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Abstract

We develop an optimization technique to compute local solutions to synthesis
problems subject to integral quadratic constraints (IQCs). We use the fact that
IQCs may be transformed into semi-infinite maximum eigenvalue constraints over
the frequency axis and approach them via nonsmooth optimization methods. We
develop a suitable spectral bundle method and prove its convergence in the sense
that, for an arbitrary starting point, the accumulation points of the sequence of
serious iterates are critical. Our new way to look at IQCs is particularly suited
for systems with large state dimension, because we avoid the use of Lyapunov
variables. We present two numerical tests which validate our approach in the
case of parametric uncertainties.

Keywords. Robust control, parametric uncertainty, integral quadratic constraint
(IQC), structured controllers, NP -hard problems, nonsmooth optimization.

Notation

Let Rn×m be the space of n × m matrices, equipped with the corresponding scalar
product 〈X, Y 〉 = X • Y = Tr(X>Y ), where X> is the transpose of the matrix X,
Tr (X) its trace. For complex matrices X A stands for its conjugate transpose. For
Hermitian or symmetric matrices, X � Y means that X−Y is positive definite, X � Y
that X − Y is positive semidefinite. We use the symbol λ1 to denote the maximum
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eigenvalue of a symmetric or Hermitian matrix. We use concepts from nonsmooth
analysis covered by [11]. For a locally Lipschitz function f : Rn → R, ∂f(x) denotes
its Clarke subdifferential at x.

1 Introduction

In many control applications stability and performance have to be guaranteed in the
presence of various types of uncertainties in the system. These may be due to the fact
that model equations are not perfectly known, or they may be attributed to idealiza-
tions in the model building, such as neglected nonlinearities, truncation of a high order
components, or simply to incomplete knowledge of some physical parameters. The
present paper discusses a numerically efficient way to analyse given controllers and to
synthesize new ones in the presence of uncertainties, which we describe by so-called
integral quadratic constraints (IQCs). While analysis with IQCs has been investigated
from the late 1990s on, see e.g. [32, 27, 19, 18], there are fewer references devoted to
synthesis under IQCs, due to its inherent difficulty [36, 10, 22, 13]. Note that in all ex-
isting approaches, synthesis problems involving IQCs are characterized by BMIs. This
leads to a major challenge in numerical optimization, not only because these problems
are nonconvex. More seriously, these BMIs are of large size due to the presence of
Lyapunov variables, and are often very ill-conditioned due to the disparity between the
Lyapunov variables and the controller gains. In this work, we have therefore adopted
a different strategy, where Lyapunov variables are avoided. This leads to smaller and
better tracktable optimization programs.

The organization of the paper is as follows. In Section 2 we show how IQCs arise
and can be transformed into semi-infinite maximum eigenvalue constraints by introduc-
ing multipliers or scalings. In Sections 3 we show how to compute the function values
of our nonsmooth objective. A specialized bisection algorithm to compute function
values is given in Section 4. Section 5 discusses how to compute generalized derivative
information. Computation of generalized gradients in several cases of practical interest
is addressed in section 6. These include IQC analysis, positive real synthesis, para-
metric robust synthesis, and more generally, IQCs with dynamic multipliers. A central
result of the paper is the nonsmooth algorithm introduced in section 4, whose details
and practical aspects are discussed, and for which we have established convergence to
critical points in [6]. Finally, several numerical experiments to validate our approach
are given in section 8.

2



2 Integral quadratic constraints

Consider an uncertain plant in LFT (Linear Fractional Transformation) form:
ẋ
z∆

z
y

 =


A B∆ B1 B2

C∆ D∆∆ D∆1 D∆2

C1 D1∆ D11 D12

C2 D2∆ D21 0



x
w∆

w
u


w∆ = ∆(z∆) ,

(1)

where ∆ is an (unknown) uncertain continuous nonlinear operator, which varies in a
known class ∆ of uncertainties. Here x ∈ Rn is the state of the system, u ∈ Rm2

the control signal, w ∈ Rm1 the exogenous input, z ∈ Rp1 the performance variable,
y ∈ Rp2 the measurement vector and (w∆, z∆) ∈ Rm∆ ×Rp∆ represents the uncertainty
channel.

We assume that performance of the system (1) is expressed by the channel (w, z)
through the integral quadratic constraint (IQC) specified by the Hermitian matrix
Πp(s) = ΠA

p(s) ∫ +∞

−∞

[
z(jω)
w(jω)

]A
Πp(jω)

[
z(jω)
w(jω)

]
dω ≤ 0 (2)

for all square integrable signals w. Then the robust control problem is to find a linear
time-invariant output feedback controller

K(s) = CK(sI − AK)−1BK +DK , AK ∈ Rk×k, (3)

for the uncertain plant (1), such that the following conditions are satisfied:

(i) The closed-loop system (1), (3) is internally stable for all ∆ ∈∆.

(ii) The performance IQC (2) holds for all ∆ ∈∆.

Here k is the order of the controller, and the possibility k = 0 of a static controller
K(s) = DK is included.

Following the IQC approach in [32], we solve the robust synthesis problem by
assuming that we dispose of a class Π of Hermitian matrix functions Π∆(s) = ΠA

∆(s),
called multipliers or scalings, such that for every fixed Π∆(s) ∈ Π, all admissible
uncertainties ∆ ∈∆ satisfy the integral quadratic constraint (IQC) defined by Π∆(s) =
ΠA

∆(s), that is, ∫ +∞

−∞

[
z∆(jω)

∆(z∆)(jω)

]A
Π∆(jω)

[
z∆(jω)

∆(z∆)(jω)

]
dω ≥ 0 (4)
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for all square integrable test signals z∆. In other words, we assume that the class class
Π of multiplier matrix functions Π∆(s) is such that

∆ ⊆
⋂

Π∆(s)∈Π

{∆ : ∆ satisfies (4) with Π∆(s)}, (5)

and we hope that the inclusion in (5) is as tight as possible in order to avoid con-
servatism. Note that multipliers Π∆(s) and Πp(s) are often restricted to constant
Hermitian matrices, but in this work we will consider dynamic multipliers Π∆(·).

Let us introduce the closed-loop transfer matrix

T (s,K) =

[
T∆∆(s,K) T∆w(s,K)
Tz∆(s,K) Tzw(s,K)

]
:=


ẋc` = A(K)xc` + B(K)

[
w∆

w

]
[
z∆

z

]
= C(K)xc` +D(K)

[
w∆

w

]
,

(6)

where state-space data A(K), B(K), C(K) and D(K) determine the closed-loop system
(1) and (3) with the ∆-loop w∆ = ∆(z∆) still open. Here closed-loop data are given
as:

A(K) := A+ B2KC2, B(K) := B1 + B2KD21, C(K) := C1 +D12KC2,
D(K) := D11 +D12KD21 ,

(7)

with the standard dynamic augmentation

A :=

[
A 0
0 0k

]
B1 :=

[
B∆ B1

0 0

]
, B2 :=

[
0 B2

Ik 0

]
C1 :=

[
C∆ 0
C1 0

]
, D11 :=

[
D∆∆ D∆1

D1∆ D11

]
D12 :=

[
0 D∆2

0 D12

]
,

C2 :=

[
0 Ik
C2 0

]
, D21 :=

[
0 0

D2∆ D21

]
K :=

[
AK BK

CK DK

] (8)

Then we have the following fundamental fact, see [26, 32] for details.

Theorem 1 Suppose K is nominally closed-loop stabilizing, i.e. A(K) is Hurwitz.
Assume (5) and suppose there exists a multiplier Π∆(s) ∈ Π such that the following
frequency domain inequality (FDI) is satisfied:[

T (jω,K)
I

]A
Π(jω)

[
T (jω,K)

I

]
≺ 0 ∀ω ∈ [0, ∞] (9)
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where

Π :=

[
Π11 Π12

ΠA

12 Π22

]
:=


Π∆,11 0 Π∆,12 0

0 ΠA

p,11 0 Πp,12

ΠA

∆,12 0 Π∆,22 0

0 ΠA

p,12 0 Πp,22

 . (10)

Then robust stability (i) and performance (ii) are satisfied for all ∆ ∈∆.

Proof. We multiply the FDI in (9) with [w∆;w] from the left and from the right and
expand. Using [z∆; z] = T [w∆;w] in (6) we recover the sum of the two expressions in
(4) and (2). Since by assumption (4) is satisfied, this term is nonnegative. The whole
FDI being negative, dropping the ≥ 0 term leaves us with the remaining term in (2),
which must then be negative. �

Remark 1 Notice that we obtain conditions (i) and (ii) not just for the set ∆, but for
the larger set {∆ : ∆ satisfies (4) with Π∆(s)}, where Π∆(s) is the multiplier in the
Theorem. This shows that the IQC approach is conservative, but as soon as equality
holds in (5), the conservatism is mild.

