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Abstract

Transport networks with hub structure organise the exchange of shipments
between many sources and sinks. All sources and sinks are connected to a
small number of hubs which serve as transhipment points, so that only few,
strongly consolidated transport relations exist. While hubs and detours lead to
additional costs, the savings from bundling shipments, i.e. economies of scale,
usually outweigh these costs. Typical applications for hub networks are in cargo,
air freight, postal and parcel transport services.

In this paper we consider three classical and two recent formulations of single
allocation hub location problems, i.e. hub location problems in which every
source and sink is connected to exactly one hub. Solving larger instances of these
problems to optimality is difficult because the inherent quadratic structure of
the problem has to be linearised: This leads to a sharp rise in variable numbers.
Our new approach relies on the fact that many instances—including the famous
CAB and AP data sets—have a Euclidean structure: The distances between the
possible hub locations are Euclidean distances in the plane. This enables us to
construct a new linearisation together with a row generation procedure which
solves instances up to 200 nodes to optimality.

Keywords: Quadratic Optimisation, Linearisation, Euclidean Distances,
Mixed Integer Program

1. Introduction

Hubs are used to consolidate and disseminate shipments in many-to-many
transport networks. Hub Location Problems deal with finding the location
of hubs (out of a given list of possible locations) and the allocation of the
sources/sinks of shipments to these located hubs. The idea behind non-direct5

transport is that the economies of scale generated by consolidation often out-
weigh the additional costs of hubs and detours. These economies of scale are
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typically estimated by using a constant discount factor for transport on the
hub-hub connections. Hub location problems arise in various application set-
tings in telecommunication [vdL99] and transportation (air passenger [JSY96],10

cargo [RAB07], public [Gel08]) network design.
The first mathematical model for the hub location problem was given by

O’Kelly [O’K87]. He proposed a quadratic integer programming formulation
for the problem of minimizing the total transport cost for a given number of
hubs to locate (p-Hub Median Problem). The following hub location literature15

mainly focused on the transportation cost objective locating both a fixed and
a variable number of hubs. Important early studies are [O’K92]; [EK96, EK99]
[SKSKO96]. More recent studies are [TCEY05], [MCL06], [CDF09, CCL11,
CCL12]. For a more complete and also historical introduction, the reader is
referred to [AK08, CO12].20

In this paper we concentrate on single allocation hub location problems in
which each source/sink establishes exactly one connection to a hub. These
models are applied to situations in which sorting at the source is not possible
(or too costly) so that all shipments are transported as a whole to the allocated
hub. Typical examples are postal or parcel networks. To be more precise, the25

problem can be described as follows:
For a set of sources/sinks V , a matrix of shipments Wij , i, j ∈ V is given

which should be transported from i to j. No direct shipping is applied; instead,
every i ∈ V is allocated to one hub ki and the shipments are sent i → ki →
kj → j. The aim of Single Allocation Hub Location Problems is to choose a set30

of hubs out of a set of possible hubs and to allocate each i ∈ V to a hub so that
the overall costs are minimized. A variety of formulations has been discussed
and solved in literature. Three “classical” problems are:

1. The Uncapacitated Single Allocation pHub Median Problem (USApHMP),
defined in [O’K87]: The aim is to choose p hubs and assign every i ∈ V to35

them to minimize overall transport costs. No hub costs and no capacity
constraints are involved.

2. The Uncapacitated Single Allocation Hub Location Problem (USAHLP),
defined in [O’K92]: Instead of a fixed number of hubs to choose, a cost
factor Fk is given for establishing a hub at location k.40

3. The Capacitated Single Allocation Hub Location Problem (CSAHLP),
defined in [EK99, Bry98]: In addition to the costs and restrictions of
USAHLP, we consider a capacity Γk for each hub k ∈ V . This capacity
has to be larger than all incoming flow from the sources.

Furthermore, two additional formulations will be discussed:45

4. The Capacitated Single Allocation Hub Location Problem with Multiple
Levels (CSAHLPM), defined in [CNSdG10]: Each hub has a given list
of capacity levels from which exactly one can be installed. These have
different capacities and fixed costs.

5. The Single Allocation Hub Location Problem under Congestion (SAHLPC)50

defined in [DCM12]. Here, capacity is not restricted by hard constraints,
but instead, a non-linear cost factor for congestion at hubs is introduced.
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The main aim of this paper is to describe a new method of linearising the
binary quadratic terms involved in the models and demonstrating the strength
of this new approach by solving a variety of large instances to optimality. This55

method can be applied if the distances present in the objective function are
Euclidean distances—a situation which is often encountered and is also true in
the usual Benchmark instances.

The next section will describe the five different single allocation hub loca-
tion models in detail. Section 3 explains the new solution method based on60

projections in Euclidean space. In Sect. 4, a speed-up for the solution pro-
cess is discussed. Section 5 gives the results of a large number of numerical
experiments, while Sect. 6 contains the conclusions.

2. Single Allocation Hub Location Models

The general situation for Single Allocation Hub Location Problems can be65

described follows: A set V of locations describes both the sources/sinks and
the possible hub locations. Although it is an easy exercise to separate the
source/sink set from the hub location set, we follow the conventions of the
literature and use just one set. For each (i, j) ∈ V × V , there is a shipment
Wij ∈ R≥0 to be transported from i to j. For that, every source/sink i ∈ V is70

allocated to a hub ki ∈ V and the resulting path for the shipment is i → ki →
kj → j.

Binary variables xik are introduced, meaning the allocation of i to k. The
variables xkk, k ∈ V , describe the decision of establishing a hub. Therefore,
every problem contains the constraints:∑

k

xik = 1 ∀i ∈ V (1)

xik ≤ xkk ∀i, k ∈ V (2)

xik ∈ {0, 1} ∀i, k ∈ V (3)

Sums are always understood to be over V if not stated otherwise. We see that
(1) makes sure that every source/sink is allocated while (2) states that one can
only allocate i to k if k is chosen as a hub.75

Several linearised versions of the following models exist (see e.g. [Cam94,
CO12]), mostly with O(n3) or O(n4) variables (n = |V |). We will use the
original quadratic formulation and develop a smaller linearisation in Sect. 3.

