21c). First

note that the hypercube is always nonempty due to (9d). Then, due to the continuity of the

function
∑

(i,j)∈C f
1
ij , it suffices to show the following inequalities:

min

{ ∑
(i,j)∈C

f1
ij : (21a), (21b)

}
≤ 0 ≤ max

{ ∑
(i,j)∈C

f1
ij : (21a), (21b)

}
. (22)

We show that (22) follows from (18). To see this, let us look at the right inequality in (22). The

left one can be obtained symmetrically. Since (21a)-(21b) define a hypercube, the maximum in

13



(22) is obtained by maximizing each f1
ij over its own interval, i.e. we have

max

{ ∑
(i,j)∈C

f1
ij : (21a), (21b)

}
=

∑
(i,j)∈C

min

{
wijyC , fij + wij(xij − yC)

}
=
∑

(i,j)∈S

fij + wij(xij − yC) +
∑

(i,j)∈C\S

wijyC

=
∑

(i,j)∈S

fij + wijxij −∆(S)yC ≥ 0, (23)

where S = {(i, j) ∈ C : fij + w(xij − yC) ≤ wijyC} and (23) is exactly the left-hand side

inequality in (18).

We complete the proof of Theorem 4.1 by projecting out the yC variable as well.

Proof of Theorem 4.1. By construction, we have that conv(SC) = projf,xPC . It suffices to show

that conv(SC) = projf,xPC = R where R = {(f, x) : (9d), (12), xij ≤ 1 (i, j) ∈ C}.
First, let us rewrite inequalities involving yC in projf,x,yPC :

0 ≤yC (24a)∑
(i,j)∈C

xij − (|C| − 1) ≤yC (24b)

yC ≤ xij (i, j) ∈ C (24c)

yC ≤
1

∆(S)

∑
(i,j)∈S

wijxij +
1

∆(S)

∑
(i,j)∈S

fij S ⊆ C,∆(S) > 0 (24d)

yC ≤
1

∆(S)

∑
(i,j)∈S

wijxij −
1

∆(S)

∑
(i,j)∈S

fij S ⊆ C,∆(S) > 0. (24e)

Now, we use Fourier-Motzkin elimination on yC to show necessity and sufficiency of the convex

hull description. Note that equation (24c) together with (24a) and (24b) give redundant inequal-

ities dominated by 0 ≤ xij ≤ 1. Similarly, (24a) with (24d) and (24e) exactly give equation

(9d).

Next, we look at (24b) and (24e) together, which give

∑
(i,j)∈C

xij − (|C| − 1) ≤ 1

∆(S)

∑
(i,j)∈S

wijxij −
1

∆(S)

∑
(i,j)∈S

fij

⇐⇒ ∆(S)
∑

(i,j)∈C

xij −∆(S)(|C| − 1) ≤
∑

(i,j)∈S

wijxij −
∑

(i,j)∈S

fij

⇐⇒
∑

(i,j)∈S

fij ≤ ∆(S)(|C| − 1) +
∑

(i,j)∈S

wijxij −∆(S)
∑

(i,j)∈S

xij −∆(S)
∑

(i,j)∈C\S

xij

⇐⇒
∑

(i,j)∈S

fij ≤ ∆(S)(|C| − 1)−
∑

(i,j)∈S

[∆(S)− wij ]xij −∆(S)
∑

(i,j)∈C\S

xij ,

(25)

for S ⊆ C,∆(S) > 0. But, this is the right inequality in (12). Finally, using a similar argument,

if we look at (24b) and (24d) together, we get exactly left inequality in (12) for S ⊆ C,∆(S) > 0,
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which concludes the proof.

Theorem 4.1 shows that the inequalities (12) are sufficient to define the convex hull of SC . In

Theorem 4.2 we show that each inequality is also necessary by showing that they always define

facets.

Theorem 4.2. The inequalities (12) are facet-defining for the set conv(SC).

Proof. We prove the result only for the right inequality of (12), as a symmetric argument can

be made for the left inequality. First, it is easy to establish that conv(SC) is full-dimensional

by producing 2|C| + 1 affinely independent points that lie in (SC). Let F denote the face of

conv(SC) defined by

F =
{

(f, x) ∈ SC :
∑

(i,j)∈S

fij +
∑

(i,j)∈S

[∆(S)− wij ]xij + ∆(S)
∑

(i,j)∈C\S

xij = ∆(S)(|C| − 1)
}
.

We produce 2|C| affinely independent points in F for the case |C \ S| 6= 1 and 2|C| − 1 linearly

independent points in F for the case |C \ S| = 1, which establishes the result.

Let â ∈ S, define ρ = w(C \ S)/w(S) ∈ [0, 1), let ε be a sufficiently small real number, and

define the |S| points χ1(â) whose components take values

fa =


ρwa + ε if a ∈ S \ â
ρwa − (|S| − 1)ε if a = â

−wa if a ∈ C \ S

xa = 1 ∀a ∈ C.

Define an additional |S| points χ2(â) whose components take the values

fa =

{
wa if a ∈ C \ â
0 if a = â

xa = 1 ∀a ∈ C \ â,

xâ = 0.

One can establish that both χ1(â), χ2(â) ∈ F ∀â ∈ S. If S = C, (i.e., |C \ S| = 0) these

constitute 2|C| affinely independent points. Otherwise, the proof continues by defining 2 |C \S|
points in F .