Inequality (9) is known as the robust performance FDI, see [32]. It strongly suggests
introducing the nonsmooth function

f(K,Π) = max
ω∈[0,∞]

λ1

([
T (jω,K)

I

]A
Π(jω)

[
T (jω,K)

I

])
(11)

= λ1,∞

([
T (·, K)

I

]A
Π(·)

[
T (·, K)

I

])

and considering the optimization program

minimize f(K,Π)
subject to Π∆ ∈ Π

K is closed-loop stabilizing
(12)

which is then minimized until a value f(K,Π) < 0 is found. Here the performance
multiplier Πp in (10) is held fixed, and it is assumed that a convex cone Π of multipliers
Π∆(s) satisfying (5) for the admissible uncertainties ∆ ∈ ∆ is available. Notice that
Π may a priori be infinite dimensional, but we will later on have to restrict this class
in order to make the problem computationally tractable. All that is required for the
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moment is that Πv ∈ L∞ for v ∈ L∞ for every Π ∈ Π, because then the argument of
λ1,∞ in (11) is an element of L∞.

We will now address the following questions. How to compute the function value
of f? How to compute Clarke subgradients of f? And finally, how to generate descent
steps in order to decrease the value of f below 0? Notice that our approach to mini-
mizing f until a negative value occurs is based on a local optimization paradigm. In
consequence, we may occasionally end up with a local minimum of (12) whose value is
≥ 0, meaning failure to solve the control problem. In this case the method has to be
restarted with a different initial seed.

A special case of program (12) is robustness analysis, where K = K0 is held fixed,
K0 being referred to as the controller to be analysed. The question is then whether
the closed loop system with feedback K0 achieves the robust performance Πp, that is,
whether (i) and (ii) hold uniformly for all admissible ∆ ∈ ∆. This problem is easier,
being convex in the decision variable Π∆ ∈ Π. Currently analysis problems are solved
by tailored interior point methods for LMIs arising from the Kalman-Yakubovich-
Popov lemma [39, 19]. Even in that case we propose to proceed via (12), because this
avoids Lyapunov variables. The reduction in the number of unknowns may be dramatic
for systems with large state dimension n as well as for problems involving high order
dynamic multipliers Π∆(s).

3 Computing λ1,∞

Introducing the semi-infinite objective function f(K,Π) avoids the use of Lyapunov
variables, but poses a new major problem. Namely, program (12) is now semi-infinite,
and such programs are often difficult since discretization has to be used, which leads
back to a large number of unknowns. Fortunately, our situation is different, because
for a variety of choices of Π(s) there exist efficient ways to compute the function value
f(x) for given data x = (K,Π).

During the following we shall write F (K,Π; jω) for the FDI in (9), so that f(K,Π) =
maxω∈[0,∞] λ1 (F (K,Π; jω)). We start by explaining how the function value f(K,Π) is
computed for constant Π. This is based on an iterative procedure introduced by Boyd
et al. [9, 8]. We start with the following

Lemma 1 Let Π be constant and f(K,Π) = maxω∈[0,∞] λ1 (F (K,Π; jω)). Then for
λ ∈ R, the estimate f(K,Π) < λ is equivalent to the following frequency domain test:[

(jωI −A(K))−1B(K)
I

]A
Ψ[λ]

[
(jωI −A(K))−1B(K)

I

]
≺ 0 ∀ω ∈ [0,∞] , (13)
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where

Ψ[λ] :=

[
C(K) D(K)

0 I

]A [
Π11 Π12

ΠA

12 Π22 − λI

] [
C(K) D(K)

0 I

]
. (14)

Proof. Substituting Ψ[λ] into (13) and expanding leads back to the expression (9).
�

Lemma 2 Let Π be constant and f(K,Π) = maxω∈[0,∞] λ1 (F (K,Π; jω)). Then for
λ ∈ R, the estimate f(K,Π) < λ is satisfied if and only if Ψ22 ≺ 0 and the Hamiltonian
matrix

H[λ] =

[
A(K)− B(K)Ψ−1

22 ΨA

12 −B(K)Ψ−1
22 B(K)>

−(Ψ11 −Ψ12Ψ−1
22 ΨA

12) −(A(K)− B(K)Ψ−1
22 ΨA

12)A

]
(15)

has no eigenvalue on jR+. Here Ψ = Ψ[λ] is given by (14) in the previous Lemma.

Proof. This may be inferred from spectral factorization theory [44, p. 350]. A
different way to say it is by way of the Kalman-Yakubovic-Popov lemma, which applies
directly to FDIs of the form (13). �

Remark 2 We are at an important junction here. Having seen the KYP-lemma on
scene, we might have the reflex to switch to its branch where a matrix inequality arises.
If we put this up for (13), we end up with a bilinear matrix inequality (BMI) for
synthesis, while of course for analysis, where K is fixed, a linear matrix inequality
(LMI) is obtained. The current trend is to solve these LMIs with specially tailored
interior point solvers [19]. The inconvenience is that a new unknown variable X, the
Lyapunov matrix, arises. As its size is quadratic in the order of the system A(K),
this leads to a large number of unknowns for large order systems. In practice, LMIs
derived from the KYP lemma become quickly inefficient as systems get sizeable. We
recommend our own approach instead, because it avoids the use of Lyapunov variables
X and leads to much smaller convex programs.

For BMIs the situation is even worse because the problem is in addition non-convex.
Practical solutions for BMIs derived from the KYP lemma are therefore limited to
small [24] or medium size [43] problems. A theoretical approach to such BMIs creates
towers of approximations by LMIs with growing dimensions [29], similar to the idea of
generating valid inequalities for integer programs. Theoretically, solving one of these
LMIs is good enough to globally solve the BMI. Unfortunately, the size of the LMI in
question, i.e. the one high enough in the tower, even if it was known, which is usually
not the case, is now exponential in the order of A(K). These methods could therefore
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hardly be expected to be functional in practical situations. Again we recommend our
own method instead. It is less ambitious, because it does not aim at the globally optimal
solution of the BMI, but it works in many cases.

Suppose we want to check an FDI on a restricted frequency band I = [ω1, ω2], where
0 ≤ ω1 < ω2 ≤ ∞. Then the Hamiltonian test has to be modified. We write

fI(K,Π) := max
ω∈I

λ1 (F (K,Π; jω)) .

Checking an FDI on an interval I = [ω1, ω2] with ω2 6= ∞ can be reduced to the
previous case by a one-to-one nonlinear transformation mapping the interval [ω1, ω2]
onto [0,∞] and applying the Hamiltonian test to the transformed system. Frequencies
are related through

ω′ =
ω1 − ω
ω − ω2

⇐⇒ ω =
ω′ω2 + ω1

ω′ + 1

where ω ∈ [ω1, ω2] and ω′ ∈ [0,∞]. Correspondingly, we infer the transformations in
the Laplace variables

1

s
=

1 + j 1
s′

jω2 − ω1
1
s′

⇐⇒ 1

s′
=
jω2 − s
ω1 + js

.

Using the Redheffer star product [41, 14] and posing α :=
√
ω2 − ω1/ω2 this can be

written as
1

s
=

1

s′
?

[ ω1

jω2
α

α 1
jω2

]
.

Finally, an FDI involving T (s) = C(sI −A)−1B+D = 1
s
?

[
A B
C D

]
on the the interval

[ω1, ω2] is equivalent to an FDI involving T̃ (s′) on the interval [0,∞] with

T̃ (s′) =
1

s′
I ?

[ ω1

jω2
I αI

αI 1
jω2
I

]
?

[
A B
C D

]
.

We deduce the state-space representation of T̃ (s′) from the right star product in the
previous expression[

Ã B̃

C̃ D̃

]
=

[
ω1

jω2
I + α2A(I − A/(jω2))−1 α(I − A/(jω2))−1B

C(I − A/(jω2))−1α D + C/(jω2)(I − A/(jω2))−1B

]
,

which is well-defined since A is Hurwitz. Altogether, we obtain the following
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Lemma 3 Let Π be static and fI(K,Π) = maxω∈I λ1 (F (K,Π; jω)) . Then for λ ∈ R,
fI(K,Π) < λ is satisfied if and only if the Hamiltonian

H̃ =

[
Ã(K)− B̃(K)Ψ̃−1

22 Ψ̃A

12 −B̃(K)Ψ̃−1
22 B̃(K)>

−(Ψ̃11 − Ψ̃12Ψ̃−1
22 Ψ̃A

12) −(Ã(K)− B̃(K)Ψ̃−1
22 Ψ̃A

12)A

]
(16)

has no eigenvalues in jR+ and Ψ̃22 ≺ 0, where

Ψ̃22 = D̃(K)>Π11D̃(K) + D̃(K)>Π12 + ΠA

12D̃(K) + Π22 − λI,

and D̃(K) = D(K) + C(K)/(jω2) (I −A(K)/(jω2))−1 B(K).

From the above we immediately obtain a procedure to compute f(K,Π) when Π(s) is
an elementary function in the following sense. Let I1, . . . , I` be sub-intervals of [0,∞],
and let

Π(s) =
∑̀
i=1

ΠiχIi(s), (17)

where χIi is the characteristic function of the ith frequency band. Then computing
f(K,Π) amounts to computing a finite number of values fIi(K,Πi).

We may go further and replace each fIi by a function fi, where Πi(s) is dynamic
on a frequency band Ii and has the special form

Πi(s) = Ri(s)
AΦiRi(s), Φi = ΦA

i , (18)

where Ri(s) is assumed to have a state-space realization Ri(s) = CiR(sI−AiR)−1BiR+
DiR and where Φi, (AiR, BiR, CiR, DiR) and the controller K are unknown. In fact,
substituting (18) into (9) gives a term of the same form on each Ii, so the KYP lemma
may still be applied, and Φi plays the role previously given by Πi.

