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Abstract

We consider several semidefinite programming relaxations for the max-k-cut prob-
lem, with increasing complexity. The optimal solution of the weakest presented
semidefinite programming relaxation has a closed form expression that includes the
largest Laplacian eigenvalue of the graph under consideration. This is the first known
eigenvalue bound for the max-k-cut when k > 2 that is applicable to any graph. This
bound is exploited to derive a new eigenvalue bound on the chromatic number of a
graph. For regular graphs, the new bound on the chromatic number is the same as the
well-known Hoffman bound; however, the two bounds are incomparable in general.

We prove that the eigenvalue bound for the max-k-cut is tight for several classes
of graphs. We investigate the presented bounds for specific classes of graphs, such as
walk-regular graphs, strongly regular graphs, and graphs from the Hamming associa-
tion scheme.

Keywords: max-k-cut, chromatic number, semidefinite programming, Laplacian eigenval-
ues, walk-regular graphs, association schemes, strongly regular graphs, Hamming graphs

1 Introduction

The max-k-cut problem is the problem of partitioning the vertex set of a graph into k
subsets such that the total weight of edges joining different sets is maximized. The max-
k-cut problem is also known as the minimum k-partition problem since minimizing the
total weight of the edges between vertices in the same part of the partition is equivalent to
maximizing the k-cut. The max-k-cut problem is NP-hard [3]. It has many applications
such as VLSI design [4, 7], frequency planning [19], statistical physics [4], digital-analogue
convertors [33], sports team scheduling [31], fault test generation [29], etc.

For the case that k = 2, the max-k-cut problem is known as the max-cut problem. The
max-cut problem is one of the most studied combinatorial optimization problems and there
is a large number of references related to the problem. For studies on the cut polytope
and its facets, see e.g., [5, 6]. In [32], Mohar and Poljak derived an eigenvalue bound for
the max-cut problem. A well-known semidefinite programming (SDP) relaxation for the
max-cut problem, in dual form, was introduced by Delorme and Poljak [14]. The primal
version of this basic SDP relaxation, one can find in e.g., [35, 27]. In [27], Goemans and
Williamson showed that the basic SDP relaxation for the max-cut has an error of no more
than 13.82%. Rendl et al. [38] incorporated this relaxation with additional inequalities
within a branch and bound algorithm to solve — to optimality — max-cut instances of
graphs with up to 100 vertices.
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The max-k-cut problem was studied by Chopra and Rao [8, 9], who derived several
valid inequalities and facets for the k-partition polytope. Further results on this poly-
tope can be found in [16, 17, 18]. To the best of our knowledge, there is no literature on
eigenvalue bounds for the max-k-cut when k ≥ 3. A SDP relaxation for the max-k-cut
problem was introduced by Frieze and Jerrum [21]. In the same paper, the authors derived
a polynomial-time approximation algorithm. In [19], Eisenblätter used a SDP relaxation
for the minimum k-partition problem to show that the SDP relaxation of the k-partition
polytope is strong. Ghaddar et al. [23] developed a branch-and-cut algorithm that is based
on a SDP relaxation for the minimum k-partition problem. They were able to solve to
optimality dense instances with up to 60 vertices and some special instances with up to
100 vertices, and for different values of k. Anjos et al. [2] improved the algorithm from
[23] and developed a more efficient solver.

Main results and outline. In Section 2 we derive a SDP relaxation for the max-k-cut
problem from the SDP relaxation for the general graph partition problem from [40]. We
show that the derived SDP relaxation is equivalent to the well-known SDP relaxation
for the max-k-cut problem by Frieze and Jerrum [21]. In Section 3.1 we derive a new
eigenvalue bound for the max-k-cut. This eigenvalue bound is the first known closed form
bound when k ≥ 3 that is applicable to any graph, and for k = 2 it equals the eigenvalue
bound for the max-cut by Mohar and Poljak [32]. The new eigenvalue bound is the optimal
solution of a SDP relaxation that is dominated by the SDP relaxation from Section 2. In
Section 3.2 we improve the eigenvalue bound from Section 3.1 by performing diagonal
perturbations of the cost matrix. This approach results in a new eigenvalue-based bound
that can be obtained by solving a SDP problem.

