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Abstract. The minimization of volume constrained vector-valued Ginzburg-Landau energy func-

tional is considered in the present study. It has many applications in computational science and
engineering, like the conservative phase separation in multiphase systems (such as the spinodal

decomposition), phase coarsening in multiphase systems, color image segmentation and optimal
space partitioning. A computationally efficient algorithm is presented to solve the space discretized

form of the original optimization problem. The algorithm is based on the constrained nonmono-

tone L2 gradient flow of Ginzburg-Landau functional followed by a regularization step, which is
resulted from the Tikhonov regularization term added to the objective functional, that lifts the

solution from the L2 function space into H1 space. The regularization step not only improves the

convergence rate of the presented algorithm, but also increases its stability bound. The step-size
selection based on the Barzilai-Borwein approach is adapted to improve the convergence rate of

the introduced algorithm. The success and performance of the presented approach is demon-

strated throughout several numerical experiments. To make it possible to reproduce the results
presented in this work, the MATLAB implementation of the presented algorithm is provided as

the supplementary material.
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1. Introduction

In their seminal paper [19], Cahn and Hilliard introduced the following functional to approximate
the total Helmholtz free energy of an inhomogeneous system under zero-flux boundary conditions:

E(u) =

∫
Ω

(
ε2

2
|∇u|2 + F (u)

)
dx (1)
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where E denotes the total free energy of the system, Ω ⊂ Rd (d = 2, 3) is a bounded domain
with sufficiently regular boundaries, u denotes the concentration (or phase indicator field), ε is the
gradient coefficient which is proportional to the interfacial energy and thickness of the (diffuse)
interface between phases, and F (u) denotes the free energy density of a homogeneous system with
concentration u. Due to closely related works done by Ginzburg and Landau [37] on the theory of
superconductivity in advance of Cahn and Hilliard, functional E is commonly called the Ginzburg-
Landau functional in the scientific community. It is however interesting to note that the same form
of energy functional has been firstly used by J.D. van der Waals [70] more than 100 years ago to
develop the theory of capillarity based on the continuum thermodynamics approach. In [20], Cahn
and Hilliard used functional E to study nucleation of second phase in binary solutions using the
diffuse interface approach. For this purpose, they computed the Euler-Lagrange equation (with
respect to the L2 inner product) corresponding to functional (1) under the volume constraint on
the concentration field. In fact, they looked for the stationary points of the volume constrained
Allen-Cahn equation. In [2], the L2 gradient flow of (1), the Allen-Cahn equation, has been used to
study the motion of anti-phase boundaries in crystalline solids:

∂u

∂t
= ε2∆u− f(u), (x, t) ∈ Ω× T , u(x, 0) = u0, ∂nu|∂Ω = 0 (2)

where ∆ denotes the laplacian operator, f(u) = F ′(u), T = [0, T ] denotes the temporal domain, ∂Ω
denotes the boundaries of Ω, ∂nu := ∇u · n and n denotes the outward unit normal on ∂Ω. The
periodic boundary condition is an alternative boundary condition for (2). Because, the Allen-Cahn
equation does not essentially conserve the total measure of the concentration field under isolated or
periodic boundary conditions, it is called the nonconservative gradient flow of (1) and is commonly
used to model the first order phase transition phenomena in materials science, c.f. [66]. To study
the spinodal decomposition and coarsening phenomena in binary alloys, the conservative gradient
flow of (1), the Cahn-Hilliard equation, has been introduced in [18, 21]:

∂u

∂t
= −∆

(
ε2∆u− f(u)

)
, (x, t) ∈ Ω×T , u(x, 0) = u0, ∂nu|∂Ω = ∂n

(
ε2∆u− f(u)

)
|∂Ω = 0 (3)

The Cahn-Hilliard-like equations are commonly used to model second order phase transition phe-
nomena in materials science, c.f. [66]. The original derivation of the Cahn-Hilliard equation was
based on the linear irreversible thermodynamics approach in which the variational derivative of (1)
has been taken into account as the diffusion potential, c.f. chapter 18 of [4]. Later, it was shown
that the Cahn-Hilliard equation is, in fact, the gradient flow of (1) with respect to the H−1 inner
product, see for instance [32].

Due to their nonlinearity, it is not possible to find analytical solutions of the Allen-Cahn and
Cahn-Hilliard equations. Therefore, in practice, using numerical solutions is very common to study
the dynamics of these equations. Because the Allen-Cahn and Cahn-Hilliard equations evolve along
descent directions of (1), they converge to the stationary points (local minimizers) of (1). The
euler explicit time integration approach [66] is the simplest method to solve these equations. Many
computational methods have been invented to improve the accuracy, stability and/or efficiency
of numerical solution of Allen-Cahn and Cahn-Hilliard equations, for instance: exponential time
differencing [25, 46], multigrid [47, 48, 84], adaptive time stepping [26, 39, 85, 88], isogeometric
analysis [40, 57], C1-continuity finite element [87], Sobolev gradient [67–69, 73] and unconditionally
energy stable [30, 42, 72, 83] approaches.

As it is mentioned above, the Cahn-Hilliard equation conserves the global measure of u, i.e.
d/dt (

∫
Ω
u dx) = 0. Therefore, the steady-state or long-time solutions of the Cahn-Hilliard equa-

tion and the Allen-Cahn equation subject to the following volume constraint (in fact, the volume
constrained L2 gradient flow of E) should be identical from the physical point of view:∫

Ω

u(x, t) dx =

∫
Ω

u0(x) dx (4)

However, the minimization path of two approaches, as well as their stationary points will not be
essentially identical (consider the nonconvexity of functional E). It is worth to mention that the



MINIMIZATION OF THE VOLUME CONSTRAINED VECTOR-VALUED GINZBURG-LANDAU FUNCTIONAL 3

numerical solution of Cahn-Hilliard equation involves more challenges than that of the Allen-Cahn
equation. This is due to the fact that the Cahn-Hilliard equation is stiffer and its maximum al-
lowable time increment for the stable time integration includes commonly more restriction than
that of the Allen-Cahn equation. Therefore, an interesting problem is to compare the behaviors of
Cahn-Hilliard and volume constrained Allen-Cahn equations. Regarding to the numerical solution
of volume constrained Allen-Cahn equation, there are few works in the literature, to the best of our
knowledge. For instance, in [10, 11] the semi-smooth Newton method has been used to solve the vol-
ume constrained Allen-Cahn equation. The volume constraint has been managed by the traditional
lagrange multiplier approach in these works. By adding a nonlinear nonlocal term to the right hand
side of (2), different volume preserving forms of the Allen-Cahn equation have been introduced in
[6, 17, 49, 71]. Obviously, the existence of the mentioned nonlocal term increases the complexity
and computational cost of the corresponding numerical solution.

Because the field variable u represents the concentration or the volume fraction of the second
phase (up to a linear mapping), it should lie in interval [−1, 1] to ensure the physical consistency of
the mathematical model. In fact, there are an infinite number of pointwise constraints. The solutions
of Allen-Cahn and Cahn-Hilliad equations, however do not essentially satisfy these constraints. A
common solution of this problem is to filter u after every time step. However, this treatment is not
mathematically rigorous. There were few works in which these constraints have been taken into
account during the development of solution algorithms, for instance see [11–13].