4 Hamiltonian algorithm

Similarly to the line taken in [9, 8], where the computation of the H∞ norm is discussed,
Lemma 2 can be used to construct a quadratically convergent algorithm to compute
f(K,Π) for constant Π. The algorithm from [9, 8] not only computes the function
value, it also provides the set of active frequencies. We use the notations H[λ] for (15)
and Ψ[λ] for (14) to highlight dependency on λ in the above notations. Dependency
on K and Π is suppressed because they are fixed.
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Computing f(K,Π) for constant Π

Fix tolerance level ε > 0.
1. Compute λ = inf{λ : Ψ22[λ] ≺ 0}. This is a lower bound for f(K,Π).

Initialize λ with λ ≤ λ ≤ f(K,Π)). Put Ω = {∞}.
2. For given λ compute imaginary eigenvalues jω1, . . . , jωp of H[λ].

If there are none, then return value λ and active set Ω. Otherwise
3. Define ω+

k = 1
2

(ωk + ωk+1), k = 1, . . . , p− 1. Let Ω+ = {ω+
1 , . . . , ω

+
p−1}.

4. Put λ+ = max
i=1,...,p−1

(1 + ε)λ1

(
F (K,Π; jω+

i )
)
− ελ. Go back to step 2.

Remark 3 Notice that Ψ22[λ] = D(K)>Π11D(K)+D(K)>Π12+ΠA

12D(K)+Π22−λI =
Ψ22[0]− λI, so λ = λ1 (Ψ22[0]) is the maximum eigenvalue of Ψ22[0].

Definition. The set Ω(K,Π) = {ω ∈ [0,∞] : λ1 (F (K,Π; jω)) = f(K,Π)} is called
the set of active frequencies at x = (K,Π).

Remark 4 The set of active frequencies Ω(K,Π) is estimated in step 3 of the al-
gorithm. If the new λ+ leads to a Hamiltonian H[λ+] without eigenvalues on the
imaginary axis, we keep Ω+ from the previous step 3 as our estimation of Ω(K,Π).

The error tolerance of the peak positions is O(ε
1
2 ). More precisely, if ω1, ω2 ∈ Ω

and [ω1, ω2] contains the peak ω̄, then ω+
1 = (ω1 + ω2)/2 =: ω̄(ε) is its estima-

tion retained in Ω+. Assume that the algorithm stops at this stage, so that we have
φ(ω1) = φ(ω2) and φ(ω1) ≤ φ(ω̄) ≤ (1 + ε)φ(ω1), where φ denotes the frequency curve
ω 7→ λ1 (F (K,Π; jω))−λ. Now recall that φ is twice differentiable at the peak ω̄, [8], so
that φ(ω̄(ε)) = φ(ω̄)+ 1

2
φ′′(ω̄)(ω̄(ε)−ω̄)2+O((ω̄(ε)−ω̄)3). Since φ(ω̄(ε)) ≥ φ(ω̄)/(1+ε),

we deduce

|ω̄(ε)− ω̄| ≤

√
2|φ(ω̄)|
|φ′′(ω̄)|

ε
1
2 +O(|ω̄(ε)− ω̄|

3
2 ).

This means that we have ε−
1
2 |ω̄(ε)− ω̄| →

√
2|φ(ω̄)|
|φ′′(ω̄)| as ε→ 0.

5 Ingredients from nonsmooth analysis

In order to prepare our nonsmooth descent technique to minimize f(K,Π), we need to
show how to compute derivative information for f . To this aim, we shall repeatedly
invoke the concept of active frequencies defined above. The following can be found in
[8, 7]:
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Lemma 4 Let Π(s) be rational and K closed-loop stabilizing. Then the set Ω(K,Π)
of active frequencies is either finite, or Ω(K,Π) = [0,∞].

Proof. Notice that as K and Π are fixed, we are concerned with a one parameter
family ω 7→ F (K,Π(jω); jω) of m1 ×m1 Hermitian matrices. This family is analytic
on [0,∞], where analyticity at ∞ follows from the fact that T (jω,K) is stable. The
bundle of the m1 eigenvalues λi (F (K,Π(jω); jω)) as functions of ω has therefore a very
specific structure: it consists of m1 real analytic functions φi(ω), ω ∈ R; see e.g. [28,
p. 82, p. 138], or [31]. More precisely, there are m1 real analytic functions φ1, . . . , φm1

such that

{λ1(F (K,Π(jω); jω), . . . , λm1(F (K,Π(jω); jω)} = {φ1(ω), . . . , φm1(ω)}, (19)

where λi(F (K,Π(jω); jω)) are the eigenvalues of F (K,Π(jω); jω). These φi are also
analytic at∞, because we are dealing with a stable (proper) transfer matrix T (jω,K),
which is rational as a function of ω. (The statement may be made more precise: There
exist functions φi which are analytic on a strip S on the Riemann sphere S2 = C∪{∞},
such that S contains the meridian S1 = R ∪ {∞} passing through the north pole ∞,
with φi taking real values on S1, such that (19) is satisfied for all ω ∈ S1.)

Suppose now Ω(K) is infinite. Then one of these m1 real analytic functions φ2
i

has an infinity of maxima on S1 with the same value f(K). Since S1 is compact,
these maxima have an accumulation point ω̄ on the meridian. In terms of the analytic
extensions on S, that means the Taylor expansion of the φ2

i in question at ω̄ is the
same as the Taylor expansion of the function with constant value f(K). This implies
indeed φi(ω) = f(K) for all ω. �

Remark 5 This result tells us more generally that an infinite dimensional Π(s) of
the form Π(jω) =

∑`
i=1 χIi(ω)Πi(jω), where each Πi(jω) is analytic in a frequency

band Ii ⊂ [0,∞], is open to the differential calculus presented below. In other words,
what restricts the class of useful Π(s) is not the computation of subgradients, but the
computation of the function value.

The following result is useful for computing Clarke subgradients of the nonsmooth
f = λ1,∞ ◦ F .

Lemma 5 f = λ1,∞ ◦ F is regular in the sense of Clarke [11].

Proof. f = λ1,∞ ◦ F is a composite function of λ1,∞, which is nonsmooth but
convex, and the smooth nonlinear operator F , mapping the space RN with N =
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dim(K)+dim(Π) to the infinite dimensional space C(j[0,∞],H) of continuous functions
j[0,∞]→ H, where H is the space of Hermitian matrices of appropriate dimension. f
is therefore regular in the sense of Clarke [11]. �

These Lemmas make it possible to give a full description of the subdifferential of f .
We start by characterizing the subdifferential ∂λ1,∞(π) at a given π ∈ C(j[0,∞],H).

Proposition 1 Let π ∈ C(j[0,∞],H), and suppose the set Ω(π) of active frequencies
at π:

Ω(π) := {ω ∈ [0,∞] : λ1,∞(π) = λ1(π(jω))}

is finite. For every active frequency ω ∈ Ω(π) let Qω denote a matrix whose columns
form an orthogonal basis of the eigenspace of π(jω) associated with the largest eigen-
value λ1(π(jω)). Then the subdifferential ∂λ1,∞(π) of the mapping λ1,∞ at π ∈ C(j[0,∞],H)
is the set of all linear functionals ΦY ∈ C(j[0,∞],H)∗ of the form

ΦY (µ) =
∑

ω∈Ω(π)

Tr (QωYωQ
A

ωµ(jω)) , µ ∈ C(j[0,∞],H), (20)

indexed by the family Y = (Yω)ω∈Ω(π), where Yω = Y A
ω � 0 and

∑
ω∈Ω(π) Tr (Yω) = 1.

Proof. This is established using subdifferential formulas for λ1 and the convex hull
rule for max functions. The reader is referred to [25, 11] for details. �

Remark 6 In the Proposition we avoided the case Ω(K,Π) = [0,∞] because we never
observed it in practice. However, it is possible to extend formula (20) to the case
Ω(K,Π) = [0,∞] by applying the maximum formula of [11] to that case. The families
Y and Q are then replaced by infinite families Yω, Qω together with a probability measure
dω on [0,∞] so that

∫
[0,∞]

Tr(Yω)dω = 1, and ΦY =
∫

[0,∞]
Tr(QωYωQ

A
ωµ(jω))dω.

Our next step is as follows. Given the subdifferential of λ1,∞ at π = F (K,Π) ∈
C(j[0,∞],H), we obtain the subdifferential of f at x = (K,Π) using the chain rule

∂f(K,Π) = F ′(K,Π)∗∂λ1,∞(π),

where F ′(K,Π) is the Fréchet derivative of F at (K,Π), and F ′(K,Π)∗ its adjoint,
which we now need to compute. This may seem arduous at first, since the Banach space
dual C(j[0,∞],H)∗ of C(j[0,∞],H) does not have an easy to manage representation.
Fortunately, we only need to know the action of the adjoint F ′(K,Π)∗ on functionals
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of the special form ΦY in (20), and this is easily found. Indeed, the definition of an
adjoint gives

〈F ′(K,Π)(δK, δΠ),ΦY 〉 = 〈(δK, δΠ), F ′(K,Π)∗(ΦY )〉,

where the right hand side is the standard scalar product in a suitable matrix space.
Put differently, writing F ′(K,Π)∗(ΦY ) = (ΛY ,ΣY ), where ΛY is a matrix compatible
with K and ΣY a matrix compatible with Π, we have

〈(δK, δΠ), (ΛY ,ΣY )〉 = Tr(δK>ΛY ) + Tr(δΠAΣY ).