For each ã ∈ C \ S, define a point χ3(ã) whose components take values

fa =

{
wa if a ∈ S
0 if a ∈ C \ S

xa = 1 ∀a ∈ C \ ã,

xã = 0.

If |C \ S| ≥ 2, we can define an additional point χ4(ã, ā) for some ā ∈ C \ S, ā 6= ã whose
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components take values

fa =

{
wa if a ∈ S ∪ ā
0 if a ∈ C \ S \ ā

xa = 1 ∀a ∈ C \ ã,

xã = 0.

It can be shown that both χ3(ã), χ4(ã, ā) ∈ F ∀ã, ā ∈ C\S. Then the set of points {χ1(â), χ2(â) :

â ∈ S} ∪ {χ3(ã), χ4(ã, ā) : each a ∈ C \ S is chosen as ã, ā exactly once} is in F and contains

2|C| points that are affinely independent.

In the case |C \S| = 1, we construct 2|C|−1 linearly independent points in F . Consider the

set of points {χ1(â), χ2(â) : â ∈ S} ∪ {χ3(ã) : ã ∈ C \ S} ⊆ F and let p1, p2, · · · , p2|C|−1 ∈ R2|C|

denote its 2|C|−1 elements. We prove their linear independence by showing that
∑2|C|−1

i=1 λip
i =

0, λ ∈ R2|C|−1 implies λi = 0 ∀i = 1, 2, · · · , 2|C|−1. For simplicity of notation, we use numerical

index for edges contained in cycle. Let C = {1, 2, · · · , n} and S = {1, 2, · · · , n − 1}. Then∑2|C|−1
i=1 λip

i = 0 can be equivalently written as the following system of equations:

n−1∑
i=1

(ρwk + ε)λi − (n− 1)ελk +
2n−1∑
i=n

λiwk − λn+kwk = 0 ∀k = 1, 2, · · · , n− 1, (26)

2n−1∑
i=1

λi − λk = 0 ∀k = n, n+ 1, · · · , 2n− 1. (27)

From the n inequalities in (27), we obtain λn = λn+1 = · · · = λ2n−1 =
∑2n−1

i=1 λi = λ̄ for some

number λ̄ which implies
∑n−1

i=1 λi = (1−n)λ̄. Plugging the former equations into (26) results in

λk = (((1− ρ)wk − ε)/ε)λ̄ ∀k = 1, 2, · · · , n− 1.

Aggregating these n− 1 inequalities, we obtain

n−1∑
k=1

λi =
n−1∑
k=1

((1− ρ)/ε)wkλ̄−
n−1∑
k=1

λ̄ = (1− n)λ̄

⇔ ((1− w(C \ S)/w(S))w(S)/ε = 0

⇔ ((2w(S)− w(C))/ε)λ̄ = 0

⇔ λ̄ = 0

⇒ λi = 0 ∀i = 1, 2, · · · , 2|C| − 1.

4.2 Separation

We now investigate the separation problem over constraints (12). Given a fractional point (f̂ , x̂),

let us first define KC = 1−
∑

(i,j)∈C(1− x̂ij). We focus on the right inequality in (12); the left
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is analyzed similarly. For the given cycle C and S ⊆ C with ∆(S) > 0 the inequality takes the

form: ∑
(i,j)∈S

fij +
∑

(i,j)∈S

[∆(S)− wij ]xij + ∆(S)
∑

(i,j)∈C

xij ≤ ∆(S)(|C| − 1).

For convenience, we rearrange the inequality as follows:∑
(i,j)∈S

(fij − wijxij) + ∆(S)
(

1−
∑

(i,j)∈C

(1− xij)
)
≤ 0. (28)

Our aim is to determine if there exists S ⊆ C with ∆(S) > 0 such that

viol(S) :=
∑

(i,j)∈S

(f̂ij − wij x̂ij) + ∆(S)KC > 0. (29)

Recalling that ∆(S) = w(S)− w(C \ S) = 2w(S)− w(C), this can be determined by solving

max
S⊆C

{ ∑
(i,j)∈S

(f̂ij − wij x̂ij) + ∆(S)KC : ∆(S) > 0
}
. (30)

A violated inequality exists if and only if the optimal value of (30) is positive. Introducing binary

variables zij for (i, j) ∈ C to indicate whether or not line (i, j) ∈ S, (30) can be reformulated as

follows:

max
z∈{0,1}|C|

{ ∑
(i,j)∈C

(f̂ij − wij x̂ij)zij +
∑

(i,j)∈C

wijKCzij −
∑

(i,j)∈C

wijKC(1− zij) :

∑
(i,j)∈C

wijzij −
∑

(i,j)∈C

wij(1− zij) > 0
}

= −w(C)KC + max
z∈{0,1}|C|

{ ∑
(i,j)∈C

(
f̂ij − wij x̂ij + 2wijKC

)
zij :

∑
(i,j)∈C

wijzij >
1

2
w(C)

}
.

(31)

Note that here we do need the condition that ∆(S) > 0, which yields a knapsack problem. A

similar minimization problem can be posed to separate left inequalities.

There is a necessary condition for a cycle C to have a violating inequality of form (12) given

in Proposition 4.3.

Proposition 4.3. Given (f̂ , x̂) for a cycle C, if KC = 1−
∑

(i,j)∈C(1−x̂ij) ≤ 0, then inequalities

(12) are not violated.