The energy functional (1) can be easily extended to model the Helmholtz free energy of multi-
phase systems. The multiphase version of the Cahn-Hilliard equation, Cahn-Morel equation, has
been introduced in [60] by Morel and Cahn to model the spinodal decomposition in ternary systems.
Similar to the Cahn-Hilliard equation, the evoluation of concentration fields by the Cahn-Morel equa-
tion conserves the total measure of every phase or component under zero-flux or periodic boundary
conditions. Later, Cahn-Morel-like equations have been extensively used in literature to study the
phase separation, nucleation and coarsening in multiphase systems, for instance see: [7, 14, 22, 24,
27, 29, 44, 45, 50, 54]. Similar to the Allen-Cahn equation, the L2 gradient flow of multiphase
Ginzburg-Landau functional has been extensively used in the literature to model nonconservative
multiphase phase transition phenomena, for instance see: [23, 31, 31, 35, 51, 52, 55, 56, 75, 76, 82].
There are few works in which the volume constrained L2 gradient flow of multiphase Ginzburg-
Landau functional has been taken into account. Remarkable works in this regards are [11, 34, 63].
In these works, the pointwise bound and incompressibility constraints are managed by the projection
method and the volume constraints are handled by the traditional lagrange multiplier method. For
further literature survey on the diffuse interface modeling of multiphase systems, interested readers
are referred to: [43, 53, 62, 74].

In the present study, a computationally efficient method is developed to solve the volume con-
strained L2 gradient flow of the Ginzburg-Landau functional. The pointwise bound constraints are
taken into account in addition to the volume constraint in our method, such that its iterations will
be strictly feasible with respect to the set of constraints. The method is constructed based on the
projected gradient flow of the free energy functional. Because the projection will be performed with
respect to the L2 norm in the present study, a regularization step is used to control the smoothness
of solutions. To this end, the optimization is performed in two steps during each iteration; the
projected gradient step followed by the regularization step. The second step of every iteration natu-
rally regularizes the solution while it does not destroy the feasibility of the solution with respect to
the set of constraints. Using this approach, we not only regularizes the iterations, but also perform
the minimization path on the H1 space. There were few works in which the minimization of the
Ginzburg-Landau functional has been performed on the H1 space (Sobolev gradient method, c.f.
[64]), see for instance [67–69, 73]. However, in contrast to these works, the benefit of our approach is
that the bound constraints are consistently taken into account in the solution algorithm. To the best
of our knowledge, this is the first effort on the solution of constrained Allen-Cahn equation on H1

space considering the global volume constraint together with pointwise bound constraints. Similar
to [67–69, 73], performing the minimization on the H1 space makes it possible to use larger time
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increments in contrast to the traditional methods. Moreover, due to its intrinsic regularization, its
convergence rate to the stationary points of the Ginzburg-Landau functional is faster than that of the
L2 norm based methods. The presented algorithm is then extended to solve the constrained gradient
flow of the multiphase Ginzburg-Landau functional. The feasibility of the presented algorithms is
supported by computational experiments. It is worth mentioning that the presented algorithms can
be extended to solve similar optimization problems. For instance, in [79] the presented algorithm in
this study is adapted to solve the multimaterial topology optimization problems (cf. [80]).

2. Minimization of the volume constrained Ginzburg-Landau functional

The minimization problem corresponding to the volume constrained Ginzburg-Landau functional
can be written as follows:

min
u∈D

E(u) (5)

where D denotes the admissible solution domain which is defined as follows:

D :=
{
v ∈ U(Ω)

∣∣ ∫
Ω

v(x) dx = Λ|Ω|, −1 6 v(x) 6 1 for all x ∈ Ω
}

where U is a sufficiently regular function space, −1 6 Λ 6 1 and Λ =
( ∫

Ω
u0(x) dx)/|Ω|. Since all

constraints in D are linear, D is convex.

2.1. Preliminaries results on the convex constrained gradient flow. In this subsection we
cover some preliminary known results on the convex constrained optimization that are used to
construct our solution algorithms in the present study.

Theorem 2.1. (orthogonal projection onto a convex set, theorem 12.1.10 of [1]) Let W be a Hilbert
space and K as a convex closed nonempty subset ofW. For all w ∈ W , there exists a unique wK ∈ K
such that

‖w − wK‖2 = min
v∈K
‖w − v‖2

The orthogonal projection of w onto set K is shown by operator PK[w] henceforth in this paper, i.e.,
wK = PK[w]. Equivalently, wK is characterized by the following property:

wK ∈ K, 〈wK − w, v − wK〉 > 0, ∀v ∈ K (6)

where 〈·, ·〉 and ‖ · ‖ denote the inner product and associated norm on W, i.e. ‖v‖ =
√
〈v, v〉.

Proposition 2.2. LetW be a Hilbert space and K as a convex closed nonempty subset ofW. Assume
that v and w are arbitrary members of W and their orthogonal projection onto K are denoted by vK
and wK respectively. Then the following identity holds:

〈wK − vK, w − v〉 > ‖wK − vK‖2 (7)

Proof. Replacing v with vK in (6) results in:

〈wK − w, vK − wK〉 > 0 (8)

Interchanging v and w in (8) results in:

〈vK − v, wK − vK〉 > 0 (9)

Adding (8) to (9) and expansion of the resulting identity gives:

〈wK, vK〉 − 〈w, vK〉 − ‖wK‖2 + 〈w, wK〉+ 〈vK, wK〉 − 〈v, wK〉 − ‖vK‖2 + 〈v, vK〉 > 0 (10)

Rearrangement of terms in (10) completes the proof. �

Theorem 2.3. (Euler inequality for convex sets, theorem 10.2.1 of [1]) LetW be a Hilbert space and
K as a convex closed nonempty subset of W. Assume that functional J(w) : K → R is differentiable
at w ∈ K with the directional derivative denoted by J ′(w). If w∗ denotes a local minimum point of
J(w) over K, then:

〈J ′(w∗), v − w∗〉 > 0, ∀v ∈ K (11)
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Proposition 2.4. (necessary optimality conditions based on the projected gradient) Let W be a
Hilbert space and K as a convex closed nonempty subset of W. Assume the functional J(w) : K → R
is differentiable at w ∈ K with the directional derivative denoted by J ′(w). If w∗ denotes a local
minimizer of J(w) over K, then:

J ′K,µ(w∗) = PK[w∗ − µJ ′]− w∗ = 0 a.e. (12)

where µ ∈ R+. Since PK[w − µJ ′]−w is equal to the scaled projected gradient of J at w (c.f. [9]),
the constrained stationary points of J are roots of the scaled projected gradient with respect to set K.
Therefore we call (12) the necessary optimality conditions based on the projected gradient.

Proof. Considering an arbitrary µ ∈ R+, by (11) we have:

〈µJ ′(w∗), v − w∗〉 > 0, ∀v ∈ K
Simple algebra results in: 〈

w∗ −
(
w∗ − µJ ′(w∗)

)
, v − w∗

〉
> 0, ∀v ∈ K (13)

Comparing (6) and (13) results in:

w∗ = PK
[
w∗ − µJ ′(w∗)

]
almost everywhere, which completes the proof. �

Proposition 2.5. (descent property of the scaled projected gradient) Let W be a Hilbert space and
K as a convex closed nonempty subset of W. Assume that functional J(w) : K → R is differentiable
at w ∈ K with the directional derivative denoted by J ′(w). Assume that the scaled projected gradient
at w ∈ K is denoted by J ′K,µ(w), i.e., J ′K,µ(w) = PK[w − µJ ′(w)] − w. Then for all w ∈ K and

µ ∈ R+ we have:

〈J ′(w), J ′K,µ(w)〉 6 − 1

µ
‖J ′K,µ(w)‖2 (14)

Proof. Replacing w with w − µJ ′(w) and, then v with w in (7) results in:

〈PK[w − µJ ′(w)]−PK[w], −µJ ′(w)〉 > ‖PK[w − µJ ′(w)]−PK[w]‖2 (15)

Since w ∈ K, PK[w] = w, therefor,〈
PK[w − µJ ′(w)]− w, J ′(w)

〉
6 − 1

µ
‖PK[w − µJ ′(w)]− w‖2

�

Considering proposition 2.5, starting from arbitrary initial guess w0, functional J(w) can be
minimized by the following iterative procedure:

wn+1 = wn + αnJ ′K,µn(wn), n = 0, 1, . . . (16)

where αn ∈ (0, 1] is chosen according to a suitable globalization strategy. In practice, the scaling
factor µ has a significant impact on the convergence rate of (16). Following [9, 78], the scaling factor
µ is computed based on the Barzilai and Borwein [5] step size selection approach in the present
study. For the sake of convenience, this approach is briefly explained in subsection 2.1.1.

