Submodular Minimization in the Context of
Modern LP and MILP Methods and Solvers

Andrew Orso, Jon Lee, and Sigian Shen

Department of Industrial and Operations Engineering, University of Michigan
1205 Beal Ave., Ann Arbor, MI 48109-2117
{orso, jonxlee, siqian}Qumich.edu

Abstract. We consider the application of mixed-integer linear program-
ming (MILP) solvers to the minimization of submodular functions. We
evaluate common large-scale linear-programming (LP) techniques (e.g.,
column generation, row generation, dual stabilization) for solving a LP
reformulation of the submodular minimization (SM) problem. We present
heuristics based on the LP framework and a MILP solver. We evaluated
the performance of our methods on a test bed of min-cut and matroid-
intersection problems formulated as SM problems.

Keywords: submodular minimization, Lovéasz extension, column gen-
eration, row generation, dual stabilization

1 Introduction

Let E be a finite (ground) set. A function f : 2% — R is submodular if:
fS)+ f(T) = f(SUT)+ f(SNT) VS, TCE.

The goal of submodular minimization (SM) is to choose S C F such that f(S)
is minimized. SM has strong ties to problems in machine learning, graph theory,
and matroid theory. For example, in graph theory, a cut function, evaluated as
the sum of capacities of arcs that originate from a subset of nodes containing a
given source s, but not containing a given sink ¢, to nodes in the complementary
set, is well known to be submodular; thus, the minimum s-¢ cut problem can be
recast as an SM problem (see [11], for example). Additionally, we can recast the
max-cardinality matroid-intersection problem, as a SM problem (see [3]).

SM is well known to be solvable in polynomial time using the ellipsoid method
(see [7]). But the practicality of such an algorithm is very limited. Iwata, Fleis-
cher, and Fujishige (see [8]) and Schrijver (see [14]) developed the first “combi-
natorial” polynomial-time algorithms for SM, however, again the practical use
of such algorithms is quite limited. An algorithm that has had the most success
seeks the minimum-norm point of the “base polyhedron” (see [5]), but even that
algorithm has been found to be slow and/or inaccurate (see [9]). So we regard
the challenge of developing practically-efficient approaches for SM as open.

The aforementioned algorithms for SM take advantage of the Lovész exten-
sion of a submodular function. This function is an extension of a submodular

2 Submodular Minimization via LP and MILP

function, viewed as defined on the vertices of the unit hypercube [0,1]] to
the entire hypercube, as a piecewise-linear convex function (see [11]). Using the
Lovész extension, one can derive an equivalent linear-programing (LP) problem
with a very large number of columns (see [13], for example). Solving this LP
problem had been deemed highly impractical (see [1], for example). In what fol-
lows, we demonstrate that large-scale LP techniques can be employed with some
success, giving evidence that the LP approach should not be abandoned. Finally,
we consider the use of modern MILP solvers such as Gurobi for solving SM prob-
lems as 0-1 integer programs. We take advantage of heuristics and cutting-plane
methods in these solvers to develop heuristics for approximate SM.

The remainder of this paper is organized as follows. In §2, we present an
equivalent LP formulation, as well as column- and row-generation procedures for
solving it. In §3, we present computational results of these methods to compare
row and column generation, as well as their stabilized method variants. In §4,
we present experimental results of using MILP solvers for solving the dual of
our LP reformulation by utilizing solver cutting-plane methods. Finally, in §5,
we make brief conclusions and give future research directions.