2.1. USApHMP

The Uncapacitated Single Allocation p Hub Median Problem consists of
finding exactly p hubs so that the overall transport costs are minimized. For
that, unit transport costs cij , i, j ∈ V , are assumed which are multiplied with
different factors χ, α and δ for depot-hub, hub-hub and hub-depot connections.
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To simulate economies of scale, it is assumed that α < χ and α < δ. The model
is then:

Min
∑
i

∑
j

Wij

(
χ
∑
k

cikxik + δ
∑
m

cjmxjm + α
∑
k

∑
m

ckm xikxjm

)
∑
k

xkk = p (4)

(1), (2), (3)

If we introduce the constants

dkm = αckm Kik = χcik
∑
j∈V

Wij + δcik
∑
j∈V

Wji

we can write the objective function as

Min
∑
i

∑
k

Kikxik +
∑
i

∑
j

∑
k

∑
m

Wijdkm xikxjm

We see that the cost structure for pre and onward carriage is of minor im-80

portance because it can be preprocessed. The main difficulty lies in the term∑
i

∑
j

∑
k

∑
mWijdkm xikxjm in the objective function.

2.2. USAHLP
The Uncapacitated Single Allocation Hub Location Problem uses the pa-

rameters of the USApHMP, but replaces the fixed number p by a set Fk, k ∈ V ,85

of hub costs. Using the definitions of the preceding subsection, we write

Min
∑
k

Fkxkk +
∑
i

∑
k

Kikxik +
∑
i

∑
j

∑
k

∑
m

Wijdkm xikxjm

(1), (2), (3)

2.3. CSAHLP
The Capacitated Single Allocation Hub Location Problem extends the US-

AHLP by a capacity Γk per hub k ∈ V . This capacity is incorporated in an
additional constraint:90

Min
∑
k

Fkxkk +
∑
i

∑
k

Kikxik +
∑
i

∑
j

∑
k

∑
m

Wijdkm xikxjm

∑
i

∑
j

Wijxik ≤ Γkxkk ∀k ∈ V (5)

(1), (2), (3)

As we see in (5), the capacity restrictions only applies to the flow from sources
(which have to be sorted, labelled etc.).

4



2.4. CSAHLPM

The Capacitated Single Allocation Hub Location Problem with Multiple
Capacity Levels was introduced by [CNSdG10]. It replaces the single capacity
level of the CSAHLP by a number of different capacity levels Γq

k with different
costs F q

k , where q ∈ Q enumerates the capacity levels. For this purpose, we
introduce the additional set of binary variables zkq, k ∈ V , q ∈ Q which indicate
that capacity level q was chosen for hub k. The model can then be written as

Min
∑
k

∑
q∈Q

F q
k zkq +

∑
i

∑
k

Kikxik +
∑
i

∑
j

∑
k

∑
m

Wijdkm xikxjm

∑
i

∑
j

Wijxik ≤
∑
q∈Q

Γq
kzkq ∀k ∈ V (6)

∑
q

zkq = xkk ∀k ∈ V (7)

zkq ∈ {0, 1} ∀k ∈ V, q ∈ Q (8)

(1), (2), (3)

The additional set of variables makes the problem more difficult to solve.

2.5. SAHLPC95

The Single Allocation Hub Location Problem under Congestion was intro-
duced in [DCM12]. Instead of restricting the throughput for each hub, a con-
gestion cost function is assigned to each hub. The problem differs in two ways
from the previously defined problems:

First of all, the throughput gk of a hub k is measured differently: In addition100

to the incoming flow from the sources, flow from other hubs is also taken into
account. Secondly, the throughput is not bounded, but for gk ≥ Γk, a cost
function τk(gk) of the form a

(
gk − Γk)b for given constants a and b ≥ 1 is

applied. We get the non-linear model:

Min
∑
k

τk(gk) +
∑
k

Fkxkk +
∑
i

∑
k

Kikxik +
∑
i

∑
j

∑
k

∑
m

Wijdkm xikxjm

∑
i

∑
j

Wijxik +
∑
i

∑
j

Wjixik(1− xjk) ≤ gk ∀k ∈ V (9)

τk(gk) =

{
0 gk ≤ Γk

a
(
gk − Γk)b gk ≥ Γk

(10)

gk ≥ 0, τk ≥ 0 ∀k ∈ V (11)

(1), (2), (3)
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We made some minor changes compared to [DCM12]: We did not introduce a105

capacity reduction factor γ for each hub but integrated it into the given capacity.
Furthermore, we wrote (9) as quadratic constraint instead of using 4-index path
variables. Additionally, we corrected the formula for τk(gk): It was originally
written as max

{
0, a(gk − Γk)b

}
which leads for even b to the unwanted result

of congestion for non-used hubs.110

Both (9) and (10) should be linearised for our purposes. For (9) we can
use a usual technique (already described by Danzig) to turn a binary quadratic
inequality into an exponential set of linear inequalities. We know that

xik(1− xjk) ≥ xik − xjk

xik(1− xjk) ≥ 0,

so that for every binary vector η ∈ {0, 1}n2

we can introduce the constraints∑
i

∑
j

Wijxik +
∑
i

∑
j

Wjiηik(1− ηjk)(xik − xjk) ≤ gk ∀k ∈ V,∀η ∈ {0, 1}n
2

(12)

If we have a solution {x̂} with x̂ik = ηik for all i, k ∈ V , (12) enforces (9), so
that it is a proper linear replacement.