2.1.1. Computation of gradient scaling factor by the Barzilai-Borwein method. In [5], a fully explicit
approach has been introduced to compute the line search stepsize in the steepest descent method in
unconstrained optimization problems. The method was based on the approximation of the Hessian
matrix at the n-th step of the optimization by the diagonal matrix 1

µn I, where I denotes the identity

matrix and µn is computed as follows:

µn = min{ µmax, max{ µ̂n, µmin}}, µ̂n =
‖sn−1‖2

〈sn−1, yn−1〉
(17)

where sn−1 = wn −wn−1, yn−1 = J ′(wn)− J ′(wn−1), µmin, µmax ∈ R, 0 < µmin � 1� µmax <∞
and n > 1. Later, in [9], the Barzilai-Borwein stepsize selection approach has been adapted to solve
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convex constrained optimization problems by computing µn in (16) by (17) and computing αn by
GLL nonmonotone line search [41] algorithm. As it has been shown in lemma 2.1 of [78], the Barzilai-
Borwein stepsize possesses the spectral property while it uses only the first order information. This
property is a key for the success of this approach to economically solve large scale optimization
problems, cf. [33] and recent survey [8]. In the present study µn is computed based on (17).
Following, [78], µ0 is computed by the following equation:

µ0 =
1

‖JK,1(w0)‖∞
, (18)

For further details about the Barzilai-Borwein method, interested readers are referred to [5, 8, 9,
33, 78].

2.2. Constrained gradient flow of the Ginzburg-Landau functional. Using the descent prop-
erty of the scaled projected gradient given in the proposition 2.5, the following initial value problem
is equivalent to a constrained gradient flow (c.f. [32]) of the Ginzburg-Landau functional,

∂u

∂t
= PD[u− µE′(u)]− u, u(x, 0) = u0(x) (19)

where µ ∈ R+ and E′(u) denotes the directional derivative of E at u. It is easy to show that, by
starting from an initial guess u0 ∈ D, E(u) decreases as u evolves based on equation (19), while u
lies on the admissible set D. The later claim is evident due to the existence of projection operator
at right hand side of (19). The former claim can be proved as follows:

∂E(u)

∂t
=
〈
E′(u),

∂u

∂t

〉 (19)
=
〈
E′(u), PD[u− µE′(u)]− u

〉 (14)

6 − 1

µ
‖PD[u− µE′(u)]− u‖2

Therefore, E(u(x, t)) 6 E(u0(x)) for all t > 0. Assume we have the homogeneous Neumann, zero-
flux, boundary conditions for u on boundaries of Ω. Computing the directional derivative of E with
respect to L2 norm and its substitution into (19) leads to the following parabolic PDE:

∂u
∂t = PD

[
u+ µ

(
ε2∆u− f(u)

)]
− u in Ω× T

u = u0(x) in Ω× {t = 0}
∂nu = 0 on ∂Ω× T

(20)

Because the directional derivative of E is computed with respect to the L2 norm, the Hilbert space
W used in the previous subsection should be replaced by the function space L2(Ω) here, i.e. for
every w ∈ L2(Ω) we have:

PD[w] = min
v∈D
‖w − v‖2L2(Ω) (21)

It implies that PD[w] ∈ L2(Ω). Therefore, the regularity of solution of (20) is not essentially better
than L2(Ω). According to our numerical experiments, solutions of (20) are not always sufficiently
smooth. Consequently, undesired behaviors, that decrease the rate of convergence to the stationary
point of E(u), are observed in some cases (c.f. numerical results section in the present study). To
cope this loss of regularity, a heuristic approach is employed in the present study. It is based on the
Tikhonov regularization of the original optimization problem by the addition of H1-seminorm of u
to E(u), as follows:

Ẽ(u) = E(u) + E%(u), E%(u) :=
%

2

∫
Ω

|∇u|2 dx (22)

where % ∈ R+ is the regularization parameter that controls the smoothness of solution. Then, we
minimize the regularized counterpart of E(u), i.e. Ẽ(u) instead of E(u). For this purpose, every
iteration of the optimization is decomposed into two sequential steps. At the first step E(u) is
minimized by solving the time discretized form of (20) with sufficiently small time increment ∆t 6 1
to find v(x). Then, E% is minimized by solving the time discretized form of the following parabolic
PDE with the time stepsize ∆t, homogeneous Neumann boundary condition and v(x) as the initial
condition:

∂u

∂t
= % ∆u, u(x, t0) = v(x) (23)
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Assume that the temporal domain is discretized into a uniform grid with the time stepsize ∆t. More-
over, assume that the superscript n denotes the field variables at time level n, i.e. un := u(x, t =
n∆t). The numerical algorithm developed in the present study is independent of the method used for
the spatial domain discretization. However, for the sake of convenience, we assume that the spatial
domain is discretized into a uniform Cartesian grid with grid size ∆x in all directions. Moreover,
it is assumed that the spatial derivatives are computed by the second order central finite difference
scheme. Although we present our algorithm for the case of homogeneous Neumann boundary condi-
tions, it is also valid for the case of periodic boundary conditions. The solution algorithm to solve
(5) in the present study can be expressed as follows:

Algorithm 1. Two-step constrained gradient flow of Ginzburg-Landau functional

Step 0. Initialization: given Ω, u0, ε, F (u), %, µmin, µmax, ∆t ∈ (0, 1], parameters related to the
spatial discretization and stopping criteria parameters nmax and δ > 0. If u0 /∈ D then u0 = PD[u0],
set n→ 0 and un = u0. Compute µ0 by the following equation:

µ0 = 1/‖PD
(
u0 + ε2∆u0 − f(u0)

)
− u0‖∞ (24)

Step 1. Iterations

1.1 Given un, if n > 1 compute µn according to the following equations:

µ̂n =
‖un − un−1‖2〈

un − un−1, ε2∆(un−1 − un) + f(un)− f(un−1)
〉 (25)

µn = min{ µmax, max{ µ̂n, µmin}}, (26)

1.2 Given un, compute vn by solving (20) with the zero-flux boundary condition for one time-
step by the Euler explicit time integration method, as follows:

vn = un + ∆t

[
PD

[
un + µn

(
ε2∆un − f(un)

)]
− un

]
(27)

1.3 Given vn, compute un+1 by solving (23) with the zero-flux boundary condition for one time
step by the Euler implicit tim integration method, as follows:

un+1 = vn + ∆t % ∆un+1 (28)

Step 2. Stopping criteria: If n = nmax or ‖un+1 − un‖L2(Ω) 6 δ stop the iterations, else set
n→ n+ 1 and goto step 1.

Remark 2.6. To ensure the global convergence of algorithm 1, it is essential to determine the time
stepsize ∆t according to a globalization strategy, for instance the GLL nonmonotone line search
approach [41]. In the present study, we simply take ∆t as a sufficiently small and constat value
such that the algorithm behaves almost monotonically. According to our numerical experiments,
the value of ∆t ≈ 0.5 is a reasonable choice to balance between the performance and monotonicity
of algorithm 1.