2 Large-Scale LP Representation

Without loss of generality, we assume that f()) = 0. For ¢ € R, we define
c(S) = Y kes ck- The base polyhedron of f is B(f) :={c e RF |VS C E, ¢(5) <
f(S), ¢(E) = f(E)}. Now, define c. € RF by (c.)y := max{c, 0}, for k € E.
The SM problem min{f(S) : S C E} can be recast as max{c_(EF) : ¢ € B(f)}
(see [13], for example). This maximization problem can be formulated as an LP
problem with a large number of variables as follows. Letting c',...,c™ be the
extreme points of B(f), and defining the matrix C := [c¢},...,¢™] € REX™ we
have the equivalent LP problem

SMP: min 173 (1)
st. Cr—a+ =0, (2)

172 =1, (3)

z€RT,a e RY, B e RY, (4)

where 1 (resp. 0) is a vector of appropriate dimension with all entries equal to
1 (resp., 0). To construct a minimizer of f from a basic dual optimum of this
LP problem, we consider the dual variables corresponding to constraints (2);
these dual variables are binary and correspond to a minimizer of f (see [13], for
example).

2.1 Column Generation

Column generation is a standard technique for handling LP formulations in
which we have a manageable number of equations (in a standard-form LP prob-
lem) but a very large (but structured) set of variables. In our context, SMP has

Submodular Minimization via LP and MILP 3

only |E| + 1 equations but m variables (which would typically be exponentially
large, relative to | E]). Define RSMP to be a restricted version of SMIP, in which
C is replaced by C, having a subset of the columns of the full matrix C'. We
iteratively solve instances of RSMP, further incorporating variables that have
negative reduced cost for the current RSMP, and possibly dropping variables
that are nonbasic, after each iteration. Typically, a basis of SMP has |E| + 1
variables, and so we maintain at least |E|+ 1 (but much fewer than m) variables
in RSMP.

To determine which variable to add to the model at the end of each iteration,
we solve a (typically) well-structured problem known as the pricing problem,
which determines a variable, not already in the model, that has negative reduced
cost. Our pricing problem is max{u'c : ¢ € B(f)}, where u € RF is the vector
of optimal dual variables corresponding to the constraints Ce —a+ =0
in RSMP. This is simply the maximization of a linear function over the base
polyhedron of f, which can be efficiently evaluated via the greedy algorithm
(see [10], for example). Furthermore, we can take advantage of the structure of a
particular function f to improve the greedy algorithm. For example, for min-cuts,
the value of a cut during the greedy algorithm can be used in the subsequent
greedy step, after adding one node, by subtracting the capacities of those arcs
no longer in the cut and adding the capacities of the new arcs introduced.

The ease of solution of the pricing problem makes column generation a vi-
able method for SMP, though a common pitfall of these methods is that they
tend to “tail-off”, where convergence begins to slow considerably as the solution
nears the optimum. To combat such woes, we implemented a dual-stabilization
technique, which has been shown to decrease these effects in practice (see [12],
for example). In particular, the optimal dual solutions at each iteration tend to
fluctuate considerably, rather than following a smooth trajectory. Dual stabi-
lization seeks to localize the dual variables from iteration to iteration, hoping to
moderate this behavior (see [12], for example). There exist numerous methods
for stabilizing the dual problem (e.g., interior point stabilization (see [4]), bundle
methods (see [2]), etc.). One such method is the box-step method: consider a
dual optimal solution (u’,v?) € R¥ x R at iteration i of the column-generation
procedure. We introduce new constraints to tlhe dual, which is equivalent to

it

adding columns to the primal, of the form ;"™ € [u; — ¢, u; +e¢] forall jeE,

where € > 0 denotes the user-defined width of the box. In the subsequent itera-
tion, if the optimal dual solution u;H is at either the upper or lower bound of

the box, then the box is recentered at that bound and the procedure continues.
2.2 Row Generation

Alternatively, we consider solving the dual of SMP

SMD: max v (5)
st. CTu41v <0, (6)
0<u<l, (7)

4 Submodular Minimization via LP and MILP

with variables u € R and v € R corresponding to equations (3) and (4) respec-
tively. SMD typically has a very large number of constraints, as opposed to the
large number of variables present in SMP. Of course, by the LP strong-duality
theorem, the optimal values of SMP and SMD are the same. Moreover, in
some sense SMD is more natural to consider since we are really after a dual
basic optimum of SMP. For solving SMD, we consider a row-generation pro-
cedure, which is analogous to column generation for SMP. We will refer to the
constraints generated as greedy cuts, as they are the cuts generated using the
greedy algorithm at each iteration. Thus, we maintain a relaxed version RSMD
of SMD, replacing C with C, as before. We can start with €' having no columns,
and we employ the pricing problem from before to determine greedy cuts to be
added at every iteration. We can apply dual stabilization again, by explicitly
bounding the variables u in RSMD. The significance of solving SMD, as op-
posed to SMP, is not readily apparent, though computational tests on a number
of problem instances demonstrates that row generation may perform better than
column generation, depending on the structure of the problem instance.

