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Abstract

Applications in engineering frequently require the adjustment of
certain parameters. While the mathematical laws that determine
these parameters often are well understood, due to time limitations
in every day industrial life, it is typically not feasible to derive an
explicit computational procedure for adjusting the parameters based
on some given measurement data. This paper aims at showing that
in such situations, direct optimization offers a very simple approach
that can be of great help. More precisely, we present a numerical
implementation for the local minimization of a smooth function f :
R™ — R subject to upper and lower bounds without relying on
the knowledge of the derivative of f. In contrast to other direct
optimization approaches the algorithm assumes that the function
evaluations are fairly cheap and that the rounding errors associated
with the function evaluations are small. As an illustration, this
algorithm is applied to approximate the solution of a calibration
problem arising from an engineering application.

The algorithm uses a Quasi-Newton trust region approach ad-
justing the trust region radius with a line search. The line search is
based on a spline function which minimizes a weighted least squares
sum of the jumps in its third derivative. The approximate gradi-
ents used in the Quasi-Newton approach are computed by central
finite differences. A new randomized basis approach is considered to
generate finite difference approximations of the gradient which also
allow for a curvature correction of the Hessian in addition to the
Quasi-Newton update. These concepts are combined with an active
set strategy.

The implementation is public domain; numerical experiments in-
dicate that the algorithm is well suitable for the calibration problem
of measuring instruments that prompted this research. Further pre-
liminary numerical results suggest that an approximate local min-
imizer of a smooth non-convex function f depending on n < 300
variables can be computed with a number of iterations that grows
moderately with n.

Key words: Calibration of measuring instruments, minimization without deriva-
tives, direct search, quadratic model.

November 16, 2015

1With financial support of i-for-T GmbH, Germany



1 Introduction

1.1 An Engineering Application

1.1.1 Mathematical Compensation for the Calibration of Measuring
Instruments

The Bureau International des Poids et Mesures defines: The calibration of a
measuring instrument is an “operation that,]...] in a first step, establishes a re-
lation between the quantity values [...] provided by measurement standards and
corresponding indications [...] and, in a second step, uses this information to
establish a relation for obtaining a measurement result from an indication” [4].
Thus, the calibration procedure must be preceded by the definition of a number
of variables and of a formal relation between the measurand Y and measured
quantity value X — the calibrating function. The variables (termed the cali-
bration parameters k; with 1 <4 <) are to compensate for a variation in the
manufacturing process of the measuring instruments which is always present.
The relation can formally be written as

V= foUX Ky, k) + 7(Ostat) (1)

where f°@ is the calibrating function and r is a residual term depending on some
random disturbance variables d44;. During the calibration process as many
as possible true quantity values y; are adjusted and the associated measured
quantity values x; of the measuring instrument are being recorded. The choice
of the parameter values k; aims at minimizing the norm of 7(Js¢at)-

1.1.2 Determination of the calibration parameters by an optimiza-
tion problem

The determination of the calibration parameters ki, ..., k; is formulated as an
optimization problem where the 1-norm or the 2-norm of the residuals r is being
minimized. In practice one often settles for rather simple calibrating functions
— sometimes even linear functions — last, not least, in order to limit the effort
of mathematical modeling. Also, the reference values of the measurand y; very
often are chosen in the calibration such that the resulting measured value z;
only depends on a single calibration parameter which can be determined by
solving a single (scalar) equation. On the one side, however, there is pressure
to allow for larger production tolerances reducing the production costs, and on
the other side, there is the demand of the market for higher precision of the
measuring instruments. These demands can only be met by more sophisticated
mathematical modeling that goes beyond the simple strategies for adjusting the
calibration parameters as described above.

1.1.3 Modeling of additional disturbance variables

And yet another effect contributes to the higher complexity of the mathemati-
cal modeling: Every time when it is not possible to determine the true value of
the measurand Y directly by a normal or by a measuring instrument of higher
precision, it must be determined by some other known quantities called actu-
ating variables S. In order to derive the measurand from the known actuating
variables, another functional relation g enters the mathematical model. At this



point, again, systematic disturbance variables p; are to be taken into account.
These disturbance variables are caused by the inevitable deviation of the real
calibration setup from an idealized model. Analogously to the calibration pa-
rameters, also these parameters pq,...,p, must be determined and taken into
account in the determination of the calibration parameters.

— —

Y :g(Svplv"'7pm) +F(6Stat) (2)

These parameters p1,...,p, either can be eliminated by high mechanical ef-
forts — strict production tolerances or adjustment mechanisms — or they can
be determined by measuring techniques once for every calibration setup. In
both cases, the effectiveness of the chosen approach must be double checked
in regular intervals since changes over time will directly influence the precision
of the produced measuring instruments. Thus, it is preferable to include these
parameters in the mathematical model of the calibration process as well.

}7 = fcal()_(’7§7p17 e 7pm,k1, .. .,kl) + f((sstat) (3)

When collecting a sufficient number of data sets during the calibration pro-
cess, the calibration parameters ki,...,k; as well as the disturbance variables
P1,---,Pm can be determined by minimization of the residuals #. Small changes
of the calibration setup are thus compensated for and do not influence the pre-
cision of the measuring instruments — at the expense of a much more complex
mathematical model. For the determination of the unknown parameters p; and
k; a nonlinear optimization problem is to be solved?. The modeling effort for
such nonlinear optimization problems generally cannot be conveyed to the en-
gineers in the industrial daily routine so that this method for the calibration
of measuring instruments is restricted to few specific applications in spite of its
conceptual merits. This motivates the present paper where a tool is being de-
veloped that allows a simple and effective solution of optimization problems for
the engineers based on mere function evaluations without requiring additional
efforts of setting up partial derivatives.

1.2 A Mathematical Optimization Problem

To conform the description of the minimization algorithm with the standard
optimization literature, a change of notation will be necessary. The unknown
parameters of Section 1.1 will be summarized in a vector z with a total of n
components. These are the variables that shall be optimally adjusted by the
optimization approach. If the calibrating function is as in relation (3) then the
function to be minimized will be a smooth but nonlinear least squares function
of the form

f(ll?) = ||Y7chal(X'aSipla"'apmaklw"vkl)H%

where x comprises all unknown parameters p1,...,pm, k1,...,k and || . ||2 de-
notes the Euclidean norm. For the minimization procedure the — often very

2In short distance photogrammetry this approach has been used successfully for a long
time. Here, the calibration parameters describe the properties of the camera which change
after each change of the lens. With the aid of a large number of measured values the parameters
of the outer and the inner orientation of the camera are approximated on high performance
computers to determine the measured variables. Another application is the compensation of
the geometric deviations of machine tools and coordinate measuring equipment.



differing — physical meanings of the components of x can be ignored as long as
the functional relations specified by the calibrating function f cal are preserved.
The function f to be minimized depends on the measurements X and the actu-
ating variables S , but the precise dependence on these measurements shall not
be analyzed. Instead, the function f shall be minimized without knowledge of
its specific structure.

