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Abstract. Projection type methods are among the most important methods for solving

monotone linear variational inequalities. In this note, we analyze the iteration complexity

for two projection methods and accordingly establish their worst-case O(1/t) convergence

rates measured by the iteration complexity in both the ergodic and nonergodic senses, where

t is the iteration counter. Our analysis does not require any error bound condition or the

boundedness of the feasible set, and it is scalable to other methods of the same kind.
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1 Introduction

Let Ω be a closed convex subset of Rn, M ∈ Rn×n and q ∈ Rn. The linear variational inequality

problem, denoted by LVI(Ω,M, q), is to find a vector u∗ ∈ Ω such that

LVI(Ω,M, q) (u− u∗)T (Mu∗ + q) ≥ 0, ∀u ∈ Ω. (1.1)

We consider the case where the matrix M is positive semi-definite (but could be asymmetric).

Moreover, the solution set of (1.1), denoted by Ω∗, is assumed to be nonempty.

It is well known (see e.g. [1], pp. 267) that u∗ is a solution point of (1.1) if and only if it satisfies

the following projection equation

u∗ = P[Ω,G][u
∗ −G−1(Mu∗ + q)], (1.2)
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where G ∈ Rn×n is a symmetric positive definite matrix, P[Ω,G](·) denotes the projection onto Ω with

respect to the G-norm:

P[Ω,G](v) = argmin{∥u− v∥G |u ∈ Ω},

and ∥u∥G =
√
uTGu for any u ∈ ℜn. When G = I, we simply use the notation PΩ(·) for P[Ω,I](·).

Moreover, for given u ∈ Rn, we denote ũ = PΩ[u− (Mu+ q)]. Hence, we have

ũk = PΩ[u
k − (Muk + q)]. (1.3)

We further use

e(uk) := uk − ũk. (1.4)

It follows from (1.2) that u is a solution of LVI(Ω,M, q) if and only if u = ũ. Then, naturally, the

projection equation residual ∥e(uk)∥2 can be used to measure the accuracy of an iterate uk to a

solution point of LVI(Ω,M, q).

Indeed, the projection characterization (1.2) for LVI(Ω,M, q) is the basis of many algorithms

in the literature, including the projection type methods under our discussion, see e.g. [6, 7, 14] to

just mention a few. Because of their easiness in implementation, modest demand on storage and

relatively fast convergence, projection type methods are particularly efficient for the special scenario

where the set Ω in (1.1) is simple in the sense the projection onto it can be easily computed. We

refer to [3] for a survey. In this paper, we consider Algorithm 2.1 in [14], which is a representative

projection method for LVI(Ω,M, q) whose efficiency has been verified numerically in the paper. More

specifically, its iterative scheme is

(Algorithm-I) uk+1 = uk − γα∗
kG

−1(I +MT )(uk − ũk), (1.5)

where γ ∈ (0, 2) is a relaxation factor and the step size α∗
k is determined by

α∗
k =

∥uk − ũk∥2

∥G−1(I +MT )(uk − ũk)∥2G
. (1.6)

Obviously, for the step size α∗
k defined in (1.6), we have

α∗
k ≥ 1

∥(I +M)G−1(I +M)T ∥2
:= αmin, (1.7)

where ∥ · ∥2 denotes the spectral norm of a matrix. Therefore, the step size sequence of Algorithm-I

is bounded away from zero; this is indeed an important property for both theoretically ensuring

the convergence and numerically resulting in fast convergence for Algorithm-I. More specifically, as

proved in [14], the sequence {uk} generated by Algorithm-I satisfies the inequality

∥uk+1 − u∗∥2G ≤ ∥uk − u∗∥2G − γ(2− γ)α∗
k∥uk − ũk∥2, (1.8)

where u∗ is an arbitrary solution point of LVI(Ω,M, q). Recall the fact that ∥uk − ũk∥2 = 0 if and

only if uk is a solution point of LVI(Ω,M, q). Thus, together with the property (1.7), the inequality

(1.8) essentially means that the sequence {uk} is strictly contractive with respect to the solution set

of LVI(Ω,M, q). Hence, the convergence of Algorithm-I follows from the standard analytic framework

of contraction methods, as shown in [2]. A special case of Algorithm-I with G = I and γ = 1 was

proposed in [6] and its linear convergence was proved for the case where Ω = Rn
+.