3 Computational Results: LP

We tested our LP-based algorithms on classical min s-¢ cut and matroid-intersection
problems.

For the min-cut problem, we produced RMFGEN networks (see [6]) as b
copies of an a X a grid of vertices in which each vertex within a grid is connected
to each of its neighbors, as well as a random vertex in the adjacent grid. The
source is the lower-left vertex of the first grid, and the sink is the upper-right
vertex of the last grid.

For the matroid-intersection problem, let M; = (E,Z;) and My = (E, 1)
be matroids with independent sets Z; and Z, respectively on the common ground
set E. The matroid-intersection problem is the problem of finding the maximum-
cardinality independent set that is in both Z; and Z,. By a result of Edmonds
(see [3]), this problem is equivalent to minimizing the submodular function

f(S) =ri(S)+m(E\S) VSCE,

where r; is the rank function of M;, i = 1,2. For our test instances, we chose
M to be the graphic matroid of a random connected graph on p+1 vertices and
2p edges, and My = M7 to be its dual. This choice of instances has relevance
in determining whether a “bar-and-joint framework” in the plane is “minimally
generically rigid” (see [10], for example).

We identify our test problems with the following key: Type_y-z where Type
denotes the type of problem [MC = minimum cut, MI = matroid intersection],
and y-z denotes the size, e.g., for MC, y = a, z = b, and for MI, y = p, z = 2p.
The problem sizes we consider are given in Table 1.

All computations were performed using Gurobi 5.6.3 with a time limit of
12000 seconds on a Linux cluster with 4GB RAM per core, using four cores for

Submodular Minimization via LP and MILP 5

Table 1. Test Instances

Problem Sizes
Minimum Cut Matroid Intersection
4-32 (512 Nodes, 2032 Arcs) 150-300
8-8 (512 Nodes, 2240 Arcs) 175-350
7-13 (637 Nodes, 2772 Arcs) 190-380
9-9 (729 Nodes, 3200 Arcs) 200-400
5-32 (800 Nodes, 3335 Arcs)

each MC instance, and one core for each MI instance. All results are given as an
arithmetic average across 10 instances for each problem type.

3.1 Standard LP Formulations

We first tested the column- and row-generation procedures. Results are given
in Table 2 and Table 3, for row and column generation, respectively. The Time
column reports the total time, in seconds, required to solve the corresponding
problem to optimality, the #I column reports the total number of iterations
required to solve to optimality, and the Time;y and #I,¢ columns, where j = 1
or 5, report the amount of time and number of iterations required to reach a 7%
optimality gap, respectively.

Table 2. Results of Using Row Generation

Row Generation
Problem Type Problem Time #I Timesy #Is Time o #I1ig

MC_8-8 493 826 282 480 360 602
MC.9-9 2563 1218 1383 687 1769 851
Minimum Cut MC_4-32 494 803 263 432 364 617
MC.5-32 | 3947 1330 1719 695 2688 998
MC_7-13 | 1844 1075 938 616 1244 773

MI_150-300 | 1044 284 110 28 830 223

Matroid MI_175-350| 2173 329 13 0 1568 235
It a “’;_ MI_190-380 | 9172 312 61 0 6937 211
ntersection MI_200-400 | 3776 397 74 6 2502 259

