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Abstract. This paper shows that the optimal subgradient algorithm, OSGA, proposed in [59]
can be used for solving structured large-scale convex constrained optimization problems. Only first-
order information is required, and the optimal complexity bounds for both smooth and nonsmooth
problems are attained. More specifically, we consider two classes of problems: (i) a convex objective
with a simple closed convex domain, where the orthogonal projection on this feasible domain is
efficiently available; (ii) a convex objective with a simple convex functional constraint. If we equip
OSGA with an appropriate prox-function, the OSGA subproblem can be solved either in a closed
form or by a simple iterative scheme, which is especially important for large-scale problems. We
report numerical results for some applications to show the efficiency of the proposed scheme. A
software package implementing OSGA for above domains is available.
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Convex optimization has been shown to provide efficient algorithms for computing
reliable solutions in a broad range of applications. Many applications arising in applied
sciences and engineering such as signal and image processing, machine learning, statis-
tics, and general inverse problems can be addressed by a convex optimization problem
involving high-dimensional data. In practice, solving a nonsmooth convex problem is
usually more difficult and costly than a smooth one. More precisely, for a prescribed
accuracy parameter ε, the optimal complexity to achieve an ε-solution of nonsmooth
Lipschitz continuous problems is O(ε−2), the superior complexity O(ε−1/2) for smooth
problems with Lipschitz continuous gradient, see [52, 53].

Thanks to the low memory requirement and simple structure, first-order meth-
ods have received much attention during the past few decades. Indeed, they deal
successfully with large-scale problems. In general, convex optimization problems can
be solved by gradient-type algorithms [3, 21, 22, 38], conjugate gradient methods
[41, 45, 46] and spectral gradient methods [12, 23, 63] for smooth objectives and by
subgradient-type methods [27, 51, 57], proximal gradient methods [62, 32], smoothing
techniques [15, 24, 34, 55], bundle-type algorithms [48, 49], and primal-dual first-
order methods [25, 26, 28] for nonsmooth objectives. Moreover, both classes can be
addressed by (zero-order) coordinate descent methods and derivative-free methods.
The current paper only addresses first-order methods and assumes that first-order
black-box information – function values and subgradients – of the objective function
are available.

Historically, gradient descent and subgradient methods were the first numerical
schemes proposed to solve optimization problems with smooth and nonsmooth convex
objective functions, respectively. In practice, they are too slow, especially for badly
scaled problems. This can be addressed by their worst-case complexity bounds to
reach an ε-solution, while the gradient descent method achieve the complexity of the
order O(ε−1) which is not optimal for smooth problems, the subgradient methods at-
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tain the worst-case complexity of the order O(ε−2). In 1983, Nemirovski & Yudin
in [52] derived optimal worst-case complexity bounds of first-order methods to achieve
an ε-solution for several class of problems such as Lipschitz continuous nonsmooth
problems and smooth problems with Lipschitz continuous gradient. If an algorithm
attains the optimal worst-case complexity bound for a class of problems, it is called
optimal. Optimal first-order methods dating back to Nesterov [54] in 1983. This
optimal first-order method is interesting both theoretically and computationally, at-
tracting many researchers to work in the development of such schemes, for example
Auslander & Teboulle [9], Beck & Teboulle [16], Devolder et al. [33], Gon-
zaga et al. [39, 40], Lan [49], Lan et al. [50], Nesterov [55, 56, 58], Neumaier
[59] and Tseng [65]. Computational comparisons for composite functions show that
optimal Nesterov-type first-order methods are substantially superior to the gradient
descent and subgradient methods, see, for example, Ahookhosh [1] and Becker et
al. [18].

Content. In this paper we consider structured convex constrained optimization
problems frequently observed in applications and develop OSGA to efficiently solve
such problems. Two clasess of convex domains are considered, namely, simple convex
domains such that the orthogonal projection is cheaply feasible, and sublevel set of a
convex function referred as functional domain. For problems with a simple domain,
we first introduce an appropriate prox-function and then show that the solution of
OSGA’s subproblem is obtained by a projection on the domain followed by solving a
one-dimensional nonlinear equation. It is shown that if explicit formula for projection
is available, the nonlinear equation can be solved in a closed form in many interesting
cases. We also establish the optimality condition for functional domain and show for
some simple functions that results to in a closed form solution. Finally, we report
some numerical results for applications to show the efficiency OSGA in comparison
with some state-of-the-art algorithms.

The remainder of this paper is organized as follows. In the next section, we review
the basic idea of OSGA. Section 3 considers the structured convex constrained min-
imization and how to solve the associated OSGA subproblem. We report numerical
results in Section 4 and our conclusions are derived in Section 5.

Notation and preliminaries. Let V be a real finite-demensional vector space
endowed with the norm ‖ · ‖, and V∗ denotes the dual space of all linear functional
on V where the bilinear pairing 〈g, x〉 denotes the value of the functional g ∈ V∗ at
x ∈ V . If V = R

n, then

‖x‖2 :=

(
n∑

i=1

|xi|2
)1/2

.

If x ∈ R
m×n, then the Schatten ∞-norm is ‖σ(x)‖∞ where σ : Rm×n → R

min{m,n}

is the function that takes a matrix x ∈ R
m×n and returns a vector of singular values

in nonincreasing order. If x is a positive definite matrix, we denotes it by x < 0. We
also denote by x =

∑n
i=1 λiuiu

T
i and x =

∑n
i=1 σiuiv

T
i the eigenvalue decomposition

and the singular value decomposition of x. For a function f : V → R = R ∪ {±∞},
we denote by

domf := {x ∈ V | f(x) < +∞}
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its effective domain and call f proper if domf 6= ∅ and f(x) > −∞ for all x ∈ V .
The vector g ∈ V∗ is called a subgradient of f at x if f(x) ∈ R and

f(y) ≥ f(x) + 〈g, y − x〉 for all y ∈ V .
The set ∂f(x) of all subgradients is called the subdifferential of f at x.

We call a nonempty, closed, and convex subset C of V a simple convex domain
if the orthogonal projection

(0.1) PC(y) := argmin
x∈C

1

2
‖x− y‖2

of y to C can be found efficiently for every y ∈ V . Note that PC(y) is unique since
1
2‖x− y‖2 is strongly convex. Computing the orthogonal projection is a well-studied
topic on convex optimization, and the projection operator is available for many do-
mains C either in a closed form or by a simple iterative scheme. Table 1 gives some
practically interesting convex domains, associated projection operators, and references
for the formulas or iterative schemes.

Table 1: List of some available projection operators for C = {x ∈ V | c(x)}

defining constraint c(x) Projection operator Ref.