In addition to Algorithm-I in (1.5), we consider another projection method

(Algorithm-II) uk+1 = P[Ω,G]{uk − γα∗
kG

−1[(Muk + q) +MT (uk − ũk)]}, (1.9)
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where the step size length α∗
k is also defined in (1.6). As Algorithm-I, we will show later (see Corollary

3.3) that the sequence {uk} generated by Algorithm-II also satisfies the property (1.8) and thus its

convergence is ensured. The special case of Algorithm-II with Ω = Rn
+ and G = I can be found in [5]

and mentioned in [7], and its convergence proof can be found in [8]. Also, Algorithm-II differs from

Algorithm 2.3 in [14] in that its step size is determined by (1.6) and thus it is bounded away from

zero, while the latter’s may tend to zero, see (2.14) on pp. 1821 in [14]. Note that Algorithm-I and

Algorithm-II utilize the same strategy (1.6) to determine their step sizes but along different search

directions; and they require computing one and two projections at each iteration, respectively.

Our main purpose is analyzing the convergence rates for Algorithm-I and Algorithm-II under

mild assumptions on (1.1). Indeed, if certain error bound condition is assumed, the strict contrac-

tion property (1.8) enables us to establish the asymptotical convergence rates for Algorithm-I and

Algorithm-II immediately. More specifically, if we assume that there exists positive constant µ and

δ (depending on M , q, Ω only) such that

d(u,Ω∗) ≤ µ∥u− ũ∥, ∀u with ∥u− ũ∥ ≤ δ,

where d(·,Ω∗) denotes the 2-norm distance to Ω∗, then the linear convergence of Algorithm-I and

Algorithm-II is just an obvious conclusion of (1.8). In general, however, it is not easy to verify

error bound conditions even for LVI(Ω,M, q). We thus consider the possibility of deriving the

convergence rates for Algorithm-I and Algorithm-II without any error bound conditions. Indeed,

we want to derive the worst-case O(1/t) convergence rate measured by the iteration complexity for

Algorithm-I and Algorithm-II, where t is the iteration counter. This kind of iteration-complexity-

based analysis for convergence rate traces back to [11] and it has received much attention from

the literature. More specifically, we will show that for a given ϵ > 0, by implementing either

Algorithm-I or Algorithm-II, we need at most O(1/ϵ) iterations to find an approximated solution

point of LVI(Ω,M, q) with an accuracy of ϵ. An ϵ-approximated solution point of LVI(Ω,M, q) will

be defined precisely. Furthermore, it is noteworthy that our analysis for the convergence rates of

Algorithm-I and Algorithm-II does not require the boundedness of the feasible set Ω in (1.1), which is

usually required for the iteration complexity analysis of projection methods for nonlinear variational

inequalities such as the work [10] for the extragradient method in [9]. Finally, we would mention

that we only focus on the LVI(Ω,M, q) in this note and do not discuss the iteration complexity

analysis of projection methods for nonlinear variational inequalities. We refer to, e.g., [10, 12], for

some insightful discussions in this regard.

Throughout the paper, the following notational conventions are used. We use u∗ to denote a

fixed but arbitrary point in the solution set Ω∗ of LVI(Ω,M, q). A superscript such as in uk refers

to a specific vector and usually denotes an iteration index. For any real matrix M and vector v, we

denote their transposes by MT and vT , respectively. The Euclidean norm will be denoted by ∥ · ∥.

2 Preliminaries

In this section we summarize some preliminaries which are useful for our analysis.

2.1 Some Inequalities

We first recall several inequalities which will be frequently used in the upcoming analysis. First,

since

P[Ω,G](v) = argmin{1
2
∥u− v∥2G | u ∈ Ω},
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we have

(v − P[Ω,G](v))
TG(u− P[Ω,G](v)) ≤ 0, ∀ v ∈ Rn, ∀ u ∈ Ω. (2.1)

Let u∗ be any fixed solution point. Since ũk ∈ Ω, it follows from (1.1) that

(ũk − u∗)T (Mu∗ + q) ≥ 0, ∀u∗ ∈ Ω∗.