Concerning the min-cut problem, we observe that while the number of itera-
tions required to prove optimality is similar in the two methods, row generation
requires considerably less time. Our tests indicate that the relaxed LP prob-
lems solved during each iteration of row generation require less time than the
restricted LP problems solved during each iteration of column generation, re-
sulting in an overall decrease in time. Similar results extend to the 5% and 1%

6 Submodular Minimization via LP and MILP

Table 3. Results of Using Column Generation

Column Generation
Problem Type Problem Time #I Timesy #I50, Timejo, #1i9

MC_8-8 1017 819 407 480 621 602
MC_9-9 4023 1186 1533 683 2303 847
Minimum Cut MC_4-32 950 816 331 434 575 624
MC.5-32 | 9222 1333 2791 691 5238 993
MC_7-13 | 2800 1054 1070 623 1739 797

MI_150-300 | 1172 334 131 36 841 240

Matroid MI_175-350 | 2407 370 13 0 1506 232
It a m;, MI_190-380| 3103 377 16 0 1783 217
ntersection MI_200-400 | 4273 434 62 4 2442 248

optimality gap, where row generation achieves these optimality gaps in fewer
iterations and less time. Further, both methods require only about 50% of the
total time in order to reach a 5% optimality gap and only about 75% of the
total time in order to reach a 1% optimality gap. This quick, early convergence
motivates the development of MILP heuristics in the next section.

For the matroid intersection, we see that row generation is only marginally
better than column generation for the instances tested. While this result holds
across many instances, instance MI_190-380 seems to be difficult for row gener-
ation. We will see that dual stabilization, introduced in the next section, helps
to reduce this difficulty.

3.2 Dual-Stabilized Formulations

For the dual-stabilized variants of the row and column generation, we ran all
problem instances with ¢ = 0.25, where € is the width of the box constraints.
The results reported in Table 4 and Table 5 follow the same format as was
described for the standard LP formulations.

Both methods derive some benefit from dual stabilization. In fact, both meth-
ods see a decrease in the number of iterations required to solve to optimality
by approximately 15%. For the min-cut problem, row generation is still a clear
front runner, though the improvement derived from stabilizing the dual problem
seems to be consistent across both methods, in terms of time and iterations.
For the matroid-intersection problem, stabilizing row generation yields a greater
improvement in running time. This is in contrast to the standard LP methods,
in which neither algorithm proved to be more effective.

4 Computational Results: MILP

In this section, we take advantage of the fact that extreme-point optima of
SMD are integer and correspond to minima of f. We demonstrate that there

Submodular Minimization via LP and MILP 7

exists some number M of greedy cuts at which point RSMD can be solved
to optimality with a pure integer-programming approach via branch and bound
(B&B). We examine the use of this idea in solving SMD, as well as for heuristics.

Table 4. Results of Using Dual-Stabilized Row Generation

Dual-Stabilized Row Generation

Problem Type Problem Time #I Timesy #I50, Timejo, #I1i9

MC_8-8 432 738 225 466 308 571
MC_9-9 1659 1124 824 689 1113 836
Minimum Cut MC_4-32 381 769 165 416 252 587
MC.5-32 | 3234 1255 1251 686 2126 980
MC_7-13 982 997 444 605 683 779

MIL150-300| 701 194 30 0 30 0
Matroid MI_175-350 | 1260 209 50 0 50 0
Itorseotion MI_190-380 | 1730 208 69 0 69 0
n MI_200-400 | 2427 250 81 0 81 0

Table 5. Results of Using Dual-Stabilized Column Generation

Dual-Stabilized Column Generation

Problem Type Problem Time #I Timesy #Is9 Time oy #1194

MC_8-8 1069 745 511 475 713 569
MC_9-9 6118 1096 3049 702 3917 806
Minimum Cut MC4-32 | 1010 752 393 416 677 598
MC.5-32 | 8785 1177 3576 678 5861 930
MC_7-13 | 3030 1005 1290 614 2027 776

MI_150-300| 832 240 29 0 37 2
Mateoid MI_175-350 | 1661 267 51 0 180 22
; atroic MI_190-380| 2219 275 66 0 66 0
ntersection |\ 900 400(3123 331 77 0 77 0