For (10), we use the fact that τk(gk) is convex; it is also differentiable for
gk 6= Γk. For every fixed value gk > Γk, we can, therefore, introduce the
constraint

τk ≥ ab
(
gk − Γk

)b−1
(gk − gk) + a

(
gk − Γk)b ∀ gk > Γk (13)

meaning that the value of τk is above the tangent to τk(gk) at gk. The constraint
(13) enforces (10) if gk = gk. Hence, only a finite number of these constraints
is necessary to replace (10).115

Both (12) and (13) will be integrated into the Branch-and-Cut-algorithm:
Every time an integral solution {x̂, ĝ, τ̂} is found, we check (12) for ηik := x̂ik
and (13) for gk := ĝk. If they are valid, the solution is admissible because these
are the most violated inequalities. Otherwise, these constraints are added to
the problem and the found integral solution is discarded.120

3. The Euclidean Projection Method

The Euclidean projection method relies on dkm being a Euclidean distance.
This is true for the standard benchmark instances CAB and AP [Bea12] and
also for the URAND instances from [IUBM10]. Furthermore, it serves as a
good approximation in many cases. The method is based on our previous study125

[MCRB15].
The aim of this section is to describe a method to replace the term

T =
∑
i

∑
j

∑
k

∑
m

Wijdkm xikxjm (14)
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by a linear term and a set of linear constraints. Let us introduce positive real
variables yij , i, j ∈ V . Then, we can replace T by

T1 =
∑
i

∑
j

Wijyij (15)

yij ≥
∑
k

∑
m

dkmxikxjm ∀i, j ∈ V (Iij)

yij ≥ 0 ∀i, j ∈ V (16)

Each of the quadratic constraints (Iij) will now be replaced by a set of n2 linear
inequalities. To construct these inequalities, we need a short digression to linear
algebra.

Following from the assumption that dkm is a Euclidean distance, we can
assign a vector ek in a Euclidean vector space E (usually the plane) to every
possible hub k ∈ V such that dkm = ||ek − em|| in the vector space norm.
The inner product 〈•, •〉 of E can be used to define orthogonal projections
Pw : E → Ew from E to the one-dimensional space Ew spanned by a vector
w ∈ E. The space Ew can be canonically identified with R by the isometric
bijection λw/||w|| 7→ λ, λ ∈ R, so that we can interpret Pw as map from E to
R, which can be written as

Pw(u) =

〈
u, w

〉
||w||

(17)

Now we know that the distance between orthogonal projections is never greater
than the original distance:

dkm = ||ek − em|| ≥
∣∣Pw(ek)− Pw(em)

∣∣ ≥ Pw(ek)− Pw(em) (18)

and that equality holds if w = ek − em.130

Let us define λhlk = Peh−el(ek) for eh 6= el. Then, for every h 6= l, we can
derive the following inequality:∑

k

∑
m

dkmxikxjm ≥
∑
k

∑
m

(
λhlk − λhlm

)
xikxjm

=
∑
k

∑
m

λhlk xikxjm −
∑
k

∑
m

λhlmxikxjm

=
∑
k

λhlk xik
∑
m

xjm −
∑
m

λhlmxjm
∑
k

xik

Using (1):

=
∑
k

λhlk xik −
∑
m

λhlmxjm

If, in a solution {x̂}, we have x̂ih = x̂jl = 1, this constraint becomes an equal-
ity. From (1) we know that for every i, j ∈ V there exists hi, lj ∈ V with
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x̂ihi = x̂jlj = 1. This shows, that the constraint (Iij) is equivalent to the set of
constraints

yij ≥
∑
k

λhlk xik −
∑
m

λhlmxjm ∀h 6= l ∈ V (Ihlij )

If hi 6= lj , the constraint (Ihlij ) forces (Iij) to be fulfilled. If hi = lj , the term T1
is zero and (Ihlij ) is trivial.

For computational purposes, one should note that one can compute the
values λhlk more directly using the Law of Cosines in the triangle formed by k,
h and l (illustrated in Fig. 1):

λhlk = dkl cos(∠klh)

= dkl ·
d2kl + d2hl − d2kh

2dkldhl

=
1

2
dhl +

1

2dhl

(
d2kl − d2hl

)
As the first term is independent of k, it can also be deleted without altering the
resulting inequalities (Ihlij ).

Summarized, the problem USApHMP can be written as

Min
∑
i

∑
k

Kikxik +
∑
i

∑
j

Wijyij (19)

(1), (2), (3), (4), (Ihlij )

and similarly, USAHLP, CSAHLP, CSAHLPM and SAHLPC can be rewritten.135

Because (Ihlij ) is a set of approximately n4 constraints, we cannot consider
them all in practical problem sizes of n > 50. Therefore, we use a row generation
scheme for these constraints:

h

k

l
λhlk

Figure 1: Illustration of the orthogonal projection of ek onto the vector el − eh. The length
λkhl is the cosine of the angle at l multiplied by the length of kl.
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1. We solve the problem with just a small set of (Ihlij ) inequalities (this small
set is determined by a heuristic procedure described in Sect. 4). We receive140

binary values x̂ik, i, k ∈ V for the allocation variables.

2. We use the binary values x̂ik to construct a primal solution for the original
problem. This can be easily done by setting ŷij =

∑
k

∑
m dkmx̂ikx̂jm.

3. For every i, j ∈ V , we determine h, l with x̂ih = x̂jl = 1. If h 6= l, we check
the inequality (Ihlij ) on the given solution and add it, if it is not fulfilled.145

4. If inequalities were added, we resolve and return to step (2.), otherwise
optimality is proven.

4. Accelerate the Solving Procedure

The row generation procedure of Sect. 3 can be accelerated if we start with
a good upper bound and a good set of initial constraints. The idea is to solve a150

relaxed problem to gain a set of “good hub locations”. Then we restrict ourselves
to these good hub locations and solve a problem with binary xik. The values of
xik form a valid choice of hubs and allocations and can, therefore, be uniquely
extended to a solution of the original problem. Furthermore, by comparing the
y and x values, we find violated inequalities that can be added to the problem.155

For the description of the procedure, we introduce the following notation:
Let HLP be one of the five hub location problems discussed above without

the (Ihlij ) inequalities, let R-HLP be a relaxation (e.g. the LP relaxation) of the

model HLP and HLP(Ĥ) be the restriction of HLP, where hubs can only be
chosen from the set Ĥ ⊂ V . We follow the following heuristic row generation160

procedure to generate both an upper bound and a set of starting inequalities:

1. We solve R-HLP with just a small set of (Ihlij )-type inequalities, resulting

in a solution {x̂, ŷ}. A good choice is to start with all inequalities (Ihlij )
for which i = h and j = l.