Proof. Consider right inequalities first. If KC < 0, then given an optimal solution z to problem

(31), we have
∑

(i,j)∈C

(
f̂ij − wij x̂ij + 2wijKC

)
zij < w(C)KC since

∑
(i,j)∈C wijzij >

1
2w(C)

and fij ≤ wijxij . Therefore, no violating inequality exists. If KC = 0, then given an optimal

solution z to problem (31), we have
∑

(i,j)∈C

(
f̂ij − wij x̂ij + 2wijKC

)
zij ≤ 0 = w(C)KC since

f̂ij ≤ wij x̂ij . Therefore, no violating inequality exists. A similar argument can be used to show

that the requirement KC > 0 is necessary for a left inequality to be violating.

Although (31) formulates the separation problem of inequalities (12) as a knapsack problem,
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the special structure of this knapsack problem enables it to be solved efficiently. In fact, we

could solve a linear program derived from the extended formulation (17) to solve the separation

problem over conv(SC). However, we next show how separation of the cycle inequalities can be

accomplished efficiently in closed form. Define

S∗C = {(i, j) ∈ C : f̂ij − wij x̂ij + 2wijKC > 0}.

The following proposition shows that S∗C is the only subset that needs to be considered when

solving the separation problem for cycle C.

Proposition 4.4. Assume KC > 0. If there is any S ⊆ C with ∆(S) > 0 and viol(S) > 0, then

the separation problem (30) is solved by S∗C .

Proof. First, suppose that ∆(S∗C) > 0, so that S∗C is a feasible solution to (30). Then, since

by construction it contains every element in C that has a positive contribution to the objective

viol(S), this is an optimal solution to (30). Now, suppose ∆(S∗C) ≤ 0, i.e., 2w(S∗C)−w(C) ≤ 0.

Then,

viol(S∗C) =
∑

(i,j)∈S∗C

(f̂ij − wij x̂ij) + (2w(S∗C)− w(C))KC ≤ 0

because the first term is nonpositive due to f̂ij ≤ wij x̂ij and the second term is nonpositive

by assumption. Now, because each element (i, j) ∈ S∗C contributes a positive amount to the

objective in (30) and also a positive amount to the constraint, there must exist an optimal

solution of (30) that contains S∗C as a subset. But, any set T that contains S∗C as a subset

has viol(T ) ≤ viol(S∗C) ≤ 0, since elements (i, j) /∈ S∗C contribute a non-positive amount to the

objective. Thus, in the case ∆(S∗C) < 0, there is no S ⊆ C with ∆(S) > 0 and viol(S) > 0.

Recall from Proposition 4.3 that KC > 0 is a necessary condition for a violated inequality

to exist from cycle C. Thus, for a given cycle C with KC > 0, a violated inequality exists for

this cycle if and only if: ∑
(i,j)∈C

(
(f̂ij − wij x̂ij + 2wijKC)+ − wijKC

)
> 0. (32)

where (·)+ = max{·, 0}. The separation problem then reduces to a search for a cycle C having

KC > 0 and that satisfies (32).

5 Algorithms

In this section, we describe our algorithmic framework for solving the DC switching problem,

beginning with section 5.1 where we describe the overall algorithm. Section 5.2 describes al-

gorithms we implemented for separating over cycle inequalities (12) for a fixed cycle C, and

section 5.3 describes our procedure for generating a set of cycles over which we will perform the

separation.
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5.1 Overall Algorithm

The overall structure of the proposed algorithm is shown in Algorithm 1. The preprocessing

phase of the algorithm aims to add cycle inequalities to strengthen the LP relaxation of the

Angle Formulation (9). In particular, we first generate a set of cycles over the original power

network, and solve the LP relaxation of (9). Then, a separation algorithm finds all the cycle

inequalities (12) that are violated by the LP solution over the generated set of cycles. These

violated inequalities are added to the LP relaxation as cuts. This procedure is iterated for

a number of times to strengthen the LP relaxation, which is then fed to the MIP solver (we

use CPLEX). We prefer to implement our separation in this “cut-and-branch” manner in order

to investigate the utility of the cutting planes when combined with all advanced features of

modern MIP software. An alternative approach would be to the use User Cut callback facility of

CPLEX. However, this procedure disables many advanced features of the solver such as dynamic

search. We implemented a version of our cutting planes using the CPLEX callback features and

found that on average the performance was around 30% worse than with our cut-and-branch

Algorithm 1.

Algorithm 1 Overall Algorithm for DC Switching

1. Preprocessing:

(a) Generate a set Γ of cycles (Cycle basis generation Algorithm 5).

(b) Strengthen LP relaxation of Angle Formulation (9) by adding violated cycle inequalities
(12) from each cycle C ∈ Γ (Separation Algorithms 2 or 3).

2. Solve the Angle Formulation with added cuts using CPLEX.

5.2 Separation Algorithms

For a given LP relaxation solution, the separation algorithm implements the ideas presented in

Section 4.2 to identify all violated cycle constraints of the form (12) for a predetermined set of

cycles. The procedure is summarized in Algorithm 2.

Algorithm 2 generates a single violating inequality for each cycle, if such a violated inequality

exists. However, the method can be extended to find all violating inequalities for a cycle.

This procedure is summarized in Algorithm 3, which uses a recursive subroutine described in

Algorithm 4.