4.1 Submodular Minimization Using Integer Programming

The goal of this test was to explore the utility of modern integer-programming
techniques for SM. We carried this out by a procedure we call “submodular
minimization using integer programming” (SMIP). In the first phase of this
method, we solve SMD to optimality using standard row generation and define
K to be the number of greedy cuts necessary to verify optimality. By resolving
RSMD with the first L greedy cuts generated, for some choice of L, the result is

8 Submodular Minimization via LP and MILP

a suboptimal solution of the LP problem SMD. But, we can pass this relaxation
having L greedy cuts to an MILP solver and allow the MILP solver to run until
completion, utilizing B&B, heuristics, cutting planes, etc. At completion, we can
then run our greedy-cut-generation procedure again to determine if there exists
any violated greedy cuts; if not, then the MILP solution is optimal to SMD,
otherwise the MILP solver was unable to achieve a true optimum when provided
with the L greedy cuts. We carried out such a scheme, continuing to decrement
the number of cuts added to RSMD), until the MILP solution returned was not
optimal to SMD, at which point we set M to the previous number of cuts for
which the MILP solution was optimal for SMD. So, M/K is the proportion
of greedy cuts actually needed to solve an instance to optimality in this MILP
framework, which is typically very low in practice.

In the second phase, we initialized RSMD with the M sufficient constraints
from the first phase and formulated RSMD as an integer program with variables
u € {0,1}F. We solved the integer variant of RSMD as efficiently as possible
with varying levels of cut aggressiveness under the MILPFocus Gurobi parameter
that controls the focus on proving optimality of the given MILP.

We ran SMIP on MC_8-8, MC_4-32, and MC_7-13 as well as MI_150-300 and
MI_175-350. We report the following results for these procedures: the number
of iterations K required to solve instances to optimality using row generation,
the number of iterations M sufficient to solve instances using a pure integer-
programming method, the total amount of time, in seconds, for both phases,
Time, the amount of time required to get the true optimal solution as an in-
cumbent solution in the B&B search of the second phase, Timey, and the number
of Gomory and MIR cuts generated.

The results reported in Tables 6 and 7 demonstrate that a pure integer-
programming approach to solving these problems may be beneficial, especially
in the case of matroid intersection, where the function evaluations during the
greedy algorithm generally require a large number of computationally-expensive
matrix-rank calculations. We also note the increase in the amount of time re-
quired to solve these problems as the aggressiveness of the cuts increases. The
min-cut problem saw little benefit from this method as the average reduction
in the number of iterations is not significant enough to warrant the long MILP
solve time. In fact, compared to row generation, the times recorded are far worse.
Conversely, for matroid intersection, the number of greedy cuts sufficient to solve
to optimality in an MILP framework was approximately 60% of the total num-
ber required in the row-generation setting, while we required only a fraction of
the time that would be required to generate the difference in cuts solving us-
ing integer-programming techniques. On the two matroid-intersection problems,
the integer-programming approach performed similarly to dual-stabilized row
generation.

4.2 Greedy-Cut Integer-Programming Method

In a similar vein, we can enhance SMIP by integrating greedy cuts throughout
the B&B search in the second phase. We solved problems MC_4-32, MC_7-13,

Table 6.