2. We solve HLP(Ĥ) with all (Ihlij )-type inequalities already added to R-HLP,165

where Ĥ is the set of k ∈ V with positive x̂kk. The resulting (binary)
values of x are called xik.

3. For every i, j ∈ V , we determine h, l with xih = xjl = 1 in HLP(Ĥ). If

h 6= l, we check the inequality (Ihlij ) on HLP(Ĥ) and add it to R-HLP, if
the test fails.170

4. If inequalities were added, we resolve R-HLP and return to step (2.),
otherwise we leave the heuristic procedure.

Every solve of HLP(Ĥ) gives binary allocation variables xik which determine
a primal solution that gives an upper bound for the optimal solution of HLP.
Furthermore, a set of inequalities is provided.175

What is a good choice for the definition of the relaxed R-HLP? For US-
ApHMP and USAHLP, we chose the LP relaxation; for CSAHLP, CSAHLPM
and SAHLPC we relaxed all variables except for xkk, k ∈ V . These choices lead
to good numerical results in Sect. 5.
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For SAHLPC we have additional inequalities to add. We made use of the180

very efficient Branch-and-Cut scheme of Gurobi and added the constraints (12)
and (13) by so-called Lazy Constraints in the callback process. This means
that each time a new incumbent is found, it is checked for the most violated
inequalities. If it passes the tests, it is accepted as solution; otherwise it is
removed and the constraints are added to the problem.185

5. Computational Results

Computational experiments for Hub Location Problems are usually per-
formed on the Australian Post (AP) or Civil Aeronautics Board (CAB) data
set. We choose to use the AP data set because the CAB data set only consists
of instances up to 25 nodes. The AP data set without hub costs and capacities190

can be found in [Bea12]; the full set can be provided upon request (we thank
Mr. Contreras for giving us access to these data sets). For our tests, we used
the Gurobi 6.0 solver on a 3.4 GHz computer with 16GB RAM, coding our
procedure in C].

The AP data set consists of instances from 10 nodes to 200 nodes, but we195

will consider only instances from 50 on because the smaller ones are no challenge
for modern solvers. The instances are named 50LL, 50LT, 50TL, 50TT, 60LL,
. . . . The first letter indicates whether loose or tight fixed costs apply, while the
second letter indicates if the capacities are loose or tight. As fixed costs and
capacities are not used in all of the problems, unnecessary instances are left out.200

The instances for the USApHMP are written as nLL:p, where n is the number
of nodes and p the number of hubs to choose. We see in Table 1 that all these
instances could be solved to optimality within a time of 2 hours. The first paper
which gave the optimal results for all these instances was (up to our knowledge)
our own work [MCRB15]. Good lower bounds were provided by [RBMC15].205

The results coincide with the heuristic results of [IUBM10] which are the best
available heuristic values.

The instances for USAHLP only depend on the first L/T. These are all
solved to optimality with a maximum time of 25 minutes (see Table 2). These
coincide with the best known results of [BOBA13]. The optimal values up to210

100 coincide with the optimal values given in [SC09]. For the comparison of
the numerical values one should note that there appears to be a second version
of the fixed costs for AP data sets originating from [TCEY05]. These lead to
much lower numerical values for the 200 nodes instances.

The instances of CSAHLP depend on all available information. They can215

be solved to optimality except for 150LT, but the longest solves takes 6 hours
(see Table 3). It is interesting that the gap fell always below 1 % in less than 20
minutes. [CDF11] solved all instances but 200LL to optimality with maximum
computational time of one day on a 2.3 GHz computer. The best known solution
of [CDF09] for 200LL turns out to be optimal. [SM15] states that the optimal220

solution for 200LL with 4 hubs or less would be 241992.97 which we consider to
be wrong.
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Table 1: AP results for USApHMP. The second and third column give the first iteration and
time for reaching a gap below 1%. The following three columns give the iteration, time and
added inequalities until optimality is reached. Iterations are given in the form I(P ) where I
are the MIP iterations and P are the iterations of the initial heuristic solve. Optimal objective
values are in bold face.