Ax = b u = y − A†(Ay − b) [62]

〈a, x〉 = b u = y − (〈a, y〉 − b)/(‖a‖22) a [13]

〈a, x〉 ≤ b u = y − (〈a, y〉 − b)+/(‖a‖22) a [13]

|〈a, x〉| ≤ b u =











y if |〈a, y〉| ≤ b

y + (b− 〈a, y〉)/(‖a‖2
2
) a if 〈a, y〉 > b

y + (−b− 〈a, y〉)/(‖a‖22) a if 〈a, y〉 < −b

[13, 14]

b ≤ Ax ≤ b

u = x−
∑N

i=1
λi(x)/(‖Ai:‖22)Ai:,

λi(x) :=











0 if bi ≤ 〈Ai:, x〉 ≤ bi,

〈Ai:, x〉 − bi if 〈Ai:, x〉 > bi,

〈Ai:, x〉 − bi if xi > 〈Ai:, x〉.

[13]

x ∈ [x, x] u = sup{x, inf{y, x}} [13]

x ≥ 0 u = (y)+ := max(y, 0) [62]

‖x‖1 ≤ ξ iterative scheme [36, 62]

‖x‖2 ≤ ξ u =

{

ξy/‖y‖2 if ‖y‖2 > ξ

y if ‖y‖2 ≤ ξ
[13]

‖x‖∞ ≤ ξ u = sup{−ξI, inf{y, ξI}} [62]

{(x, t) | ‖x‖2 ≤ t} u =











0 if ‖y‖2 ≤ −t

(y, t) if ‖y‖2 ≤ t

1/2(1 + t/‖y‖2)(y, ‖y‖2) if ‖y‖2 ≥ |t|

[13]

Exponential cone iterative scheme [62]

Epigraphs iterative scheme [13]

Sublevel sets iterative scheme [13]

Simplex iterative scheme [62]

x < 0, x =
∑n

i=1
λiuiuT

i u =
∑n

i=1
(λi)+uiuT

i [62]

x < 0, tr(x) = 1 iterative scheme [62]

‖σ(x)‖∞ ≤ 1, x =
∑n

i=1
σiuiv

T
i u =

∑n
i=1

max(λi, 1)uiu
T
i [62]
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1. A review of OSGA. In what follows we briefly review the main idea of
optimal subgradient algorithm proposed by Neumaier in [59]. To this end, we first
consider the convex constrained minimization problem

(1.1)
min f(x)
s.t. x ∈ C,

where f : C → R is a convex function defined on a nonempty, closed and convex
subset C of V . The main objective is to find a solution u ∈ C by using the first-order
information, i.e., function values and subgradients.

OSGA (see Algorithm 1) is an optimal subgradient algorithm for problem (1.1)
that constructs a sequence of iterations whose related function values converge to
the minimum with the optimal complexity. Moreover, OSGA requires no information
regarding global parameters such as Lipschitz constants of function values and gradi-
ents. The primary objective is to monotonically reduce bounds on the error f(xb)− f̂

of function values, where f̂ is the minimum and xb is the best known point.
OSGA considers the linear relaxations

(1.2) f(z) ≥ γ + 〈h, z〉 for all z ∈ C,

of f at z, where γ ∈ R and h ∈ V∗, and a continuously differentiable prox-function
Q : C → R satisfying

(1.3) Q0 := inf
z∈C

Q(z) > 0

and

(1.4) Q(z) ≥ Q(x) + 〈gQ(x), z − x〉+ σ

2
‖z − x‖2 for all x, z ∈ C,

where σ = 1, gQ(x) denotes the gradient of Q at x ∈ C and ‖ · ‖ is a norm defined on
V . OSGA solves a sequence of minimization problems of the form

(1.5)
sup Eγ,h(x)
s.t. x ∈ C,

where it is known that the supremum is positive. The function Eγ,h : C → R is
defined by

(1.6) Eγ,h(x) := −
γ + 〈h, x〉

Q(x)
.

If u = U(γ, h) ∈ C is the solution of this problem, then it is assumed that e = E(γ, h)
and u = U(γ, h) are readily computable.

In [59], it is shown that OSGA attains the following bound on function values

0 ≤ f(xb)− f̂ ≤ ηQ(x̂).

Hence, by decreasing the error factor η, the convergence to an ε-minimizer xb is
guaranteed by

0 ≤ f(xb)− f̂ ≤ ε,
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for the accuracy tolerance ε > 0. In [59], it is shown that the number of iterations to
achieve the optimizer is in the order O

(
ε−1/2

)
for smooth f with Lipschitz continuous

gradients and in the order O
(
ε−2
)
for Lipschitz continuous nonsmooth f , which is

optimal in both cases, cf. Nemirovsky & Yudin [52] and Nesterov [53]. The
algorithm does not need to know about the global Lipschitz parameters and has the
low memory requirement. Hence if the subproblem (1.5) can be solved efficiently,
OSGA is appropriate for solving large-scale problems. Numerical results reported
by Ahookhosh in [1] and Ahookhosh & Neumaier in [4, 5], for unconstrained
problems, and Ahookhosh & Neumaier in [6, 7], for constrained problems, show
the promising behavior of OSGA for practical problems. In the next section we show
that by selecting a suitable prox-function, OSGA’s subproblem (1.5) can be solved
efficiently for structured convex constrained problems.

Algorithm 1: OSGA (optimal subgradient algorithm)

Input: δ, αmax ∈ ]0, 1[, 0 < κ′ ≤ κ; local parameters: x0, µ ≥ 0, ftarget;
Output: xb, fxb

;
begin

choose an initial best point xb;
compute fxb

and gxb
;

if fxb
≤ ftarget then

stop;
else

h = gxb
− µgQ(xb); γ = fxb

− µQ(xb)− 〈h, xb〉;
γb = γ − fxb

; u = U(γb, h); η = E(γb, h)− µ;

end
α← αmax;
while stopping criteria do not hold do

x = xb + α(u − xb); compute fx and gx;

g = gx − µgQ(x); h = h+ α(g − h);
γ = γ + α(fx − µQ(x)− 〈g, x〉 − γ);
x′
b = argminz∈{xb,x}

f(z, vz); fx′

b
= min{fxb

, fx};
γ′
b = γ − fx′

b
; u′ = U(γ′

b, h);

x′ = xb + α(u′ − xb); compute fx′ ;
choose xb in such a way that fxb

≤ min{fx′

b
, fx′};

γb = γ − fxb
; u = U(γb, h); η = E(γb, h)− µ; xb = xb; fxb

= fxb
;

if fxb
≤ ftarget then

stop;
else

update the parameters α, h, γ, η and u using UPS;
end

end

end

As discussed in [59], OSGA uses the following scheme for updating the given pa-
rameters α, h, γ, η and u:
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Algorithm 2: PUS (parameters updating scheme)