Rearranging terms in (28) results in the following Helmholtz equation under the homogeneous Neu-
mann boundary conditions:

(I − ζ∆) un+1 = vn (29)

where I denotes the identity operator and ζ = ∆t %. Considering remark 2.6, the time stepsize is
fixed during our computations in the present study. As a result, the Helmholtz operator (I − ζ∆) is
fixed during our computations. Therefore, it is economical to decompose the discretized form of this
operator by the incomplete Cholesky factorization once and reuse it in the course of computations.
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In fact, step 1.3 of algorithm 1 lifts the solution from L2(Ω) to H1(Ω), as it is illustrated in the
following proposition:

Proposition 2.7. When ζ > 0, step 1.3, the regularization step, of algorithm 1 is equivalent to the
transition of temporary solution vn from L2(Ω) to H1(Ω), where the function space H1(Ω) is occupied
with the following inner product: (f, g)H1(Ω) :=

∫
Ω

(fg + ζ∇f · ∇g) dx for every f, g ∈ H1(Ω).

Proof. Because the projected gradient is computed with respect to the L2 inner product, vn ∈ L2(Ω).
Taking the inner product of both sides of (29) with an arbitrary function w ∈ H1(Ω) results in:∫

Ω

(un+1 − ζ∆ un+1) w dx =

∫
Ω

vn w dx

applying the divergence theorem and using the homogeneous Neumann boundary conditions result
in: ∫

Ω

(un+1 w − ζ ∇un+1 · ∇w) dx =

∫
Ω

vn w dx

i.e. (un+1, w)H1(Ω) = (vn, w)L2(Ω). Therefore, the proof is directly followed by the Riesz represen-
tation theorem (cf. [1]). �

It is easy to show that under mild conditions, the iterations generated by algorithm 1 are strictly
feasible with respect to the constraints set D. This property is proved in the following proposition.

Proposition 2.8. If u0 ∈ L2(Ω) and ∆t ∈ (0, 1] in algorithm 1, then un+1 ∈ D for n = 0, 1, . . . .

Proof. We first show that solutions of (27) lie in D. Rearrangement of terms in (27) results in:

vn = (1−∆t) un + ∆t wn (30)

where wn := PD
[
un + µ

(
ε2∆un − f(un)

)]
. Because un, wn ∈ D, 0 < ∆t 6 1 and D is convex, (30)

ensures that vn ∈ D. Now, we show that if vn ∈ D, solutions of (28) lie in D. It is well known that
under the homogeneous Neumann boundary conditions, the linear heat equation in the continuous
form, i.e. (23), as well as the presented discretized form, i.e. (28), satisfies the maximum principles.
Therefore, if vn satisfies the pointwise bound constraints then un+1 will satisfies the pointwise bound
constraints too. The spatial integration of both sides of (28) results in:∫

Ω

un+1 dx =

∫
Ω

vn dx + ζ

∫
Ω

∆un+1 dx

By applying the divergence theorem we have:∫
Ω

un+1 dx =

∫
Ω

vn dx + ζ

∫
∂Ω

∇un+1 · ∇n dx (31)

Because vn ∈ D the first term in the right hand side of (31) is equal to Λ|Ω|. the second term in
the right hand side of (31) vanishes by applying the homogeneous Neumann boundary conditions.
Therefore, un+1 satisfies the volume constraint. �

It is worth to mention that algorithm 1 has some similarities to the Sobolev gradient flow method
[67–69, 73], in which resulted solutions have the H1 regularity. However, the essential difference
of algorithm 1 and the Sobolev gradient flow method is that the second step of algorithm 1 acts
on the temporal solution to improve its regularity while in the Sobolev gradient flow method, the
directional derivative of the energy functional is computed with respect to the H1 inner product,
and then the gradient flow is exploited with the corresponding H1 gradient.

Having an efficient algorithm to solve the projection problem (21) is a key for the efficiency of
algorithm 1. Due to the existence of pointwise bound constraints in D, there is not an explicit linear
operator that projects a trial point onto D. However, in the following subsection, it is shown that
(21) can be solved efficiently by an iterative algorithm up to the machine precision accuracy.
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2.3. Orthogonal projection onto D. The projection of trial point w ∈ L2(Ω) onto D, problem
(21), can be re-stated as follows:

min
v∈B

1

2
‖v − w‖2L2(Ω) subject to :

∫
Ω

v(x) dx = Λ|Ω| (32)

where box B is defined as follows: B :=
{
v ∈ U(Ω)

∣∣ − 1 6 v(x) 6 1 for all x ∈ Ω
}

. Obviously
the optimization problem (32) is convex and has a unique solution. The unique solution of (32) is
equal to the unique constrained (w ∈ B) stationary point of the following augmented lagrangian:

L(v, λ) =
1

2
‖v − w‖2L2(Ω) + λ

(∫
Ω

v(x) dx− Λ|Ω|
)

where λ is the lagrange multiplier corresponding to the volume constraint. Assume λ∗ denotes the
value of λ at the stationary point of the constrained lagrangian L. Then, by taking the first variation
of L with respect to v and using the necessary optimality conditions based on the projected gradient
approach (c.f. proposition 2.4), the optimal solution of (32), denoted by v∗, can be computed by
the following equation:

v∗ = PB[w − λ∗] a.e. in Ω

It is well-know that the projection onto box B is a convex separable optimization problem with the
following explicit solution (cf. chapter 10 of [1]):

PB[v] = max(−1, min(1, v))

therefore,

v∗ = v(λ∗), where v(λ) = max(−1, min(1, w(x)− λ)) (33)

Finally λ∗ is computed by the substitution of v∗ into the volume constraint and finding the unique
root of function g(λ), which is defined as follows:

g(λ∗) = 0, where g(λ) :=

∫
Ω

v(λ) dx− Λ|Ω|

The remaining part of solving (32) is introducing an efficient algorithm to find the root of g(λ).

Proposition 2.9. g(λ) is a continuous piecewise linear and monotonically non-increasing function
of λ.

Proof. Define functions λL, λU ∈ U(Ω) as follows:

λL = w + 1, λU = w − 1,

It is clear that λU 6 λL. Considering (33) we have:

v(λ) =

 1, if λ 6 λU ,
w − λ, if λU 6 λ 6 λL,
−1, if λ > λL.

(34)

Considering (34), v(λ) is a continuous piecewise linear and monotonically non-increasing function
of λ. Since we have g(λ) =

∫
Ω
v(λ) dΩ − Λ|Ω|, g(λ) is also a continuous piecewise linear and

monotonically non-increasing function of λ. �

Corollary 2.10. Let λmin = min(λU ) and λmax = max(λL), then three situations are possible: 1)
λ∗ = λmin, 2) λ∗ = λmax, 3) λ∗ ∈ (λmin, λmax) and g(λmin) g(λmax) < 0.

Proof. Because, (32) has a unique solution, the root of g(λ) is unique. Considering (34), the max-
imum value of g happens at λ = λmin. Considering (34), v(λmin) = 1. Therefore g(λmin) =
|Ω|(1−Λ) > 0. Similarly, the least value of g happens at λ = λmax and g(λmax) = −|Ω|(1 + Λ) 6 0.
Thus, either of situations mentioned in the statement of the corollary happens in practice. �
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Therefore, the unique root of g(λ) can be efficiently computed by starting from the searching
interval [λmin, λmax] and using the bisection root finding algorithm. Considering the limited preci-
sion of digital computers, in practice, the root of g can be computed up to the machine precision
in a finite number of bisection steps. According to our numerical experiments, the cost of this root
finding procedure is negligible in contrast to the overall computational cost of algorithm 1.