Using the eigenvalue bound for the max-k-cut from Section 3.1, we present in Section
3.3 a bound on the chromatic number of a graph. This is the first known closed form bound
on the chromatic number of a graph that considers only eigenvalues of the Laplacian matrix
of the graph. For regular graphs, the new bound equals the well-known Hoffman bound
[28] on the chromatic number. In general, however, there exist graphs for which our bound
outperforms the Hoffman bound, and vice versa.

In Section 4 we demonstrate the quality of the presented bounds for several families of
graphs, such as walk-regular graphs (see Section 4.1), strongly regular graphs (see Section
4.2), and Hamming graphs (see Section 4.3). To our great surprise, we could not find in
the literature any results on specific classes of graphs and their relation to the bounds for
the max-k-cut with k > 2. We prove that the eigenvalue bound for the max-k-cut from
Section 3.1 is tight for certain complete graphs, complete multipartite graphs with k color
classes of the same size, and certain graphs in the Hamming association scheme. The
latter generalizes a result on the max-cut problem for binary ‘Hamming scheme graphs’
by Alon and Sudakov [1]. We also show that for certain q-ary Hamming scheme graphs
and the max-k-cut problem with k ≤ q, the eigenvalue bound from Section 3.1 equals the
SDP bound from Section 2. For walk-regular graphs, such as vertex-transitive graphs and
graphs from association schemes, we prove that the two eigenvalue-based bounds for the
max-k-cut from Section 3.1 and Section 3.2 are equal. We also show that for walk-regular
graphs both eigenvalue bounds equal the optimal value of the SDP relaxation from Section
2 when k = 2. For strongly regular graphs, we also present a closed form expression for the
optimal objective value of the SDP relaxation from Section 2. This result is an extension
of the results by De Klerk et al. [12, 13] for the equipartition problem, and Van Dam and
Sotirov [10] for the general graph partition problem. We also show that for all strongly
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regular graphs except for the pentagon, the SDP bound from Section 2 does not improve
by adding triangle inequalities.

2 SDP relaxations for the max-k-cut problem

For a given undirected graph G = (V,E), the max-k-cut problem asks for a partition of
the vertex set V into at most k subsets Vi ⊆ V (i = 1, . . . , k) such that the weighted sum
of edges joining different sets is maximized.

Let |V | = n, let A denote the adjacency matrix of G, and let L = Diag(Aun) − A be
its Laplacian matrix. The well-known trace formulation of the max-k-cut problem is given
by

max 1
2 tr(XTLX)

s.t. Xuk = un

xij ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , k.

Here uk and un denote all-ones vectors of sizes k and n, respectively. Note that the columns
of the matrix X in this trace formulation are the incidence vectors of Vi (i = 1, . . . , k).

In [40] we derived a semidefinite programming relaxation for the general graph partition
problem. The general graph partition problem is the problem of partitioning vertices of a
graph into k disjoint subsets of specified sizes such that the total weight of edges joining
different sets is optimized. Thus, a mathematical model for the general graph partition
problem reduces to a mathematical model for the max-k-cut problem after removing the
constraints that impose restrictions on the subset sizes.

From the SDP relaxation for the general graph partition problem [40], we thus obtain
the following SDP relaxation for the max-k-cut problem (see also [37]):

max 1
2 tr(LY )

s.t. diag(Y ) = un

kY − Jn � 0, Y ≥ 0,

(1)

where Jn denotes the n× n all-ones matrix, and the ‘diag’ operator maps a n× n matrix
to the n-vector given by its diagonal. Note that the SDP relaxation (1) contains a positive
semidefiniteness constraint that is stronger than Y � 0. For the proof that kY −Jn � 0 is
a valid constraint, see e.g., [40, Prop. 1]. We remind the reader that (1) can be obtained
from the above trace formulation by introducing the variable Y = XXT, as usual.

For k = 2, the nonnegativity constraints on the matrix variable Y are implied by the
positive semidefiniteness constraint and diag(Y ) = un, see [10]. By using this fact we
arrive at the following result.

Proposition 1. For k = 2, the SDP relaxation (1) is equivalent to the following well-
known SDP relaxation for the max-cut problem by Delorme and Poljak [14]:

max 1
4 tr(LY )

s.t. diag(Y ) = un

Y � 0.

(2)
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Proof. It is clear that there is a one-to-one correspondence between feasible Y for (1)
and feasible Z for (2) by the relation Z := 2Y − Jn. It is also easy to see that the two
objectives coincide because LJn = 0.