Submodular Minimization via LP and MILP

Results of Using SMIP on Minimum Cut

Min-Cut SMIP

Size Cut Level K M Time Timeg Gomory MIR
0 826 492 1192 15 0 0
3-8 1 826 492 1193 10 6 6
2 826 492 2220 27 12 2911
3 826 492 3370 52 12 9780
0 803 548 1251 20 0 0
4-32 1 803 548 903 23 5 0
2 803 548 1462 61 13 302
3 803 548 2060 100 12 1317
0 1070 761 1831 39 0 0
713 1 1070 761 1827 47 4 0
2 1070 761 2495 87 9 5575
3 1070 761 2642 135 9 5575
Table 7. Results of Using SMIP on Matroid Intersection
Matroid-Intersection SMIP
Size Cut Level K M Time Timex Gomory MIR
0 284 199 859 10 0 0
1 284 199 835 4 11 0
150-300 2 284 199 2354 722 29 0
3 284 199 1710 721 27 0
0 329 251 1673 6 0 0
1 329 251 2353 7 11 0
175-350 2 329 251 3089 26 29 0
3 329 251 3199 23 45 0
Table 8. Collection of Greedy Cut SMIP Data
SMIP Utilizing Greedy Cuts
Problem Type Problem K M Timerp Timerc
MC_4-32 803 507 539 493
Minimum Cut MC_7-13 1072 669 1664 1843
MC_8-8 826 435 546 492
MI_150-300 284 185 1077 1043
Matroid Int MI_175-350 329 218 2076 2173
MI_190-380 335 209 2426 9171

10 Submodular Minimization via LP and MILP

MC_8-8, MI_150-300, MI_175-350, and MI_190-380 and report the total number
of cuts required to solve to optimality using row generation, K, the number of
cuts sufficient to solve to optimality using the greedy cut MILP method, M, the
average time, in seconds, to solve to optimality, Témerp, and the average time
to solve the equivalent row-generation problem as a comparison point, Timerg.

The results in Table 8 for the min-cut problem demonstrate that this method
is competitive with the standard row-generation method proposed previously. In
fact, for a problem requiring a larger number of rows generated to solve to op-
timality, e.g., MC_7-13, the IP method performs better than the row-generation
procedure. For matroid intersection, we see little improvement in terms of com-
putation time over the row-generation method, and it is actually worse than
SMIP without greedy cuts.

4.3 Heuristic Methods

We demonstrated not only the practicality of an MILP-based algorithm for solv-
ing SM problems, but also the relatively small amount of time in which the true
optimal solution becomes an incumbent of the B&B search. We take advantage
of this fact, in conjunction with local-search heuristics, to develop a fast method
for getting good, approximate solutions to SMP, and equivalently SMD.

We use a simple local-search method in the heuristics that follow. Given a
vector u € {0, 1}E, we repeatedly change at most two components, so as to get
the maximum decrease in f.

The first heuristic we develop can be employed in the context of row or col-
umn generation. We initialize RSMD (or RSMP) and proceed with row (resp.,
column) generation. At some point (say after a fixed number v of iterations), we
give up and switch to local search, starting that from a rounding of the primal
(resp., dual) solution u € [0,1]¥ to the nearest point in {0,1}¥. Results for the
row-generation version are given in Table 9 with #Cuts being the number of
greedy cuts generated before switching to local search, Time being the total
time in seconds, and Ratio being the ratio of the difference between the optimal
and heuristic value with the optimal value.

The second heuristic is identical to the first heuristic until local search is
called. Before switching to local search, we run an MILP solver until some user-
defined state is reached. A good option seems to be to run the MILP solver until
three incumbent solutions of the B&B search have been found, at which point
we start local-search from the best incumbent found. Computational results for
SMIP demonstrate that on average, the true minimum of f is found as an MILP
incumbent very quickly. Results for this method are given in Table 10, with
columns indexed the same as in previous section, except Timerp, which is the
time required to find the third incumbent of the B&B search.

From the results in Table 9, we see that the first heuristic competes with
standard row-generation method for the min-cut problem, yielding shorter times
and near optimal solutions in most cases. For the matroid-intersection problem,
optimality is achieved in all cases, though the time benefit does not become
significant until we consider problems of larger size. For the second heuristic,

Submodular Minimization via LP and MILP 11

Table 9. Results from heuristic method without MILP extension

Heuristic w/o MILP Extension

Problem Type Problem # Cuts Time Ratio
500 437 7.3
MC.8-8 650 463 0
800 1728 0.02
MC-9-9 1000 1964 0
Minimum Cut 500 525 037
MC-4-32 700 463 0
600 972 0.11
MC.7-13 700 1064 0.11
100 1243 0
MI_150-300 200 1202 0
. 150 4144 0
Matrmfi MI_175-350 300 2935 0
Intersection
200 4106 0
MI_190-380 300 4489 0