More generally, let some differentiable function f : R™ — R be given and
some mechanism for evaluating f at a given input z € R". Let [ € (RU{—o0})™
be a lower bound and u € (R U {o0})™ be an upper bound on z. We assume
that [ < u. The goal is to find an approximate solution Z to the problem

minimize f(x) where | <z < . (4)

In this paper a new implementation of a “direct search method” not relying on
derivative informations of f is presented.

1.3 Minimization without using derivatives

The implementation outlined below assumes that evaluations of f are fairly
cheap. For expensive functions f, other approaches such as in [1, 5, 20] are to be
preferred. It is also assumed that f is at least once differentiable, but that the
derivative typically is not available. The algorithm generates approximations to
the first and second derivative of f. Numerical examples in Section 4 indicate
that the algorithm performs reasonably well when minimizing a convex function
whose second derivative is not defined at the optimal solution and performs not
so well when also the first derivative is not defined at the optimal solution.

While derivative-free optimization typically generates approximate solutions
that are not highly accurate, the application discussed in Section 5 requires a
fairly high accuracy of the approximate solution. It turns out that the central
finite differences used in this paper lead to an approximate solution that sat-
isfies the given demand on the final accuracy in spite of the fact that direct
optimization is used.

The approach presented below is based on a trust region model and is thus
related to the approaches in [8, 9, 10]. It also bears similarities with other
approaches as described, for example in [26, 28]. It is suitable only for local
minimization. The engineering applications targeted with this approach often
come with a good initial estimate of the parameters to be adjusted, and do
not have local “non-global” optimizers near the starting point. Thus, a local
approach is sufficient for such applications.

For global minimization other approaches such as in [20] will be more suit-
able, see also [2, 7, 24, 28]. For global minimization, typically the computational
effort explodes when the number of unknowns increases (an observation that is
sometimes referred to as curse of dimensionality). The approach followed here
only aims at local minimization where the dependence on the number of un-
knowns appears to be much weaker. In the numerical examples of Section 4 the
algorithm performs reasonably well when the number n of variables is moderate
(here, n < 300).

Within Matlab or octave the approach is very easy to use — all it takes is a
Matlab program for evaluating f as well as a starting point (of the appropriate
dimension) — and it is public domain [21]. No compilation or other adjustments
are needed; downloading the file mwd_bnd.m will suffice.



1.4 Notation

The components of a vector x € R™ are denoted by z;; the canonical unit vectors
in R™ are denoted by e’ for 1 < i < n. When z € R™ is some vector, ||z|| denotes
its Euclidean norm. Inequalities such as [ < z < u are understood component-
wise; the box of vectors x satisfying such inequalities is denoted by [l, u].

Given a vector z, the diagonal matrix with diagonal entries x; is denoted by
Diag(x), and given a square matrix A, the vector with the diagonal entries of
A is denoted by diag(A).

The gradient of a differentiable function f : R™ — R at some point x will
be denoted by a column vector g(x) = V f(x), and the Hessian (if it exists) by
H(z) = V?f(z).

2 A line search based on least-squares-splines

Matlab/octave or scilab is an easy-to-use environment and well suitable for
modeling functions such as f in Section 1.1. The standard Matlab routine
“fminbnd” for minimizing

a function f of one variable on some interval [I, ]

uses bisection and quadratic interpolation. This routine is reasonably efficient in
many cases. However, in certain cases fminbnd may return the largest function
value as an approximate minimizer. This lack of reliability prompted the need
for a new line search.

The new approach implemented for a line search based on bisection, golden
mean search (see e.g. [23]), and quadratic interpolation used a slightly higher
number of function evaluations than fminbnd which is based on the same al-
gorithms (but ignoring the end points). To compensate for this higher com-
putational effort—and since the line search is a widely used tool—a strategy
to reduce the number of function evaluations based on a spline interpolation
was implemented. Possibly due to the fact that spline interpolation typically
is more accurate than quadratic interpolation (see e.g. [30], Section 2.4.3), the
spline interpolation reduced the number of iterations compared to the quadratic
interpolation, and for some examples this new approach also compares favorably
to fminbnd in terms of the number of function evaluations. The new line search
always returns a point with the lowest function value that is encountered during
the algorithm, in particular less or equal to the values at [ and w. It is based on
a new concept of spline functions as explained next.

Let n > 3 and let n + 1 “support points” | =29 < z; < ... < z, = u be
given with associated function values f(z;) for 0 <i < n. It is well known (see
e.g. [30]) that there exists a unique cubic spline function s : [I,u] — R satisfying
s(x;) = f(x;) for 0 < i < n and any one of the following four conditions:

1. “Natural spline”
s"(z0) =0 and §"(z,) =0, (5)

2. “end slope spline” (for some given values f'(xg), f'(zy))

s'(zo) = f'(wo) and  s'(zn) = f'(2n), (6)



3. “periodic spline” (when f(z¢) = f(zn))
s'(wg) = §'(z,) and §"(xg) = s"(zn), (7)
4. “not-a-knot spline”
§"(x1—0)=5"(x14+0) and s"(x,—1—0)=5"(zp_1+0). (8)
The computation of the spline function typically is carried out in O(n) arith-
metic operations solving a linear system with a tridiagonal structure (possibly

with a minor perturbation of the tridiagonal structure), see e.g.[30], Section 2.4,
Algorithm 2.4.2.15.

Below, a somewhat simpler approach is proposed using O(n) arithmetic op-
erations as well, and allowing for a more flexible choice of additional conditions:

e First, construct an interpolating spline sy with the additional conditions
so(zo) =0 and sg(x) =0, (9)
in place of one of the above four conditions, i.e.:
Fori=10,1,...,n—1 do:

1. Given s((x;), sg(z;), and so(z;) = f(z;) define s¢ for x € [2;, 2411]
via

so(2) = so(z;) + so(xi) (2 — i) + 186/(331‘)(33 —a;)” + (e — ;)

2
where
- Fl@iz1) — (solwi) + sp(w:) (@ipr — @3) + 550 () (@ip1 — 24)?) '
(Tig1 — ;)3
2. Compute
so(wig1) = sp(xi) + 50 (@) (Tip1 — i) + 3% (wig1 — 23)°
and

80 (Tit1) = 50(i) +6%i(Ti41 — 23).
It is easy to see that sy generated above is indeed an interpolating cubic
spline function that satisfies (9).

e Then (in the same fashion as above for sy) generate spline functions s;
and so with sq(z;) = 0 and so(x;) =0 for 0 <7 <n and

si(zo) =1, s/(xo) =0, and sh(zg) =0, s5(xg)=1.

By construction, s; and s are linearly independent. (In a numerical
implementation, sg, s1,S2 can be evaluated simultaneously to reduce the
overall numerical effort.)

e Observe that any interpolating spline function s has the form
s(x) = so(x) + asi(x) + Bsa2(x)
for some fixed values «, 5 € R.
The last observation motivates the following approach:

e Compute sg, s1,S2 and solve a 2 x 2 system of linear equations for the
coefficients «, 8 to satisfy any of the conditions (5) — (8).



2.1 Additional conditions

If f'(xo) and f’(z,) are not available, and if f is not known to be a periodic
function, conditions (5) or (8) are often chosen to define an interpolating spline s.