Undoubtedly, the most cited SDP relaxation for the max-k-cut problem is the following
relaxation by Frieze and Jerrum [21]:

(FJ)

max k−1
2k tr(LY )

s.t. diag(Y ) = un

Y � 0, Y ≥ − 1
k−1Jn.

This SDP relaxation is moreover exploited in [21] in a rounding heuristic to obtain a
feasible solution of the max-k-cut problem. It is not difficult to prove the following result.

Proposition 2. The SDP relaxations (1) and (FJ) are equivalent.

Proof. The proof follows again by direct verification after applying appropriate variable
transformations, see also [40, Thm. 4].

The SDP relaxation (1) might be tightened by adding valid inequalities. For instance
one can add triangle inequalities of type

yij + yik ≤ 1 + yjk, ∀(i, j, k). (3)

For a given triple (i, j, k) of (distinct) vertices, the constraint (3) ensures that if i and j
are in the same set of the partition and so are i and k, then also j and k have to be in the
same set. The above mentioned inequalities are facet defining inequalities of the boolean
quadric polytope, see e.g., [34].

One can also add the independent set constraints∑
i<j, i,j∈Q

yij ≥ 1, for all Q with |Q| = k + 1. (4)

These constraints ensure that the graph with adjacency matrix Y = (yij) has no indepen-
dent set (Q) of size k+ 1. Anjos et al. [2] use a bundle method to solve (FJ) with triangle
and independent set inequalities in each node of a branch-and-bound tree. Their approach
resulted in a significantly faster max-k-cut solver than the one presented in [23].

Van Dam and Sotirov [10] showed how to aggregate triangle and independent set con-
straints for graphs with symmetry in the context of a SDP relaxation for the general graph
partition problem. In particular, their numerical results show that for highly symmetric
graphs one can compute a SDP bound that includes all triangle and/or independent set
inequalities for graphs on about 100 vertices in a few seconds. A similar approach can be
applied here, see Section 4.

3 New bounds

In this section, we derive two eigenvalue-based bounds for the max-k-cut and a new bound
on the chromatic number of a graph. In Section 3.1, we derive an eigenvalue bound for
the max-k-cut as the optimal solution of a SDP relaxation that is weaker than (1), in
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general. Then, we investigate possible improvements of the mentioned eigenvalue bound
by perturbing the diagonal of the Laplacian matrix, see Section 3.2. We show that such
perturbations lead to a stronger bound. In Section 3.3 we derive a new lower bound on
the chromatic number of a graph using the eigenvalue bound from Section 3.1 for the
max-k-cut.

3.1 A new eigenvalue bound for the max-k-cut

To derive a new eigenvalue bound for the max-k-cut, we use a similar approach as the one
in [10], where a matrix ∗-algebra called the Laplacian algebra L is introduced. A matrix
∗-algebra is a set of matrices that is closed under addition, scalar multiplication, matrix
multiplication, and taking conjugate transposes. It is well known that one can restrict
optimization of a SDP problem to feasible points in a matrix ∗-algebra that contains the
data matrices of that problem as well as the identity matrix, see e.g., [39, 26, 22, 11].

The Laplacian algebra has a basis of matrices that are obtained from an orthonormal
basis of eigenvectors corresponding to the eigenvalues of the Laplacian matrix L. In
particular, let 0 = λ0 ≤ λ1 < . . . < λm =: λmax(L) be the distinct eigenvalues of L, where
we allow that λ0 = λ1 in order to cater for the case that the graph is not connected.
Also, let Ui be a matrix whose columns form an orthonormal basis of the eigenspace
corresponding to the ith eigenvalue λi and Fi = UiU

T
i for i = 0, . . . ,m, except in the case

that the graph is not connected, in which case we split the eigenspace corresponding to
eigenvalue 0. In particular, we take U0 = 1√

n
un and U1 a matrix whose columns form an

orthonormal basis of the orthogonal complement of 〈un〉 within the eigenspace of eigenvalue
0. Moreover, let fi = rankFi be the corresponding multiplicities, for i = 0, . . . ,m. The
Laplacian algebra L is now defined as the span of {F0, . . . , Fm}. This basis is called the
basis of idempotents of L, and satisfies the following properties:

•
m∑
i=0

Fi = I,
m∑
i=0

λiFi = L

• FiFj = δijFi, ∀i, j

• Fi = F ∗i , ∀i

• tr(Fi) = fi, ∀i

• F0 = 1
nJn.