Table 10. Results from heuristic method utilizing MILP extension

Heuristic with MILP Extension

Problem Type Problem # Cuts Time Timerp Ratio
500 1515 1110 0.77
MC.8-8 650 1027 453 3.49
800 4095 1708 1.55
MC-9-9 1000 3955 667 3.62
Minimum Cut 600 1499 925 1.97
MC.4-32 700 1059 327 1.96
600 2112 1127 1.55
MC.7-13 700 3742 2487 2.24
100 371 4 0.02
MI.150-300 200 667 5 0.05
. 150 935 8 0.02
Matrou.i MI_175-350 300 1812 6 0.04
Intersection
200 1588 8 0.02
MI190-380 300 2247 11 0.05

12 Submodular Minimization via LP and MILP

results in Table 10 indicate poor performance on the min-cut problem, with long
solve times and larger ratios. Conversely, the time required to solve the matroid-
intersection problem is cut down significantly and the ratio is very small.

5 Conclusion

We explored the applicability of modern LP/MILP methods for SM. For LP, we
saw that row generation typically performs better than column generation, and
we saw that MILP methods can help in an exact or heuristic context. We are
currently expanding our tests and exploring how to incorporate side constraints.

Acknowledgement

This research was supported in part by Advanced Research Computing at the
University of Michigan, Ann Arbor. J. Lee was partially supported by NSF
grant CMMI-1160915 and ONR grant N00014-14-1-0315. S. Shen was partially
supported by NSF grants CMMI-1433066 and CCF-1442495.

References

1. Bach, F.: Learning with submodular functions: A convex optimization perspective.
Foundation and Trends in Machine Learning 6, 145-373 (2013)

2. Briant, O., Lemarechal, C., Meurdesoif, P., Michel, S., Perrot, N., Vanderbeck, F.:
Comparison of bundle and classical column generation. Math. Prog. 113, 299-344
(2008)

3. Edmonds, J.: Submodular functions, matroids, and certain polyhedra. Combina-
torial Structures and Their Applications pp. 69-87 (1970)

4. Elhedhli, S., Goffin, J.L.: The integration of an interior-point cutting plane method
within a branch-and-price algorithm. Math. Prog. 100(2), 267294 (2004)

5. Fujishige, S., Isotani, S.: A submodular function minimization algorithm based on
the minimum-norm base. Pacific Journal of Optimization 7(1), 3-17 (2011)

6. Goldfarb, D., Grigoriadis, M.D.: A computational comparison of the dinic and
network simplex methods for maximum flow. Ann. of OR 13(1), 81-123 (1988)

7. Grotschel, M., Lovéasz, L., Schrijver, A.: The ellipsoid method and its consequences
in combinatorial optimization. Combinatorica 1(2), 169-197 (1981)

8. Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial strongly polynomial algo-
rithm for minimizing submodular functions. JACM 48, 761-777 (2001)

9. Jegelka, S., Lin, H., Bilmes, J.: On fast approximate submodular minimization. In:
Advances in Neural Information Processing Systems (NIPS), pp. 460-8 (2011)

10. Lee, J.: A First Course in Combinatorial Optimization. Cambr. Univ. Press (2004)

11. Lovész, L.: Submodular functions and convexity. In: Mathematical Programming
The State of the Art, pp. 235-257. Springer (1983)

12. Liibbecke, M.E., Desrosiers, J.: Selected topics in column generation. Operations
Research 53(6), 1007-1023 (2005)

13. McCormick, S.T.: Submodular function minimization. Handbooks in Operations
Research and Management Science 12, 321-391 (2005)

14. Schrijver, A.: A combinatorial algorithm minimizing submodular functions in
strongly polynomial time. JCT, Ser. B 80(2), 346-355 (2000)