Even if maxi<;<, ©i—1 —2; — 0, the choice (5) prevents that s” will converge
to f” on [l,u] unless f”’(x0) = 0 and f”(x,) = 0. Thus, generalizations of the
choice (8) will be considered in the sequel.

Given some spline function s define the “jump” of "’ at x; by
L) e— 3 " _ . "
ns(xz) ’ :E~>wlbl7n(;<a:1 5 (QE) x%a:lll,nzlv>wl 5 (l’)
Alternative choices for determining s would then be
minimize Z wins(w;)? (10)
1<i<n—1
or
. _ _ 1
minimize 1§r{1§a§71wl|ns($’)| (11)
for some nonnegative weights w;, e.g.
2 .
w; = ———— (1<i<n-1). (12)

Ti—1 — Ti+1

These weights account for the aim that large changes of s’” in between short
intervals are penalized more than large changes between longer intervals. Note
that both (10) and (11) solve (8) for the choice

wy =wp_1=1 and wy=w3=...=w,_2=0 (13)

(namely forcing ns(x1) = ns(xn—1) = 0). Numerical examples suggest that the
choice (12) over the standard choice (13) tends to produce better approximations
of analytic functions for x € (z1,x,—1) but not necessarily near the end points.
The line search in [21] is set up such that the minimizer of the spline is located
in (x1,x,_1), and thus, the choice (10), (12) is used there.

Note that given sg, $1, s2 as in (9), the solution of (10) is the solution of a 2x2
system of linear equations that can be set up (and solved) with O(n) arithmetic
operations. It turns out however, that the linear systems for solving (10), in
spite of having only two unknowns, tend to be very ill-conditioned, in particular,
when the support points z; are not evenly distributed (but accumulate near
a local minimizer of f). To reduce the rounding errors, the solution of the
systems is carried out with orthogonal transformations, and given the solution,
the interpolating spline is recomputed based on the values of s’ and s” at zq.

The line search then is carried out as follows: By golden mean search an
interval is identified containing a local minimizer. f is interpolated within this
interval by a least-squares-spline (10). The minimizer of this spline is taken
as next point at which f is being evaluated. Some tedious but straightforward
safeguards ensure the convergence.



3 A trust region Quasi-Newton approach

In this section we describe an iterative algorithm for approximating a local
minimizer of

a smooth function f : R™ — R on some box [I, u]

where [ € (RU{—00})" and u € (RU {o0})™ are given data.

The algorithm relies on the availability of approximate gradients, the numer-
ical evaluation of which is discussed in Section 3.3. The gradient information
will also be used for a Quasi-Newton update of the Hessian. Generally, because
the Quasi-Newton updates are numerically cheap (O(n?)), they are applied in
the context of numerically cheap search steps. Here, the situation is somewhat
different: The evaluation of the approximate gradient is costly (typically O(n?)
or higher) motivating a computationally more expensive search step to extract
large progress based on the available gradient and Hessian information.

3.1 Initialization

The algorithm uses central finite difference approximations of the first derivative
of f. The accuracy of the finite difference approximations and the performance
of the algorithm below crucially depends on the accuracy with which f is being
evaluated. The approximate error in the evaluation of f will be denoted by err.

To estimate err, the evaluation of the first gradient (at 2° and with a ran-
domized basis) is carried out with a one-sided finite difference for a step length
€2/3 where ¢ is the machine precision. Then, approximate err > € by

err & max |S(f(20) + F(a0 +2612u)) — F(a® + V2],
1<i<n ' 2

where the first two terms in the max-term of the right-hand side are stored
from the evaluation of the first gradient. In the absence of rounding errors in
the evaluation of f, this estimate of err is of the order at most €*/3M where
M is an upper bound for the norm of V2f near the point z°. Hence, when
M < e /3 the above approximation will yield a lower bound for the evaluation
error err of f.

The above estimate of err is used to define the step length for the finite
difference approximations to the gradient and the Hessian of f, defining

§:=0.1err'/3. (14)

To motivate the definition (14) assume for the moment that the third derivative
of f exists and is continuous. Assume further that n = 1 and denote the finite
difference approximation of f’(x) by g. Then, subtracting the Taylor expansions
up to third order for the points f(x + ) shows that estimating f’'(z) by central
differences through the points f(x 4 §) results in a discretization error of

" "
£(2) = gl < B B ep2rs (L8 10)

The choice of the factor 0.1 in (14) is somewhat arbitrary; it implies that the

linearization error dominates the error caused by the inaccuracy in the function

values when || f"/(€)|| > 6000. For n > 1 the partial derivatives of f are the first



derivatives of the function t — f(z + te'), so that the above estimate remains

valid in the form

|D3 f(z + &eb)[e?, e, e
600

l9(2)i — gi| < err®/3( +10).

A similar consideration for n = 1 and for four times continuously differen-
tiable f shows that the approximation of f”(z) (or of §; in Section 3.4) has
an accuracy of at least Werrw 3 4 400err!/3. Clearly, the update of
is meaningful only, as long as the norm of the correction AS in Section 3.4 is
larger than this discretization error. Note further that the above term 400err'/3
is correct only, when the error err in the evaluation of f is known; if a higher
precision is assumed for the definition of § than the one that is actually present,
this term can explode. (A wrong estimate of err also influences the accuracy of
the first derivative, but to a lesser extent.) For the limited number of numerical
experiments carried out so far, the estimate of err near 2% as detailed above
was sufficient to allow for overall convergence.

3.1.1 Bounds

If f is not defined for x ¢ [I,u], the bounds | and u will be replaced by I 4+ §
and u — § for the main phase of the algorithm, and only in the last step, when
no further gradient approximations are to be evaluated, the bounds [ and u are
set to their initial values. (This is the default of the algorithm in [21].)

Thus, the initial point and all iterates (except the last one) are assumed to
satisfy the strengthened bounds so that central differences about the iterates
are well defined. In particular, we assume that [; < u; — 29 for all i; else, the
variable z; is fixed at x; = (I; + u;)/2.

3.2 A trust region step with curvilinear search

Assume that a current iterate z = 2% with I < z < u is given along with
estimates g for g(z) and H for H(x). Let § > 0 be the step length used for the
finite difference approximation to the gradient defined in Section 3.1.

Active constraints at z are identified as the set

Jeo={ilx; <lL+90, >0} U{i |x; >u; — 9, g; <O}

We change z by replacing all x; for ¢ € J with the bounds [; if g; > 0 and with
u; if g; < 0. We then keep z; for j € J fixed and do a line search varying the
values xy, for the remaining indices k € K := {1,...,n}\J.

These variables are determined by a trust region subproblem: Let Hg g
be the principal submatrix of H associated with K. Compute the eigenvalue
decomposition Hxx = VDVT and set dppn := minge g D k. For t € (0,1) set

1—t -
xi(t) = H[ZK,uK] (IK‘/(DJF(t dmm)I) VTQK) )

where IIj;, ] denotes the projection onto the box [Ix,uk],

M} (7) = max{l, min{u, z}}.