Since the SDP relaxation (1) cannot be restricted to feasible points in L (for example,
diag(Y ) = un requires that the matrices in L have constant diagonal; we will indeed require
this in Section 4.1), we relax several constraints in it. In particular, we relax diag(Y ) = un
to tr(Y ) = n and remove nonnegativity constraints, which leads to the relaxation:

max 1
2 tr(LY )

s.t. tr(Y ) = n

kY − Jn � 0.

(5)

Now, by restricting optimization of (5) to feasible points in L we obtain the following
result.
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Theorem 3. Let G be a graph on n vertices and k an integer such that 2 ≤ k ≤ n. Then
the optimal value of the SDP relaxation (5) is equal to

n(k − 1)

2k
λmax(L), (6)

where λmax(L) is the largest eigenvalue of the Laplacian matrix L of G.

Proof. Because the Laplacian algebra L contains L, I, and Jn, there exists an optimal
solution Y to (5) in L (see e.g., [39, 11]), so we may assume Y =

∑m
i=0 yiFi where yi ∈ R

(i = 0, . . . ,m). By exploiting the fact that L =
∑m

i=0 λiFi we have

1

2
tr(LY ) =

1

2

m∑
i=0

λifiyi. (7)

Continuing in the same vein, from tr(Y ) =
∑m

i=0 yifi = n and kY − Jn � 0 we have

k − 1− k

n

m∑
i=1

fiyi ≥ 0 and yi ≥ 0 (i = 1, . . . ,m). (8)

In other words, our SDP relaxation (5) reduces to a linear programming (LP) problem
with objective function (7) and constraints (8). Now, it is not difficult to see that the
optimal value of the resulting LP problem is n(k − 1)λmax(L)/2k.

We note that although our results also apply to graphs that are not connected, it
is typically better to apply these results to the connected components of such graphs
separately. This also applies to the eigenvalue bound (6) because the largest Laplacian
eigenvalue of a graph is the maximum of the largest Laplacian eigenvalues of its connected
components.

There are several interesting things related to the spectral bound of Theorem 3. First,
this is, to the best of our knowledge, the first eigenvalue bound for the max-k-cut when
k > 2. Second, for k = 2 our eigenvalue bound coincides with the well-known eigenvalue
bound for the max-cut by Mohar and Poljak [32].

3.2 Strengthening the eigenvalue bound

In the following we investigate possible improvements of the eigenvalue bound (6). In
particular, we show that certain perturbations of the diagonal of the Laplacian matrix
lead to a bound that is in general stronger than (6) but weaker than (1). Perturbations
of the cost matrix by a diagonal matrix with zero trace do not change the optimal value
of the max-k-cut problem, but have an effect on the maximal eigenvalue of the Laplacian
matrix. This was pointed out already by Delorme and Poljak [15] for the max-cut problem.
Therefore, we investigate the following optimization problem:

min
dTun=0

n(k − 1)

2k
λmax(L+ Diag(d)), (9)

where ‘Diag’ is the adjoint operator of ‘diag’. The vector d is known as the correcting
vector, see e.g., [15]. The eigenvalue optimization problem (9) can be formulated as the
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following semidefinite program:

min n(k−1)
2k µ

s.t. µIn − (L+ Diag(d)) = Z

Z � 0, dTun = 0,

whose dual problem is
max 1

2 tr(LY )

s.t. diag(Y ) = k−1
k un

Y � 0.

(10)

Note that the optimal value of the eigenvalue problem (9) equals the optimal value of the
SDP relaxation (10). In what follows, we show that the SDP relaxation (1) dominates
(10). By the variable transformation Z = Y + 1

kJn together with LJn = 0, we obtain from
(10) the following equivalent SDP relaxation:

max 1
2 tr(LZ)

s.t. diag(Z) = un

kZ − Jn � 0.

It is now clear that the SDP relaxation (1) dominates (10) because of the constraints
Z ≥ 0 (and confirm also that (10) dominates (5)).

Proposition 4. The SDP relaxation (1) is equivalent to the SDP relaxation (10) with
additional inequalities Y ≥ − 1

kJn.