3. Minimization of the mass constrained vector-valued Ginzburg-Landau functional

The two-step constrained gradient flow approach introduced in section 2 will be extended to mul-
tiphase systems in this section. The minimization problem corresponding to the volume constrained
multiphase Ginzburg-Landau functional, the multiphase analog of (5), can be written as follows:

min
u∈A

E(u) :=

p∑
i=1

∫
Ω

ε2

2
|∇ui|2 dx +

∫
Ω

F(u) dx (35)

where p > 2 denotes the number of phases, ui denotes the concentration field corresponding to i-th
phase, u := {u1, . . . , up} denotes the vector valued concentration field, F(u(x)) denotes the free
energy density of a homogeneous system with concentration u = u(x) and A denotes the admissible
solution domain formed by the set of constraints. There are three kinds of constraints in A which
are described below. Similar to the two-phase case, there are pointwise bound constraints on fields
variables ui, i.e.:

−1 6 ui 6 1, i = 1, . . . , p (36)

There are p volume constraints on the total measure of each phase inside Ω:∫
Ω

ui dx = Λi|Ω|, i = 1, . . . , p (37)

where Λi (i = 1, . . . , p) is proportional to the volume (mass) fraction of i-th phase in Ω. Obviously
−1 6 Λi 6 1 and

∑p
i=1 Λi = 2 − p. Assuming the initial concentration field, denoted by u0 =

{u1,0, . . . , up,0} satisfies (37) then we have: Λi =
( ∫

Ω
ui,0(x) dx)/|Ω| for i = 1, . . . , p. Unlike the

two-phase case, there are additional pointwise constraints due to the incompressibility of phases, i.e.
the sum of concentration fields at every point x ∈ Ω should be equal to a constant value, unity up
to a linear mapping, i.e.:

p∑
i=1

ui = 2− p (38)

It is worth mentioning that, the intersection of (36) and (38) is commonly called the Gibbs p-
simplex in the materials science literature, due to the seminal work of Willard Gibbs [36] to study
the thermodynamics of inhomogeneous systems. Therefore, the admissible set A can be expressed
as follows:

A :=

v ∈ Up(Ω)

∣∣∣∣∣∣
∑p
i=1 vi = 2− p,∫

Ω
vi dx = Λi|Ω|, i = 1, . . . , p

−1 6 vi 6 1, i = 1, . . . , p


where v = {v1, . . . , vp}. The constraint qualification is a common requirement for the success of
optimization algorithms from both the theoretical and practical points of view (cf. [65]). To obtain
the qualification of constraints for linearly constrained optimization problems, it is sufficient to
show that the equality constraints are linearly independent and that there exists a feasible point
satisfying all inequalities strictly. However, the equality constraints inA are not linearly independent.
Assuming that A is nonempty, to ensure the constraint qualification, we can remove up from the set

of unknown vectors using equality constraints (38) (up = 2 − p −
∑p−1
i=1 ui). Therefore, we redefine

the admissible set A in the present study as follows:

A redefine
:=

v ∈ Up−1(Ω)

∣∣∣∣∣∣
∫

Ω
vi dx = Λi|Ω|, i = 1, . . . , p− 1

−1 6 vi 6 1, i = 1, . . . , p− 1

1− p 6
∑p−1
i=1 vi 6 3− p,


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where v is redefined as v = {v1, . . . , vp−1}. Therefore, it is sufficient to compute ui for i = 1, . . . , p−1,

and then to compute up by: up = 2 − p −
∑p−1
i=1 ui. For the purpose of convenience, henceforth,

both of {u1, . . . , up} ∈ Up and {u1, . . . , up−1} ∈ Up−1 will be denoted by the vector field u. Since
all constraints in A are linear, A is convex. Therefore (35) is a convex constrained minimization
problem.

Similar to section 2.2 we substitute the function space U in the definition of A by L2(Ω). Using
the theory of convex constrained gradient flow developed in section 2.1, similar to section 2.2, the
constrained gradient flow of the vector-valued Ginzburg-Landau functional results in the following
initial value problem:

∂u

∂t
= PA[u− µE′(u)]− u, u(x, 0) = u0(x) (39)

where u = {u1, . . . , up−1}, PA denotes the orthogonal projection operator from
(
L2(Ω)

)p−1
onto A,

µ ∈ R+, u0 ∈ A and E′(u) ∈
(
L2(Ω)

)p−1
denotes the directional derivative of E at u. Considering

the homogeneous Neumann boundary conditions on ∂Ω and constraint up = 2 − p −
∑p−1
i=1 ui,

straightforward derivation results in: E′(u) =
{
E′1(u), . . . , E′p−1(u)

}
, where

E′i(u) =
(
fi(u)− ε2∆ui

)
−
(
fp(u)− ε2∆up

)
, i = 1, . . . , p− 1 (40)

where fi(u) denotes the partial derivative of F(u) with respect to ui, i.e. fi(u) = ∂F(u)/∂ui.
Similar to (22), the optimization problem (35) can be regularized by the addition of H1-seminorm

of u to E(u), as follows:

Ẽ(u) = E(u) + E%(u), E%(u) :=
%

2

p∑
i=1

∫
Ω

|∇ui|2 dx (41)

where % ∈ R+ is the regularization parameter that controls the smoothness of solution. Similar to
approach discussed in section 2.2, the minimization of regularized functional Ẽ(u) will be done by
the presented two steps approach. Similar to (23), in the second step of optimization, the following
parabolic system of PDEs should be solved under the homogeneous Neumann boundary conditions:

∂u

∂t
= % ∆u, u(x, t0) = v(x) (42)

where u =
{
u1, . . . , up−1

}
, ∆ denotes the vector-valued classical laplacian operator, i.e. ∆u =

{∆u1, . . . ,∆up−1} and v =
{
v1, . . . , vp−1

}
denotes the minimizer of the optimization problem (35).

Assume that the temporal domain is discretized into a uniform grid with the time stepsize ∆t.
Moreover, assume that the superscript n denotes the field variable at time level n, i.e. un := u(x, t =
n∆t). Similar to section 2.2, our solution algorithm to solve (5) can be expressed as follows:
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Algorithm 2. Two-step constrained gradient flow of vector-valued GL functional

Step 0. Initialization: given Ω, u0, ε, F(u), %, µmin, µmax, ∆t ∈ (0, 1], parameters related to the
spatial discretization and stopping criteria parameters nmax and δ > 0. If u0 /∈ A then u0 = PA[u0],
set n→ 0 and un = u0. Compute µ0 by the following equation:

µ0 = 1/‖PA
[
u0 −E′(u0)

]
− u0‖∞ (43)

Step 1. Iterations

1.1 Given un = {un1 , . . . , unp−1}, if n > 1 compute µn by the following equation:

µn = min{ µmax, max{ µ̂n, µmin}}, µ̂n =
‖un − un−1‖2〈

un − un−1, E′(un)−E′(un−1)
〉 (44)

1.2 Given un = {un1 , . . . , unp−1}, compute vn = {vn1 , . . . , vnp−1} by solving (39) under the zero-flux
boundary conditions for one time-step with the Euler explicit time integration, as follows:

vn = un + ∆t

[
PA

[
un − µ E′(un)

]
− un

]
(45)

1.3 Given vn = {vn1 , . . . , vnp−1}, compute un+1 = {un+1
1 , . . . , un+1

p−1} by solving (42) with the
zero-flux boundary conditions for one time step by the Euler implicit tim integration, as
follows:

un+1 = vn + ∆t % ∆un+1 (46)

1.4 Compute un+1
p by un+1

p = 2− p−
∑p−1
i=1 u

n+1
i .

Step 2. Stopping criteria: If n = nmax or
∑p−1
i=1 ‖u

n+1
i − uni ‖L2(Ω) 6 δ stop the iterations, else set

n→ n+ 1 and goto step 1.

Note that algorithm 2 directly inherits properties of algorithm 1 mentioned in section 2.2. They are
briefly mentioned below.