Gap < 1% Optimal Solution

Name Iter sec Iter sec +Ineq Objective Hubs

50LL:2 0 (2) 00.79 1 (5) 03.17 5008 178484.29 14, 35

50LL:3 0 (2) 00.95 1 (3) 02.46 4204 158569.93 14, 28, 35

50LL:4 0 (2) 01.09 1 (3) 03.02 4452 143378.05 14, 28, 33, 35

50LL:5 0 (2) 01.23 1 (3) 03.92 4448 132366.95 4, 14, 28, 33, 35

60LL:2 0 (2) 01.48 0 (4) 02.36 7172 179920.21 16, 42

60LL:3 0 (2) 01.82 1 (5) 08.35 7644 160338.58 16, 33, 42

60LL:4 0 (2) 02.35 1 (3) 08.17 6302 144719.69 16, 33, 39, 42

60LL:5 0 (2) 02.72 1 (4) 13.62 10562 132850.29 4, 17, 34, 39, 42

70LL:2 0 (2) 02.03 0 (3) 02.48 7286 180093.20 20, 49

70LL:3 0 (2) 02.57 0 (3) 03.41 8222 160933.23 20, 38, 49

70LL:4 0 (2) 02.62 1 (4) 15.76 10444 145619.65 20, 38, 46, 49

70LL:5 0 (2) 03.66 1 (6) 55.46 15634 135835.20 5, 21, 39, 46, 49

75LL:2 0 (2) 02.44 0 (3) 02.98 8360 180118.91 21, 52

75LL:3 0 (2) 03.24 1 (3) 08.67 9438 161056.74 21, 40, 52

75LL:4 0 (2) 03.65 1 (3) 17.83 11828 145734.21 21, 40, 49, 52

75LL:5 0 (2) 04.82 1 (6) 90.85 17942 136011.35 5, 22, 42, 49, 52

90LL:2 0 (2) 04.70 0 (4) 07.06 15942 179821.64 24, 63

90LL:3 0 (2) 05.88 1 (5) 29.29 20554 160437.43 24, 49, 62

90LL:4 0 (2) 10.51 1 (5) 66.21 20318 145133.69 24, 49, 58, 62

90LL:5 0 (2) 08.33 1 (7) 181.40 33828 135808.25 5, 24, 49, 58, 62

100LL:2 0 (2) 06.50 0 (4) 09.70 19676 180223.80 28, 71

100LL:3 0 (2) 08.67 1 (5) 38.67 24748 160847.00 28, 55, 70

100LL:4 0 (2) 10.34 1 (5) 76.72 25568 145896.58 28, 55, 64, 70

100LL:5 0 (2) 12.63 2 (5) 363.38 37009 136929.44 7, 28, 55, 64, 70

125LL:2 0 (2) 14.18 0 (4) 20.33 30764 180372.19 33, 86

125LL:3 0 (2) 18.11 1 (5) 76.46 33792 161117.17 33, 65, 85

125LL:4 0 (2) 20.05 1 (5) 211.45 39974 146173.22 33, 65, 79, 85

125LL:5 0 (2) 32.17 1 (7) 1153.59 69062 137175.68 7, 35, 67, 79, 85

150LL:2 0 (2) 27.47 0 (5) 42.08 44792 180898.84 38, 100

150LL:3 0 (2) 41.11 1 (4) 157.95 48646 161490.48 38, 80, 100

150LL:4 0 (2) 69.19 1 (5) 477.64 56110 146521.33 38, 80, 94, 100

150LL:5 0 (2) 39.37 1 (7) 1082.77 73794 137425.91 7, 40, 82, 94, 100

175LL:2 0 (2) 50.35 0 (4) 69.52 60752 182120.64 46, 120

175LL:3 0 (2) 86.77 1 (5) 564.02 84986 162553.71 43, 92, 120

175LL:4 0 (2) 183.00 1 (7) 1485.20 96910 147316.45 46, 95, 108, 120

175LL:5 0 (2) 221.40 1 (7) 3697.66 109362 139354.52 9, 51, 98, 108, 120

200LL:2 0 (2) 94.49 0 (4) 129.48 79578 182459.25 56, 140

200LL:3 0 (2) 141.51 1 (5) 1005.52 110018 162887.03 53, 107, 140

200LL:4 0 (2) 131.86 1 (5) 1644.09 121808 147767.30 56, 110, 131, 140

200LL:5 0 (3) 629.78 1 (6) 5144.54 157792 140062.65 14, 61, 113, 131, 141
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Table 2: AP results for USAHLP. Description as in Table 1.

Gap < 1% Optimal Solution

Name Iter sec Iter sec +Ineq Objective Hubs

50LT 0 (2) 00.88 0 (3) 01.06 3706 237421.99 15, 36

50TT 0 (2) 00.94 1 (2) 02.28 3690 300420.99 24

60LT 0 (2) 01.42 1 (6) 07.13 7387 228855.08 18, 42

60TT 0 (2) 01.53 1 (4) 05.23 5604 264742.11 27, 43

70LT 0 (2) 02.23 0 (4) 03.15 7746 226188.20 21, 49

70TT 0 (1) 01.15 0 (1) 01.15 4830 261294.99 48

75LT 0 (2) 02.60 1 (4) 12.29 11242 235847.50 23, 52

75TT 0 (1) 01.48 0 (1) 01.48 5550 288778.29 53

90LT 0 (2) 04.58 0 (5) 07.32 12750 225475.48 27, 62

90TT 0 (1) 02.49 0 (4) 06.12 12310 257415.86 27, 61

100LT 0 (2) 05.79 0 (3) 06.91 14732 238016.28 29, 73

100TT 0 (1) 03.24 0 (1) 03.24 9900 305097.95 52

125LT 0 (2) 13.14 1 (4) 43.30 23782 227949.00 32, 86

125TT 0 (2) 11.53 0 (4) 16.08 23016 258839.68 11, 88

150LT 0 (2) 25.79 1 (5) 107.24 34880 225450.10 40, 101

150TT 0 (2) 18.38 0 (4) 26.30 35030 234778.74 42, 134

175LT 0 (2) 44.15 1 (4) 188.17 46215 227655.38 46, 120

175TT 0 (2) 32.62 0 (4) 44.55 47080 247876.80 61, 121

200LT 0 (2) 49.51 0 (4) 68.18 60604 233802.98 43, 148

200TT 0 (3) 220.35 1 (6) 1399.53 102980 272188.11 54, 122

The instances for CSAHLPM require additional information. We followed
the pattern described in [CNSdG10] to generate hub levels: The maximal hub
level equals in size and cost the values of CSAHLP. Additional levels are pro-
duced recursively:

Γq
k = 0.7 · Γq+1

k (20)

F q
k = ρ · 0.7 · F q+1

k (21)

Here, ρ is a factor to model economies of scale in hub building. We consider
instances with 3 and 5 levels and the ρ values 1.1 and 1.2. [CNSdG10] solved
these instances up to 50 nodes mostly to optimality, but gave no objective values.225

They used only instances with tight capacity constraints. We present optimal
results up to 100 nodes in Table 4 and very good results (gap < 2%) in Table
5. We see that the 5-1.1 instances are often difficult and lead to a high number
of chosen hubs.

For SAHLPC we used the AP data set together with the values a = 0.005 and230

b = 2 that were also used by [DCM12]. Although [DCM12] used the AP data
set, they created their own capacities and fixed costs for which we did not find a
source. Hence our results cannot be directly compared to theirs. Nevertheless,
as Table 6 shows, we can solve all instances to near optimal results.

For every solution, we give the chosen hubs and the objective value to enable235

anyone to check the results for correctness.
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Table 3: AP results for CSAHLP. Description as in Table 1. The time limit was set to 12
hours.