If I; = —oo and u; = oo for all 4, then the points z(t) are given by
x(t) =2 — (H+ (—— — dmin)) g, (15)

where the parameterization t := % — dmin 1s chosen to restrict ¢ to (0,1) and
such that for small ¢ > 0 it follows

z(t) — x =~ —tg,

i.e. z(t) approximates the steepest descent path for small ¢ > 0. (In the imple-
mentation in [21], a minor modification of the above definition of x(t) is used
to ensure that x(t) is well defined on the closed interval [0, 1].)

Note that the points x(t) in (15) are optimal solutions of trust region sub-
problems

1
minimize gTs+§sTHs | syj=zy, |lz—s]<$§

for some trust region radius 0 = §(¢) depending on ¢. (This is true for d,,, < 0;
nevertheless, since H is only an approximation, we allow for positive values of
dpmin to enable longer steps — secured by a line search.) With the exception of
the “hard case” addressed in Section 3.3 we also have 6(t) — oo when ¢ — 1.
The line search of Section 2 minimizing f(x(t)) for ¢t € (0, 1) is then applied
to find an approximate minimizer x* along the curve z(¢). In our examples,
typically, about 10 to 20 function evaluations are needed for a line search.

Search steps of the form (15) have been considered before, for example,
in [15], see also [6]. Here, a straightforward active set modification to allow
for bound constraints is included. The line search allows for long steps before
reevaluating the gradient, and thus, it is particularly rewarding for problems
with n > 10 variables.

3.3 Gradient approximation and randomized bases

To estimate the gradient at some iterate z = z* the following randomized
bases can be used: Randomly (and uniformly) generate an orthonormal basis
U= (u',...,u") of R" and set dt = §+€2/3||z| where € is the machine precision

and ¢ is the basic step length for the finite difference as defined in Section 3.1.
Let fval; be the vector with entries fuvali(i) = f(x — dtu’) and fvaly be
the vector with entries fvals(i) = f(x + dtu?). Then,

g(z) = g :=U(fvaly — fvaly)/(2dt).

This approximation coincides with the standard central finite difference ap-
proximation when U = [ is the identity matrix. As will be seen next, the
randomized bases allow a somewhat more balanced update for the Hessian than
the choice U = I corresponding to the standard finite difference star.

The computational cost of generating a random unitary matrix U is of order
O(n?). If each evaluation of f for the finite difference approximation of the gra-
dient takes at least O(n?) operations (this is the case, for example, for quadratic
functions with a dense Hessian) then the cost of computing U is of at most the
same order as the cost of the gradient approximation. Likewise, also the cost of
the line search is not much higher than the cost of the gradient approximation.

10



For a randomly chosen basis, it is rather unlikely that the finite difference
star will return an approximation g to the gradient that results in the “hard
case” of the trust region subproblem — where g is exactly perpendicular to the
eigenspace associated with the smallest eigenvalue of H. Thus, the curvilinear
search in (15) is likely to satisfy ||z(t)|| — oo for ¢ — 1.

3.4 Hessian updates

The gradient information of the line search step can be used in two complement-
ing ways to update the approximation to the Hessian: First, a low rank update
of the Hessian is implemented. This update can be corrected by a curvature
correction and the combined update of the Hessian can be used in the next trust
region line search step. Thus, the needs of the updates are twofold:

For the trust region line search step there is no need to assume that the
approximate Hessian be positive definite. On the other hand, the trust region
is based on the Euclidean norm — giving up on the idea of affine invariance.
Thus, also the low rank update of the Hessian is carried out with respect to
the Euclidean norm, preserving symmetry of the Hessian, but not necessarily
positive definiteness. This leads to the choice of the PSB (Powell symmetric
Broyden) update, [27]2. This update is followed by a curvature correction which
also relies on the Euclidean norm.

1. Let = denote the starting point of the curvilinear search in Section 3.3 and
let 2 be the approximate minimizer along this curve. Set Ax := % — .
Another finite difference approximation g* to g(z™) is evaluated next.
The estimate H for H(z) is updated to an estimate H' for H(z") as
follows:

If |Az|? > dt?(1++/e||x||) the difference of the gradients g and g™ at both
points is used for a Quasi-Newton update based on the PSB formula. Let
Ag:=gT —g, Az =" —x, and

(Ag — HAz)AzT + Az(Ag — HAz)T  (Ag — HAz)T Ax

— _ T
AH := AT An (BT Az AzAz*.

The PSB update is then given by setting

H:=H+ AH.

2. This update can be corrected further by a least squares update of the
Hessian based on central finite differences: Let 8 be the vector with the
central difference approximations to the second derivative of f along the
axes given by U, i.e.

_ fvaly(i) + foals(i) — 2f (z*)
- di2

3In [27] this update is defined as the limit when iterating the Broyden-rank-1-update fol-
lowed by a symmetrization. [27] also includes numerical examples and convergence properties.
In addition, this update minimizes the Frobenius-norm of the correction subject to the Quasi-
Newton condition and the symmetry condition, see e.g. [22], Theorem 6.6.10 and (6.6.18).
The minimum norm property motivates the choice of this update for the Euclidean norm
trust region problem.

Bi
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where fvaly and fvaly are as in Section 3.3. If U was the identity matrix,
then 3; would provide the central difference approximation to the diagonal
elements D? f(2%); ;. For general orthogonal U let AB := 3—diag(UT HU)
denote the difference of the above central difference approximation and the
corresponding values of the current matrix H. Then,

HY := H+U Diag(AB) UT;

provides a least squares correction for H.

By using randomized bases U, the updates are not restricted to diagonal
elements only but correct all entries of the Hessian. (In the numerical ex-
amples in Section 4, the Hessian of f at the final iterate was approximated
to about 3 significant digits even when using only the curvature correction
without the PSB update.) This second update following the PSB update
is not a low rank update and seems not to have been considered before.
It will be called “curvature update” in the sequel.

Summarizing, a cost intensive but quite accurate approximation of the gradient
by central differences and a combination of two different updates of the ap-
proximation to the Hessian matrix is intended to allow for a reliable solution
of smooth nonlinear bound constrained optimization problems at a reasonable
accuracy. In some preliminary numerical experiments it was indeed possible
to observe with several examples that not only an approximate solution of the
optimization problem was found, but also the Hessian approximation generated
at the end of the algorithm often was quite accurate, in particular, when the
number of iterations carried out by the algorithm was rather high.

4 Numerical results

4.1 Test problems

In this section we report on some preliminary numerical examples that were
chosen to provide some intuition about the rate of convergence of the algorithm.
The engineering application that triggered this paper is presented in the next
section. For the interpretation of the numerical results we remind the reader that
the algorithm MWD (Minimization Without (using) Derivatives, [21]) in this
paper is intended for local minimization; no globalization strategy is included.