Proposition 3.1. When % > 0, step 1.3 and 1.4 of algorithm 2 lift the temporary solution vn from(
L2(Ω)

)p−1
to
(
H1(Ω)

)p
.

Proof. The proof is identical to the proof of proposition 2.7. �

Proposition 3.2. If u0 ∈
(
L2(Ω)

)p
and ∆t ∈ (0, 1] in algorithm 2 then un+1 ∈ A for n = 0, 1, . . . .

Proof. The proof is identical to the proof of proposition 2.8. The only remained job here is to show
that un+1 respects constraint 1− p 6

∑p−1
i=1 u

n+1
i 6 3− p or equivalently −1 6 un+1

p 6 1. Equation

(46) in algorithm 2 can be rewritten as follows:

un+1
i = vni + ζ∆un+1

i , i = 1, . . . .p− 1 (47)

where ζ = ∆t %. Summing over p − 1 equations in (47) and using identity up = 2 − p −
∑p−1
i=1 ui

results in:

un+1
p = unp + ζ∆un+1

p (48)

Considering −1 6 unp 6 1 and the properties of laplacian operator results in −1 6 un+1
p 6 1. �

In the following subsection an efficient algorithm is presented for the projection of trial points
onto A.
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3.1. Orthogonal projection onto A. The projection of trial point w ∈
(
L2(Ω)

)p−1
onto A can

be expressed as follows:

min
v∈A

1

2
‖v −w‖2(L2(Ω))p−1 (49)

Assuming A 6= ∅, because the objective functional is strictly convex and all constraints are linear in
in (49), it has a unique solution (cf. [1]). After the spatial discretization, (49) will be a quadratic
programming (QP) problem. There are many numerical methods to solve a general QP problem (cf.
[16, 61, 86]). However, their computational cost and memory usage increase rapidly with the problem
size (the problem size here denotes the dimension of infinite dimensional vector w field after the
space discretization). In [77], three efficient algorithms have been developed by the current author
to solve problems with structures similar to (49). According to the numerical results presented in
[77], the computational cost and memory usage of these algorithms scale linearly with the problem
size. Algorithm #1 of [77] will be adapted here to solve (49).

Lets to define the following sets:

A1 :=
{
v = {v1, . . . , vp−1} ∈

(
L2(Ω)

)p−1 | 1− p 6
p−1∑
i=1

vi 6 3− p
}

A2 :=
{
v = {v1, . . . , vp−1} ∈

(
L2(Ω)

)p−1 |
∫

Ω

vi dx = Λi|Ω|, i = 1, . . . , p− 1
}

A3 :=
{
v = {v1, . . . , vp−1} ∈

(
L2(Ω)

)p−1 | − 1 6 vi 6 1, i = 1, . . . , p− 1
}

Obviously, A = A1∩A2∩A3. By straightforward derivation, it is easy to shown that the optimization
problem corresponding to the projection onto A1, A2 and A3 are convex separable problems with
the following explicit solutions (cf. chapter 10 of [1] and chapter 8 of [16]):

PA1
[v] = {w1, . . . , wp−1}, wi = vi−

min
(
s(v) + p− 1, 0

)
p− 1

−
max

(
s(v) + p− 3, 0

)
p− 1

, i = 1, . . . , p−1

PA2 [v] = {w1, . . . , wp−1}, wi = vi+Λi−
1

|Ω|

∫
Ω

vi dx, i = 1, . . . , p−1

PA3
[v] = {w1, . . . , wp−1}, wi = max(−1, min(vi, 1)), i = 1, . . . , p−1

where s(v) =
∑p−1
j=1 vj . Using above indentities and alternating projection algorithm (cf. [15, 28]),

the projection of trial point v ∈
(
L2(Ω)

)p−1
onto A can be computed by the following algorithm:

Algorithm 3. Projection onto A

Step 0. Initialization: given Ω, A1, A2, A3, v, τ > 0, kmax. Set k → 0 and w0 = v.

Step 1. Iterations: wk+1 = PA3

[
PA2

[
PA1 [wk]

]]
, Set k → k + 1.

Step 2. Stopping criteria: If k = kmax or
∑p−1
i=1 ‖w

k+1
i − wki ‖L2(Ω) 6 τ stop the iterations and set

PA[v]→ wk+1, else set k → k + 1 and goto step 1.

Proposition 3.3. (Convergence theory of algorithms 3)Assuming A 6= ∅, algorithms 3 is well defined
and converges to the unique minimizer of (49)

Proof. The proof is directly followed from the convergence theory of the classical alternating pro-
jections algorithm. It is well documented in the literature, see for instance [15, 28, 77]. �
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4. Results and discussion

In this section we will evaluate the success and performance of algorithms 1 and 2 for the numerical
solution of problems (5) and (35). For this purpose, it is assumed that Ω is a square with edge length
equal to L, i.e., Ω = [0, L]2. The periodic boundary conditions is applied on ∂Ω. Moreover, Ω is
discretized into an m ×m uniform grid with grid size ∆x = L/m. The cell centered finite volume
method is used for the spatial discretization of the continuum model, i.e. all quantities are defined
at the centers of control volumes. The laplacian operator is discretized with the second order
central-difference approach, i.e., (∆u)ni,j = (uni,j+1 + uni+1,j − 4uni,j + uni−1,j + uni,j−1)/∆x2 where
uni,j := un(i∆x, j∆x). The complete MATLAB implementation of algorithms 1 and 2 and test cases
studied in this section are given in the supplementary material of this paper. Therefore, to save
the space, we avoid to discuss further details of the computational approach and refer interested
readers to supplementary material. It is worth mentioning that the presented algorithms can be
straightforwardly adapted when a pseudo spectral scheme (cf. [81]) like the fast fourier transform
is used for the spatial discretization of laplacian and Helmholtz operators. For this purpose, it is
sufficient to do the computations on the fourier space and whenever it is required to compute a
nonlinear term and/or to apply a nonlinear operator (like the projection step), to switch to the real
space and after performing the required procedure, to comeback to the fourier space.

The following symmetric double-well function, with wells located at u = −1 and u = 1 is consid-
ered in this section as the free energy density of the two-phase system with the uniform concentration
field u,

F (u) =
1

4
(u2 − 1)2 (50)

Similarly, the following p-well function is considered as the free energy density of the p-phase system
with the uniform concentration field u,

F(u) =

p∑
i=1

1

4
(u2
i − 1)2 (51)

Considering functions (50) and (51), problems (5) and (35) will be nonconvex. Therefore, upon
success, one expects that gradient descent algorithms 1 and 2 converge to a local minimum of the
original optimization problems (50) and (51).

To evaluate practical success and performance of the presented algorithms, we will consider the
solution of 26 test problems. The problems are defined such that in some cases the (approximate)
overall distribution phases corresponding to the global minimizers are a-priori known. In all cases
ε = 1, L = 50, n = 50, ∆t = 0.5, δ = 0, τ = 1.e− 15, µmin = 1.e− 30, µmax = 1.e + 30,
kmax = ∞, and the volume fraction of phases are assumed to be equal, i.e., Λi = 2/p − 1 for
i = 1, . . . , p 1. Considering the definition of F (u) and F(u) respectively according to (50) and (51),
the objective functional in our model problems approximately measures the total perimeter of inter-
phase boundaries, c.f. [3, 58, 59]2, the global minimizers of our test problems are equivalent to the
division of 2D space into equal partitions with least perimeters. To generate the initial distribution
of phases in the spatial domain (generation of u0 or u0), 5 × 5 squares of phases are randomly
distributed in the discretized spatial domain such that the initial phases distribution satisfies the
optimization constraints. Considering the original optimization problem in the present study is non-
convex, the final solutions of algorithms 1 and 2 depend on the initial conditions. Therefore, the
numerical result of every test problem can vary across multiple runs (consider the random generation
of phases distribution). Except, in cases where explicitly stated, we run our code with the same
initial conditions for a fixed value of p. However, to illustrate the impact of initial conditions on the
final solutions, we will report our results for the same test cases that just differ in initial conditions.