Set v = uk − (Muk + q), G = I and u = u∗ in (2.1), because of the notation ũk, we have

(ũk − u∗)T {[uk − (Muk + q)]− ũk} ≥ 0, ∀u∗ ∈ Ω∗.

Adding the last two inequalities, we obtain

(ũk − u∗)T {(uk − ũk)−M(uk − u∗)} ≥ 0, ∀u∗ ∈ Ω∗,

and consequently

(uk − u∗)T (I +MT )(uk − ũk) ≥ ∥uk − ũk∥2, ∀u∗ ∈ Ω∗. (2.2)

2.2 An ϵ-approximated Solution Point of LVI(Ω,M, q)

To estimate the worst-case convergence rates measured by the iteration complexity for Algorithm-

I or Algorithm-II, we need to clearly define an ϵ-approximated solution of LVI(Ω,M, q). We will

consider the following two definitions, which are based on the variational inequality characterization

and projection equation residual, respectively.

First, according to (2.3.2) on Page 159 in [3], we know that Ω∗ is convex and it can be characterized

by

Ω∗ =
∩
u∈Ω

{
v ∈ Ω : (u− v)T (Mu+ q) ≥ 0

}
.

Therefore, motivated by [13], we call v ∈ Ω an ϵ-approximated solution point of LVI(Ω,M, q) in sense

of the variational inequality characterization if it satisfies

v ∈ Ω and inf
u∈D(v)

{
(u− v)T (Mu+ q)

}
≥ −ϵ,

where

D(v) = {u ∈ Ω | ∥u− v∥G ≤ 1}.

Later, we will show that for given ϵ > 0, after at most O(1/ϵ) iterations, both Algorithm-I and

Algorithm-II can find v such that

v ∈ Ω and sup
u∈D(v)

{
(v − u)T (Mu+ q)

}
≤ ϵ. (2.3)

The other definition comes from the mentioned fact that ∥e(u)∥2 defined in (1.4) serves as a mea-

sure of the distance between the iterate u and the solution set Ω∗. We thus call v an ϵ-approximated

solution point of LVI(Ω,M, q) in sense of the projection equation residual if ∥e(v)∥2 ≤ ϵ.
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3 Two Lemmas

One reason we consider Algorithm-I and Algorithm-II simultaneously is that their iteration-complexity-

based convergence rate analysis share a great degree of similarity and they can be presented in a

unified framework. In this section, we show that the sequences generated by both Algorithm-I and

Algorithm-II satisfy one common inequality, which is indeed the key for estimating their iteration

complexities. For notation simplicity, we define

qk(γ) = γ(2− γ)α∗
k∥uk − ũk∥2, (3.1)

where α∗
k is given by (1.6). Moreover, let us use the notation

D = M +MT ,

where M is the matrix in (1.1).

In the following, we will show that the sequence {uk} generated by either Algorithm-I or Algorithm-

II satisfies the inequality

γα∗
k(u− ũk)T (Mu+ q) ≥ 1

2

(
∥u− uk+1∥2G − ∥u− uk∥2G

)
+

1

2
qk(γ), ∀u ∈ Ω, (3.2)

where qk(γ) is defined in (3.1). We will present this conclusion in two lemmas.

Lemma 3.1. For given uk ∈ Rn, let ũk be defined by (1.3) and the new iterate uk+1 be generated by

Algorithm-I (1.5). Then, the assertion (3.2) is satisfied.

Proof. Set v = uk − (Muk + q) in (2.1) and we know ũk = PΩ[u
k − (Muk + q)]. Thus, we have

(u− ũk)T {(Muk + q)− (uk − ũk)} ≥ 0, ∀u ∈ Ω.

This inequality can be rewritten as

(u− ũk)T {(Mu+ q)−M(u− ũk) + (M +MT )(uk − ũk)− (I +MT )(uk − ũk)} ≥ 0, ∀u ∈ Ω.