Input: δ, αmax ∈ ]0, 1[, 0 < κ′ ≤ κ, α, η, h̄, γ̄, η̄, ū;
Output: α, h, γ, η, u;
begin

R← (η − η)/(δαη);
if R < 1 then

h← h;
else

α← min(αeκ
′(R−1), αmax);

end
α← α;
if η < η then

h← h; γ ← γ; η ← η; u← u;
end

end

2. Structured convex constrained problems in simple domains. In this
paper we consider the convex constrained optimization problem

(2.1)
min f(Ax)
s.t. x ∈ C,

where f : C → R is convex and lower semicontinuous, A : Rn → R
m is a linear

operator, and C is a simple convex domain. We call problem (2.1) a simple do-
main problem. This problem appears in many applications such as signal and image
processing, machine learning, statistics, and inverse problem.

Example. 2.1. (Image restoration) The process of reconstructing or esti-
mating a true image from a degraded observation is known as the image restoration,
also called deblurring or deconvolution. Image restoration is addressed by solving a
constraint satisfaction problem of the form

Ax = b, x ∈ C,

where C a convex domain C that is commonly a box or the nonnegativity constraint.
This is an ill-posed problem, see Neumaier [60], and normally handled by the regu-
larized least-squares problem

(2.2)
min 1

2‖Ax− b‖22 + λϕ(x)
s.t. x ∈ C

or the regularized l1 problem

(2.3)
min ‖Ax− b‖1 + λϕ(x)
s.t. x ∈ C,

where ϕ : C → R is a convex regularization function such as ‖ · ‖22, ‖ · ‖1, ‖ · ‖ITV ,
and ‖ · ‖ATV . The regularizers ‖ · ‖ITV and ‖ · ‖ATV are respectively called isotropic
and anisotropic total variation, see, for example, [29], where they are defined by

‖x‖ITV =
∑m−1

i

∑n−1
j

√
(xi+1,j − xi,j)2 + (xi,j+1 − xi,j)2

+
∑m−1

i |Xi+1,n −Xxi,n|+
∑n−1

i |xm,j+1 − xm,j |
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and

‖x‖ATV =
∑m−1

i

∑n−1
j {|xi+1,j − xi,j |+ |xi,j+1 − xi,j |}

+
∑m−1

i |xi+1,n − xi,n|+
∑n−1

i |xm,j+1 − xm,j |,

for x ∈ R
m×n.

Example. 2.2. (Basis pursuit problem) Let A : R
n → R

m be a linear
operator with m < n and y ∈ R

m. The basis pursuit problem is the constrained
minimization problem

(2.4)
min ‖x‖1
s.t. Ax = y,

which determines an l1-minimal solution x̂ of the undetermined linear system Ax = y.
This problem appears in many applications such signal and image processing and
compressed sensing, see [19, 20, 31, 35, 67, 68, 69] and references therein.

According to the features of objective functions, (2.2) can be solved by Nesterov-
type optimal methods, however, (2.3) and (2.4) cannot be solved by Nesterov-type
optimal methods. Since OSGA only needs first-order information, it can deal with all
of these problems without considering the structure of problems. In the remainder of
this section, we establish how OSGA can be used to efficiently solve the problem (2.1).
Since the underlying problem (2.1) is a special case of the problem (1.1) considered in
[59], the complexity of OSGA remains valid for both smooth and nonsmooth problems.

The quadratic function

(2.5) Q(z) :=
1

2
‖z‖22 +Q0,

is a prox-function, see e.g. [1]. We now show that the solution of OSGA’s subproblem
(1.5) can be found either in a closed form or by a simple iterative scheme. In particular,
we address some convex domains that a closed form solution for associated OSGA’s
subproblem (1.5) can be found.

The next result shows that the solution of the auxiliary subproblem (1.5) is given
by the orthogonal projection (0.1) of y := e−1h on the domain C followed by solving
a one-dimensional nonlinear equation to determine e.

Theorem 2.3. Let u be a minimizer of (1.5) and also let e = Eγ,h(u) > 0. Then

u = û(e) := PC(y), y := −e−1h,

where, e is a solution of the univariate equation

ϕ(e) = 0

with

(2.6) ϕ(e) := e

(
1

2
‖û(e)‖22 +Q0

)
+ γ + 〈h, û(e)〉.

Proof. From Proposition 5.1 in [59], at the minimizer u, we obtain

(2.7) eQ(u) = −γ − 〈h, u〉

and

(2.8) 〈eu+ h, z − u〉 ≥ 0 for all z ∈ C.
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By setting z = u in this variational inequality, it follows that u is a solution of the
minimization problem

inf
z∈C

〈eu+ h, z − u〉.

The first-order optimality condition for this problem is

(2.9) 0 ∈ eu+ h+NC(u),

where

NC(u) := {p ∈ V | ∀y ∈ C, 〈p, u− y〉 ≥ 0}

denotes the normal cone to C at u. Since e > 0, u satisfies

u = argmin
z∈C

1

2
‖ez + h‖22 = argmin

z∈C

1

2
‖z − y‖22 = PC(y) = û(e),

where y = −e−1h giving the result.
Theorem 2.3 gives a way to compute a solution of OSGA’s subproblem (1.5)

involving a projection on the domain C and solving the one-dimensional nonlinear
equation. This equation can be solved exactly for some projection operators, see
Table 2. However, one can solve this nonlinear equation approximately using zero
finding schemes, see e.g. Chapter 5 of [61]. We apply the results of Theorem 2.3 in
the next scheme to solve OSGA’s subproblem (1.5):

Algorithm 3: OSS (OSGA’s subproblem solver)

Input: Q0, γ, h. a program for evaluating ϕ(e) defined in (2.6);
Output: u, e;
begin

solve the nonlinear equation ϕ(e) = 0 either in a closed form or
approximately by a root finding solver;
set u = û(e).

end

To implement Algorithm 3 (OSS), we first need to solve the projection problem
(0.1) effectively, see Table 1. If one solves the equation ϕ(e) = 0 approximately, and
an initial interval [a, b] is available such that ϕ(a)ϕ(b) < 0, then a solution can be
computed to ε-accuracy using the bisection scheme in O(log2((b − a)/ε)) iterations,
see, for example, [61]. However, it is preferable to use a more sophisticated zero
finder like the secant bisection scheme (Algorithm 5.2.6, [61]). If an interval [a, b]
with sign change is available1, one can also use MATLAB’s fzero function combining
the bisection scheme, the inverse quadratic interpolation, and the secant method.