In order to pursue, we need the Fréchet derivative F ′(K,Π). For technical reasons we
introduce the notations[

T (K, s) G12(K, s)
G21(K, s) ?

]
:=

[
C(K)
C2

]
(sI −A(K))−1 [B(K) B2

]
+

[
D(K) D12

D21 ?

]
.

This simplifies the representation of F ′:

F ′(K,Π)(δK, δΠ) = (G12δKG21)AΠ11T (K) + T (K)AΠ11G12δKG21 + ΠA

12G12δKG21

+(G12δKG21)AΠ12 +

[
T (K)
I

]A
δΠ

[
T (K)
I

]
(21)

where dependence on jω has been omitted for simplicity.
With π = F (K,Π) and µ = F ′(K,Π)(δK, δΠ), we use formula (20) to match

coefficients in ΦY (µ) = Tr(δK>ΛY ) + Tr(δΠAΣY ). This gives

ΛY = 2
∑

ω∈Ω(π)

Re
(
G21(jω)QωYωQ

A

ω (T (jω,K)AΠ11 + ΠA

12)G12(jω)
)>

(22)

and

ΣY =
∑

ω∈Ω(π)

[
T (jω,K)

I

]
QωYωQ

A

ω

[
T (jω,K)

I

]A
. (23)

We sum up our findings in the following

Theorem 2 Consider a nominally stabilizing controller K, i.e A(K) Hurwitz, and
a multiplier Π(s). Assume the set of active frequencies Ω(K,Π) for the FDI in (9)
is finite. Then the Clarke subdifferential ∂f(K,Π) of f at (K,Π) is the set of sub-

gradients
{

(ΛY ,ΣY ) : Y = (Yω)ω∈Ω(K,Π), Yω = Y A
ω � 0,

∑
ω∈Ω(K,Π) Tr (Yω) = 1

}
, where

ΛY and ΣY are given by (22) and (23).
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6 Applications

Note that the results in the previous section cover a large variety of IQCs, including
those with dynamic multipliers. As long as f has a composite structure, λ1,∞◦F (K,Π),
where Π gathers the multiplier or scaling, the latter represented in a suitable finite basis,
it suffices to apply the chain rule to obtain subgradient information. It is also possible
to extend the proposed framework to several synthesis FDIs, because the maximum of
a finite family of FDIs, λ1,∞ ◦ Fi(K,Π) < 0, i = 1, . . . , q, can be written as a single
FDI, λ1,∞ ◦ diag (F1(K,Π), . . . , Fq(K,Π)) < 0 .

In IQC analysis the composite function f = λ1,∞ ◦ F is convex as a function of Π
alone and its subdifferential ∂f(Π) is the usual subdifferential of convex analysis [25].
Subgradient information is again covered by (23). Subgradient information could in
principle be used to find global linear lower bounds for FDI constraints via cutting
planes [27], but we do not follow this route here.

In synthesis, multipliers and controller variables are updated simultaneously until
satisfaction of the FDI in (9). In accordance with [23] we advocate not to use D-K
type methods, where K and Π are updated alternatingly.

Finally, as already observed in our nonsmooth approach to H∞ synthesis [2, 3],
specific structural constraints on the controller can be easily incorporated in (12) by
applying chain rules to the subgradients. The reader is referred to [5] for details.

In the following, we investigate practically interesting options for analysis and syn-
thesis with IQCs.

6.1 IQC analysis

Nonsmooth results from Section 5 can be used to compute the L2 gain or H∞ norm of a
system or perform a passivity test. In this situation, the uncertainty channel (w∆, z∆)
is removed T = Tzw and the multiplier Π = Πp must be selected as

Πp =

[
γ−1I 0

0 −γI

]
respectively Πp =

[
0 I
I 0

]
. (24)

Assume now for stability analysis the system in (1) is subject to time-invariant para-
metric uncertainties T = T∆∆, w∆ = ∆z∆, where ∆ ∈ ∆ is the class of multiplication
operators with the block-diagonal structure

∆ = diag (. . . , δiI, . . . ,∆j, . . .) ∈ Rm∆×m∆ (25)
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with normalization ∆>∆ � I. Robust stability can be tested using µ-upper bound
multipliers of the form

Π = Π∆ =

[
S (jG)A

jG −S

]
(26)

with S = SA � 0 and G = GA, where both S and G commute with ∆. A possible choice
of the class Π are therefore constant multipliers of the form (26), where checking (5)
uses that ∆ ∈ ∆ in (25) and S,G in (26) commute. The treatment of more complex
(dynamic) multipliers is deferred to Section 6.4. The subgradient formulas in Theorem
2 must then be modified to cope with the particular structure of Π and with the extra
constraint S � 0. We define S = ΣΣA where Σ is a lower-triangular Cholesky factor of
S. This leads to

δΠ =

[
Σ(δΣ)A + (δΣ)ΣA (jδG)A

jδG −Σ(δΣ)A − (δΣ)ΣA

]
.

Substitution of this expression into the general formula (21), using Theorem 2 and the
identities

Tr (MN A +M AN) = 2 Tr (ReM ReN> + ImM ImN>)
Tr (ML>) = Tr (tril(M)L>)

which hold for arbitrary complex M , N and lower-triangular L yields the sought for-
mulas. Subgradients with respect to Re (Σ) and Im (Σ) are obtained respectively as
tril(ReU) and tril(ImU) where

U := 2
∑

ω∈Ω(Σ,G)

T (jω,K)QωYωQ
A

ωT (jω,K)AΣ−QωYωQ
A

ωΣ . (27)

Subgradients with respect to ReG and ImG are obtained respectively as −(ImV +
Im (V )>) and ReV − Re (V )> with the definition V :=

∑
ω∈Ω(Σ,G) T (jω,K)QωYωQ

A
ω.

As before, Ω(Σ, G) is the set of active frequencies for given Σ and G, the family Y
is as in Theorem 2. For time-varying uncertainties with arbitrarily fast variations
w∆ = ∆(t)z∆, the associate multiplier is real

Π :=

[
S Γ

Γ> −S

]
where as before S = ΣΣ> � 0 and Γ> = −Γ. Subgradients are readily inferred from
the complex case. For Σ, the subgradients are tril(ReU) with U defined in (27). For
Γ, we get the subgradients ReV − Re (V )>, where V is as described above.
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6.2 H∞ and positive real syntheses

H∞ and positive real syntheses are special instances where the uncertainty channel is
removed T = Tzw and Π = Πp is chosen as in (24). For H∞ synthesis we obtain the
subgradients with respect to K

ΦY = 2/γ
∑

ω∈Ω(K)

Re
(
G21(jω)QωYωQ

A

ω T (jω,K)AG12(jω)
)>

,

which is consistent with the results already derived in [3].

6.3 Robust synthesis

The above reasoning is easily generalized to robust L2-gain synthesis with structured
parametric uncertainties. Again with constant multipliers we have

Π :=

[
Π11 Π12

ΠA

12 Π22

]
:=


S 0 (jG)A 0
0 γ−1I 0 0
jG 0 −S 0
0 0 0 −γI

 . (28)

Clarke subgradients with respect to K are obtained from (22) and the definition in
(28). Partial subgradients with respect to the multiplier are easily inferred from (27)
and the partitioning in (6). They are tril(ReU) and tril(ImU) for the subgradients
with respect to Re (Σ) and Im (Σ), where S = ΣΣA and

U := 2
∑

ω∈Ω(Σ,G,K)

[
T∆∆ T∆w

]
QωYωQ

A

ω

[
T∆∆ T∆w

]A
Σ−

[
I 0

]
QωYωQ

A

ω

[
I 0

]A
Σ.

Subgradients with respect to ReG and ImG are obtained respectively as −(ImV +
ImV >) and ReV − ReV > with the definition

V :=
∑

ω∈Ω(Σ,G,K)

[
T∆∆ T∆w

]
QωYωQ

A

ω

[
I 0

]A
Note that Ω(Σ, G,K) is the set of active frequencies for a given triple (Σ, G,K).

Clearly, the above analysis is applicable to more general hybrid block-diagonal
operators ∆ where each sub-block ∆i satisfies an IQC defined by Πi. The reader is
referred to the IQCs listed in [32] to enrich the discussion along this line.
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6.4 Dynamic multipliers

To reduce conservatism in IQC analysis or synthesis it is possible to use dynamic
multipliers. In this context Π(s) is an unknown function, and the problem is infinite-
dimensional, which is not directly tractable. What hinders for infinite dimensional
Π(s) are not the subgradient formulas, but the computation of the function λ1,∞ ◦ F .
The way out is to use finitely generated multipliers, possibly of the form

Π(s) = R(s)AΦR(s), Φ = ΦA , (29)

where R(s) is assumed to have a state-space realization R(s) = CR(sI−AR)−1BR+DR

and where Φ, the quadruple (AR, BR, CR, DR) and the controller K are unknown. The
framework developed in Sections 3 and 5 applies and differential information can be
obtained.