Therefore, using the notation M +MT = D and the Cauchy-Schwarz inequality, we have

(u− ũk)T (Mu+ q)

≥ (u− ũk)T {M(u− ũk)− (M +MT )(uk − ũk) + (I +MT )(uk − ũk)}

= (u− ũk)T (I +MT )(uk − ũk) +
1

2
∥u− ũk∥2D − (u− ũk)TD(uk − ũk)

≥ (u− ũk)T (I +MT )(uk − ũk)− 1

2
∥uk − ũk∥2D.

Moreover, it follows from (1.5) that

γα∗
k(I +MT )(uk − ũk) = G(uk − uk+1).

Thus, we obtain

γα∗
k(u− ũk)T (Mu+ q) ≥ (u− ũk)TG(uk − uk+1)−

γα∗
k

2
∥uk − ũk∥2D. (3.3)

For the crossed term in the right-hand-side of (3.3): (u − ũk)TG(uk − uk+1), it follows from the

identity

(a− b)TG(c− d) =
1

2

(
∥a− d∥2G − ∥a− c∥2G

)
+

1

2

(
∥c− b∥2G − ∥d− b∥2G

)
5



that

(u− ũk)TG(uk − uk+1) =
1

2

(
∥u− uk+1∥2G − ∥u− uk∥2G

)
+

1

2

(
∥uk − ũk∥2G − ∥uk+1 − ũk∥2G

)
. (3.4)

Now, we treat the second part of the right-hand-side of (3.4). Using (1.5), we get

∥uk − ũk∥2G − ∥uk+1 − ũk∥2G
= ∥uk − ũk∥2G − ∥(uk − ũk)− γα∗

kG
−1(I +MT )(uk − ũk)∥2G

= 2γα∗
k(u

k − ũk)T (I +MT )(uk − ũk)− (γα∗
k)

2∥G−1(I +MT )(uk − ũk)∥2G
= 2γα∗

k∥uk − ũk∥2 + γα∗
k∥uk − ũk∥2D − (γα∗

k)
2∥G−1(I +MT )(uk − ũk)∥2G. (3.5)

Recall (1.6). Thus, it follows from (3.5) that

(γα∗
k)

2∥G−1(I +MT )(uk − ũk)∥2G = γ2α∗
k∥uk − ũk∥2,

and consequently,

∥uk − ũk∥2G − ∥uk+1 − ũk∥2G = γ(2− γ)α∗
k∥uk − ũk∥2 + γα∗

k∥uk − ũk∥2D.

Substituting it into the right-hand-side of (3.4) and using the definition of qk(γ), we obtain

(u− ũk)TG(uk − uk+1) =
1

2

(
∥u− uk+1∥2G − ∥u− uk∥2G

)
+

1

2
qk(γ) +

γα∗
k

2
∥uk − ũk∥2D. (3.6)

Adding (3.3) and (3.6) together, we get the assertion (3.2) and the theorem is proved. 2

Then, we prove the assertion (3.2) for Algorithm-II in the following lemma.

Lemma 3.2. For given uk ∈ Rn, let ũk be defined by (1.3) and the new iterate uk+1 be generated by

Algorithm-II (1.9). Then, the assertion (3.2) is satisfied.

Proof. It follows from Cauchy-Schwarz Inequality that

(u− ũk)T (Mu+ q)− (u− ũk)T [(Muk + q) +MT (uk − ũk)]

= (u− ũk)T {M(u− uk)−MT (uk − ũk)}
= (u− ũk)T {M(u− ũk)− (M +MT )(uk − ũk)}

=
1

2
∥u− ũk∥2D − (u− ũk)TD(uk − ũk)

≥ −1

2
∥uk − ũk∥2D.

Consequently, we obtain

γα∗
k(u− ũk)T (Mu+ q) ≥ (u− ũk)Tγα∗

k[(Muk + q) +MT (uk − ũk)]−
γα∗

k

2
∥uk − ũk∥2D. (3.7)

Now we investigate the first term in the right-hand-side of (3.7) and divide it into the following two

terms, namely

(uk+1 − ũk)Tγα∗
k[(Muk + q) +MT (uk − ũk)] (3.8a)

and

(u− uk+1)Tγα∗
k[(Muk + q) +MT (uk − ũk)]. (3.8b)
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First, we deal with the term (3.8a). Set v = uk − (Muk + q) in (2.1). Since ũk = PΩ[u
k − (Muk + q)]

and uk+1 ∈ Ω, it follows that

(uk+1 − ũk)T (Muk + q) ≥ (uk+1 − ũk)T (uk − ũk).