5.3 Cycle Basis Algorithm

This section discusses how to generate a set of cycles for the preprocessing phase of Algorithm 1.

The number of cycles in a graph G = (V,E) grows exponentially in |V |, so in computations,

finding all cycles is not efficient. Instead, we find a cycle basis for the original power network

and use the cycle basis to generate cycles for separation. There are many algorithms for finding

a cycle basis Kavitha et al. (2009). We use a simple algorithm based on the LU decomposition
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Algorithm 2 Separation Algorithm

Given a set Γ of cycles and a LP relaxation solution (f̂ , x̂).
for every cycle C ∈ Γ do

Compute KC = 1−
∑

a∈C(1− x̂a).
if KC > 0 then

For each a ∈ C, compute za =

{
1 if f̂a − wax̂a + 2waKC ≥ 0

0 otherwise

if
∑

a∈C waza >
1
2
w(C) and

∑
a∈C

(
(f̂a − wax̂a + 2waKC)+ − waKC

)
> 0 then

A violated cycle inequality for C is found.
end if

end if
end for

Algorithm 3 Finding all valid inequalities.

Given a cycle C, define vij = f̂a − wax̂a + 2waKC for a ∈ C
Set S = {a ∈ C : va ≥ 0} and denote C \ S = {a1, . . . , an}
Calculate v(S) =

∑
a∈S va and w(S) =

∑
a∈S wa

Recursion(S, 0)

Algorithm 4 Recursion(S, k)

if v(S) ≤ w(C)KC or k = n then
Stop.

end if
if v(S) > w(C)KC and w(S) > 1

2
w(C) then

A violating inequality is found.
end if
for l = k + 1, . . . , n do

Recursion(S ∪ {al}, l)
end for
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of the incidence matrix of the graph G. This choice of algorithm was arbitrary. We have no

reason to believe that this specific choice of algorithm to create a cycle basis has a significant

impact on performance of cutting planes. For completeness, we state the algorithm below.

Consider a directed graph G = (V,E) with vertex set V and arc set A. Let |V | = n and

|E| = m. We define edge-node incidence matrix A as

A(i,j),k =


1 if i = k

−1 if j = k

0 otherwise

(33)

Then, assuming that G is connected, Algorithm 5 can be used to find a cycle basis. The

correctness of the algorithm is proved in Appendix A.

Algorithm 5 Cycle basis generation.

Define edge-node incidence matrix A of directed graph G as given in (33).
Carry out LU decomposition of A with partial pivoting to compute PA = LU with a unit lower
triangular matrix L.
Last m− n + 1 rows of L−1P , denoted by Cb, gives a cycle basis.

Given an initial set of cycles Γ coming from the cycle basis, the following procedure is used

to generate additional cycles from which we may apply the separation procedures 2 and 3. Any

pair of cycles in Γ := C0 that share at least one common edge can be combined to form a new

cycle by removing the common edges. Denote C̄0 as the set of all the new cycles thus generated

from C0. Then, the set C1 := C0 ∪ C̄0 has more cycles than the cycle basis Cb. This process can

be repeated to generate sets Ck+1 := Ck ∪ C̄k for k ≥ 1.

Given a set of cycles Γ, we can use Algorithms 2 or 3 to identify and add all violated cycle

inequalities for that set of cycles to the LP relaxation of the Angle Formulation. We solve this

strengthened LP relaxation again and add further violated cycle inequalities. This procedure

can be carried out in several iterations (five times for our experiments) to produce a strengthened

LP relaxation that is eventually passed to the MIP solver.

6 Computational Results

In this section, we present extensive computational studies that demonstrate the effectiveness

of our proposed cut-and-branch algorithms on the DC-OTS problem. Section 6.1 explains how

the test instances are generated. Section 6.2 compares the default branch-and-cut algorithm

of CPLEX with two algorithms that employ the cycle inequalities (12). The first algorithm

generates inequalities from cycles in one fixed cycle basis, and the other generates inequalities

from a larger set of cycles. The results show that the proposed algorithm with cutting planes

separated from more cycles consistently outperforms the default algorithm in terms of the size

of the branch-and-bound tree, the total computation time, and the number of instances solved

within the time limit.
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For all experiments, we use a single thread in a 64-bit computer with Intel Core i5 CPU

3.33GHz processor and 4 GB RAM. Codes are written in the C# language. Considering that

the transmission switching problem is usually solved under a limited time budget, the relative

optimality gap is set to a moderate amount of 0.1% for all MIPs solved using CPLEX 12.4 (Cpl

(2011)). We set a time limit of one hour in all experiments.

6.1 Instance Generation

Our computational experiments focus on instances where the solution of the DC-OTS is sig-

nificantly different than the solution of the DC-OPF. In addition to selecting instances where

switching made an appreciable instance, we selected instances whose network size was large

enough so that the instances were not trivial for existing algorithms, but small enough to not be

intractable. The 118-bus instance case118B generated in Blumsack (2006) turns out to be suit-

able for our purposes, and we also modified the 300-bus instance case300 so that transmission

switching produces meaningfully different solutions from the OPF problem without switching.

Furthermore, in order to extensively test the effectiveness of the proposed cuts and separation

algorithms, we generate the following five sets of instances based on case118B and case300:

• Set 118 15: We generate 35 instances by modifying case118B, where the load at each bus

of the original case118B is increased by a discrete random variable following a uniform

distribution on [0, 15].