We present an interesting alternative to (29), which is covered by our technique, but
in contrast is hardly accessible by state-space methods which call for LMIs or BMIs.
Fix a finite partition [0,∞] = Ii ∪ · · · ∪ I` into frequency bands Ii and choose different
constant multipliers Πi on each Ii. In other words, write a dynamic piecewise constant
multiplier Π(s) =

∑`
i=1 ΠiχIi(s), where χIi is the characteristic (or indicator) function

of the ith band. Then robust performance can be expressed as

Fi(K,Πi; jω) :=

[
T (jω,K)

I

]A
Πi

[
T (jω,K)

I

]
≺ 0, ∀ω ∈ Ii, ∀i = 1, . . . , ` .

This is equivalent to
max
i=1,...,`

max
ω∈Ii

λ1(Fi(K,Πi; jω)) < 0 .

We get a max function for which the Clarke gradient is computed using the convex hull
rule [11] and which is similar in structure to the Clarke gradient in Theorem 2. In this
approach the finite basis is more natural than in (29). The procedure in Section 3 to
compute function values and active frequencies works on prescribed frequency intervals
Ii just as well as on the whole [0,∞]. See [4] how this can be organized for multiband
H∞ synthesis.

7 Nonsmooth descent method

In this section we explain the basic mechanism of our descent method. Because of
the complicated semi-infinite structure of the objective function f = λ1,∞ ◦ F , it will
be helpful to look at pure eigenvalue optimization problems minx∈Rn λ1(F (x)) first.
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This class has been studied by various authors, see e.g. [12, 30, 37, 38, 34]. Here
we will expand on a method developed by Helmberg and Rendl [20] for semidefinite
programming (SDP). In a first step we extend it to address non-convex maximum
eigenvalue functions f = λ1 ◦ F . In a second step, we will go further to include the
semi-infinite case f = λ1,∞ ◦ F .

Let f = λ1 ◦ F with smooth F : Rn → Sm be a non-convex maximum eigenvalue
function. At the current iterate x we consider the local model

φ(y;x) = λ1 (F (x) + F ′(x)(y − x)) ,

which agrees with f at x, i.e., φ(x;x) = f(x), and is expected to be close to f in a
neighbourhood of x, because F (y) ≈ F (x) + F ′(x)(y− x) by Taylor’s theorem. Notice
that if F is affine, then f(y) = φ(y;x) is independent of x.

Recall that λ1 is the support function of the compact convex set G = {G ∈ Sm :
G � 0,Tr(G) = 1}. We consider approximations Gk ⊂ G and introduce the family of
functions

φk(y;x) = max{G • [F (x) + F ′(x)(y − x)] : G ∈ Gk}. (30)

Then φk(y;x) ≤ φ(y;x), and φk(x;x) = φ(x;x) = f(x) as soon as we assure that Gk
contains at least one matrix of the form G = ee>, where e is a normalized eigenvector
of F (x) associated with the maximum eigenvalue λ1 (F (x)). The rationale of using φk
instead of φ is that φk is easier to compute than φ if the set Gk is reasonably small.

We use the model φk(·;x) to generate trial steps yk+1 away from x which decrease
the value φk

(
yk+1;x

)
below φk(x;x) = f(x). This is done by solving the unconstrained

optimization program

min
y∈Rn

φk(y;x) +
τk
2
‖y − x‖2 (31)

where τk > 0 is the proximity control parameter, to be chosen anew at each step k. If
the solution yk+1 of (31) gives sufficient decrease in f , we accept it as the new iterate
x+ and call this a serious step. Otherwise we refer to yk+1 as a null step. In that case
we keep x unchanged, but update Gk and τk. More precisely, we try to replace Gk by a
better suited approximation Gk+1 containing additional information about the rejected
yk+1. This will allow us to do a better job at the next try k + 1.

We require the following minimal assumptions on the sets Gk:

1. ee> ∈ Gk for a normalized eigenvector e associated with λ1 (F (x)).
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2. If the solution yk+1 of (31) is a null step, then keep vv> ∈ Gk+1 for some normal-
ized eigenvector v associated with λ1

(
F (x) + F ′(x)(yk+1 − x)

)
.

3. For yk+1 a null step, the necessary optimality condition for (31) gives 0 =
F ′(x)?Gk + τk(y

k+1 − x) and φk(y
k+1;x) = Gk •

[
F (x) + F ′(x)(yk+1 − x)

]
for

some Gk ∈ Gk. Then keep Gk ∈ Gk+1

Notice that it is not required that Gk+1 includes the previous Gk. Such a strategy
would quickly lead to large sets Gk and would considerably slow down the solution of
the subproblems (31). All that is needed is to retain ee>, vv> and one element Gk

called for by the optimality condition for (31) at yk+1 for the next instance Gk+1. The
element Gk in item 3. is sometimes referred to as an aggregate subgradient.

One way to assure the validity of these three rules is presented in [20]. A synthesis
between the method of Helmberg and Rendl on the one hand and Cullum et al. [12]
and Oustry [37] on the other hand is discussed in [21]. The elements of Gk are chosen
of the form

αG
k

+QkY Q
>
k (32)

where Y ∈ Rr for some r � m, Y � 0, α ≥ 0, α + Tr(Y ) = 1, and where G
k ∈ G

is called the aggregate subgradient. The r columns of the r × m matrix Qk form
an orthonormal set. At least one normalized eigenvector e associated with λ1 (F (x))
is part of Q in order to comply with item 1. Similarly, a normalized eigenvector
v associated with F (x) + F ′(x)(yk+1 − x) is included in Qk to comply with item 2.
Finally, to assure item 3, we use the following strategy. Suppose at the last instance
k−1 the value φk−1(yk;x) was attained at some Gk−1 such that the optimality condition

0 = F ′(x)?Gk−1 + τk−1(yk − x) is satisfied. Then we choose G
k

= Gk−1 as the next
aggregate subgradient.

For large scale problems, Helmberg and Rendl [20] recommend a more subtle way

to propagate the information in Gk−1 to the next sweep. Let Gk−1 = α∗G
k−1

+
Qk−1Y

∗Q>k−1 be the element where the supremum (30) was attained at the last sweep
and the optimality condition held. Let PD∗P> be a spectral decomposition of Y ∗.
Split P = [P1P2] where P1 is the basis associated with the important part D1 of the
spectrum, that is, the large eigenvalues, P2 the basis of the remaining part D2. Then
put

G
k

= α∗G
k−1

+Qk−1P2D2P
>
2 Q

>
k−1/ (α∗ + Tr(D2))

and keep the columns Qk−1P1 in the new matrix Qk.
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Remark 7 The basic conditions 1. - 3. above guarantee convergence, but an intelligent
choice of the basis Qk of eigenvectors may improve the speed of convergence of the
method.

Spectral bundle algorithm for minx∈Rn f(x)

Parameters: 0 < γ < γ̃ < 1
2
< Γ < 1.

0. Initialize outer loop. Find initial iterate x.
1. Outer loop. Stop if 0 ∈ ∂f(x) at current outer iterate x. Otherwise

goto inner loop.
2. Initialize inner loop. Initialize G1 = ∂λ1(F (x)), G1 = 1

m
Im, put inner

loop counter k = 1, and choose τ1 > 0. If old value for τ from previous
sweep is memorized, use it to initialize τ1.

3. Tangent program. At counter k with given τk > 0 and Gk solve

min
y∈Rn

φk(y;x) +
τk
2
‖y − x‖2

Solution is yk+1. Find Gk ∈ Gk where optimality condition for (31) at
yk+1 is satisfied. Write G∗k = α∗kGk +QkYkQ

>
k according to (32).

4. Acceptance test. Check whether

ρk =
f(x)− f(yk+1)

f(x)− φk(yk+1;x)
≥ γ.

If this is the case put x+ = yk+1 (serious step). Compute new memory
element τ+ as:

τ+ =

{ τk
2
, if ρk > Γ

τk, else
Then go back to step 1 to commence a new sweep of outer loop. On the
other hand, if ρk < γ then continue inner loop with step 5.

5. Agreement test. Compute

ρ̃k =
f(x)− φ(yk+1;x)

f(x)− φk(yk+1;x)
and put

τk+1 =

{
τk if ρk < γ and ρ̃k < γ̃
2τk if ρk < γ and ρ̃k ≥ γ̃

6. Aggregate subgradient. Compute new set Gk+1 according to (32).
New aggregate subgradient is Gk+1 = G∗k.

7. Inner loop. Increase counter k → k + 1 and go back to step 3.

Convergence analysis of this method is too lengthy and complex for the present
work and is deferred to [6]. We state the main result:
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Theorem 3 Let x1 be an initial point such that {x ∈ Rn : f(x) ≤ f(x1)} is bounded.
Then every accumulation point x̄ of the sequence xj of serious iterates of the algorithm
is a critical point of f , that is, satisfies 0 ∈ ∂f(x̄).

Remark 8 This may seem a weak convergence certificate, but in practice the sequence
of serious steps xj always converges to a local minimum of f .

Let us now extend our approach to functions of the form f = λ1,∞ ◦ F . The key
information to deal with this case is given by Lemma 4. Consider the case where Ω(x)
is finite, that is

f(x) = f(x, ω1) = · · · = f(x, ωp)

with Ω(x) = {ω1, . . . , ωp}. Given a finite set Ω ⊂ R∞ = R ∪ {∞} containing Ω(x),
called an extension of Ω(x), we consider the function

fΩ(y) = max
ω∈Ω

f(y, ω).