In the following we investigate special domains C, where the nonlinear equation
ϕ(e) = 0 can be solved explicitly, see Table 2.

Proposition 2.1. If C = {x ∈ V | Ax = b} is an affine set, then the subproblem
(1.5) is solved by u = PC(−e−1h), where

(2.10) PC(y) = y −A†(Ay − b).

1 Without a sign change, fzero is unreliable; it fails on the simple quadratic x2 − 0.0001 = 0
with starting point 0.2.
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Table 2: List of domains C where ϕ(e) = 0 can be solved explicitly

defining constraint c(x) solution

Ax = b Proposition 2.1

〈a, x〉 = b Corollary 2.2

〈a, x〉 ≤ b Proposition 2.3

x ≥ 0 Proposition 2.4

‖x‖2 ≤ ξ Proposition 2.5

and

(2.11) e =
−β2 +

√
β2
2 − 4β1β3

2β1
,

with

(2.12) β1 :=
1

2
‖A†b‖22+Q0, β2 := 〈A†(Ah), A†b〉+γ, β3 :=

1

2
‖A†(Ah)‖22+

1

2
‖h‖22.

Proof. The projection operator on C is given by (2.10). This and y = −e−1h give

PC(−e−1h) = −e−1(A†(Ah+ eb)− h).

This, together with (2.7), yields

eQ(u) + γ + 〈h, u〉 = e

(
1

2
(‖PC(−e−1h)‖22) +Q0

)
+ γ + 〈h, PC(−e−1h)〉

=
1

2
‖A†(Ah+ eb)‖22 +

1

2
‖h‖22 − 〈A†(Ah+ eb), h〉+Q0e

2

+ γe+ 〈A†(Ah+ eb)− h, h〉

=

(
1

2
‖A†b‖22 +Q0

)
e2 + (〈A†(Ah), A†b〉+ γ) e

+
1

2
‖A†(Ah)‖22 +

1

2
‖h‖22

= β1e
2 + β2e+ β3 = 0,

where β1, β2, and β3 are defined in (2.12). Since the subproblem (1.5) is the maxi-
mization, the bigger root of this equation is selected, which is given by (2.11).

Corollary 2.2. If C = {x ∈ V | aTx = b} is a hyperplane, then the subproblem
(1.5) is solved by u = PC(−e−1h), where

(2.13) PC(y) = y −
( 〈a, y〉 − b

‖a‖22

)
a,

and e is given by (2.11) with

(2.14) β1 :=
b

2‖a‖22
+Q0, β2 :=

b〈a, h〉
‖a‖22

+ γ, β3 :=
1

2

〈a, h〉2
‖a‖22

− 1

2
‖h‖22.
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Proof. Since the hyperplane C = {x ∈ V | aTx = b} is an affine set, this is a
special case of Proposition 2.1.

Proposition 2.3. If C = {x ∈ V | 〈a, x〉 ≤ b} is a halfspace, then the
subproblem (1.5) is solved by u = PC(−e−1h), where

(2.15) PC(y) = y − (〈a, y〉 − b)+
‖a‖22

a

and e is given by (2.11) with

(2.16) β1 := Q0, β2 := γ, β3 := − 1
2‖h‖22,

say e1, and with β1, β2, and β3 is given in (2.14), say e2. If 〈a, h〉 ≥ e−1
1 b and

〈a, h〉 ≥ e−1
2 b, then e = e1. If 〈a, h〉 ≤ e−1

1 b and 〈a, h〉 < e−1
2 b, then e = e2. If

〈a, h〉 ≥ e−1
1 b and 〈a, h〉 < e−1

2 b, then e = max{e1, e2}.
Proof. The projection operator on C is given by (2.15). This gives

(2.17) PC(−e−1h) = −e−1

(
h+

(〈a, h〉+ eb)−
‖a‖22

a

)
.

If 〈a, h〉 ≥ −eb, we obtain

PC(−e−1h) = −e−1h,

leading to

eQ(PC(−e−1h)) + γ + 〈h, PC(−e−1h)〉 = 1

2
e−1‖h‖22 +Q0e+ γ − e−1‖h‖22

= Q0e
2 + γe− 1

2
‖h‖22 = β1e

2 + β2e+ β3 = 0,

where β1 := Q0, β2 := γ, and β3 := − 1
2‖h‖22. This identity leads to a solution of

the form (2.11), say e1. If 〈a, h〉 < −eb, (2.13) is valid and e is computed by (2.11)
where β1, β2, and β3 is defined in (2.14), say e2. After computing e1 and e2, we
check whether the inequalities 〈a, h〉 ≥ −e1b and 〈a, h〉 < −e2b are satisfied. Since
the subproblem (1.5) has a solution, at least one of the conditions has to satisfied. If
one of them is satisfied, the corresponding e and (2.17) give the solution. If both of
them hold, we consider the solution with bigger e.

Proposition 2.4. If C = {x ∈ R
n | xi ≥ 0 i = 1, · · · , n} is the nonnegative

orthant, then the subproblem (1.5) is solved by u = PC(−e−1h), where

(2.18) PC(y) = (y)+

and e is given by (2.11) with

(2.19) β1 := Q0, β2 := γ, β3 :=
1

2
‖(h)−‖22 − 〈h, (h)−〉.

Proof. The projection operator on C is given by (2.18) leading to

PC(−e−1h) = −e−1(h)−.
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This and (2.7) imply

eQ(PC(−e−1h)) + γ + 〈h, PC(−e−1h)〉 = 1

2
e−1‖(h)−‖22 +Q0e+ γ − e−1〈h, (h)−〉

= Q0e
2 + γe+

1

2
‖(h)−‖22 − 〈h, (h)−〉

= β1e
2 + β2e+ β3 = 0,

where β1, β2, and β3 are defined in (2.19), giving the result.
Proposition 2.5. Let C = {x ∈ R

n | ‖x‖2 ≤ ξ} be the Euclidean ball. Then

(2.20) PC(y) =

{
ξy/‖y‖2 ‖y‖2 > ξ,
y ‖y‖2 ≤ ξ,

If ‖e−1h‖2 ≤ ξ where e is given by (2.11) with

(2.21) β1 := Q0, β2 := γ, β3 := −1

2
‖h‖22,

then u = −e−1h; otherwise, the solution of OSGA’s subproblem (1.5) is given by

u = − ξ

‖h‖2
h, e = −2(γ + ξ‖h‖2)

ξ2 + 2Q0
.

Proof. The projection operator on C is given by (2.20), leading to

PC(−e−1h) =

{
−ξh/‖h‖2 ‖h‖2 > eξ,
−e−1h ‖h‖2 ≤ eξ.