We summarize the relations between the presented SDP relaxations of the max-k-cut
problem and corresponding bounds as follows:

SDP (5) ≥ SDP (10) ≥ SDP (1) ≥ max-k-cut
‖ ‖

λmax-bound (6) Perturbed ‘bound’ (9)

where A ≥ B means that B dominates A. For k = 2, the nonnegativity constraints in (1)
are redundant (see [10]), and therefore the SDP relaxations (10) and (1) are equivalent.
In Section 4.1, we prove that for walk-regular graphs, the SDP bounds (5) and (10) are
equal. In Section 4.3, we prove that for certain graphs in the q-ary Hamming association
scheme with k ≤ q, the SDP bounds (5) and (1) are equal, while on top, the SDP bound
(5) is tight for k = q.

3.3 A new bound on the chromatic number

We will now derive a bound on the chromatic number of a graph from the eigenvalue
bound (6) for the max-k-cut problem. We show that for regular graphs our bound equals
the well-known Hoffman bound [28].

A coloring of a graph is an assignment of colors to the vertices of the graph such that
no two adjacent vertices have the same color. The smallest number of colors needed to
color a graph G is called its chromatic number χ(G). Since a coloring with k colors is
the same as a partition of the vertex set into k independent sets, we have the following
observation. For a given graph G = (V,E) and integer k,
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if max-k-cut < |E|, then χ(G) ≥ k + 1.

By using this in combination with the eigenvalue bound (6), we obtain the following bound
on the chromatic number of G:

Theorem 5. Let G = (V,E) be a graph with Laplacian matrix L. Then

χ(G) ≥ 1 +
2|E|

nλmax(L)− 2|E|
. (11)

Proof. Let k = d 2|E|
nλmax(L)−2|E|e, then k < 1 + 2|E|

nλmax(L)−2|E| . From this, it follows that the

upper bound (6) for the max-k-cut is less than |E|, and hence (11) follows.

For a κ-regular graph with n vertices and adjacency matrix A with smallest eigenvalue
θmin, we have that κ = 2|E|/n and λmax(L) = κ− θmin because L = κI − A. Thus, for a
κ-regular graph, (11) can be rewritten as

χ(G) ≥ 1− κ

θmin
,

which is exactly the well-known Hoffman bound [28] on the chromatic number (when
restricted to regular graphs). The new bound can be strictly better than the Hoffman
bound. For instance for the complete graph on 100 vertices minus an edge, our bound is
99 (which is also the chromatic number) while the Hoffman bound is 51.

Recently, several generalizations of the Hoffman bound were presented that include
several or all eigenvalues of the adjacency matrix and/or Laplacian matrix, see [20]. Our
new bound differs from these since it includes only one eigenvalue of the Laplacian matrix.

4 Specific classes of graphs and the max-k-cut

In this section we investigate the introduced eigenvalue and SDP bounds for the max-k-cut
for specific classes of graphs. In particular, we show that the eigenvalue bound (6) is tight
for some complete graphs, complete multipartite graphs with k color classes of the same
size, and certain graphs in the q-ary Hamming association scheme with k = q. We show
that for the Coxeter graph the SDP relaxation (1) with k = 2 and additional triangle and
independent set inequalities is tight. In Section 4.1, we prove that for walk-regular graphs
the eigenvalue bound (6) is equal to the eigenvalue bound (9). In Section 4.2, we derive a
closed form bound for the max-k-cut of strongly regular graphs from the SDP relaxation
(1), and give conditions under which it is equal to the eigenvalue bound (6). In Section
4.3, we consider graphs from the Hamming association scheme. We now start with an
easy example.

Example 1. Complete multipartite graph with k color classes of the same size.
The largest Laplacian eigenvalue of Kk×m is km, and hence the eigenvalue bound (6)
equals

k(k − 1)m2

2
,

which is clearly the max-k-cut in Kk×m (and the number of edges).
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Example 2. Complete graphs.
The largest Laplacian eigenvalue of the complete graph Kn is n. Thus, the eigenvalue

upper bound for the max-k-cut problem (6) is n2(k−1)
2k . To derive the max-k-cut in Kn,

we need to solve the following optimization problem:

max
k∑
i=1

k∑
j=i+1

mimj

s.t.
k∑
i=1

mi = n

mi ∈ Z, mi ≥ 0, i = 1, . . . , k.