1We fixed some parameters here to reduce the number of experiments. However, interested readers are encouraged

to study the behaviors of algorithms numerically by changing other parameters, using the supplementary MATLAB

codes.
2More precisely, the objective functional Γ-converges to the total perimeter of inter-phase boundaries as ε→ 0.



MINIMIZATION OF THE VOLUME CONSTRAINED VECTOR-VALUED GINZBURG-LANDAU FUNCTIONAL 15

In the next subsection, we present numerical results of algorithm 1 and evaluate its practical
behavior according to our results. Thereafter, in subsection 4.3, the behavior of algorithm 2 will be
studied for three-phase systems throughout various numerical experiments. Finally, the algorithm 2
is evaluated numerically for the multiphase systems with more than three phases in the subsection
4.3.

4.1. Numerical results of algorithm 1 (two phase problems). Table 1 shows the details of
parameters related to the test problems, test cases #1-#12, used in this work to study the behavior
of algorithm 1. The column µ in this table refers to the method that is used to compute µ, i.e. BB

denotes the computation of µ by the Barzilai-Borwein method and a number denotes the application
of a constant value as µ. In test cases #1-#5, the same initial conditions are used and the parameter
% varies. In cases #6-#8, except the initial conditions, all parameters are similar to case #3, c.f.
figure 1. In cases #9-#12, except µ all parameters and the initial conditions are identical to cases
#3, #6, #7 and #8 respectively.

The evolution of solution with iterations for test cases #1-#5 is shown in figure 2. The final
values of the objective functional corresponding to these cases are shown in table 2. According to
these results, the final solution can be significantly changed by the variation of % such that different
branches of solution-space can possibly be explored by the variation of %. Moreover, % = 1.0 appears
to be an optimal choice in these cases. It is worth to mention that the global minimizer of this
problem is the separation of phases with the lamellar microstructure (cf. section 16.4 of [38]).
Figure 3 shows the final solutions corresponding to test cases #3 and #6-#12. Figure 4 shows the
variation of objective functional with iterations for test cases #3, #6, #9 and #10. The graphs are
plotted in log-log scale to illustrate he details of variations near the final solutions. To avoid the
singularity, the initial value of the objective functional (iteration equal to zero) is not included in the
plots. According to the plots, as it is expected, algorithm 1 does not behave monotonically; however,
it effectively reduces the objective functional after a sufficient number of iterations. Moreover, using
µ = 1 instead of computing µ by the Barzilai-Borwein approach leads to a more monotonic behavior
of the algorithm (according to our numerical results, µ = 1 is almost an optimal choice for this
problem). Nevertheless, the optimal value of µ is problem dependent and it is not easy to determine
µ a-priori. Considering table 2, the final value of the objective functional of the Barzilai-Borwein
approach is almost equal to that of µ = 1. Therefore, the application of the Barzilai-Borwein
approach is recommended according to our numerical results.

Table 1. Parameters corresponding to test cases #1-#12 in the present study.

ID of Test Case p % µ nmax ID of Test Case p % µ nmax

#1 2 0.25 BB 400 #7 2 1.0 BB 400

#2 2 0.5 BB 400 #8 2 1.0 BB 400

#3 2 1.0 BB 400 #9 2 1.0 1 400

#4 2 1.5 BB 400 #10 2 1.0 1 400

#5 2 2.0 BB 400 #11 2 1.0 1 400

#6 2 1.0 BB 400 #12 2 1.0 1 400

(a) #3 (b) #6 (c) #6 (d) #6

Figure 1. The initial conditions corresponding to test cases #3, #6, #7 and #8.
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(a) #1 at n = 100 (b) #1 at n = 200 (c) #1 at n = 300 (d) #1 at n = 400

(e) #2 n = 100 (f) #2 at n = 200 (g) #2 at n = 300 (h) #2 at n = 400

(i) #3 at n = 100 (j) #3 at n = 200 (k) #3 at n = 300 (l) #3 at n = 400

(m) #4 at n = 100 (n) #4 at n = 200 (o) #4 at n = 300 (p) #4 at n = 400

(q) #5 at n = 100 (r) #5 at n = 200 (s) #5 at n = 300 (t) #5 at n = 400

Figure 2. The evolution of solution with iterations for test cases #1-#5.

Table 2. Final values of objective functional for test cases #1-#12 in the present study.

ID of Test Case final value of E ID of Test Case final value of E

#1 138.9828 #7 134.7568

#2 138.3836 #8 157.7508
#3 109.6457 #9 109.3952

#4 111.6975 #10 140.0652
#5 111.6119 #11 134.6208
#6 140.1253 #12 157.5727
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(a) #3 at n = 400 (b) #6 at n = 400 (c) #7 at n = 400 (d) #8 at n = 400

(e) #9 at n = 400 (f) #10 at n = 400 (g)
#11 at n = 400

(h)
#12 at n = 400

Figure 3. The final solutions of test cases #3 and #6-#12.
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(d) #10

Figure 4. The objective functional vs. iteration for test cases #3, #6, #9 and #10.
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To illustrate the effect of regularization procedure, step 1.3 of algorithm 1, on the behavior of
algorithm 1, we run test case 3 without the regularization step, i.e. % = 0. The final solution and
the objective functional history of this experiment are shown in figure 5. Comparing these results
to that of figure 4-a illustrates that the regularization step of algorithm 1 significantly improves the
stability of algorithm 1. Comparing the final values of objective function, it is equal to 141.4675 in
this experiment, demonstrates the numerical performance of using regularization step in practice.
Furthermore, it appears that using the regularization step in algorithm 1 increases the chance of
exploring the global minimizer of the original problem.
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Figure 5. The results of running test case #3 without the regularization step
(% = 0): The final solution (left) and the objective functional history (right).

4.2. Numerical results of algorithm 2 for three-phase problem. According to our numerical
experiments, by executing the code with different randomly generated initial conditions, there exist
three topologically distinct morphologies as the stationary point of our three-phase model problem.
They are called diagonally stretched honeycomb, lamellar, and mixed morphologies here. The initial
conditions used in this subsection to generate these morphologies are shown in figure 6. To the best
of our knowledge there is no analytical and/or numerical result on the structure of global minimizer
of our three-phase model problem. Therefore, our quantitative results here possibly provides some
insights about the morphology of the global minimizer. To evaluate the behavior of algorithm 2 in
the case of three-phase problems, 10 test problems, called test cases #13-#22, are considered here.
Table 3 shows details of parameters related to test cases #13-#22. Except test cases #21 and #22,
the initial condition corresponding to the diagonally stretched honeycomb structure is used as the
initial condition in all of the numerical experiments in this section.

The evolution of solution with the iterations are shown in figure 7-8 for test cases #13-#22. The
corresponding final values of the objective functional are shown in table 4. Figure 9 shows the
variation of objective functional with iterations for test cases #15, #18, #19 and #20.

According to our numerical results in this subsection, the presented algorithm, while behaves
nonmonotonically, effectively reduces the objective functional and is successful in approaching to
the optimal solution. Comparing the final values of the objective functional corresponding to test
cases #15 and #18 demonstrates the computational performance of computing parameter µ with
the Barzilai-Borwein approach. The same comparison between results of test cases #15, #19 and
#20 illustrates the impact of the regularization step on the computational performance and the
stability of algorithm 2. Furthermore, it can be conjectured that the mixed microstructure (c.f.
figure 8 part (t)) is the global minimizer of the three-phase optimization problem considered in this
subsection. This morphology includes the horizontal layers of phase 1 that is separated by vertical
layers of phases 2 and 3, c.f. figure 10.
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Table 3. Parameters corresponding to test cases #13-#22 in the present study.