It is a well-known fact of nonsmooth analysis that the Clarke subdifferential of a
maximum function f at x is entirely determined by the subdifferentials of the active
elements f(·, ωi) at x. In other words,

∂f(x) = ∂fΩ(x)(x) = ∂fΩ(x),

where fΩ(x)(x) = fΩ(x) = f(x), fΩ(x) ≤ fΩ ≤ f . Now as Ω is finite, fΩ is a maximum
eigenvalue function. Indeed, it suffices to write f(·, ωi) = λ1 ◦ Fi for the finitely many
ωi ∈ Ω and let FΩ a block diagonal matrix with the diagonal blocks Fi arranged in
any convenient order. Then fΩ = λ1 ◦ FΩ. The point is that we know how to gener-
ate descent steps for maximum eigenvalue functions. In fact, we use approximations
φkΩ(y;x) relating to fΩ as φk(y;x) relates to f in the earlier part of this section. Then
we generate descent steps for fΩ as in the previous part. If such a step does not give
a satisfactory decrease in f , we update Ω→ Ω′ in such a way that the new fΩ′ gives a
better approximation of f .

Spectral bundle algorithm for program min
x∈Rn

max
ω∈R∪{∞}

f(x, ω)
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Parameters 0 < γ] < γ < 1
2
.

0. Initialize outer loop. Choose initial x such that f(x) <∞.
1. Outer loop. If 0 ∈ ∂f(x) at current x stop, else goto inner loop.
2. Initialize inner loop. Let x1 = x and choose finite Ω1 containing Ω(x1).

Put inner loop counter ` = 1.
3. Sub-program. At inner loop counter ` and current Ω`, fΩ` , φΩ`(·;x) and

φkΩ`(·;x) use inner loop of the first algorithm (with counter k) to generate
trial step x` satisfying the test

f(x)− fΩ`(x`)

f(x)− φkΩ`(x`;x)
≥ γ.

4. Reality check. Test whether
f(x)− f(x`)

f(x)− φkΩ`(x`;x)
≥ γ].

5. Decision. If this is the case let x+ = x` and go back to step 1. Otherwise
add new frequencies to the set Ω` to obtain Ω`+1 and go back to step 3.

Notice here that in step 2 a trial point y satisfying ρk,` ≥ γ is found by a finite procedure
via the first algorithm. For fixed ` this may involve several inner iterations k updating
Gk and τk. As fΩ` is only an approximation of f satisfying fΩ` ≤ f , we need to do a
reality check in step 4. Here we expect the weaker estimate ρ]k,` ≥ γ] to be satisfied,

and this is why we choose γ] < γ.
In order to assure that a finite number of steps ` is sufficient to locate a point y

satisfying the second test ρ]k,` ≥ γ], we have to guarantee fΩ` → f as ` → ∞. This

may for instance be arranged by fixing an increasing sequence Ω` of finite sets whose
union is dense in R∞, assuming Ω` ⊂ Ω` at each step `. However, in practice, there
are more practical ways to select the sets Ω`.

Theorem 4 Suppose the updating strategy Ω` → Ω`+1 guarantees fΩ` → f uniformly
on bounded sets. Suppose the initial iterate x1 is such that f(x1) < ∞ and {x ∈ Rn :
f(x) ≤ f(x1)} is bounded. Then the sequence of iterates xj generated by the second
algorithm is well-defined, i.e., f(xj) <∞ for all j, and every accumulation point x̄ of
the sequence xj is a critical point of f .

In practice, we select an enriched set of active frequencies as described in some
detail in [2]. The convergence proof is again deferred to in [6].
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Figure 1: Left: schema of the mass-spring system. Right: interconnection structure
for the controller design.

8 Numerical experiments

We have performed two studies in parametric robust H∞ synthesis to validate our
semi-infinite algorithm for IQCs. Our first example is the mass-spring system shown
in Figure 1 (left) and described by the following system of second order differential
equations {

m1ẍ1 = −kx1 + kx2 − fẋ1 + fẋ2 + u
m2ẍ2 = kx1 − kx2 + fẋ1 − fẋ2

with m1 = m2 = 0.5kg, k = 1N/m, and f = 0.0025Ns/m. The interconnection
structure used for control is shown on the right of Figure 1. Our goal is to synthesize a
robust feedback controller K which stabilizes the position x2 of mass m2 in the presence
of parameter uncertainties of p% on the parameters k and m2,

|1Nm−1 − k|/1Nm−1 ≤ p%, |0.5kg −m2|/0.5kg ≤ p%

where p ∈ {5, 10, 15, 20, 25, 30}.
Our second example, the Reichert missile model [42], has already been studied in

[1], where the IQC framework has been used to assess robustness of a control system,
and in [16, 15, 17, 35] via LPV robust synthesis. We refer to [42, 16] for a description
of the model, LFT form, and control objectives. Uncertain parameters of this model
are α, the angle of attack, and M , the Mach Number. The nominal value of α is 0◦
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System n m∆ m1 m2 p∆ p1 p2

Mass-spring 4 2 1 1 2 2 1
Missile 9 10 1 1 10 3 2

Table 1: Matrix dimensions of uncertain plants in LFT form (1).

and the nominal Mach number is M = 3. We test the cases

α ∈ [−p1% · 30◦,+p1% · 30◦] , M ∈
[
3− p2% · 3

2
, 3 + p2% · 3

2

]
,

for the choices (p1, p2) = (0.05, 5), (p1, p2) = (0.1, 10), (p1, p2) = (0.15, 15) and (p1, p2) =
(0.2, 20). Matrix dimensions are given in Table 1 for both mass-spring and missile
model.

8.1 Implementation

Our implementation of the algorithm follows Section 7 and treats the case of multipliers
(28) for parametric robustness. We shall therefore write the multiplier variable Π as
(S,G, γ).

In phase I we require an initial nominal closed-loop stabilizing controller K0. In
the full order case, k = n, this is of course standard and can be obtained via AREs
or LMIs as available in the MATLAB control toolbox. Computing the optimal H∞
controller K∞ provides a lower bound γ∞ = ‖Twz(K∞)‖∞ for the optimal robust gain
γ∗. We use K∞ to initialize the K-variable in our algorithm.

Initializing K is more difficult if reduced-order (k < n) or structured controllers K
are required. Finding K0 = K∞ can then even be NP -hard in the sense of [33], but
this is a theoretical result and pessimistic as a rule. In practice and for non-contrived
examples a closed-loop stabilizing K0 is either known or easy to compute. What is hard
is to optimize its performance and enhance its robustness. Here we use the methods
of [7] to compute initial closed-loop stabilizing guesses K0 = K∞.

Any value γ0 > γ∞ can be used to initialize the performance parameter in (24). We
choose S0 = I and G0 = 0 in (28). Altogether the following gain values are of interest
and reported in Tables 2 and 3:

γ∞ = ‖Twz(0, K∞)‖∞ ≤ γ∗nom := ‖Twz(0, K∗)‖∞ ≤ sup
∆∈∆
‖Twz(∆, K∗)‖∞ ≤ γ∗,

where γ∗ is the result of our algorithm, K∗ the corresponding optimal robust controller,
(S∗, G∗) the static multiplier certificate. Twz(∆, K) is the transfer matrix of the closed
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loop (1), (3) performance channel w → z for fixed ∆ ∈ ∆ and for a fixed controller
K. Notice that typically ‖Twz(∆, K∞)‖∞ =∞ for some ∆ ∈ ∆, i.e., the nominal H∞
controller K∞ is not robust. (Otherwise a robust synthesis would not make sense). We
also report

α∗nom = max{Reλ : λ ∈ sp(A(K∗))}

the closed-loop spectral abscissa of the nominal closed-loop system matrix A(K) at
the robust controller K∗.

Once our algorithm is initialized successfully with f(K0, S0, G0, γ0) < 0, phase
II starts and the following iterative procedure is used. At stage k, minimization of
(K,S,G) 7→ f(K,S,G, γk)) over (K,S,G) is performed. As soon as a new feasible
point (Kk, Sk, Gk) has been reached, that is

f(Kk, Sk, Gk, γk) < 0,

we have a certificate Π∆,k = (Sk, Gk) that a robust controller Kk with robust perfor-
mance at most γk has been found. This process is now repeated a few times in order to
improve over the latest γk. For that we use extrapolation, as described in subsection
8.3, to compute a better γk+1, looping on until the optimal value γ∗ with corresponding
optimal (K∗, S∗, G∗) is approached.

In the case of parametric uncertainties it may be very conservative to use static
multipliers Π∆(jω) in (11), because they characterize time-varying trajectories ∆(t).
For parametric robustness, the uncertainties ∆ ∈∆ are rather constant, and to reduce
conservatism of the IQC formulation, it is therefore preferable to employ dynamic
multipliers Π∆(jω), which is what we do in phase III. We have implemented a routine
to optimize our cost function f(K,Π) for a dynamic multiplier Π∆(jω) with 3 frequency
bands

Π∆(jω) = Π1χ[0,ω1](ω) + Π2χ[ω1,ω2](ω) + Π3χ[ω2,∞](ω),

where Π1,Π2 and Π3 are matrices with the same structure as in (28). Here the cost
function f is modified along the lines of subsection 6.4. To compute the value of the
FDI on each band, Lemma 3 is applied. After initialization K0 = K∗, γ0 = γ∗ and
with S0(jω) = S∗, G0(jω) = G∗ for all ω, the procedure (Kk, Sk(jω), Gk(jω), γk) →
(Kk+1, Sk+1(jω), Gk+1(jω), γk+1) is precisely the same as in the static case described
before, and converges to the optimal triplet (K̄, S̄(jω), Ḡ(jω), γ̄). Again K̄ has now a
robust performance certificate, Π̄∆(jω) = (S̄(jω), Ḡ(jω)), and our experiments show
that γ̄ < γ∗, so that conservatism is reduced. As in the static case we report

γ∞ ≤ γ̄nom := ‖Twz(0, K̄)‖∞ ≤ sup
∆∈∆
‖Twz(∆, K̄)‖∞ ≤ γ̄
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and we also list
ᾱnom = max

{
Reλ : λ ∈ sp

(
A(K̄)

)}
.