• Set 118 15 6: To each of the instances in Set 118 15, we randomly add 5 new lines to the

power network, each creating a 6-cycle. The transmission limits for the lines in the cycle

are set to 30% of the smallest capacity f̄ij in the network, and Bij is chosen randomly

from one of the lines which is already in the original network.

• Set 118 15 16: The instances are constructed the same as in Set 118 15 6, except that a

16-cycle is created by adding 5 new transmission lines.

• Set 118 9G: We generate 35 different instances from case118B, where the original load at

each bus is increased by a discrete random variable following a uniform distribution on

[0, 9]. Furthermore, the generation topology of the network is changed. In particular, a

generator located at bus i is moved to one of its neighboring buses or stays at its current

location with equal probability.

• Set 300 5: We generate 35 different instances from case300, where the original load at

each node is incremented by a discrete random variable following a uniform distribution

on [−5, 5]. Also, eight generators are turned off and the cost coefficients of remaining

generators are updated to be similar to the objective coefficients in Blumsack (2006).

Finally, more restrictive transmission line limits are imposed.

These instances can be downloaded from https://sites.google.com/site/burakkocuk/

research.
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6.2 DC Transmission Switching

We now investigate the computational impact of using the proposed valid inequalities within

the proposed cut-and-branch procedure. We compare the following three solution procedures:

1. The angle formulation (9) solved with CPLEX, abbreviated by Default.

2. The angle formulation (9) with valid inequalities (12) found using cycles coming from a

single cycle basis, abbreviated by BasicCycles.

3. The angle formulation (9) with valid inequalities (12) coming from more cycles than a

cycle basis, abbreviated by MoreCycles. The procedure for generating additional cycles

for separation is discussed in Section 5.3. We use the set of cycles C2 for the 118-bus

networks, where |C2| ≈ 3500. For the 300-bus networks, C2 has more than 37, 000 cycles,

which makes the separation procedure quite computationally expensive. For the 300-bus

networks, we select 10% of the cycles in C2 randomly for separation.

We conducted preliminary experiments comparing Algorithms 2 and 3 when using the valid

inequalities (12), and found Algorithm 3 yielded consistently better performance. Therefore,

we use Algorithm 3 as the separation algorithm for inequalities (12) in both BasicCycles and

MoreCycles.

Tables 1a-1e show the computational results for the five sets of test instances described

in Section 6.1. To measure the impact of the cuts on closing the integrality gap, we use the

following objective values:

• zLP : the objective value of the LP relaxation at the root node without inequalities (12)

and without CPLEX cuts;

• zcutsLP : the objective value of the LP relaxation at the root node with inequalities (12) and

without CPLEX cuts;

• zrootLP : the objective value of the LP relaxation at the root node with inequalities (12) and

with CPLEX cuts;

• zIP : the objective value of the final integer solution of the switching problem.

The integrality gap measures reported in the tables are defined as

• “Initial LP Gap (%)” := 100%× (zIP − zLP )/zIP ;

• “Gap Closed by Cuts (%)” := 100%× (zcutsLP − zLP )/(zIP − zLP );

• “Root Gap Closed (%)” := 100%× (zrootLP − zLP )/(zIP − zLP ).

Other performance metrics reported in the tables are the average number of valid inequalities

generated by the proposed algorithm (row “# Cuts”); the average preprocessing time for gener-

ating valid inequalities (“Preprocessing Time”), which includes the time for solving five rounds

of the LP relaxation of the switching problem and the associated separation problems; the

average total computation time including the preprocessing time (“Total Time”); the number

of Branch-and-Bound nodes (“B&B Nodes”); the number of unsolved instances within a time

limit of one hour (“# Unsolved”); and the average final optimality gap for unsolved instances
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(“Unsolved Opt Gap (%)”). For each metric, we report both the arithmetic mean (the first

number) and the geometric mean (the second number).

From these tables, we can see that the proposed algorithm MoreCycles consistently outper-

forms the default algorithm in terms of the percentage of optimality gap closed at the root note,

the size of the Branch-and-Bound tree, the total computation time, and the number of instances

solved.

Figures 1a-1e show the performance profiles of the three algorithms on the five sets of test

instances. In particular, each curve in a performance profile is the cumulative distribution

function for the ratio of one algorithm’s runtime to the best runtime among the three (Dolan

and Moré (2002)). Set 118 15 is a relatively easy test set. Figure 1a shows that for 42.9%

of the instances, the Default algorithm is the fastest algorithm, the BasicCycles algorithm is

fastest on 37.1%, and the MoreCycles algorithm is fastest on 20%. However, if we choose being

within a factor of two of the fastest algorithm as the comparison criterion, both BasicCycles

and MoreCycles surpass Default. BasicCycles solves all the instances and has the dominating

performance for this set of instances.

Figure 1b shows the results for Set 118 9G. BasicCycles is the fastest algorithm in 40% of

the instances; MoreCycles and Default have the success rate of 20% of being the fastest. If we

choose being within a factor of four of the fastest algorithm as the interest of comparison, then

MoreCycles starts to outperform BasicCycles. Also, MoreCycles solves 74.3% of the instances,

which is the highest among the three.

For instance sets 118 15 6 and 118 15 16, Figures 1c-1d show that BasicCycles is the fastest

algorithm in the highest percentage of instances. For the ratio factor higher than one, BasicCy-

cles and MoreCycles clearly dominate Default, and both solve significantly more instances than

Default. MoreCycles is the most robust algorithm in the sense that it solves the most instances.