Adding the term (uk+1 − ũk)TMT (uk − ũk) to both sides in the above inequality, we obtain

(u− ũk)T {(Muk + q) +MT (uk − ũk)} ≥ (u− ũk)T (I +MT )(uk − ũk),

and it follows that

(uk+1 − ũk)Tγα∗
k[(Muk + q) +MT (uk − ũk)]

≥ γα∗
k(u

k+1 − ũk)T (I +MT )(uk − ũk)

= γα∗
k(u

k − ũk)T (I +MT )(uk − ũk)− γα∗
k(u

k − uk+1)T (I +MT )(uk − ũk)

≥ γα∗
k∥uk − ũk∥2 +

γα∗
k

2
∥uk − ũk∥2D − γα∗

k(u
k − uk+1)T (I +MT )(uk − ũk). (3.9)

For the crossed term of the right-hand-side in (3.9), using Cauchy-Schwarz Inequality and (1.6), we

get

−γα∗
k(u

k − uk+1)T (I +MT )(uk − ũk)

= −(uk − uk+1)TG[γα∗
kG

−1(I +MT )(uk − ũk)]

≥ −1

2
∥uk − uk+1∥2G − 1

2
γ2(α∗

k)
2∥G−1(I +MT )(uk − ũk)∥2G

= −1

2
∥uk − uk+1∥2G − 1

2
γ2α∗

k∥uk − ũk∥2.

Substituting it into the right-hand-side of (3.9) and using the notation qk(γ), we obtain

(uk+1 − ũk)Tγα∗
k[(Muk + q) +MT (uk − ũk)] ≥ 1

2
qk(γ) +

γα∗
k

2
∥uk − ũk∥2D − 1

2
∥uk − uk+1∥2G. (3.10)

Now, we turn to treat the term (3.8b). The update form of Algorithm-II (1.9) means that uk+1 is

the projection of
(
uk − γα∗

kG
−1[(Muk + q) +MT (uk − ũk)]

)
on Ω. Thus, it follows from (2.1) that{(

uk − γα∗
kG

−1[(Muk + q) +MT (uk − ũk)]
)
− uk+1

}T
G
(
u− uk+1

)
≤ 0, ∀u ∈ Ω,

and consequently(
u− uk+1

)T
γα∗

k[(Muk + q) +MT (uk − ũk)] ≥
(
u− uk+1

)T
G
(
uk − uk+1

)
, ∀u ∈ Ω.

Using the identity

aTGb =
1

2
{∥a∥2G − ∥a− b∥2G + ∥b∥2G}

for the right-hand-side of the last inequality, we obtain(
u−uk+1

)T
γα∗

k[(Muk+ q)+MT (uk− ũk)] ≥ 1

2

(
∥u−uk+1∥2G−∥u−uk∥2G

)
+

1

2
∥uk−uk+1∥2G. (3.11)

Adding (3.10) and (3.11) together, we get

(u− ũk)Tγα∗
k[(Muk + q)+MT (uk − ũk)] ≥ 1

2

(
∥u−uk+1∥2G−∥u−uk∥2G

)
+

1

2
qk(γ)+

γα∗
k

2
∥uk − ũk∥2D.

Finally, substituting it into (3.7), the proof is complete.
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Based on Lemmas 3.1 and 3.2, the strict contraction property of the sequences generated by

Algorithm-I and Algorithm-II can be easily derived. We summarize them in the following corollary.

Corollary 3.3. The sequence {uk} generated by Algorithm-I or Algorithm-II is strictly contractive

with respect to the solution set Ω∗ of LVI(Ω,M, q).

Proof. In Lemmas 3.1 and 3.2, we have proved that the sequence {uk} generated by either Algorithm-

I or Algorithm-II satisfies the inequality (3.2). Setting u = u∗ in (3.2) where u∗ ∈ Ω∗ is an arbitrary

solution point of LVI(Ω,M, q), we get

∥uk − u∗∥2G − ∥uk+1 − u∗∥2G ≥ 2γα∗
k(ũ

k − u∗)T (Mu∗ + q) + qk(γ).