ID of Test Case p % µ nmax ID of Test Case p % µ nmax

#13 3 0.25 BB 600 #18 3 1.0 1 600

#14 3 0.5 BB 600 #19 3 0.0 BB 600

#15 3 1.0 BB 600 #20 3 0.0 1 600

#16 3 1.5 BB 600 #21 2 1.0 BB 600

#17 3 2.0 BB 600 #22 2 1.0 BB 600

Table 4. Final values of objective functional for test cases #13-#22 in the present study.

ID of Test Case final value of E ID of Test Case final value of E

#13 364.2513 #14 365.2136
#15 365.2654 #16 365.8793

#17 376.3762 #18 370.0546

#19 379.0403 #20 3191.1534 (unstable)
#21 390.9506 #22 332.2796

(a) (b) (c)

Figure 6. The initial conditions corresponding to three phase model problem in
the present study, they results in diagonally stretched honeycomb (a), lamellar (b)
and mixed (c) morphologies at the stationary points.

4.3. Numerical results of algorithm 2 for more than three phases. The computational
outcome of algorithm 2 for the model problem introduced in section 4 is presented in this subsection
for p = 4, 5 and 6. It is well known that when p = 4, the global minimizer is the periodic tessellation
of Ω with a regular honeycomb structure. Because it is not possible to cut a square sub-domain
that exactly includes 5 or 6 hexagons from an infinite regular honeycomb structure, it is not easy to
determine the global solution when p = 5 and 6. However, as our numerical results in this section
suggest, the periodic tessellation of domain with hexagonal-shaped sub-domains appears to be the
global solution of cases p = 5 and 6. Table 5 shows details of parameters related to test cases used in
this subsection. For p = 4, we run our code with two different randomly generated initial conditions.
In fact test cases #23 and #24 use the same set of parameters, but different initial conditions.

The evaluation of solution during the optimization cycles is shown in figures 11 and 12 for test
cases #23-#26. According to the plots, the results of test cases #23 and #24 are almost identical to
the expected global solution. The final values of objective functional for these cases are respectively
equal to 394.6009 and 395.4643. The final morphologies of test cases #25 and #26 are similarly the
partitioning of the domain with hexagonally-shaped sub-domains. Therefore, we conjecture that for
p > 4, the global solution of our model problem is the periodic tessellation of domain with hexagonal
sub-domains. It will be identical to the regular honeycomb tessellation in certain cases like p = 4
and 8 etc. The variation of objective functional with iterations is shown in figure 13 for test cases
#23-#26. According to the plots, the objective functional decreases monotonically by iterations
at early states of optimization, and exhibits non-monotonic behavior near the optimal solution. It
appears that the non-monotone stabilization of the optimization algorithm and the continuation on
parameter % can improve the behavior of algorithm 1 and 2 in practice.
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(a)
#13 at n = 100

(b)
#13 at n = 200

(c)
#13 at n = 400

(d)
#13 at n = 600

(e)

#14 at n = 100

(f) #14 at n = 200 (g)

#14 at n = 400

(h)

#14 at n = 600

(i) #15 at n = 100 (j) #15 at n = 200 (k)

#15 at n = 400

(l) #15 at n = 600

(m)
#16 at n = 100

(n)
#16 at n = 200

(o)
#16 at n = 400

(p)
#16 at n = 600

(q)

#17 at n = 100

(r) #17 at n = 200 (s) #17 at n = 400 (t) #17 at n = 600

Figure 7. The evolution of solution with iterations for test cases #13-#17.
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(a)
#18 at n = 100

(b)
#18 at n = 200

(c)
#18 at n = 400

(d)
#18 at n = 600

(e)

#19 at n = 100

(f) #19 at n = 200 (g)

#19 at n = 400

(h)

#19 at n = 600

(i) #20 at n = 100 (j) #20 at n = 200 (k)

#20 at n = 400

(l) #20 at n = 600

(m)
#21 at n = 100

(n)
#21 at n = 200

(o)
#21 at n = 400

(p)
#21 at n = 600

(q)

#22 at n = 100

(r) #22 at n = 200 (s) #22 at n = 400 (t) #22 at n = 600

Figure 8. The evolution of solution with iterations for test cases #18-#22.
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(a) #15
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(b) #18
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(c) #19
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(d) #20

Figure 9. The objective functional vs. iteration for test cases #3, #6, #9 and #10.

Figure 10. The conjectured global minimizer of three-phase model problem in the
present study (the periodic tessellation of the 2D space by three equal partitions
with least perimeters).
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Table 5. Parameters corresponding to test cases #23-#26 in the present study.

ID of Test Case p % µ nmax ID of Test Case p % µ nmax

#23 4 1.0 BB 1000 #25 5 1.0 BB 1000

#24 4 1.0 BB 1000 #26 6 1.0 BB 1000

(a) #23 at n = 0 (b) #23 at n = 100 (c) #23 at n = 200 (d) #23 at n = 300

(e) #23 at n = 400 (f) #23 at n = 600 (g) #23 at n = 800 (h) #23 at n = 1000

(i) #24 at n = 0 (j) #24 at n = 100 (k) #24 at n = 200 (l) #24 at n = 300

(m) #24 at n = 400 (n) #24 at n = 600 (o) #24 at n = 800 (p) #24 at n = 1000

Figure 11. The evolution of solution with iterations for test cases #23 and #24.
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(a) #25 at n = 0 (b) #25 at n = 100 (c) #25 at n = 200 (d) #25 at n = 300

(e) #25 at n = 400 (f) #25 at n = 600 (g) #25 at n = 800 (h) #25 at n = 1000

(i) #26 at n = 0 (j) #26 at n = 100 (k) #26 at n = 200 (l) #26 at n = 300

(m) #26 at n = 400 (n) #26 at n = 600 (o) #26 at n = 800 (p) #26 at n = 1000

Figure 12. The evolution of solution with iterations for test cases #25 and #26.
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(a) #23
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(b) #24
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(c) #25
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(d) #26

Figure 13. The objective functional vs. iteration for test cases #23-#26.

5. Conclusion

Two computational algorithms are developed in the present study to minimize the volume con-
strained Ginzburg-Landau Functional and its vector-valued version. These algorithms are based on
the regularization of the objective functional with the Tikhonov regularization approach and per-
forming the optimization iteratively using the regularized objective functional. Every iteration of the
optimization procedure includes two steps. In the first step, the non-regularized volume constrained
Ginzburg-Landau functional is minimized by the constrained steepest descent approach. To man-
age the set of constraints, the scaled projected gradient approach is included in the first step. The
corresponding theory of this approach was discussed in details. The scaling factor of the projected
gradient method is computed based on the Barzilai-Borwein approach that exhibits the spectral
property without using second order derivative information. The second step of every optimization
iteration regularizes the solution such that it enjoys the regularity of H1 function space, while it
respects to all corresponding constraints. The performance and success of the presented algorithms
are studied throughout several numerical experiments. According to our numerical results, while no
globalization strategy is used in the present work, the algorithms converged to approximate local
minimums of the objective functionals to a good accuracy. Furthermore, numerical results clearly
demonstrate the benefits of using the Barzilai-Borwein method and the developed regularization
strategy. The presented algorithms can be easily extended to solve alternative problems with the
similar set of constraints such as the conservative dynamics of vector-valued Swift-Hohenberg func-
tional, called the multi-phase-field crystal equation. The nonmonotonic stabilization of the presented
algorithms and the development of an appropriate continuation algorithm to dynamically change
the regularization parameter are suggested as the scope of the future works.
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