On the 300 5 instance set, Figure 1e shows that MoreCycles is the fastest in the largest

fraction of instances and it also solves the most instances. BasicCycles is dominated by the

other two methods for this set of instances.

Figure 1f shows the performance profiles of the three algorithms over all the five test sets.

It shows that, BasicCycles is the fastest algorithm in 38.3% of the instances, whereas Default

is the fastest in 29.7% of the instances and MoreCycles is the fastest in 25.7% of the instances.

If we look at the algorithm that can solve 75% of all the instances with the highest efficiency,

then BasicCycles and MoreCycles have almost identical performance, and both significantly

dominate Default. MoreCycles solves slightly more instances than BasicCycles within the time

limit. In summary, the performance profiles show that BasicCycles has the highest probability

of being the fastest algorithm and MoreCycles solves the most instances. These experiments

demonstrate that the cycle inequalities (12) can be quite useful in improving the performance

of state-of-the-art MIP software for solving the DC-OTS.
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Default BasicCycles MoreCycles

# Cuts - 32.91/31.64 218.66/190.10

Preprocessing Time (s) - 0.05/0.04 0.80/0.44

Gap Closed by Cuts (%) - 1.50/0 2.90/0

Root Gap Closed (%) 4.41/0 7.84/7.32 18.43/17.33

Total Time (s) 437.75/35.39 26.12/15.71 234.43/30.51

B&B Nodes 6.1E+5/3.6E+4 3.6E+4/1.5E+4 2.7E+5/2.2E+4

# Unsolved 2 0 1

Unsolved Opt Gap (%) 0.30/0.29 0/0 0.11/0.11

(a) Summary of results for Set 118 15. Initial LP Gap (%):
26.87/26.57

Default BasicCycles MoreCycles

# Cuts - 28.37/27.63 150.31/139.02

Preprocessing Time (s) - 0.05/0.04 1.14/0.32

Gap Closed by Cuts (%) - 5.43/0 10.83/0

Root Gap Closed (%) 13.44/0 22.26/0 27.24/0

Total Time (s) 1126.54/148.65 1170.22/129.52 951.47/121.90

B&B Nodes 1.9E+6/2.1E+5 1.9E+6/1.8E+5 1.3E+6/1.5E+5

# Unsolved 10 10 7

Unsolved Opt Gap (%) 0.71/0.45 0.79/0.36 0.50/0.33

(b) Summary of results for Set 118 9G. Initial LP Gap (%):
19.12/13.37

Default BasicCycles MoreCycles

# Cuts - 29.34/28.91 145.20/141.54

Preprocessing Time (s) - 0.11/0.03 1.30/0.44

Gap Closed by Cuts (%) - 1.50/0 2.92/0

Root Gap Closed (%) 5.42/0 7.80/7.32 18.19/17.00

Total Time (s) 901.31/124.72 506.40/55.70 515.05/72.37

B&B Nodes 1.3E+6/1.4E+5 4.5E+5/4.9E+4 6.1E+5/6.6E+4

# Unsolved 5 3 1

Unsolved Opt Gap (%) 1.31/0.76 1.87/1.68 0.13/0.13

(c) Summary of results for Set 118 15 6. Initial LP Gap (%):
26.76/26.48
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Default BasicCycles MoreCycles

# Cuts - 26.54/25.85 86.23/84.23
Preprocessing Time (s) - 0.11/0.05 0.54/0.31

Gap Closed by Cuts (%) - 0.05/0 0.31/0
Root Gap Closed (%) 0.47/0 4.38/0 11.65/0

Total Time (s) 2243.71/1750.82 1473.52/924.64 1581.60/1170.37
B&B Nodes 2.0E+6/1.5E+6 1.2E+6/8.1E+5 1.2E+6/9.0E+5
# Unsolved 13 4 3

Unsolved Opt Gap (%) 0.54/0.41 0.93/0.74 1.22/0.73

(d) Summary of results for Set 118 15 16. Initial LP Gap (%):
3.25/2.81

Default BasicCycles MoreCycles

# Cuts - 15.66/15.26 34.83/33.56
Preprocessing Time (s) - 0.09/0.06 0.48/0.43

Gap Closed by Cuts (%) - 7.26/7.25 7.26/7.25
Root Gap Closed (%) 7.11/4.17 48.37/48.28 48.39/48.30

Total Time (s) 1685.39/634.75 1940.16/841.88 1524.14/514.76
B&B Nodes 6.6E+5/2.3E+5 7.8E+5/3.1E+5 6.2E+5/1.9E+5
# Unsolved 13 16 10

Unsolved Opt Gap (%) 0.21/0.19 0.22/0.21 0.40/0.23

(e) Summary of results for Set 300 5. Initial LP Gap (%): 4.88/4.88

Default BasicCycles MoreCycles

# Cuts - 26.57/25.10 127.05/101.12
Preprocessing Time (s) - 0.08/0.05 0.85/0.38

Gap Closed by Cuts (%) - 3.15/0 4.84/0
Root Gap Closed (%) 6.17/0 18.13/0 24.78/0

Total Time (s) 1278.94/235.82 1023.29/154.57 961.34/174.58
B&B Nodes 1.3E+6/2.1E+5 8.8E+5/1.3E+5 7.9E+5/1.3E+5
# Unsolved 43 33 22

Unsolved Opt Gap (%) 0.56/0.35 0.63/0.34 0.52/0.28

(f) Summary of all the instances. Initial LP Gap (%): 16.17/10.53

Table 1: Summary of computational results. For each metric, we report the arithmetic and geometric
mean, respectively.
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(a) Performance profile for Set 118 15. (b) Performance profile for Set 118 9G.