Because (ũk − u∗)T (Mu∗ + q) ≥ 0, it follows from the last inequality and (3.1) that

∥uk+1 − u∗∥2G ≤ ∥uk − u∗∥2G − γ(2− γ)α∗
k∥uk − ũk∥2,

which means that the sequence {uk} generated by Algorithm-I or Algorithm-II is strictly contractive

with respect to the solution set Ω∗. The proof is complete.

4 Estimates on Iteration Complexity

In this section, we estimate the worst-case convergence rates measured by the iteration complexity

for Algorithm I and Algorithm-II. We discuss both the ergodic and nonergodic senses.

4.1 Iteration Complexity in the Ergodic Sense

We first derive worst-case convergence rates measured by the iteration complexity in the ergodic

sense. For this purpose, we need the definition of an ϵ-approximated solution point of LVI(Ω,M, q)

in sense of the variational inequality characterization (2.3).

Theorem 4.1. Let the sequence {uk} be generated by Algorithm-I or Algorithm-II starting from u0,

and ũk be given by (1.3). For any integer t > 0, let

ũt =
1

Υt

t∑
k=0

α∗
kũ

k and Υt =

t∑
k=0

α∗
k. (4.1)

Then, it holds that

(ũt − u)T (Mu+ q) ≤
∥u− u0∥2G

2αminγ(t+ 1)
, ∀u ∈ Ω. (4.2)

Proof. Note that although Lemmas 3.1 and 3.2 still hold for any γ > 0; and the strict contraction

in Corollary 3.3 is guaranteed for γ ∈ (0, 2). In this proof, we can slightly extend the restriction of γ

to γ ∈ (0, 2]. Clearly, for this case, we still have qk(γ) ≥ 0. It follows from the positivity of M , (3.1)

and (3.2) that

(u− ũk)Tα∗
k(Mu+ q) +

1

2γ
∥u− uk∥2G ≥ 1

2γ
∥u− uk+1∥2G, ∀u ∈ Ω.

Summarizing the above inequality over k = 0, . . . , t, we obtain(( t∑
k=0

α∗
k

)
u−

t∑
k=0

α∗
kũ

k
)T

(Mu+ q) +
1

2γ
∥u− u0∥2G ≥ 0, ∀u ∈ Ω.
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Then, using the notation of Υt and ũt in the above inequality, we derive

(ũt − u)T (Mu+ q) ≤
∥u− u0∥2G

2γΥt
, ∀u ∈ Ω. (4.3)

Indeed, ũt ∈ Ω because it is a convex combination of ũ0, ũ1, . . . , ũt. Because α∗
k ≥ αmin (see (1.7)),

it follows from (4.1) that

Υt ≥ (t+ 1)αmin.

Substituting it into (4.3), the proof is complete.

The next theorem shows clearly the worst-case O(1/t) convergence rate measured by the iteration

complexity in the ergodic sense for Algorithm I and Algorithm-II.

Theorem 4.2. For any ϵ > 0 and u∗ ∈ Ω∗, starting from u0, the Algorithm-I or Algorithm-II requires

no more iterations than
⌈

d
2αminγϵ

⌉
to produce an ϵ-approximated solution point of LVI(Ω,M, q) in

sense of the variation inequality characterization (2.3), where

d := 3 + 9∥u0 − u∗∥2G +
6∥G∥2∥u0 − u∗∥2G
γ(2− γ)αmin

. (4.4)

Proof. For u ∈ D(ũt), it follows from Cauchy-Schwarz inequality and the convexity of ∥ · ∥2G that

∥u− u0∥2G ≤ 3∥u− ũt∥2G + 3∥u0 − u∗∥2G + 3∥ũt − u∗∥2G
≤ 3 + 3∥u0 − u∗∥2G + 3 max

0≤k≤t
∥ũk − u∗∥2G

≤ 3 + 3∥u0 − u∗∥2G + 6 max
0≤k≤t

∥uk − u∗∥2G + 6 max
0≤k≤t

∥uk − ũk∥2G. (4.5)