We first assume that ‖h‖2 ≤ eξ implying PC(−e−1h) = −e−1h. Substituting this
into (2.7) yields

eQ(PC(−e−1h)) + γ + 〈h, PC(−e−1h)〉 = 1

2
e−1‖h‖22 +Q0e+ γ − e−1‖h‖22

= Q0e
2 + γe− 1

2
‖h‖22 = β1e

2 + β2e+ β3 = 0,

where β1 := Q0, β2 := γ, and β3 := − 1
2‖h‖22. Hence e is given by (2.11). If this

e satisfies ‖h‖2 ≤ eξ, then u = −e−1h. Otherwise, we assume that ‖h‖2 > eξ.
Substituting PC(−e−1h) = −ξh/‖h‖2 into (2.7) yields

e

(
1

2
ξ2 +Q0

)
+ γ − ξ‖h‖2 = 0,

implying

e = −2(γ + ξ‖h‖2)
ξ2 + 2Q0

and u = −ξh/‖h‖2. This completes the proof.
To solve bound-constrained problems with OSGA, we developed and algorithm

that can find the global solution of the subproblem (1.5) by solving a sequence of one-
dimensional rational optimization problems, see Algorithm 3 in [6]. Notice that the
constraint C := {x ∈ V | ‖x‖∞ ≤ ξ} is a special case of bound-constrained problem
with x = −ξ1 and x = ξ1 where 1 is a n-dimensional vector with all elements equal
to unity.
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3. Solving structured problems with a functional constraint. In this sub-
section we consider the structured convex constrained problem

(3.1)
min f(Ax)
s.t. φ(x) ≤ ξ,

where φ : C → R is a simple smooth or nonsmooth, real-valued, and convex loss
function, and ξ is a real constant. We call the problem (3.1) a functional constraint
problem. While it the special case of (2.1) with

C := {x ∈ V | φ(x) ≤ ξ},

one can solve OSGA’s subproblem (1.5) directly by using the KKT optimality condi-
tions, especially when no efficient method for finding the projection on C is known.
Indeed, if a nonsmooth problem can be reformulated in the form (2.1) with a smooth
f and a nonsmooth φ, then OSGA can solve this nonsmooth problem with the com-
plexity of the order O(ε−1/2), which is optimal for smooth problems.

Example. 3.1. (Linear inverse problem) Let A : R
n → R

m be an ill-
conditioned or singular linear operator and y ∈ R

m be a vector of observations. The
linear inverse problem is the quest of finding x ∈ R

n such that

(3.2) y = Ax+ ν,

with unknown but small additive noise ν ∈ R
m. The problem is solvable if one knows

additional qualitative information about x. This qualitative information is encoded in
a constraint on x, under which the Euclidean norm of ν is minimized. Constrained
optimization problems resulting from two typical qualitative constraints are

(3.3)
min 1

2‖y −Ax‖22
s.t. ‖x‖2 ≤ ξ,

(3.4)
min 1

2‖y −Ax‖22
s.t. ‖x‖1,2 ≤ ξ,

in which ξ is a nonnegative real constant. This problem often occurs in applied sciences
and engineering, see [44, 64].

In the reminder of this section we assume that the functional constraint satisfies
the Cottle constraint qualification [10]
(H1) For all x ∈ C, either φ(x) < 0 or 0 6∈ ∂φ(x).
We also need the following result.

Proposition 3.1. (see, e.g., [5]) Let φ : V → R, φ(x) = ‖x‖. Then the
subdifferential of φ is

∂φ(x) =

{
{g | ‖g‖∗ ≤ 1} if x = 0,
{g | ‖g‖∗ = 1, 〈g, x〉 = ‖x‖} if x 6= 0.

Moreover, if ‖ · ‖ is self-dual, then

∂φ(x) =

{
{g | ‖g‖∗ ≤ 1} if x = 0,
x/‖x‖ if x 6= 0.
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The next result gives the optimality conditions for solving the problem (2.1).
Theorem 3.2. Let (H1) satisfies for the problem (3.1). Then, for a real constant

ξ, the solution u of OSGA’s subproblem

min
−γ − 〈h, x〉

Q(x)
s.t. φ(x) ≤ ξ,

satisfies either

(3.5) u = −e−1h, µ = 0, φ(u) < ξ

or

(3.6)
1

µ

−eu− h

Q(u)
∈ ∂φ(u), µ > 0, φ(u) = ξ,

where e := −(γ + 〈h, u〉)/Q(u).
Proof. Let’s define the function

Eγ,h : C → R, Eγ,h(x) := −
γ + 〈h, x〉

Q(x)
.

Since this function is differentiable, by differentiating both sides of the equality
Eγ,h(x)Q(x) = −γ − 〈h, x〉 with respect to x, we obtain

(3.7) ∂Eγ,h(x) =

{−Eγ,h(x)x − h

Q(x)

}
.

In view of the KKT optimality conditions for inequality constrained nonsmooth prob-
lems, see [10], we have the optimality condition

(3.8)





0 ∈ ∂Eγ,h(u) + µ∂φ(u),
φ(u) ≤ ξ,
µ ≥ 0,
µ(φ(u)− ξ) = 0,

for (2.1). Now, by substituting (3.7) into (3.8), setting e := −(γ + 〈h, u〉)/Q(u), and
distinguishing between µ = 0 and µ > 0, we obtain either (3.5) or (3.6).

Theorem 3.2 gives the optimality conditions for general function φ, however, in
view of Theorem 2.3, it is especially useful when the projection in C = {x | φ(x) ≤ ξ}
is not efficiently available. In the remainder of this subsection, we derive the solution
of OSGA’s subproblem (1.5) for some φ such as ‖ · ‖2 and ‖ · ‖1,2 that appear in
many applications. We already solve OSGA’s subproblem (1.5) with the constraint
C = {x | ‖x‖2 ≤ ξ} in Proposition 2.5, but to show how to apply Theorem 3.2 we
study it in the next result.

Proposition. 3.3. Let V be a real finite-dimensional Hilbert space with the
induced norm φ(·) = ‖ · ‖2. Then OSGA’s subproblem (1.5) is solved by

u = −e−1h, e =
−β2 +

√
β2
2 − 4β1β3

−2β1
, µ = 0,

where

β1 := Q0, β2 := γ, β3 :=
1

2
‖h‖22,
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if φ(u) < ξ; Otherwise it is solved by

u =
ξ

‖h‖2
h, e = −2‖h‖2(γ‖h‖2 + ξ‖h‖2)

ξ2‖h‖22 + 2Q0‖h‖22
., µ =

2(‖h‖2 + eξ)‖h‖22
‖h‖22 + 2Q0‖h‖22

.