Under the given constraints, it is not hard to show that

k∑
i=1

k∑
j=i+1

mimj =
n2(k − 1)

2k
− 1

2

k∑
i=1

(mi −
n

k
)2,

and hence that if n is a multiple of k, then the max-k-cut equals the eigenvalue bound.
If n is not a multiple of k, then the max-k-cut is attained by taking mi = dnk e (n −

kbn/kc times) and mi = bnk c (k − n+ kbn/kc times). We can in fact show (but omit the
elaborate but straightforward details) that if n ≡ e mod k with 0 ≤ e ≤ k − 1, then the
max-k-cut equals

n2(k − 1)

2k
− e(k − e)

2k
.

Thus, as long as e(k−e)
2k < 1, the rounded eigenvalue bound equals the max-k-cut. This

holds for example for e = 1 or 2 and all k, but also for k ≤ 7 and all n. On the other hand,
it shows that the gap between the eigenvalue bound and the max-k-cut can be arbitrary
large (take e = bk/2c and let k →∞). The ‘smallest’ case where the (rounded) eigenvalue
bound is not the max-k-cut is the case that n = 12 and k = 8.

The following example shows that after adding the triangle inequalities (3) and inde-
pendent set constraints (4) to (1), the resulting bound can be tight.

Example 3. The Coxeter graph.
The Coxeter graph is a regular graph with 28 vertices and 42 edges. Delorme and Poljak
[15] proved that the optimal value of the max-cut for the Coxeter graph is 36, while the
eigenvalue bound (6) is the same as the SDP bound (1), which equals 37.89. For k = 2, we
computed (1) with additional triangle inequalities (3), and also with additional triangle
and independent set inequalities (4). The obtained bounds are 36.75 and 36, respectively,
and hence they are tight (the first one after rounding, of course).

Note that we computed the SDP relaxations with additional inequalities by aggregating
the constraints as described in [10]. The relaxation with all triangle and independent set
inequalities was solved in only 0.14 s.

4.1 Walk-regular graphs and association schemes

We show here that for so-called walk-regular graphs, the eigenvalue bound (6) is equal to
the improved eigenvalue bound (9).

A graph with adjacency matrix A is called walk-regular if A` has constant diagonal
for every nonnegative integer `. The matrix A` contains the numbers of walks of length `
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between vertices, so the definition is equivalent to requiring that the number of walks of
length ` from a vertex to itself is the same for every vertex. The class of walk-regular graphs
contains all vertex-transitive graphs, distance-regular graphs, and graphs whose Laplacian
matrix is contained in the Bose-Mesner algebra of an association scheme, among others
(such as the graph from [25, Fig. 2]). For more on walk-regular graphs, we refer to [25] or
[24].

Because the diagonal of A2 contains the vertex degrees of the graph, it follows that a
walk-regular graph is regular, say of degree κ. Consider now the Laplacian algebra L of
Section 3. Because a walk-regular graph is regular, its Laplacian matrix equals L = κI−A.
Now it follows that all matrices in the Laplacian algebra L of a walk-regular graph have
constant diagonal, in particular the idempotent matrices F0, F1, . . . , Fm. Below we will
exploit the fact that Fm has constant diagonal.

Recall that m is the index of the largest eigenvalue of the Laplacian matrix L, so that

LFm = λmax(L) · Fm. (12)

We now define

Ȳ :=
n(k − 1)

k tr(Fm)
Fm,

then Ȳ has constant diagonal, with

diag(Ȳ ) =
k − 1

k
un,

and hence Ȳ is feasible for (10), with objective value

1

2
tr(LȲ ) =

n(k − 1)

2k tr(Fm)
tr(LFm) =

n(k − 1)

2k
λmax(L),

where we exploited the fact that L =
∑m

i=0 λiFi and (12). Thus, the maximal value of the
SDP bound (10) is attained in Ȳ , and (10) (and hence (9)) equals the eigenvalue bound
(6). We remark that this implies also that the optimum correcting vector d in (9) is equal
to the zero vector. Poljak and Rendl [36] proved this result for the max-cut problem in
vertex-transitive graphs.