Use of a dynamic multiplier Π∆(jω) = (S(jω), G(jω)) improves over the perfor-
mance bound γ∗ obtained with a static multiplier Π∆ = (S,G). Two intermediate
frequencies ω1, ω2 have to be specified in order to draw the 3 frequency bands. For the
time being this is done by trial and error. In fact, we use the plot of the FDI at the
optimal (K∗,Π∗) from the constant case to select these two values in a such way that
each frequency band contains at least one active or nearly active peak. This choice is
tricky in so far as one of these peaks may vanish during the optimization process.

Both for static and dynamic multipliers we use the following stopping tests. Let
εf , εx > 0, (K,S,G) the actual iterate, (K+, S+, G+) the next. Optimization of f is
stopped if the descent is too small, that is

f(K,S,G, γk)− f(K+, S+, G+, γk) < εf (1 + |f(K,S,G, γk)|),

and if the change in the controller parameters is negligible∥∥K −K+
∥∥+

∥∥S − S+
∥∥+

∥∥G−G+
∥∥ < εx(‖K‖+ ‖S‖+ ‖G‖).

Of course, a maximum number of iterations has been allowed for the algorithm. The
tolerance values have been set to εf = 1e − 4 and εx = 1e − 5, the value of εf is also
used as the tolerance when computing the value of the objective function f , see the
bisection method on section 4.

8.2 Computing the sets Ω(K,Π) and Ωe(K,Π)

As we already indicated in section 4, computing the set of actives frequencies Ω(K,Π)
uses the Hamiltonian technique of [8], which is generally used to compute the H∞
norm of a plant. The situation is a bit more complicated in the case of IQCs, since
we have to deal with complex Hamiltonian matrices. Indeed, the Hamiltonian H[λ]
in equation (15) is constructed from the multiplier Π, which is complex in the case of
robust synthesis (28). We have observed some numerical problems when computing the
eigenvalues of the complex Hamiltonian matrix, especially for the missile model. If not
dealt with, this may cause our algorithm to stop prematurely at non critical points,
since the active frequency set Ω(K,Π) is in these cases known with low precision.
The quality of the subgradients, which depend on Ω(K,Π), is then also bad and the
tangent program computes solutions which are no longer descent directions. In order
to overcome this difficulty, we have implemented a special routine which significantly
improves the precision of existing complex Hamiltonian linear algebra software.
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8.2.1 High precision computation of active frequencies

We will use the same notation as in section 3. For λ ∈ R fixed, the Hamiltonian
algorithm requires computing the set

Ωλ := {ω ∈ R : λ1(F (K,Π, jω)) = λ} .

It is well known [39] that if jω is an eigenvalue of matrix H = H[λ] in (15), then

λ1(F (K,Π, jω)) = λ,

where λ ∈ R is as in the expression Ψ = Ψ[λ] in equation (14). An approximation Θλ

of the set Ωλ is now obtained by computing the eigenvalues ν + jω of H, and forming

Θλ := {ω ∈ R : ν + jω ∈ sp(H), ν ∈ R, |ν| < εω} ,

where sp(H) is the spectrum of H, and where εω > 0 is a suitable numerical tolerance.
Our algorithm uses Newton and bisection methods to improve the precision of these

frequencies. Assuming Θλ finite and of cardinality #Θλ, its elements are ω1 < · · · <
ω#Θλ . (The procedure is initialized by those ωi obtained from the standard linear
algebra software). To measure to what precision the frequencies ωi ∈ Θλ approximate
those in Ωλ, we introduce

J(Θλ) :=

#Θλ∑
k=1

(λ1(F (K,Π, jωk))− λ)2,

whose best value is J(Ωλ) = 0. Let us also define the sign function σ : R+ → {−1, 0, 1}
by

σ(ω) := sign(λ1(F (K,Π, jω))− λ),

and some useful transformations of set Θλ

B(Θλ) :=
{
ω ∈ R+ : ω = (ωk + ωk+1)/2, k = 1, · · · ,#Θλ − 1

}
C(Θλ) :=

{
ω ∈ R+ ∩Θλ : σ(ωk+1)σ(ωk) = −1, k = 1, · · · ,#Θλ − 1

}
,

and an estimation of the number of frequencies to be computed

ι(Θλ) :=

#Θλ−1∑
k=1

δ−1(σ(ωk)σ(ωk+1)) +

#Θλ∑
k=1

δ0(σ(ωk)).

We compute the set O(Θλ,m) defined by

ι(O(Θλ,m)) ≤ ι(Θ̃λ), ∀Θ̃ ∈ {Θ̃ ⊂ Θλ : #Θ̃ = m}.

Now we present our algorithm for high precision computation of frequencies:
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Computing approximation Θλ of Ωλ

Fix tolerance level ε > 0.
Initialize Θ0 and Θ′0 = Θ0 ∪B(Θ0) ∪ {ω1

2
, 2ω#Θλ}.

1. While J(Θk) ≥ ε
2. Compute m = ι(Θ′k).
3. Θ′′k+1 = Θ′k ∪N(Θ′k) ∪B(Θ′k).
4. Θk+1 = O(Θ′′k,m)
5. Θ′k+1 = C(Θ′′k) ∪Θk+1

6. k = k + 1.
7. End while.
8. Return Θk+1.

In this algorithm, N(Θ) is the set of frequencies computed using Newton’s method.
Computing these frequencies is based on the approximation,

λ1(F (K,Π, jω′))− λ ≈ Q>ωF (K,Π, jω′)Qω

for ω′ in a neighbourhood of ω. More precisely, we define Λω := (jωI −A(K))−1 and

ζ1,ω := Ψ−1
22 · (Ψ>12ΛωB(K) + B>(K)Λ>ωΨ11ΛB(K) + B>(K)ΛωΨ12)Qω, (33)

ζ2,ω := Re (Q>ωΨ−1
22 (−Ψ>12jΛ

2
ωB(K) + B>(K)(−Λ2T

ω jΨ11ΛωB(K)− Λ2T
ω jΨ12))Qω).(34)

Finally, set N(Θ) is

N(Θ) =
{
ω ∈ R+ : ω = ωk + ζ−1

2,ωk
(1 + Re (Q>ωkζ1,ωk)), k = 1, . . . ,#Θλ

}
.

8.2.2 Choice of Ωe(K,Π)

The choice of the extended set of frequencies Ωe(K,Π) is of practical importance. On
the one hand a bad choice with too few frequencies leads to a bad descent directions,
which may stall the optimization process. Namely, if the number of frequency added
in Ωe(K,Π) is too small, then the descent direction is close to the direction of steepest-
descent, which leads to zigzagging and produces very small steps. On the other hand,
the number of added frequencies must not be too large either, because this may intro-
duce numerical problems in the tangent program (31).

We have tested different rules to add frequencies to the active set Ω(K,Π). Numer-
ical experiments show that there is no ideal choice, and for some problems we should
switch from one rule to another. Our first strategy is to choose more frequencies around
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the peaks. Here we let

Ωe(K,Π) = Ω(K,Π) ∪

(
k⋃
i=1

Ωλi(K,Π)

)

where

Ωλi(K,Π) :=
{
ω ∈ R+ : λ1(F (K,Π, jω)) = λi

}
,

λi+1 :=
λi + f(K,Π)

2
, λ1 = λ ∈ R+.

With this rule, we add a small number of frequencies around the peaks. When the
peaks arise on a plateau, this approach will not add enough frequencies. We therefore
use a second rule, based on a logarithmic discretization of the peaks. We choose a
discrete subset D of

{logω : ω ∈ R+ : λ1(F (K,Π, jω)) ≥ λ, ω ∈ Ω},

in such a way that np equi-spaced points are chosen for each peak, then the extended
set is defined as

Ωe(K,Π) = Ω(K,Π) ∪ Ωλ ∪ exp(D).

For the implementation we have used the value k = 3 for the first rule, np = 20 for the
second rule. The value of λ has been set in both case to λ = f(K,Π)(1− c) + bc with

b = min

{
λ1(Ψ22[0]), λ1

([
A(K)−1B(K)

I

]A
Ψ[0]

[
A(K)−1B(K)

I

])}
,

and c = 0.05.