Gap < 1% Optimal Solution

Name Iter sec Iter sec +Ineq Objective Hubs

50LL 0 (2) 01.15 0 (3) 01.74 3762 238520.59 15, 35

50TL 0 (1) 01.33 1 (3) 07.18 3552 319015.77 3, 24

50LT 0 (2) 06.11 1 (3) 13.78 4526 272897.49 6, 26, 32, 46

50TT 1 (11) 302.84 3 (11) 656.16 8492 417440.99 6, 26, 28, 48

60LL 0 (2) 02.03 0 (3) 03.08 5488 225917.21 17, 42

60TL 0 (2) 01.97 0 (3) 03.05 5616 252496.66 15, 55

60LT 0 (2) 10.21 1 (3) 27.20 6878 253616.51 6, 19, 40, 42

60TT 0 (3) 19.47 1 (7) 95.90 10254 351203.17 17, 26, 40

70LL 0 (2) 07.52 1 (7) 42.01 7940 236817.36 20, 51

70TL 0 (2) 03.44 0 (5) 10.36 10000 271283.82 20, 66

70LT 0 (2) 14.46 1 (8) 187.28 13384 256920.45 8, 36, 47, 49

70TT 0 (2) 19.22 1 (6) 97.35 9436 387380.20 25, 48, 65, 68

75LL 0 (1) 01.73 0 (3) 06.63 8340 238024.22 21, 51

75TL 0 (2) 06.10 0 (4) 21.60 12082 303363.55 22, 52

75LT 0 (2) 17.66 1 (4) 59.98 9438 256188.12 22, 52, 53

75TT 0 (2) 22.70 1 (6) 125.15 13498 347189.82 27, 33, 53, 74

90LL 0 (2) 06.81 0 (4) 14.32 12472 224195.72 23, 63

90TL 0 (2) 19.97 1 (5) 89.98 14846 281561.56 28, 68, 77

90LT 0 (2) 41.83 1 (5) 191.79 14570 246026.24 28, 62, 65

90TT 0 (2) 31.99 1 (4) 102.19 15644 337008.93 27, 51, 59, 61

100LL 0 (2) 42.13 1 (4) 176.31 20878 246713.97 29, 64, 73

100TL 0 (3) 65.80 1 (6) 174.03 16558 362950.09 44, 52

100LT 0 (2) 20.61 1 (6) 141.23 17722 256155.33 29, 68, 76

100TT 0 (3) 187.16 1 (10) 1122.14 21672 474068.96 5, 34, 86, 95

125LL 0 (2) 66.51 1 (5) 415.41 33253 239889.33 33, 81, 90

125TL 0 (2) 19.44 0 (5) 53.24 24516 246486.69 29, 112

125LT 0 (2) 97.57 1 (4) 279.53 27798 251259.16 35, 79, 85, 87

125TT 0 (2) 35.58 1 (4) 109.19 28154 291807.35 11, 44, 77, 88

150LL 0 (2) 49.14 0 (4) 153.85 44720 234765.44 38, 100

150TL 0 (2) 152.49 1 (7) 1419.80 61060 262543.08 37, 134

150LT 0 (2) 225.71 – 249797.493 at gap 00.45% 37, 73, 95, 104

150TT 1 (5) 1565.99 2 (5) 3243.56 49638 322976.47 42, 65, 77, 134, 144

175LL 0 (2) 120.93 1 (8) 1010.55 61660 227997.58 44, 121

175TL 0 (2) 66.41 0 (4) 152.07 45902 244860.41 43, 129

175LT 0 (2) 423.24 1 (4) 2196.45 72956 251540.80 46, 109, 122, 166

175TT 1 (6) 2780.41 4 (6) 17634.54 69007 312195.54 57, 90, 132, 151

200LL 0 (2) 302.39 1 (3) 725.40 68358 231069.50 53, 126, 184

200TL 0 (2) 269.46 1 (4) 902.96 69250 273443.81 54, 95, 186

200LT 0 (2) 1355.87 3 (3) 7460.18 94585 267218.35 41, 124, 148, 168

200TT 0 (2) 510.99 1 (9) 4117.31 75950 290582.04 54, 113, 168, 186
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Table 4: AP results for CSAHLPM from 50 to 100. The instance names indicate the number
of hub levels and the “economies of scale”-factor. Description as in Table 1. Time limit was
set to 12 hours.