Proof. Since ‖ · ‖2 is self-dual, Proposition 3.1 implies

∂φ(u) =

{ {g ∈ V∗ | ‖g‖2 ≤ 1} if u = 0,
u

‖u‖2

if u 6= 0.

As u = 0 is not useful in our optimization setting, we seek only u 6= 0. We now apply
Theorem 3.2 leading to two cases: (i) (3.5) holds; (ii) (3.6) holds.

Case (i). The condition (3.5) holds. Then we have u = −e−1h. By substituting
this into the identity Eγ,h(u) = e, we get

e = − γ − ‖h‖22 e−1

1
2‖h‖22 e−2 +Q0

,

implying

Q0e
2 + γe− 1

2
‖h‖22 = 0.

By using the bigger root of this equation, we have

e =
−β2 +

√
β2
2 − 4β1β3

−2β1
,

where β1 = Q0, β2 = γ, and β3 = 1
2‖h‖2.

Case (ii). The condition (3.6) holds. Then we have

−eu− h
1
2‖u‖22 +Q0

= −µ u

‖u‖2
,

giving

(−eu− h)‖u‖2 + µ

(
1

2
‖u‖22 +Q0

)
u = 0,

leading to

(3.9) (−e‖u‖2 +
1

2
µ‖u‖22 + µQ0)u = ‖u‖2h.

This implies that there exist λ such that u = λh. By substituting this into φ(u) =
‖u‖2 = ξ we get

λ =
ξ

‖h‖2
.

Now, substituting u into (3.9), we obtain

(3.10) µ =
2(‖h‖2 + eξ)‖h‖22
‖h‖22 + 2Q0‖h‖22

.
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It follows from Eγ,h(u) = e that

e = −2‖h‖2(γ‖h‖2 + ξ‖h‖2)
ξ2‖h‖22 + 2Q0‖h‖22

.

This gives the result.
In 2004, Yuan and Lin in [70] proposed an interesting regularizer called grouped

LASSO for the linear regression. Later Kim et al. in [44] proposed a constrained
ridge regression model using the constraint

‖x‖1,2 ≤ ξ,

where

‖x‖1,2 :=
m∑

i=1

‖xgi‖2,

where x = (xg1 , · · · , xgm) and ‖x‖1,2 is a so-called the l1,2 group norm. We consider
this constraint in the next result.

Proposition. 3.4. Let V be a real finite-dimensional vector space with the in-
duced norm φ(·) = ‖ · ‖1,2. Then OSGA’s subproblem (1.5) is solved by

ugi = −e−1hgi for all i = 1, · · · ,m,

and

e =
−β2 +

√
β2
2 − 4β1β3

−2β1
, µ = 0,

where

β1 := Q0, β2 := γ, β2 :=
1

2
‖h‖22 −

m∑

i=1

‖hgi‖22,

if φ(u) < ξ; Otherwise it is solved by

ui = ρihgi , ρi =
‖hgi‖2 − µ

(
1
2ξ

2 +Q0

)

e‖hgi‖2
for all i = 1, · · · ,m,

and

e = −γ + 〈h, u〉
1
2ξ

2 +Q0

= −2(γ +
∑n

i=1 τ
2
i ‖hgi‖22)∑n

i=1 τ
2
i ‖hgi‖22 + 2Q0

, µ =
2(
∑m

i=1 ‖hgi‖2 + eξ)

m(
∑m

i=1 τ
2
i ‖hgi‖22 + 2Q0)

.

Proof. Similar to Proposition 3.3, we consider u 6= 0. In view of Proposition (3.1),
we get

∂φ(ugi) =

{
ugi

‖ugi‖2

}
for all i = 1, · · · ,m,

leading to

∂φ(u) =

{(
ug1

‖ug1‖2
, · · · , ugm

‖ugm‖2

)}
.
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We now apply Theorem 3.2 leading to two cases: (i) (3.5) holds; (ii) (3.6) holds.
Case (i). The condition (3.5) holds. Then we have ugi = −e−1hgi for i = 1, · · · , n.

By substituting u = (ug1 , · · · , ugn) into the identity Eγ,h(u) = e, we get

e =
−γ +

∑m
i=1 ‖hgi‖22 e−1

1
2‖h‖22 e−2 +Q0

,

implying

Q0e
2 + γe+

1

2
‖h‖22 −

m∑

i=1

‖hgi‖22 = 0.

By using the bigger root of this equation, we get

e =
−β2 +

√
β2
2 − 4β1β3

−2β1
,

where β1 := Q0, β2 := γ, and β3 := 1
2‖h‖22 −

∑m
i=1 ‖hgi‖22.

Case (ii). The condition (3.6) holds. Then we have

−eugi − hgi
1
2‖u‖22 +Q0

= −µ ugi

‖ugi‖2
for all i = 1, · · · ,m.

Since φ(u) = ‖u‖ = ξ, we equivalently get
(
1

2
‖u‖22 +Q0

)(
− e

1
2‖u‖22 +Q0

+
µ

‖ugi‖2

)
ugi = hgi

implying ugi = τihgi . If hgi = 0, then ugi = 0. Now let hgi 6= 0. Substituting
ugi = τihgi into the previous identity, it follows that

(
1

2

m∑

i=1

τ2i ‖hgi‖22 +Q0

)(
− e

1
2

∑m
i=1 τ

2
i ‖hgi‖22 +Q0

+
µ

τi‖hgi‖2

)
τihgi = hgi .

giving

−eτi‖hgi‖2 + µ

(
1

2

m∑

i=1

τ2i ‖hgi‖22 +Q0

)
= ‖hgi‖2 for all i = 1, · · · ,m.

Applying a summation from both sides, together with
∑m

i=1 τi‖hgi‖2 = ξ, yields

(3.11) −eξ +mµ

(
1

2

m∑

i=1

τ2i ‖hgi‖22 +Q0

)
=

m∑

i=1

‖hgi‖2,

implying

µ =
2(
∑m

i=1 ‖hgi‖2 + eξ)

m(
∑m

i=1 τ
2
i ‖hgi‖22 + 2Q0)

.

By substituting this into (3.11), we have

τi = −
1

me‖hgi‖2

(
m‖hgi‖2 −

m∑

i=1

‖hgi‖2 − eξ

)
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leading to

u = (τihg1 , · · · , τmhgm).

By substituting this into Eγ,h(u) = e, we get

e = −γ + 〈h, u〉
1
2ξ

2 +Q0

= −2(γ +
∑n

i=1 τ
2
i ‖hgi‖22)∑n

i=1 τ
2
i ‖hgi‖22 + 2Q0

,

giving the result.