Note that the SDP relaxation (1) is in general stronger than (10) because it contains
additional inequality constraints. Since for k = 2 the nonnegativity constraints in (1)
are redundant, the eigenvalue bound (6) for the max-cut is equal to the optimal solution
of (1) for all walk-regular graphs. Goemans and Rendl [26] proved this for the max-cut
problem in graphs in an association scheme, and therefore our result generalizes theirs.
We summarize our results in the following theorem.

Theorem 6. Let G be a walk-regular graph on n vertices and let k be an integer such
that 2 ≤ k ≤ n. Then the eigenvalue bound (6) equals the improved eigenvalue bound
(9). Moreover, for k = 2 the eigenvalue bound (6) equals the optimal value of the SDP
relaxation (1).

What we required in the above analysis is that the idempotent Fm has constant di-
agonal. We remark that this can also be the case for graphs that are not walk-regular.
In fact, this holds for every regular bipartite graph. However, for bipartite graphs, the
max-k-cut problem is trivial.
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4.2 Strongly regular graphs

Strongly regular graphs belong to the class of walk-regular graphs analyzed in Section
4.1. Here we derive a closed form expression for the optimal objective value of the SDP
relaxation (1). We also derive a condition under which the eigenvalue bound (6) equals the
optimal objective value of the SDP relaxation (1). A similar approach was used in [12, 13]
to derive an eigenvalue bound for the equipartition and in [10] to derive an eigenvalue
bound for the general graph partition problem.

A κ-regular graph G = (V,E) on n vertices is called strongly regular with parameters
(n, κ, λ, µ) whenever it is not complete or edgeless and every two distinct vertices have λ
or µ common neighbors, depending on whether the two vertices are adjacent or not, re-
spectively. Let A be the adjacency matrix of a strongly regular graph G with parameters
(n, κ, λ, µ). Since G is regular with valency κ, we have that κ is an eigenvalue of A with
eigenvector un. The matrix A has exactly two distinct eigenvalues associated with eigen-
vectors orthogonal to un. These two eigenvalues are known as the restricted eigenvalues
and are usually denoted by r and s, where r ≥ 0 and s < 0. Hence, the largest Laplacian
eigenvalue λmax(L) of G equals κ− s.

Now, by applying the general theory of symmetry reduction to the SDP problem (1)
as described in, e.g., [10, 12, 13] we obtain the following result.

Theorem 7. Let G = (V,E) be a strongly regular graph with parameters (n, κ, λ, µ) and
restricted eigenvalues r ≥ 0 and s < 0. Let k be an integer such that 2 ≤ k < n. Then the
SDP bound (1) for the max-k-cut of G is given by

min

{
n(k − 1)

2k
(κ− s), 1

2
κn

}
.

Note that the objective value of (1) is equal to the eigenvalue bound (6) unless k−1
k >

κ
κ−s . We remark that the term n(k−1)

2k (κ− s) is indeed the eigenvalue bound (6), which by

the results in the previous section equals the SDP bound (10). The term 1
2κn in the above

bound comes in because of the nonnegativity constraints in (1). Note also that this term
equals the number of edges |E|, and hence is an obvious upper bound for the max-k-cut.

In [10, 26], it is explained how one can aggregate the triangle inequalities (3) for graphs
with symmetry. Further, in [10] it is shown that in the case of the graph partition problem
for strongly regular graphs, and after simplifying and removing equivalent inequalities
from the set of 3

(
n
3

)
triangle inequalities, there remain at most four inequalities. Clearly,

the same inequalities remain for the max-k-cut problem. Therefore, following similar
arguments as those in [10], we conclude that adding triangle inequalities to (1) does not
improve the bound for strongly regular graphs, except possibly for the pentagon. Indeed,
if we consider the pentagon then the SDP bound (1) with k = 2 equals 4.52, and after
adding all triangle inequalities to (1) the bound becomes 4.16.