Gap < 1% Optimal Solution

Name Iter sec Iter sec +Ineq Objective Hubs

50LT:3-1.2 1 (4) 17.10 1 (4) 17.10 4924 261943.51 6, 26, 32, 46

50LT:3-1.1 1 (5) 36.39 5 (5) 190.93 7172 255649.68 14, 19, 26, 32, 46

50LT:5-1.2 1 (6) 49.62 1 (6) 49.62 6000 261943.51 6, 26, 32, 46

50LT:5-1.1 1 (5) 74.26 1 (5) 74.26 5792 247930.65 4, 9, 12, 14, 26, 32,
46

50TT:3-1.2 1 (4) 40.36 2 (4) 62.06 5685 408522.79 6, 12, 26, 48

50TT:3-1.1 1 (8) 300.40 1 (8) 300.40 6664 401829.91 6, 12, 26, 48

50TT:5-1.2 1 (4) 54.13 2 (4) 82.03 5685 408522.79 6, 12, 26, 48

50TT:5-1.1 1 (4) 101.51 1 (4) 101.51 5322 396053.56 6, 12, 26, 30, 41, 48

60LT:3-1.2 1 (4) 66.58 2 (4) 120.16 9096 249636.90 6, 19, 40, 42

60LT:3-1.1 1 (5) 88.78 2 (5) 140.18 9948 239622.84 6, 15, 19, 32, 40, 42

60LT:5-1.2 1 (4) 100.44 2 (4) 158.62 8699 249636.90 6, 19, 40, 42

60LT:5-1.1 1 (5) 285.32 2 (5) 487.60 9412 234745.62 6, 8, 17, 32, 37, 40,
42, 59

60TT:3-1.2 1 (6) 39.02 1 (6) 39.02 7494 345332.23 17, 26, 40, 47

60TT:3-1.1 1 (8) 63.32 1 (8) 63.32 8172 336066.27 17, 26, 40, 47

60TT:5-1.2 1 (4) 28.02 1 (4) 28.02 7180 344672.22 17, 26, 40, 47

60TT:5-1.1 1 (4) 41.94 1 (4) 41.94 7116 333884.15 9, 17, 26, 40, 47

70LT:3-1.2 1 (7) 145.93 4 (7) 331.37 11627 247895.33 8, 21, 39, 47, 64

70LT:3-1.1 1 (6) 340.08 2 (6) 460.64 13216 238756.23 8, 21, 39, 47, 64

70LT:5-1.2 1 (5) 213.39 1 (5) 213.39 9688 245394.16 8, 21, 39, 47, 64

70LT:5-1.1 1 (3) 224.41 2 (3) 1325.08 11031 229785.52 8, 11, 16, 21, 36, 39,
47, 49, 64

70TT:3-1.2 1 (6) 103.42 1 (6) 103.42 10328 384424.12 25, 48, 65, 68

70TT:3-1.1 1 (6) 113.09 1 (6) 113.09 10328 382244.31 25, 48, 65, 68

70TT:5-1.2 1 (6) 128.84 1 (6) 128.84 10328 384424.12 25, 48, 65, 68

70TT:5-1.1 1 (8) 266.89 1 (8) 266.89 11440 381193.56 25, 39, 48, 65, 68

90LT:3-1.2 0 (3) 102.66 2 (6) 675.49 28340 243423.99 27, 38, 62, 65

90LT:3-1.1 1 (3) 225.93 3 (3) 1634.64 17959 235536.76 23, 33, 38, 62, 65

90LT:5-1.2 1 (4) 302.90 2 (4) 442.85 17723 241166.92 27, 33, 38, 62, 65

90LT:5-1.1 1 (7) 1640.76 2 (7) 2512.28 27223 227053.10 9, 12, 28, 38, 62, 65,
70, 76

90TT:3-1.2 0 (2) 30.61 1 (4) 104.93 15644 337008.93 27, 51, 59, 61

90TT:3-1.1 0 (2) 42.47 1 (4) 149.70 15644 337008.93 27, 51, 59, 61

90TT:5-1.2 0 (2) 36.51 1 (4) 131.99 15644 337008.93 27, 51, 59, 61

90TT:5-1.1 1 (5) 324.80 1 (5) 324.80 17148 337008.93 27, 51, 59, 61

100LT:3-1.2 1 (5) 496.96 4 (5) 4938.89 25644 254902.25 29, 44, 68, 76

100LT:3-1.1 1 (6) 1196.20 3 (6) 4972.68 32144 247076.09 29, 34, 64, 76, 96

100LT:5-1.2 1 (6) 612.20 5 (6) 3427.21 26682 253454.89 29, 44, 68, 76

100LT:5-1.1 1 (11) 5477.62 3 (11) 19542.61 46874 239578.15 6, 18, 24, 29, 34, 58,
68, 76, 86, 95

100TT:3-1.2 1 (9) 1403.85 6 (9) 2926.34 29764 473974.23 5, 34, 41, 52, 95

100TT:3-1.1 0 (4) 488.84 1 (7) 1107.66 25318 467581.96 5, 34, 52, 86, 95

100TT:5-1.2 1 (9) 1803.82 4 (9) 3070.19 31310 473974.23 5, 34, 41, 52, 95

100TT:5-1.1 1 (10) 5789.73 – 467516.418 at gap 00.03% 5, 34, 41, 52, 86, 95
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Table 5: AP results for CSAHLPM from 60. The instance names indicate the number of hub
levels and the “economies of scale”-factor. The time limit was set to 12 hours. Description as
in Table 1.

Gap < 1% Optimal Solution

Name Iter sec Iter sec +Ineq Objective Hubs

125LT:3-1.2 1 (5) 492.50 3 (5) 897.74 33670 243150.50 6, 42, 78, 85, 87

125LT:3-1.1 0 (2) 119.27 1 (4) 549.63 29896 236468.56 6, 42, 78, 85, 87

125LT:5-1.2 1 (4) 713.52 2 (4) 1260.67 36749 242098.71 6, 35, 66, 79, 85, 87

125LT:5-1.1 1 (5) 1984.46 3 (5) 4179.90 47270 228920.56 6, 35, 42, 66, 79, 85,
87

125TT:3-1.2 1 (5) 277.63 1 (5) 277.63 28890 285172.38 11, 44, 77, 88

125TT:3-1.1 1 (5) 315.18 1 (5) 315.18 28890 281586.48 11, 44, 77, 88

125TT:5-1.2 1 (5) 342.68 1 (5) 342.68 28890 285172.38 11, 44, 77, 88

125TT:5-1.1 1 (6) 694.94 1 (6) 694.94 34532 280740.72 11, 44, 77, 88, 124

150LT:3-1.2 0 (2) 219.69 1 (4) 1009.42 41098 244797.83 37, 81, 95, 101, 104

150LT:3-1.1 1 (7) 2254.43 4 (7) 6198.60 59400 238401.09 7, 40, 65, 81, 97, 101,
104

150LT:5-1.2 1 (4) 3153.25 2 (4) 5223.05 51150 243153.26 7, 40, 81, 95, 101, 104

150LT:5-1.1 1 (8) 14205.79 – 229457.392 at gap 00.16% 7, 17, 40, 65, 73, 85,
92, 95, 101, 104