4. Numerical experiments. A software package for solving unconstrained and
simply constrained convex optimization problems with OSGA is publicly available at

http://homepage.univie.ac.at/masoud.ahookhosh/.
The package is written in MATLAB; it uses the parameters

δ = 0.9; αmax = 0.7; κ = κ′ = 0.5; Ψtarget = −∞.

and the prox-function (2.5) with Q0 = 1
2‖x0‖2 + ǫ, where ǫ is the machine precision.

A user manual [2] describes the design and use of the package. Some examples are
included as illustrations.

This section discusses numerical results and comparisons of OSGA with some
state-of-the-art first-order solvers on some ridge regression and image deblurring prob-
lems. All numerical results were created with version 1.1 of the above software. The
algorithms used for comparison use the default parameter values reported in the corre-
sponding papers or packages. All numerical experiments were executed on a Toshiba
Satellite Pro L750-176 laptop with Intel Core i7-2670QM processor and 8 GB RAM.

4.1. Ridge regression. In this subsection we consider a l2-constrained least
squares of the form (3.3) (so-called ridge regression, see [47]) and report some numer-
ical results.

The problem is generated by

[A, z, x] = i laplace(n), y = z+ 0.1 ∗ rand,

where n = 5000 is the problem dimension and i laplace.m is an ill-posed test prob-
lem generator using the inverse Laplace transformation from Regularization Tools
MATLAB package, which is available in

http://www.imm.dtu.dk/~pcha/Regutools/.
Since (3.3) is smooth and the projection on C = {x ∈ R

n | ‖x‖ ≤ ξ} is available
(see Table 1), we employ gradient projection algorithm (PGA), the spectral gradient
projection [23] with the Grippo et al. nonmonotone term [37] (SPG-G), the spectral
gradient projection with the Amini et al. nonmonotone term [8] (SPG-A), and OSGA
(see Proposition 3.3) to solve this minimization problem. The parameters of SPG-G
and SPG-A are the same as those reported in the associated papers, but SPG-A uses

ηk =

{
η0/2 if k = 1,
(ηk−1 + ηk−2)/2 if k ≥ 2.

The algorithms are stopped after 500 iterations.
In Table 3 we consider ξ = 10, 15, 20, 25 and report the best attained function

values and the running time. The results imply that OSGA attains the best running

http://homepage.univie.ac.at/masoud.ahookhosh/
http://www.imm.dtu.dk/~pcha/Regutools/
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Table 3: Result summary for the ridge regression

ξ PGA SPG-G SPG-A OSGA

fb 10 101.70e-3 7.60e-3 6.41e-3 3.60e-3

Time(s) 77.78 30.08 31.20 22.09

fb 15 48.23e-3 1.70e-3 1.31e-3 1.52e-3

Time(s) 66.54 25.00 24.24 21.55

fb 20 23.08e-2 2.01e-2 1.74e-2 8.60e-3

Time(s) 64.60 28.47 27.11 21.40

fb 25 23.00e-2 2.22e-2 1.24e-2 8.96e-3

Time(s) 62.55 30.20 31.18 26.50

time and except for ξ = 15 gives the best function values. To see the results of
implementation in more details, we demonstrate the relative error of function values

(4.1) δk :=
fk − f̂

f0 − f̂

in Figure 1, where f̂ denotes the minimum and f0 shows the function value on an
initial point x0.

4.2. Image deblurring with nonnegativity constraint. As discussed in Sec-
tion 3, inverse problems are appearing in many fields of applied sciences and Engi-
neering. This is particularly happen when researchers use digital images to record and
analyze results from experiments in many fields such as astronomy, medical sciences,
biology, geophysics, and physics. In these cases, observing blurred and noisy images
is a common phenomenon happening frequently because of environmental effects and
imperfections in the imaging system.

In many applications, the variable x describes physical quantities, which is mean-
ingful if each component of x is restricted to be nonnegative. This constraint is
referred as the nonnegativity constraint; it is especially useful for restoring blurred
and noisy images, see [11, 42, 43, 66].

We restore the 256×256 blurred and noisy MR-brain image using the model (2.2)
equipped with the isotropic total variation regularizer. The true image is available in

http://graphics.stanford.edu/data/voldata/.

The blurred/noisy image y is generated by a 9×9 uniform blur and adding a Gaussian
noise with zero mean and standard deviation set to 10−3. For restoring the image, we
use OSGA (see Proposition 2.4), MFISTA (a monotone version of FISTA proposed by
Beck & Teboulle in [17]), ADMM (an alternating direction method proposed by
Chan et al. in [30]), and PSGA (a projected subgradient scheme with nonsummable
diminishing step size), see [27]. The original codes of MFISTA and ADMM provided
by the authors are used. Since the methods are sensitive to the regularization param-
eter λ, three different regularization parameters are used. The algorithms are stopped
after 100 iterations. The comparison concerning the quality of the recovered image is
made via the so-called peak signal-to-noise ratio (PSNR) defined by

(4.2) PSNR = 20 log10

( √
mn

‖x− xt‖F

)

http://graphics.stanford.edu/data/voldata/
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(a) δk versus iterations, ξ = 10
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(b) δk versus iterations, ξ = 15
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(c) δk versus iterations, ξ = 20
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(d) δk versus iterations, ξ = 25

Fig. 1: A comparison among PGA, SPG-G, SPG-A, and OSGA for solving the prob-
lem (3.3) based on the relative error of function values δk (4.1). The algorithms were
stopped after 500 iterations.

and the improvement in signal-to-noise ratio (ISNR) defined by

(4.3) ISNR = 20 log10

(‖y − xt‖F
‖x− xt‖F

)
,

where ‖ ·‖F is the Frobenius norm, xt denotes the m×n true image, y is the observed
image, and pixel values are in [0, 1]. The results of implementation are summarized
in Table 4 and Figures 2 and 3.