8.3 Performance optimization

Minimizing the objective function f allows to reach a feasible point (Kk, Sk, Gk) for
a fixed value of the performance upper bound γk. However, our goal is not only
to find a robust controller K, we also have to optimize worst case performance γ ≥
max∆∈∆ ‖Twz(∆, K)‖∞. An extrapolation method has been used to update the param-
eter γk → γk+1 in order to drive it toward its optimal value γ∗. Let (Kk, Sk, Gk) with
γk be the current feasible point reached by the algorithm, i.e. f(Kk, Sk, Gk, γk) < 0,
so that Kk is a parametric robust controller for ∆ with robust performance ≤ γk and
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with the corresponding certificate Π∆,k = (Sk, Gk). The cost function can be written
as

f(Kk, Sk, Gk, γk) = max
ω∈[0,∞]

λ1(F (Kk, Sk, Gk, γk, jω)) = max
ω∈[0,∞]

Q>ωF (Kk, Sk, Gk, γk, jω)Qω,

so that

f(Kk,Πk) = max
ω∈[0,∞]

c1,ω

γ
+ γc2,ω + rω = max

ω∈Ω(Kk,Πk)

c1,ω

γ
+ γc2,ω + rω,

where

c1,ω = Q>ω


0 0 0 0
0 I 0 0
0 0 0 0
0 0 0 0

Qω, c2,ω = Q>ω


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −I

Qω,

and
rω = λ1(F (Kk,Πk, jω))− c1,ω

γ
+ γc2,ω.

Let ε > 0 be a fixed tolerance. We compute for each of the finitely many ω ∈ Ω(Kk,Πk)
the number γ+

ω by:

• if rω < ε(|c1,ω|+ |c2,ω|) then γ+
ω =

√
−c1,ω/c2,ω,

• elseif c2,ω < ε|rω| then γ+
ω = c1,ω/rω,

• elseif c1,ω < ε|rω| then γ+
ω = −rω/c2,ω,

• else

γ+
ω =

−rω −
√
r2
ω − 4c1,ωc2,ω

2c2,ω

.

Then parameter γk is updated to the value γk+1 = max{γ+
ω : ω ∈ Ω(Kk,Πk)}, and

optimization is restarted with this new value. In some cases, the point (Kk,Πk) is not
feasible for the new γk+1. In that case we perform a backtracking linesearch to find
the smallest value γk+1, for which the actual point is feasible. Optimization of γk is
stopped if γk+1 ≥ γk, i.e., if we fail to reduce γk within the numerical precision. Yet
another possible stopping criterion is

|γk − γk+1|
γk

< ε,

where we have taken value ε = 1e− 4 in our code.
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8.4 Results

For both case studies our robust synthesis algorithm has been run for different levels of
uncertainty. As always, in phase I, the locally optimal H∞ controller K∞ is computed
to have a lower bound γ∞ for γ∗, and to initialize γ0 > γ∞. In phase II our algorithm
comes to play and K∞ is used as a starting point K0 to compute a locally optimal robust
controller K∗ using a static multiplier Π∗ on [0,∞] and with robust performance at
most γ∗. Then in phase III we use (K∗,Π∗) to initialize our algorithm again to compute
a robust controller K̄ and a dynamic multiplier Π̄(jω) in order to improve performance
γ̄ < γ∗. In phase III our tests use dynamic multipliers with three frequency bands as
described before. Results are presented in tables 2 and 3. For each value of p for the
mass spring model, and of p1, p2 for the missile model, we have computed: (a) the worst
case performance γ∗ of the feedback controller with respect to the p% value, (b) the
H∞ performance of the nominal plant γ∗nom = ‖Twz(0, K∗)‖∞ at the robust controller
K∗, (c) the value of the spectral abscissa αnom of the nominal plant at K∗, and (d) the
criticality measure θ, which is Polak’s optimality function value [40].

We observe in both studies that the performance bound γ∗ increases as the level of
uncertainty increases. We see in Table 2 that for small p%, the value γ∗ is very near
the optimal H∞ controller performance γ∞. The same is seen in Table 3 for the missile
model. Improvement of the performance bound of the controller is also observed when
passing from the static case to the dynamic 3 bands case, i.e., γ∗ → γ̄. Improvement
from γ∗ to γ̄ is sometime dramatic, for example when p = 25% in the mass spring
model. For the missile model this improvement is clear for all experiments. A gap is
observed for parameter γ∗, for the missile model, when passing from p1 = 0.15, p2 = 15
to p1 = 0.20, p2 = 20.

We see in Tables 2 and 3 that for some experiments, the criticality value is rather
large. For example the mass-spring model for p = 20% with 3 bands. The fact
that optimization stops while criticality is not fully achieved can be explained by a
bad detection of the actives frequencies Ω(K,Π), or by a bad choice of the extended
frequency set. In Figure 3 we display the plot of the FDI for the last iteration of the
mass-spring system 3 band controller synthesis with p = 20%. We see on this figure
that there is a very sharp peak on the right, and we have observed that the algorithm
fails to compute the active frequency of this peak with sufficient accuracy. This causes
the optimization process to stop prematurely.

A more diligent choice of the frequencies in the extended set Ωe(K,Π), and restart-
ing the optimization process, may overcome this difficulty. In the same vein, peak value
precision may be increased by decreasing the tolerance parameter εf . For the example
in question, optimization could be restarted for some iterations, by adding frequencies
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Mass Spring - 1 Band Mass Spring - 3 Band
p% γ∗ γ∗nom α∗nom θ γ̄ γ̄nom ᾱnom θ ω1 ω2

5 1.3610 1.3551 -0.6172 -2.16e-04 1.3594 1.3553 -0.6206 -2.44e-03 0.76 1
10 1.6963 1.6807 -0.7869 -9.38e-04 1.6561 1.6270 -0.4136 -1.44e-04 0.76 2.30
15 2.0648 2.0106 -0.5615 -2.67e-03 1.6169 1.5168 -0.6114 -2.11e-01 2.40 4.10
20 2.5079 2.4064 -0.4501 -4.64e-03 1.7729 1.6544 -0.6835 -1.30e-01 2.40 4.10
25 3.0609 2.8979 -0.3646 -6.24e-03 1.9626 1.7751 -0.8070 -5.39e-02 2.40 4.10
30 3.7540 3.4569 -0.3146 -3.58e-05 3.6205 3.5405 -0.2272 -2.80e-04 0.76 45

Table 2: Results for the mass-spring model. Optimal full order γ∞ = 1.3261 and
α∞ = −0.2129

Reichert’s Missile - 1 Band Reichert’s Missile - 3 Band
p1%; p2% γ∗ γ∗nom α∗nom θ γ̄ γ̄nom ᾱnom θ ω1 ω2

0.05; 5 2.9093 2.8257 -5.6525 -2.37e-02 2.6238 2.5755 -1.9448 -3.57e-04 36 250
0.1; 10 3.6214 3.1553 -9.8540 -1.81e-01 2.7443 2.6436 -2.3008 -3.91e-04 36 250
0.15; 15 3.7101 3.2804 -9.6331 -3.52e-02 2.8386 2.7301 -2.4953 -4.10e-04 36 250
0.2; 20 10.478 4.4420 -16.8509 -1.28e-02 9.7196 4.3821 -17.1033 -3.50e-02 69 400

Table 3: Results for the missile model. Optimal full order γ∞ = 2.4941 and α∞ =
−0.4949

by hand and decreasing εf value, until the algorithm stopped again prematurely due
to bad detection of the sharp peak. An efficient rule for adding frequencies to set
Ωe(K,Π), when optimization gets stalled, remains to be defined.

Figure 2 shows the plot of the spectral abscissa, for the mass-spring model with
p = 25%, for the controllers obtained with static (left of figure) and dynamic (right of
figure) multipliers. The spectral abscissa is computed for each value of perturbations
δm2 and δk of parameter m2 and k. The left part of Figure 2 is an illustration of IQC
conservatism. In the case of static Π, the boundary of the unstable region is very far
from the square of admissible perturbations. The right part of Figure 2 shows that the
boundary of unstable region gets closer to the square for the controller computed with
a dynamic multiplier Π(jω). Hence conservatism has been reduced.

9 Conclusion

We have proposed a new algorithm to minimize the semi-infinite maximum eigenvalue
function f = λ1,∞ ◦ F arising in IQC synthesis problems. Our method is nonsmooth

32



−0
.5

−0
.4

−0.4

−0.4

−0
.3

−0
.3

−0.3

−0.3

−0
.2

−0
.2

−0
.2

−0
.0

5

−0
.0

5
Spectral abscissa plot − unstable region :12.68%

δ k (%)

δ 
m

2 (
%

)

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

−1

−0.8

−0
.8

−0.6

−0
.6

−0.6

−0.6

−0
.6

−0
.4

−0
.4

−0
.4

−0
.2

−0
.2

−0
.2

−0
.0

1

−0
.0

1

−0
.0

1

Spectral abscissa plot − unstable region :20.88%

δ k (%)

δ 
m

2 (
%

)

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

Figure 2: Reduction of conservatism for dynamic Π(s). Contour plot of the perturbed
closed-loop mass-spring system spectral abscissa ∆ 7→ α (A(K∗,∆)) (left) and ∆ 7→
α
(
A(K̄,∆)

)
(right). The black square shows the ±p = 25% uncertainty region about

the nominal parameter values. Left: with the controller K∗ computed using a static
multiplier Π∗. Right: with the controller K̄ synthesized using a dynamic three-band
multiplier Π̄(s). The percentage on the top of the two figures measures the area of the
unstable region within the frame.
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and uses a numerically tractable description of the Clarke generalized subdifferential
∂f(x). A number of implementation details of the method have been discussed. Our
design approach performs well on two case studies.
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