1. Some test functions of just two variables can be found at [3]. In order to
avoid random effects that result from the approximation of different local
minimizers, for a first test, some smooth test functions from [3] were chosen
that only have few local minimizers namely: The Beale Function, the
Goldstein-Price Function, and the McCormick Function. Their definitions
are

felzy) = 15—z +ay)’+ (225 —z + xy2)2 ,
fap(a,y) = (1 +(z+y+1)% (19— 14z + 322 — 14y + 6zy + 3y2)> :
(30 + (20 — 3y)? (18 — 323 + 1222 + 48y — 362y + 27y2)),

3 5
fucley) = sin(e+y) + (x—y)* = Jo + Sy + 2.91322205498103777.
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The constant terms in above functions are modified such that the min-
imum value is zero. The starting points for MWD were (0,0) for fg,
%(1, -3)T for fgp, and (1,-1)T for farc.

. The next set of test functions was intended to obtain some insight of the
dependence of the approach on the dimension with regard to test problems
of the same nature. The Styblinski-Tang Function and the Rosenbrock
Function in [3] are smooth functions with n > 2 variables and (when n > 3)
with more than one local minimizer. They are complemented below by
the Chained Rosenbrock Function, which has just one minimizer. Their
definitions are

S wd — 1627 + bx;

fsr(z) = 5 ;
fr(z) = Y (1—wi1)” +100(x; — a7 ,)%,
=2
fer(x) = (21 —1)°+100) (2 — a7 )%
1=2

fsT is a separable function making its local minimization trivial if the
starting point is a multiple of the all ones-vector. Thus, for this func-
tion the starting point was chosen with uniformly distributed compo-

nents in (—%, %)T To avoid convergence to the minimizer of fr close
to (—1,1,...,1)T, the starting point for fr and also for fop was set to
Z€ero.

. The effect of the various updates of the Hessian matrix was compared
using the next test set conmsisting of the functions fr, for from above,
and a modified Styblinski-Tang Function that has only one minimizer
(and a region where the function is rather flat) and that has a dense
Hessian. (Clearly, for a diagonal Hessian the randomized bases will not
be meaningful.)

S (Mz)} —16(Mz)? 4+ 35(Mx);
2 )
where (Mz); is the i-th component of Mz and M is the matrix

fSTmod(x) =

n+l n—1 n—2 ... 1

0 n n—2 1

M= 0 0 n—1 1
0 0 0 o2

Here the dimension was fixed to 10 and the starting point was set to zero
for all examples.

. Next, an augmented primal-dual function for a random linear program
min{c’z | Az =0, x>0}

is tested. This function is generated as follows: Randomly generate com-
plementary vectors T, § whose nonzero entries are uniformly distributed
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in [0,1]. Here, Z > 0 is constructed with m nonzero entries and 5 > 0
having n — m nonzero entries. Also define § € {—1,1} randomly. Fi-
nally, generate a matrix A € R"*™ with a standard normal distribution.
Set b := AZ, ¢ :== AT + 5 and define the function f : R?"*™ — R by
partitioning the vector z € R2"™™ as z = (z;y; s) and setting

F(z3y39) = || Az = 0] + | ATy +5 = > + (cTa = bT)* + [l ||* + [|s—|*

where the i-th element of z_ is given by min{0, z;}. (Likewise for s_)

Thus, f is minimized at the primal-dual solution Z, g, § of the linear pro-
gram and takes the value zero at this point. Note that f has a discontin-
uous second derivative; the algorithm MWD based on generating Hessian
approximations is thus expected to converge less rapidly. It is clear that
solving a linear program by minimizing the above function f is prohibitive;
each function evaluation provides very little information about the linear
program — just a single scalar number. Nevertheless, this type of function
provides some nontrivial test problems with known optimal solutions.

5. Finally, a non-smooth penalty function for the same linear program as in
the previous example is tested. Here,

F(@) = T+ Vi | Az — b + alla_ | - 7z
or
f(z) :=clz+ n||Az —b|| — Tz

Note that by the construction of the dual variables, this is an exact penalty
function on R™ respectively on the domain {x | > 0} with minimizer Z
and f(Z) =0.

For this function, the derivative is not defined at the optimal solution,
nevertheless, MWD could generate a reduction of the function value, but

stopped due to slow progress before reducing the function value by a factor
of 1074,

4.2 Test results

The trust region algorithm has been implemented in Matlab and was tested
with the examples above.

1. For the three 2-dimensional test problems, MWD generated to following

results:
problem | f(z/™) [ |lg(z/™)| | iter. | #Mm.eval. | #fm.eval. (Ls)
/B 2.7e-26 1.4e-10 11 194 12.6
fap 5.7e-14 3.2e-7 8 164 15.5
fuc 8.8¢-16 8.1e-9 7 103 9.7

Here, 2/ is the output generated by MWD, ||g(x/"")|| the norm of the
finite difference approximation of the final gradient, #fn.eval. is the overall
number of function evaluations, and #fn.eval. (1.s) is the average number
of function evaluations during a line search.
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2. For the three n-dimensional test problems in [3], MWD generated the fol-
lowing results: For each dimension, the norm ||g(zf")]| is listed, followed
by the overall number of iterations and the average number of function

evaluations during a line search.

(Apart from the line search, exactly

2n + 1 function evaluations were performed at each iteration.)

n fsT Ir fcr

5 | 5207/ 9/122 | 179/ 20/13.0 | 179/ 20/ 13.0
4 | 73e8/13/13.2 | 1le6/ 47/123 | 178/ 55/ 14.1
8 1.8e-6 / 19 / 14.2 8.66—9/ 77 / 12.5 2.56—8/ 310 / 16.7
16 | 3.6e-6 / 22 / 11.5 1.06—9/ 135 / 12.1 | 4.7e-5 / 1.0e4 / 13.5
32 | 2.2e-6 /23 / 11.5 | 3.2¢-9 / 239 / 11.9 | 6.0e-6 / 1.0c4 / 14.4
64 | 3.2¢-6 /25 /12.3 | 2.9e-9 / 433 / 11.9 | 1.5e-4 / 1.0¢4 / 13.1
128 | 1.4e-5 / 28 / 16.5 | 1.1e-8 / 835 / 11.8 | 1.5e-3 / 1.0e4 / 12.8
256 | 2.2e-5 / 28 / 16.5 | 5.5e-8 / 1612 / 11.8 | 1.9e-3 / 1.0e4 / 11.5

In particular, for the function feg, function values close to zero do not
imply that the argument is close to the optimal solution; this function has
a very flat valley, along which the iterates of descent methods typically
converge rather slowly to the optimal solution.