On the other hand, it follows from (1.8) that

∥uk − u∗∥2G ≤ ∥u0 − u∗∥2G (4.6)

and

∥uk − ũk∥2 ≤
∥u0 − u∗∥2G
γ(2− γ)α∗

k

≤
∥u0 − u∗∥2G
γ(2− γ)αmin

. (4.7)

Using the inequality

∥uk − ũk∥2G ≤ ∥G∥2∥uk − ũk∥2,

it follows from (4.5), (4.6) and (4.7) that

∥u− u0∥2G ≤ 3 + 9∥u0 − u∗∥2G +
6∥G∥2∥u0 − u∗∥2G
γ(2− γ)αmin

= d. (4.8)

This, together with (4.2), completes the proof of the theorem.

4.2 Iteration Complexity in a Nonergodic Sense

In this subsection, we derive worst-case O(1/t) convergence rate measured by the iteration complexity

in a nonergodic sense for Algorithm I and Algorithm-II. For this purpose, we need the definition

of an ϵ-approximated solution point of LVI(Ω,M, q) in sense of the projection equation residual

characterization mentioned in Section 2.2.
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Theorem 4.3. Let the sequence {uk} be generated by Algorithm-I or Algorithm-II starting from u0,

and e(uk) be defined in (1.4). For any integer t > 0, it holds that

min
0≤k≤t

∥e(uk)∥2 ≤
∥u0 − u∗∥2G

αminγ(2− γ)(t+ 1)
. (4.9)

Proof. Summarizing the inequality (1.8) over k = 0, 1, . . . , t and using the inequality αk ≥ αmin, we

derive that
∞∑
k=0

∥e(uk)∥2 ≤
∥u0 − u∗∥2G
αminγ(2− γ)

. (4.10)

This implies

(t+ 1) min
0≤k≤t

∥e(uk)∥2 ≤
t∑

k=0

∥e(uk)∥2 ≤
∥u0 − u∗∥2G
αminγ(2− γ)

,

which proves the assertion (4.9). The proof is complete.

Based on Theorem 4.3, we can easily show the worst-case O(1/t) convergence rates in a nonergodic

sense for Algorithm I and Algorithm-II. We omit the proof.

Theorem 4.4. For any ϵ > 0 and u∗ ∈ Ω∗, starting from u0, Algorithm-I or Algorithm-II requires

no more iterations than
⌈

∥u0−u∗∥2G
αminγ(2−γ)ϵ

⌉
to obtain an ϵ-approximated solution point of LVI(Ω,M, q) in

the sense of ∥e(uk)∥2 ≤ ϵ.

Indeed, the worst-case O(1/t) convergence rate in a nonergodic sense established in Theorem 4.3

can be easily refined as an o(1/t) order. We summarize it in the following corollary.

Corollary 4.5. Let the sequence {uk} be generated by Algorithm-I or Algorithm-II; and e(uk) be

defined in (1.4). For any integer t > 0, it holds that

min
0≤k≤t

∥e(uk)∥2 = o(1/t), as t → ∞ (4.11)

Proof. Notice that

t

2
min
0≤k≤t

∥e(uk)∥2 ≤
t∑

i=⌊ t
2
⌋+1

∥e(uk)∥2 → 0 (4.12)

as t → ∞, where ⌊t/2⌋ denotes the greatest integer no greater than t/2 and the equation (4.12) holds

due to (4.10) and the Cauchy principle. The proof is complete.

5 Conclusions

We study the iteration complexity for two projection methods for monotone linear variational in-

equalities, and derive their worst-case convergence rates measured by the iteration complexity in

both the ergodic and nonergodic senses. The proofs critically reply on the strict contraction prop-

erty of the sequences generated by these two algorithms. Our analysis is conducted under mild

assumptions, and the derived worst-case convergence rates are sublinear. We do not require any

error bound conditions which are usually needed for deriving asymptotically linear convergence rates

of projection type methods, or the boundedness restriction onto the feasible set which is usually

required by estimating iteration-complexity-based convergence rates for some algorithms to solve

nonlinear variational inequalities. It is interesting to consider extending our analysis to projection-

like methods for nonlinear variational inequalities such as the extragradient methods in [9] and the

modified forward-backward methods in [15]. We leave it as our future work.
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