150TT:3-1.2 1 (6) 1928.99 3 (6) 2926.03 61432 318225.33 18, 65, 77, 134, 144

150TT:3-1.1 1 (6) 2622.18 4 (6) 6631.99 61266 308114.99 11, 65, 68, 77, 134

150TT:5-1.2 1 (7) 1923.89 2 (7) 2911.17 49314 316605.53 18, 65, 77, 134, 144

150TT:5-1.1 1 (6) 3304.52 1 (6) 3304.52 53052 305783.14 11, 18, 65, 68, 77, 134

175LT:3-1.2 1 (4) 6478.97 3 (4) 12441.05 75916 246271.40 17, 59, 109, 122, 166

175LT:3-1.1 1 (6) 6256.02 4 (6) 26660.46 91178 238413.43 17, 51, 98, 109, 121,
166

175LT:5-1.2 1 (6) 13516.10 2 (6) 20104.35 99319 244237.79 46, 98, 109, 122, 166

175LT:5-1.1 1 (5) 8192.18 3 (5) 28034.20 80240 228329.11 17, 40, 60, 80, 98, 109,
121, 166

175TT:3-1.2 1 (7) 5305.44 3 (7) 14703.41 87183 312193.78 57, 90, 132, 151

175TT:3-1.1 1 (7) 5620.08 3 (7) 9094.58 74887 305710.76 57, 90, 110, 132, 163

175TT:5-1.2 2 (8) 7778.71 6 (8) 22552.71 83262 311726.73 87, 101, 132, 163

175TT:5-1.1 1 (5) 9982.46 – 303477.374 at gap 00.08% 57, 90, 101, 110, 132,
163

200LT:3-1.2 1 (5) 23076.42 – 259808.254 at gap 00.01% 41, 96, 139, 171

200LT:3-1.1 – – – 252557.711 at gap 01.67% 41, 96, 133, 168, 171

200LT:5-1.2 1 (4) 16184.00 2 (4) 32963.46 103473 258691.91 41, 47, 124, 168, 171

200LT:5-1.1 – – – 242239.9 at gap 01.45% 13, 41, 47, 80, 97, 119,
141, 168, 170

200TT:3-1.2 1 (3) 1719.15 4 (3) 5730.80 101825 288598.79 21, 57, 113, 168, 186

200TT:3-1.1 1 (3) 2486.55 4 (3) 8577.22 91980 282236.13 21, 57, 113, 168, 186

200TT:5-1.2 1 (3) 1758.20 2 (3) 3100.92 96891 286165.23 47, 54, 113, 168, 186

200TT:5-1.1 1 (4) 1781.22 1 (4) 1781.22 77980 275300.99 15, 47, 53, 57, 113,
168, 186
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Table 6: AP results for SAHLPC. The instance names indicate the number of hub levels and
the “economies of scale”-factor. Description as in Table 1. The time restriction was 12 hours.

Gap < 1% Optimal Solution

Name Iter sec Iter sec +Ineq Objective Hubs

50LL 0 (2) 02.36 1 (4) 06.21 3762 238775.94 15, 35

50TL 0 (1) 01.23 0 (1) 01.23 2450 303509.52 24

50LT 1 (3) 163.31 3 (3) 594.02 4407 269698.61 6, 26, 35

50TT 0 (1) 03.42 0 (1) 03.42 2450 337821.04 26

60LL 0 (2) 01.94 0 (3) 02.94 5488 225917.21 17, 42

60TL 0 (2) 05.13 2 (4) 29.40 5678 254522.61 15, 55

60LT 0 (3) 48.18 5 (3) 1602.95 7072 254717.52 19, 42

60TT 1 (4) 545.75 5 (4) 2892.56 7007 319766.46 17, 27, 43

70LL 0 (2) 17.53 2 (4) 93.62 10277 237876.34 20, 51

70TL 0 (2) 08.11 3 (4) 301.79 7444 270918.72 20, 64

70LT 1 (6) 516.31 3 (6) 1143.27 12633 252066.38 8, 39, 44, 49

70TT 0 (1) 06.05 0 (1) 06.05 4830 309297.71 48

75LL 0 (1) 05.31 0 (3) 19.61 8340 238591.99 21, 51

75TL 2 (3) 59.48 2 (3) 59.48 9719 298762.22 22, 48, 75

75LT 0 (3) 155.33 3 (5) 4495.73 12559 259452.49 22, 52

75TT 1 (1) 97.78 3 (1) 475.89 8248 324160.40 53

90LL 0 (2) 07.56 0 (4) 14.95 12472 224195.72 23, 63

90TL 1 (3) 97.96 3 (3) 200.57 13737 280434.90 28, 68, 77

90LT 1 (5) 1789.33 3 (5) 10729.63 20148 249172.45 27, 62, 66

90TT 1 (4) 434.57 2 (4) 822.20 12550 303637.04 27, 61

100LL 0 (2) 52.47 3 (4) 537.49 19719 245852.11 29, 73

100TL 0 (1) 11.85 0 (1) 11.85 9900 322358.68 52

100LT 1 (4) 1153.89 4 (4) 3709.45 17583 258573.18 29, 68, 76

100TT 0 (1) 18.74 2 (1) 116.21 11310 368396.44 52

125LL 0 (2) 71.66 2 (5) 662.53 33704 240274.60 37, 86

125TL 0 (2) 21.14 3 (5) 262.46 24666 246666.54 29, 112

125LT 1 (4) 6472.69 2 (4) 9684.61 36282 251680.17 6, 42, 79, 85

125TT 0 (2) 78.08 2 (4) 395.27 26726 279587.88 11, 44, 88

150LL 0 (2) 153.44 0 (5) 554.35 45386 235681.93 42, 100

150TL 0 (2) 105.47 2 (3) 558.22 34915 262139.83 37, 134

150LT 1 (3) 7755.27 – 248698.804 at gap 00.02% 37, 81, 95, 104

150TT – – – 278438.681 at gap 01.01% 42, 65, 134

175LL 0 (2) 276.67 0 (5) 960.38 75855 230793.01 53, 121

175TL 0 (2) 151.86 1 (5) 732.84 61212 246090.20 43, 129

175LT 1 (2) 7257.89 3 (2) 36225.68 57780 247953.13 17, 59, 109, 166

175TT 0 (3) 777.38 – 289236.988 at gap 00.98% 57, 121

200LL 1 (4) 2512.25 4 (4) 12189.69 68804 234850.34 53, 126, 184

200TL 0 (2) 563.41 2 (4) 3373.61 70032 275253.98 54, 95, 186

200LT – – – 271491.046 at gap 03.98% 57, 148

200TT 0 (3) 2919.58 – 296214.827 at gap 00.98% 54, 113, 186
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6. Conclusion

The numerical experiments show that the Euclidean projection method can
solve even large instances of different Single Allocation Hub Location Problems
to optimality or near optimality. Furthermore, it quickly arrives at low gaps and240

can, therefore, be applied to practical problems. The next aim is to adapt it
for problems with additional, complicating constraints, like stochastic or robust
versions of the problems above.
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