3. The comparison of the different updates returned the following results
where for each test run the values f(zf™) — f(2°P*) and the number of
iterations are listed:

Update fsTmod Ir fer
zero Hessian 3.4e-4 / 461 | 3.7e-5 / 7192 | 4.8e-3 /10000
curv. only, U=I 4.4e-5 /123 | 1.1e-5 / 4159 | 3.8e-3 / 10000
curv. only, U=randses; 0/ 49 9.5¢-23/ 95 | 8.9¢-18/ 1719
curv. only, U=randrst 1.1e-11 / 73 | 3.0e-15 / 129 | 1.7e-14/ 1853
PSB only 45e-13 /23 | 1e-12 /93 | 6.4e-16 / 738
PSB & curv., U=I 1.9e-8 /34 | 1.1e-15 /51 | 6.2¢-15 / 739
PSB & curv., U=randpes: 0/28 3.0e-21 / 56 | 1.6e-19 / 786
PSB & curv., U=randuyers: | 2.3e-11 / 39 | 6.4e-16 / 67 | 1.8¢-16 / 824

Above, U denotes the basis for the finite difference approximation. The
row “zero Hessian” refers to the steepest descent method with (nearly) ex-
act line search, the row “PSB only” refers to a trust region Quasi-Newton-
approach with PSB update and with a trust region radius determined by a
line search. For the randomized bases, 100 test runs were performed each,
and the best and the worst results over the 100 test runs are reported.
While the curvature update by itself (without PSB update) results in a
significant speedup compared to the steepest descent algorithm, in partic-
ular, when the concept of randomized bases is used, the combination of
both updates does not necessarily improve over the plain PSB update. In
particular, for the example fs7.m04 the error for a function evaluation was
higher by three decimal digits than for the other two examples, making
the curvature update of the Hessian less effective (see the discussion in
Section 3.1). The plain PSB update is set as default value in [21].
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4. Below, column 1 lists the dimensions N = 2n + m of the input for an
augmented primal-dual function f for a linear program, column 2 lists the
number of iterations, and column 3 lists the final function values divided
by the initial values (taking into account that the optimal value is zero).
The starting point was chosen from an independent uniform distribution,
all entries in [0, 1].

N | iterations | reduction of obj. function
10 78 4.4e-14
20 142 3.7e-13
40 106 2.3e-10
80 137 6.3e-10
160 316 4.1e-8
320 1544 2.1e-8

5. The last example of a non-smooth penalty function for linear programs
(violating the smoothness assumptions of the algorithm) generated the
following results.

unconstrained x>0

n | iterations | reduction, obj. fn. | iterations | reduction, obj. fn.
4 28 0.0022 23 0.0052

8 41 0.00085 50 0.0000001

16 57 0.0011 86 0.00073

32 205 0.0018 127 0.0022

64 279 0.0037 171 0.0040

128 259 0.0012 253 0.0011

256 933 0.00086 287 0.00055

Here, the algorithm did not use an excessive number of iterations such as
for the Chained Rosenbrock function above, but terminated due to slow
progress after some number of successful initial iterations. (The dimension
n = 128 above refers to the same LP as N = 2n+m = 320 in the example
of the augmented primal-dual function above.)

4.3 Other direct solvers

A comparison of currently available direct solvers (optimization solvers not using
derivatives) can be found, for example, in [29], documenting a recently revived
interest in this subject. The aims of the codes compared in [29] differ from the
aims followed in the present paper; in particular, the codes in [29] consider noisy
function evaluations, nonsmoothness, globalization strategies in the presence of
local, non-global minimizers, or the desire of generating a quick approximation
to a minimizer depending on only few (but expensive) function evaluations.

It is evident that the more general frameworks of the codes compared in [29]
come at the prize of a somewhat weaker performance with respect to the criteria
followed in this paper: high accuracy for problems depending on a moderate (but
not necessarily tiny) number of parameters. Therefore, the following comparison
concentrating just on the aspects relevant for the present paper is not intended
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as evaluation of the quality of any of the codes. It is only to relate the final
accuracy and the number of variables in the present code with other codes, and
it is limited to a restricted class of problems, namely smooth local minimization.

For a more complete comparison we refer to [29]. ([29] does not include the
code of the present paper which was written after [29] was published, but it
is clear that the code of the present paper cannot compare favorably to other
codes in the general setting of [29]; the code of present paper is not designed
for such settings.)

Below, a brief comparison is given with those Matlab codes in [29] that are
freely available, namely GLOBAL [11, 12], SID-PSM [13, 14], cmaes [18, 19],
snobfit [20], and PSwarmM [31]. For the comparison, two functions without lo-
cal, non-global minimizers are chosen, functions that can be formulated in terms
of an arbitrary number of variables, namely the chained Rosenbrock function
fcr and the modified Styblinski-Tang function fs7.,04- The superscript for
the function is used to denote the number of variables, i.e. féOTmod, for example,
stands for the modified Styblinski-Tang function depending on 10 variables. For
each of the codes, the time in seconds, the number of function evaluations, and
the final function value are listed. (The times refer to a desktop with eight
Intel(R) Core(TM) i7-4770 CPU (3.40GHz).)

solver f% R féOR ngR
GLOBAL | 0.078 / 3220 / 4.9¢-9 | 0.79 / 30947 / 1.8e-3 0.67 / 20007 / 3.3
SID-PSM 0.024 /120 /0 0.19/392/0 20.4 /1752 /0
cmaes 1.2 / 1063 / 1.9e-17 9.5 / 64462 / 1.0e-14 | 604 / 3102177 / 1.2e-9
snobfit 3.1 /504 / 1.0e-6 153 / 5760 / 9.8e-2 234 /2912 / 1.7e+3
PSwarm 0.34 / 2012 / 2.9e-4 1.9 / 10007 / 7.1e-2 47.2 / 50091 / 2.6e-2
MWD 0.08 / 352 / 2.6e-21 4.2 / 29502 / 7.5e-15 26.4 / 350217 / 1.1e-7
solver ngmod fsl’g"mod fg‘g"mod
GLOBAL | 0.033 / 466 / 3.9e-10 1.1 / 18850 / 2.92 1.47 / 19514 / 1.1e+6
SID-PSM 0.050 / 147 / 1.1e-13 5.2 /3084 / 2.1e-6 19300 / 2797849 / 9.2e-5
cmaes 1.2 / 515 / 1.1e-13 2.5/ 5218 / 4.5e-13 19.2 / 69939 / 5.5e-12
snobfit 3.2 /504 / 8.1e-8 8.0 / 880 / 1.2e+3 257 / 3024 / 1.6e+7
PSwarm 0.36 / 2001 / 1.7¢-9 1.9 / 10013 / 1.7e-7 20 / 50012 / 0.26
MWD 0.046 / 164 / 1.1e-13 | 0.14 / 879 / 2.3e-13 1.1 / 11832 / 3.6e-12

In all cases, the domain was the box [—2,2]" with initial vector 0 (if an
initial vector is required — and for PSwarm, also a second initial value, the
vector (—1,1,...,1)” was provided. The same initial points were also used for
the modified Styblinski-Tang function, where the optimizer lies near the point
(0,...,0,—0.5,—1.6)T".) For snobfit and PSwarm, the parameters were modified
from the default to avoid an early termination; in snobfit, the parameter nstop
was increased from 5 to 50, and in PSwarm, the upper function evaluation limit
was increased to 1000n. For SID-PSM, the default for the run with f3%, ..
was reset to “No search step and default poll order”. To interpret the results of
snobfit, e.g. for dimension 50, we note that the average function value of for
on [—2,2]% is about 2e+4 and the average function value of fsrmoq on [—2,2]50
is about le+10. This implies that values like 1.7e+3 or 1.6e+7, correspond to
a reduction of the function value by a factor of 10 to 1000 over the average
function value. Comparing such reduction — obtained with a global search and
with rather few function evaluations — with a local solver such as MWD is
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misleading. Similar reservations apply to a comparison of GLOBAL and MWD
Thus, we do not report any further comparison.