(c) Performance profile for Set 118 15 6. (d) Performance profile for Set 118 15 16.

(e) Performance profile for Set 300 5. (f) Performance profile for all the instances.

Figure 1: Performance profiles for test instances.

27



6.3 Sensitivity Analysis

Previous literature on the DC-OTS demonstrates that significant cost savings can be achieved

by switching off only a few lines (Fisher et al. 2008, Wu and Cheung 2013). However, the

optimal solutions obtained by the integer program turn off a significantly larger number of lines

than suggested by previous studies. Specifically, the average number of lines turned off in the

optimal solutions to the 118-bus instances is 42, and the maximum number turned off is 57.

For the 300-bus instances, an average of 85 lines are turned off in the optimal solutions, with a

maximum of 107. This surprising result is a consequence of our observation that there are many

optimal or near-optimal topologies for the DC-OTS. To demonstrate the impact of switching

off fewer lines than suggested by the optimal solution to the integer program, we performed a

sensitivity analysis of the cost versus the number of lines N that are allowed to be switched off.

In this analysis, we chose one instance from each of the five sets whose optimal solution had

a large number of lines switched off (41, 38, 41, 48, 91, respectively - refered to as instances (a),

(b), (c), (d), (e) henceforth) and solved a number of DC-OTS instances with the cardinality

constraint: ∑
(i,j)∈L

xij ≥ |L| −N (34)

added to the formulation. Here, N is the switching budget, that is, the number of lines allowed

to be switched off (note that N = 0 corresponds to DC-OPF). We experimented with different

N values and the results are given in Figures 2a-2e. We make the following observations:

• DC-OPF versions of instances (a), (c), (d) and (e) are infeasible.

• Once a particular instance becomes feasible, increasing the switching budget has a signif-

icant effect on the objective value for the first few lines (especially, for instances (b), (d)

and (e)).

• Nevertheless, the full cost benefit can only be realized by switching off several lines.

• Switching off 11 lines is enough for 118-bus instances (a), (b), (c), (d) to achieve the

maximum cost benefit (just seven lines are needed for instance (b)).

• For the 300-bus instance, switching off 15 lines yields nearly the maximum cost benefit.

• The LP relaxation value is not affected by the switching budget.

Our results support the observation that most, although not all, of the cost benefits in transmis-

sion switching can be realized by switching off only a few lines. This has a positive impact on

the robustness of the network. In our experience, the MIP instances with cardinality constraints

were more time consuming to solve that without the cardinality constraint. For example the

two instances which had the largest number of switched off lines in the optimal solutions we

found (the 118-bus instance with 57 lines switched off and the 300-bus instance with 107 lines

switched off) could not be solved in one hour for most switching budgets. Our observation that

the LP relaxation value is not affected by the switching budget may help explain this. Since

the optimal IP value is larger for smaller switching budgets, the LP relaxation gap is larger for

these instances.
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(a) An instance from Set 118 15. (b) An instance from Set 118 9G.

(c) An instance from Set 118 15 6. (d) An instance from Set 118 15 16.

(e) An instance from Set 300 5.

Figure 2: Evolution of objective function (IP) and linear programming relaxation (LP) with respect
to different switching budgets for five instances.
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7 Conclusions

In this paper, we propose new cycle-based formulations for the optimal power flow problem

and the optimal transmission switching problems that use the DC approximation to the power

flow equations. We characterize the convex hull of a cycle-induced substructure in the new

formulation, which provides strong valid inequalities that we may add to improve the new

formulation. We demonstrate that separating the new inequalities may be done in linear time

for a fixed cycle. We conduct extensive experiments to show that the valid inequalities are very

useful in reducing the size of the search tree and the computation time for the DC optimal

transmission switching problem.

The inequalities we derive may be gainfully employed for any power systems problem that

involves the addition or removal of transmission lines and for which the DC approximation to

power flow is sufficient for engineering purposes. We will pursue the application of these in-

equalities to other important power systems planning and operations problems as a future line of

research. Other future lines of research include the investigation of more complicated substruc-

ture of the new formulation, and engineering the cutting plane procedure to effectively solve

larger-scale networks. As an example of studying more complicated substructures, one reviewer

observed that the substructure we study does not involve flow balance constraints. Stronger re-

laxations could be obtained by separating cutting-planes using an extended formulation similar

to (14) that includes flow balance constraints.

Acknowledgment

We would like to thank the reviewers for their constructive comments and in particular sug-

gesting the experiments in Section 6.3. These have helped in significantly improving the paper.

The work of authors Jeon, Linderoth, and Luedtke was supported in part by the U.S. Depart-

ment of Energy, Office of Science, Office of Advanced Scientific Computing Research, Applied

Mathematics program under contract number DE-AC02-06CH11357.

A Cycle Basis Algorithm

Proposition A.1. Algorithm 5 works correctly.