In Table 4 we report PSNR, the best available approximation fb of the minimi-
mum, and the running time in seconds for three different regularization parameters.
The results reported in Figure 2 regarding function values and ISNR show that the
algorithms considered are sensitive to the parameter λ, however, the best results
obtained for λ = 10−4. More specifically, the results about function values in sub-
figures (a), (c), and (e) demonstrate that OSGA outperforms PSGA, which means it
performs much better than the lower complexity bound O(ε−2), however, it cannot
perform similar to MFISTA attaining the complexity of the order O(ε−1/2). Subfig-
ures (b), (d), and (f) show that OSGA is comparable with MFISTA and ADMM and
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(a) δk versus iterations, λ = 5× 10−4
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(b) ISNR versus iterations, λ = 5× 10−4
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(c) δk versus iterations, λ = 1× 10−4
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(d) ISNR versus iterations, λ = 1× 10−4
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(e) δk versus iterations, λ = 5× 10−5
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(f) ISNR versus iterations, λ = 5× 10−5

Fig. 2: A comparison among PSGA, MFISTA, ADMM, and OSGA for deblurring
the 256 × 256 MR-brain image with the 9 × 9 uniform blur and the Gaussian noise
with deviation 10−3. The algorithms were stopped after 100 iterations. Subfigures
(a), (c), and (e) display the relative error of function values δk (4.1) versus iterations,
and Subfigures (b), (d), and (f) display ISNR (4.3) versus iterations.
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(a) Original image (b) Blurred/noisy image

(c) PSGA: f = 0.1174,PSNR = 33.24,T =
1.15

(d) MFISTA: f = 0.0653,PSNR = 34.45,T =
6.51

(e) ADMM: f = 0.0651,PSNR = 34.49,T =
1.06

(f) OSGA: f = 0.0669,PSNR = 34.46,T =
1.97

Fig. 3: Deblurring of the 256 × 256 MR-brain image with the 9 × 9 uniform blur
and the Gaussian noise with deviation 10−3 by PSGA, MFISTA, ADMM, and OSGA
with the regularization parameter λ = 10−4. The algorithms were stopped after 100
iterations.
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Table 4: Result summary for L22ITV

λ PSGA MFISTA ADMM OSGA

PSNR 32.59 32.67 32.66 32.73

fb 5× 10−4 0.3528 0.3079 0.3080 0.3149

Time(s) 1.14 7.61 1.11 1.82

PSNR 33.23 33.96 33.95 33.97

fb 1× 10−4 0.1184 0.0960 0.0958 0.0980

Time(s) 1.14 7.34 1.04 1.71

PSNR 33.24 34.45 34.49 34.46

fb 5× 10−5 0.1174 0.0653 0.0651 0.0669

Time(s) 1.15 6.51 1.06 1.67

even better than them in the sense of ISNR. The deblurred images by the algorithms
considered are illustrated in Figure 3 for λ = 10−4.

We also consider the restoration of the 641×641 blurred/noisy Dione image using
(2.3). The true image is available in

http://photojournal.jpl.nasa.gov/Help/ImageGallery.html.

The blurred/noisy image is constructed from the 7× 7 Gaussian kernel with standard
deviation 5 and salt-and-pepper impulsive noise with the level 50%. To recover the
image, we use DRPD-1, DRPD-2 (Douglas-Rachford primal-dual schemes proposed by
Boţ & Hendrich in [25]), ADMM, and OSGA. The algorithms are stopped after 100
iterations, and three different regularization parameters are considered. The results
of implementation are reported in Table 5 and Figures 4 and 5.

The results of Table 5 shows that OSGA outperforms the others in the sense of
PSNR. Figure 4 indicates that OSGA attains the best function values for λ = 10−1

and λ = 5 × 10−2, however, ADMM get the best function value for λ = 5 × 10−1.
It also implies that OSGA are comparable or even better that the others regarding
ISNR. The resulted images for λ = 10−1 are illustrated in Figure 5, demonstrating
that the algorithms can restore the image by acceptable qualities while OSGA obtains
the best function value and PSNR.

Table 5: Results summary for L1ITV

λ DRPD-1 DRPD-2 ADMM OSGA

PSNR 37.43 36.66 37.42 37.50

fb 5× 10−1 1.0352e+5 1.0365e+5 1.0293e+5 1.0326e+5

Time 10.86 6.83 8.57 9.01

PSNR 38.70 38.11 38.35 38.73

fb 1× 10−1 1.0324e+5 1.0294e+5 1.0281e+5 1.0281e+5

Time 10.43 6.68 8.46 8.32

PSNR 37.09 36.77 30.06 37.06

fb 5× 10−2 1.0336e+5 1.0321e+5 1.0312e+5 1.0299e+5

Time 10.26 6.27 8.25 9.23

http://photojournal.jpl.nasa.gov/Help/ ImageGallery.html
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(a) δk versus iterations, λ = 5× 10−1
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(b) ISNR versus iterations, λ = 5× 10−1
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(c) δk versus iterations, λ = 1× 10−1
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(d) ISNR versus iterations, λ = 1× 10−1
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(e) δk versus iterations, λ = 5× 10−2
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(f) ISNR versus iterations, λ = 5× 10−2

Fig. 4: A comparison among DRPD-1, DRPD-2, ADMM, and OSGA for deblur-
ring the 641 × 641 Dione image with the various regularization parameter λ. The
blurred/noisy image was constructed by the 7× 7 Gaussian kernel with standard de-
viation 5 and salt-and-pepper impulsive noise with the level 50%. The algorithms
were stopped after 100 iterations. Subfigures (a), (c), and (e) display the relative
error of function values δk (4.1) versus iterations, and (b), (d), and (f) demonstrate
ISNR (4.3) versus iterations.



24 M. Ahookhosh and A. Neumaier

(a) Original image (b) Blurred/noisy image

(c) DRPD-1: f = 1.0324e + 5,PSNR =
38.70,T = 10.43

(d) DRPD-2: f = 1.0294e + 5,PSNR =
38.11,T = 6.68

(e) ADMM: f = 1.0281e + 5,PSNR =
38.35,T = 8.46

(f) OSGA: f = 1.0281e+5,PSNR = 38.73,T =
8.32

Fig. 5: Deblurring of the 641 × 641 Dione image using DRPD-1, DRPD-2, ADMM
and OSGA with the parameter λ = 10−1. The algorithms were stopped after 100
iterations. The blurred/noisy image was constructed by the 7 × 7 Gaussian kernel
with standard deviation 5 and salt-and-pepper impulsive noise with the level 50%.
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5. Conclusions. In this paper an optimal subgradient method, OSGA, is ad-
dressed for solving structured convex constrained optimization. More specifically,
finding a solution of OSGA’s subproblem is investigated in the presence of some
convex constraints. Two types of convex constraints are considered, namely, sim-
ple convex domains, in which the orthogonal projection in the domains is effectively
available, and functional constraints, defined as the sublevel sets of simple convex
functions. In each case some interesting examples are discussed for which OSGA’s
subproblem can be solved efficiently. Numerical results and comparisons with some
state-of-the-art algorithms are reported showing that OSGA is efficient and reliable
for solving convex optimization problems in applications.

Acknowledgement. We would like to thank Radu Bot and Min Tao for making
their codes DRPD-1, DRPD-2, and ADMM available for us.
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