As the stopping criteria are difficult to align, the interpretation of the above
tables is not conclusive. It seems though that cmaes returns results that are
comparable with those of MWD, also for moderate dimensions.

4.4 Testing the worst case behavior for the cg-method

Consider the conjugate gradient method (cg-method) for solving Az = b with a
symmetric positive definite matrix A starting with 2° := 0. Denote the solution
by x* = A7, set v := (2*)T Az*, and let the A-norm || . |4 be given by
|| ||} = u? Au. Tt is well known that the k-th conjugate gradient iterate x*
minimizes the function

f:ao—alAz—2070 +4 = ||z — 2|4

on the Krylov-subspace K}, := span{b, Ab,..., A¥~1b} see e.g. [17], Lemma
10.2.1, Theorem 10.2.2.

Assume that 0 < A\; < Ay < ... < A, are the eigenvalues of A and k := A,/ A\
is its condition number. Then, the improvement of the k-th conjugate gradient
iterate x* over the initial iterate 2° = 0 in terms of the function value f is

bounded by
(1) (2 (5
<2 +
vy VE—1 VE+1
It is known that this bound is sharp, i.e. for any k and k > 1 there exist A,b
for which this bound is attained, see e.g. [25].

Below, the knowledge of the bound is used to construct test problems with
a known optimal value. More precisely, for fixed k, the left hand side of (16) is
considered as a function of A and b, and the left hand side of (16) is maximized
by varying A and b. For the numerical examples, it is assumed (without loss of
generality) that A is a diagonal matrix so that the left hand side of (16) is a
function of A and b. For the test A; is fixed to Ay := 1 and \,, := k. Moreover,
without loss of generality, one may fix b; := 1. Thus, f(x*)/y depends on
2n — 3 parameters \o...\,_1 € [1,k] and ba,...,by,; in particular, also x*
depends on these parameters. Formally, the unknowns As, ..., An_1,b2,...,b,
are summarized in some vector z, and a function f : z — f(z) := f(zF)/7 is
minimized via MWD, where the value f(z*) is evaluated by executing k steps
of the cg-method starting with 20 = 0.

As a starting point 20 for all examples the values \; = 1 + % and
b; = 1 are chosen.

Below, the left hand side of (16) i.e. the reduction of the A-norm after k
cg-steps for the initial data A, b is listed (called redyp), the upper bound for
this reduction given by the right hand side of (16) (called red,q,) followed by
the distance dist := red,qx — redyrwp wWhere redyrwp < redpgq. denotes the
reduction of the A-norm after k cg-steps for the data A, b generated by MWD.
In addition, the number of iterations and the number of function evaluations
used in MWD are listed. The last column gives the time in seconds for the
run of MWD on a MacBookPro from 2012 (Intel(R) Core(TM) i5 CPU, M 540,
2.53GHz). The first table refers to n = 10, k = 10, and values k = 1,...,10.

(16)
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0.0098 | 0.0204 | 4.0e-15 | 28 1619 0.87
0.0029 | 0.0106 | 6.3e-14 | 29 1694 0.95
0.0006 | 0.0055 | 8.0e-15 | 45 2688 1.60

k| redy redmaz dist # it. | # f-eval. | time
1| 0.6158 | 0.8182 | 1.7e-13 11 700 0.70
2 | 0.3827 | 0.5031 0 22 1237 0.54
3| 0.2257 | 0.2750 0 22 1242 0.54
4 | 0.1231 | 0.1449 0 18 1015 0.47
5 | 0.0607 | 0.0756 | 1.2e-14 25 1426 0.70
6 | 0.0264 | 0.0393 | 1.3e-14 30 1748 0.91
7

8

9

We note that for & < n — 1 the solution found by MWD is locally not
unique. It contains zero components b; of the right hand side b (for which
the associated eigenvalues \; € [1,x] do not influence the value f(x*)/v) or it
contains multiple eigenvalues \; (for which the components of the right hand side
b can be arbitrarily manipulated as long as their Euclidean norm remains the
same; e.g. when A\ = Ay and by = 3,0y = 4 then by := 5,0, := 0 yield the same
value f(z¥)/v). Hence, the maximizers are degenerate, a situation for which
standard nonlinear optimization approaches may have slow local convergence.
In this respect the high accuracy of the solutions generated by MWD and the
moderate number of iterations are unexpected.

In the next table, k is fixed to &k = 20, k is set to k = 100, and, as above,
the times and accuracies are compared, but now for different values of n.

n redy | redmas dist # it. | # f-eval. | time
25 | 0.0002 | 0.0361 | 6.0e-15 68 8205 7.34
50 | 0.0095 | 0.0361 | 1.4e-14 79 17486 14.48
100 | 0.0235 | 0.0361 | 3.6e-12 | 194 8.2213 67.92
200 | 0.0250 | 0.0361 | 4.5e-12 | 222 182701 | 150.23

Observe that the row n = 200 refers to 397 variables that are to be adjusted.
For this problem size, MWD uses a rather long computation time and the result
is somewhat less accurate.

While the example in this sub-section is rather special in exploiting several
properties of the cg-method in order to come up with the bound red,,q., it is
conceivable that for some other class of problems, the performance of some other
simple algorithms depending on certain parameters can be tested and optimized
via MWD as well.

5 Application, Inclination Sensor

The MWD algorithm outlined above has been applied in the manufacturing of
industrial inclination sensors. This application shall be detailed next.

5.1 Principle of Function of an Inclination Sensor

The core of the newly developed inclination sensor for industrial applications
with high accuracy requirements is a MEMS (microelectromechanical system)
that measures the acceleration of a check mass in all three spatial directions.
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The electronics of the sensor converts the gravitational movement of the mass
into electric signals which, in a first approximation, depend linearly on the ac-
celeration. The integrated firmware computes the inclination (with respect to
the gravitational field) of the sensor based on the three values of acceleration.
The metal casing protects the MEMS and the electronics of environmental influ-
ences, it is used for the attachment of the sensor to the object to be measured,
and it also embodies the coordinate system of the sensor to which the computed
output angles refer to.

5.2 Calibration Parameters
5.2.1 Signal conversion

In the specific example presented next, a calibration of the sensor is necessary
since the variance of the performance of the electronic components is too large
to guarantee a precise conversion of the acceleration to a signal. In order to
compensate for this effect — as the most simple nonlinear model — a quadratic
approach was chosen,

Ui = koﬂ' + klyiai + kgﬂ-a? (17)

where U; is the value measured along the i-th measurement axis, a; is the true
value of the acceleration along the i-th measurement axis, and k; ; are calibration
parameters that describe the behavior of an individual sensor for 0 < j < 2 and
1 <4 < 3. Thus, there are a total on nine quantities k; ; to be determined (cf.
function f¢* in (1)).

5.2.2 Orientation of the coordinate systems

In addition, the tolerance chain when mounting the MEMS into the casing
must be considered. The soldering of the MEMS to the board, screwing the
board into the casing and shape deviations of the casing lead to a non tolerably
large variance of the MEMS axes’ orientation towards the inclination sensor’s
coordinate system. Accordingly, the orientation of the axes about all three
spatial directions must be determined for each inclination sensor during the
calibration process. This leads to three further calibration parameters.