Proof. Without loss of generality, assume that the first n − 1 rows of A are selected such that

no row permutation is necessary during LU decomposition. In the remaining of the proof, we

will replace PA with A for brevity.

The LU decomposition of A can be obtained by a sequence of Gaussian eliminations on A

as

Ã1 = L̃1 ·A, Ã2 = L̃2 · Ã1, . . . , U = Ãn−1 = L̃n−1 · Ãn−1,

where each matrix L̃i is an elementary row operation that adds or subtracts multiples of the
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i-th row of Ãi−1 to other rows to make the i-th column of Ãi−1 the i-th unit vector. Consider a

nonzero entry ai1 of A. Since a11, ai1 ∈ {+1,−1}, the row operation only adds +1 or −1 copy

of row 1 to row i, that is, the first column of L̃1 only contains 0,±1. Also, after eliminating ai1,

row i of A1 will either be all zero, or contain exactly one 1 and one −1. In other words, A1 is

an arc-node incidence matrix for a new digraph G1 = (V,E1). Since rank(A) = n− 1, we have

rank(Ã1) = n− 1, which implies the new digraph G1 is connected. Repeating this argument for

each subsequent round of Gaussian elimination, we have that U is an incidence matrix of the

connected digraph Gn−1 with n− 1 arcs, which implies Gn−1 is a spanning tree of the node set

V . Denote the first n− 1 rows of U as U1. The last m− n+ 1 rows of U are zeros.

Denote A =

[
A1

A2

]
where A1 is the first n− 1 rows of A and represents a spanning tree T in

the original graph G. Note that the rows of A1 are linearly independent. Let us first carry out

the LU decomposition of A1 to get A1 = L1U1. In fact, U1 represents a spanning tree, say T ′,

on a new graph G′ = (V,E′). Note that the entries of L1 are precisely the negative of the pivots

in Gaussian elimination and hence, they are ±1. Moreover, we can interpret the rows of L1

indexed by the edges in T and columns indexed by the edges in T ′. In particular, the elements

of row (i, j) ∈ T represent the unique path in T ′ going from i to j.

Claim A.1. A path in T can be mapped to a path in T ′ by post-multiplication of L1 and this

transformation is unique.

Proof. Let us consider a path p in T as a row vector where +1 (-1) means an arc is traversed

in forward (backward) direction and 0 means that arc is not part of the path. Define p′ = pL1.

We claim that the row vector p′ is a path in T ′. Let us traverse the path p in terms of the edges

in T ′. In particular, we weight the rows of T corresponding to (i, j) with the value of that edge

in the path p. In other words, for each arc (i, j) in the path, we traverse the path from i to j in

T ′. But, this gives a path in T ′. Finally, this transformation is unique since the path joining

two nodes in a tree is unique.

Now, consider A′ =

[
U1

A2

]
. We continue LU decomposition on A′ to obtain A′ =

[
U1

A2

]
=[

I 0

L2 I

][
U1

0

]
. In particular, we have A2 = L2U1. Since the rows of U1 are linearly independent

and U1 defines a tree, the elements of A2 can be traced via a unique path in T ′. In fact, the

paths are exactly L2 in the new network. If the paths in L2 are traced backwards, we obtain

cycles in G′. Hence,
[
−L2 I

]
is a cycle basis in G′.

At this point, we can write A = LU where

L =

[
L1 0

0 I

][
I 0

L2 I

]
and L−1 =

[
L−1

1 0

−L2L
−1
1 I

]

Finally, we claim that Cb =
[
−L2L

−1
1 I

]
is a cycle basis in G. Let us first focus on the

system L2 = ML1. Recall that the rows of L2 are paths in G′. We claim that the rows of M

are the corresponding paths in G. Using Claim A.1, we know that post-multiplication of a path
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in G by L1 gives a path in G′. But, since L1 is invertible, M = L2L
−1
1 is the unique solution

and therefore, the rows of M should represent paths in G. Then, by tracing the paths in M

backwards, we obtain cycles in G. Therefore,
[
−L2L

−1
1 I

]
is a cycle basis in G.

Note that we do not need to explicitly invert L to obtain L−1. In fact, LU decomposition

produces L−1. Hence, it is computationally efficient to find cycle basis using Algorithm 5.

References

2011. User’s Manual for CPLEX Version 12.4 . IBM.

Barahona, F., A.R. Mahjoub. 1986. On the cut polytope. Math. Program. 36 157–173.

Barrows, C., S. Blumsack, R. Bent. 2012. Computationally efficient optimal transmission switch-

ing: Solution space reduction. Power and Energy Society General Meeting, 2012 IEEE .

1–8. doi:10.1109/PESGM.2012.6345550.

Barrows, C., S. Blumsack, P. Hines. 2014. Correcting optimal transmission switching for AC

power flows. 47th Hawaii International Conference on System Sciences (HICSS). 2374–

2379.

Bienstock, D., S. Mattia. 2007. Using mixed-integer programming to solve power grid blackout

problems. Discret. Optim. 4(1) 115–141. doi:10.1016/j.disopt.2006.10.007.

Blumsack, S.A. 2006. Network topologies and transmission investment under electric-industry

restructuring. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania.

Bollobás, B. 2002. Modern Graph Theory . Springer.

Coffrin, C., H. Hijazi, P. Van Hentenryck, K. Lehmann. 2014. Primal and dual bounds for

optimal transmission switching. Power Systems Computation Conference (PSCC). Poland.
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