5.2.3 Calibration procedure

As detailed above, during the calibrating procedure true measured variables are
being adjusted and then it is observed which measured values appear. Based
on this information the functional relation between the measured value and the
measured variable is determined so that later with the “real” measurement the
associated measured variable can be computed for each measured value.

In the specific example, a calibrating station with 2 pivoted supports - one
mounted on the other - is used where the axes are adjusted in a way that they
are exactly perpendicular, both, to each other as well as to the direction of
gravity. Fach axis is equipped with an angle measuring system, the precision of
which is better by more than one order of magnitude than the desired accuracy
of the inclination sensor to be calibrated; these angles can thus be considered
as independent freely adjustable actuating variables S as described in 1.1.3.
Since turning the first axis of the calibration station automatically changes the
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orientation of the second axis, the angles of the calibration station’s axes (con-
trol variables) represent Euler angles according to the ”x-y-z”-convention([16]).
On the other hand, the values of the sensor signals correspond to the direction
cosines of the sensor coordinate axes relative to a fix world coordinate system
aligned to gravity direction. Therefore, a conversion of the expression of the
sensor’s orientation from Euler angles to direction cosines (or vice versa) is nec-
essary. This conversion corresponds to the function g in (2). Thus, in this
application bothjcal and g are nonlinear functions and also the overall math-
ematical model £ (cf. (3)) is nonlinear so that a direct solution via a linear
system is not possible.

5.2.4 Determination of the calibration parameters

The calibration parameters can now be taken from the result of an optimiza-
tion algorithm comparing the measured variables and the transformed measured
values. More precisely, the residuals of (3) are to be minimized — an optimiza-
tion problem that would pose a challenge to most developers. Here, the MWD
approach [21] was used allowing a great reduction in modeling and implementa-
tion efforts. The developer only had to set up the function f(X,k;) along with
meaningful initial values and bounds for the calibration parameters. As output,
the optimal set of calibration parameters minimizing the residual error and best
describing the performance of the sensor was returned very quickly.

5.2.5 Flexible improvement of the mathematical model

It turned out, however, that even the optimal calibrating values did not render
a satisfactory result. While the accuracy of the sensor aimed for was to be
better than £0.5° the remaining measurement deviations still were about £2.5°
(see Fig. 5.1 ‘without compensation”). Since evidently these were systematic
deviations, additional disturbance variables had to be present that had not yet
been taken into account into the mathematical model. Subsequently, therefore,
additional thinkable disturbance variables were included in the mathematical
model, followed by the solution via MWD and then, based on the size of the
resulting residuals, it was decided whether the additional disturbance variable
allowed a sufficiently good description of the observed phenomenon.

This approach highlights another practical advantage of the MWD algo-
rithm. In a first step it allowed a quick formulation and solution of an initial
calibration model. The solution of the calibration problem via MWD then
revealed that the current model was insufficient. In a second step, various ex-
tended models were set up and solved via MWD. Here, it helped that rather
than having to set up several different optimization problems it was sufficient to
adapt the functional relation between measured variable and measured values
as well as to enlarge the set of calibration parameters. Thus it was possible in a
fairly short time to identify the cause for the measurement deviations: While it
was assumed initially that the 3 measuring axes of the MEMS are aligned quite
well orthogonally to each other it was surprising to find out that the modeling
via a distorted coordinate system significantly reduced the remaining residual
error. Thus, by the definition of an additional two calibration parameters, the
accuracy of the sensor could be improved significantly (see Fig. 5.1 “with com-
pensation”). Moreover, as a result of the above described findings, the angular
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Fig. 5.1: Distortion of the Sensor Axes.

tolerances of the MEMS were further investigated and it turned out that the
production process defining the sensor axe’s orientation is not sufficiently under
control so that deviations of several degree may well occur. Thus, the analysis
of the mathematical model unveiled flaws in the purchased parts and its flexible
adaption made a simple and fast suppression of the flaw’s effects possible - all
thanks to an easy-to-use tool for direct minimization such as MWD.

5.3 Transfer to industrial practice

After showing that inclination sensors with satisfactory performance can be pro-
duced by the above procedure, the method was included in industrial practice.
Each of the produced sensors undergoes a calibration procedure where a set
of about 100 measured data (including the associated actuating variables) is
recorded. Using the MWD algorithm the calibration parameters for each sen-
sor are being computed and stored in its electronics. Currently a production
capacity of 10000 pieces per year is planned.

Thus, due to the contribution of the mathematical optimization, it was pos-
sible to develop a highly accurate measuring device at a fairly low cost. An
accuracy comparison of this sensor with competing products demonstrates the
success of this approach. For the test, all sensors were mounted on an inclined
plane with known inclination and were then turned around the normal to this
plane. From the measurement result in each position, the Euler angles accord-
ing to the “x-y-z-convention” [16] are calculated. While the angle ¢ of the first
rotation around the z-axis (which - by definition of the sensor-coordinate system
- is parallel to the gravitation vector) can not be measured by an inclination
sensor, the second Euler angle 6 describes the rotation around the x-axis and
the third Euler angle v the rotation around the new - now tilted - z-axis. Thus
0 depicts the angle of the plane’s inclination, whereas 1) expresses the sensor’s
orientation towards the direction of the inclination. Independent from the turn-
ing position 1, the second Euler angle § computed from the acceleration values
of the three axes is expected to always be constant corresponding to the incli-
nation angle of the plane. A variance of angle # can thus be interpreted as a
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Fig. 5.2: Accuracy of the Test Results.

measuring uncertainty (cf. Fig. 5.2). Since only a small number of sensors were
compared, this evaluation does not bear any statistic significance. Nevertheless,
the general qualification of the method becomes apparent.

5.4 Summary and perspective

Based on a practical example it was shown how to optimize the measurement
accuracy of an inclination sensor with the aid of mathematical compensation.
By applying the MWD algorithm the optimization problem was solved automat-
ically so that the developer could concentrate on determining the relationship
between measured variables and measured values. Only by the extension of the
model to compensate for the unexpectedly large influence of a disturbance vari-
able that was not taken into consideration at first, it was possible to successfully
complete the project. Without a simple and reliable direct optimization tool,
such as MWD in this example, it would not have been possible to obtain the
desired result in such a short time.

In Section 1.1.3 it was explained that by the definition of additional param-
eters p; also the inaccuracies of the calibration setting can be modeled math-
ematically. These parameters can also be determined by the solution of an
optimization problem analogously to the determination of the calibration pa-
rameters k;. In the example described here, this possibility has not yet been
used since there was no prior experience about the implementability of this ap-
proach. After the advantages have now been demonstrated rather clearly, the
potential of this approach shall be explored further. It might be possible, for
example, to reduce the cost of further calibrating stations by relinquishing tight
geometric tolerances of the adjustment of the axes. Instead, a deviation from
the orthogonality of the axes could be compensated for mathematically by two
additional parameters.
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