We also tested the quality of the bound obtained after adding independent set inequal-
ities, for the case k = 2. Note that it is not clear how to aggregate those constraints for
k > 2, see [10]. Our numerical results show that after adding constraints (4) to (1), the
bound improves for some instances. For example, for the Kneser graph K(6, 2) the eigen-
value bound (6) equals the SDP bound (1), which is equal to 33.75, while after adding
aggregated independent set constraints to (1) the bound is 30. For the pentagon, adding
all triangle and independent set constraints to the SDP relaxation (1) gives a bound of 4.
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4.3 The Hamming graphs

We now consider (the walk-regular) graphs from the Hamming association scheme. With
vertices represented by d-tuples of letters from an alphabet of size q, the adjacency matrices
H(d, q, j) (j = 0, . . . , d) of the Hamming association scheme are defined by the number
of positions in which two d-tuples differ. In particular, let V be the set of all vectors of
length d over an alphabet of size q, so n = qd. Then, H(d, q, j)x,y = 1 if x and y differ in j
positions, for x, y ∈ V . The graph H(d, q, 1) is the well-known Hamming graph, which can
also be obtained as the Cartesian (or direct) product of d copies of the complete graph Kq.
The eigenvalues of the graphs in the Hamming scheme can be obtained using Kravchuk
polynomials, see [30, Thm. 30.1], i.e., H(d, q, j) has eigenvalues

Kj(i) =

j∑
h=0

(−q)h(q − 1)j−h
(
d− h
j − h

)(
i

h

)
,

with multiplicities mi =
(
d
i

)
(q−1)i, for i = 0, . . . , d. Note that H(d, q, j) is a regular graph

with degree Kj(0) =
(
d
j

)
(q − 1)j , and hence its Laplacian eigenvalues are Kj(0) −Kj(i),

for i = 0, . . . , d.
For the particular case that j = d, we have that H(d, q, d) = (Jq−Iq)⊗d, the d-th power

of Jq − Iq using the Kronecker product, which confirms that the eigenvalues of H(d, q, d)
are Kd(i) = (−1)i(q − 1)d−i, for i = 0, . . . , d. Moreover, this particular form allows us
to write the idempotent matrix of Section 3.1 that corresponds to the largest Laplacian
eigenvalue λmax(L) in a useful form, as we shall see later. Because the graph is regular of
degree Kd(0) = (q − 1)d with smallest eigenvalue θmin = Kd(1) = −(q − 1)d−1, it follows
that

λmax(L) = (q − 1)d + (q − 1)d−1 = q(q − 1)d−1.

Alon and Sudakov [1] showed that the optimal value for the max-cut problem for
H(d, 2, j) coincides with the optimal solution of (1) (and implicitly, also with the eigenvalue
bound (6)), when j is even, j > d/2, and d is large enough with j/d fixed. We will extend
this result to the case q > 2. Note that for q = 2, the graphs H(d, 2, j) are bipartite for j
odd, and so for these graphs, the max-cut problem is not relevant. For q > 2, all graphs
H(d, q, j) are however non-bipartite and also connected.

Consider again H(d, q, d). The idempotent matrices of Section 3.1 for H(1, q, 1) =
Jq−Iq are 1

qJq (with eigenvalue q−1) and Iq− 1
qJq (with eigenvalue −1). Since H(d, q, d) is

obtained by taking Kronecker products of H(1, q, 1), its idempotents can be obtained using
Kronecker products of these two ‘basic’ idempotents. It thus follows that the idempotent
for λmax(L) of H(d, q, d) equals

F =
1

qd

d−1∑
i=0

J⊗iq ⊗ (qIq − Jq)⊗ J⊗d−1−iq =
1

qd
(q

d−1∑
i=0

Jqi ⊗ Iq ⊗ Jqd−1−i − dJqd),

with tr(F ) = d(q − 1). This is in fact not just an idempotent for H(d, q, d), but it is
also an idempotent for the Hamming association scheme, and for all graphs H(d, q, j),
j = 1, . . . , d. The corresponding Laplacian eigenvalue λ of H(d, q, j) equals

λ = Kj(0)−Kj(1) = q(q − 1)j−1
(
d− 1

j − 1

)
. (13)
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Note that in order to avoid confusion, we didn’t use an index for F and λ, because the
ordering of the eigenvalues here is not increasing, as in Section 3.1. We now make the
following conjecture on λ.

Conjecture 8. Let q ≥ 2 and j ≥ d − d−1
q , with j even if q = 2. Then λ is the largest

Laplacian eigenvalue of H(d, q, j).

Alon and Sudakov [1, Prop. 3.2] showed that λ is indeed the largest Laplacian eigen-
value of H(d, 2, j) for j even, j > d/2, when d is large enough with j/d fixed. We confirmed
the conjecture numerically (comparing similarly as Alon and Sudakov the values of the
Kravchuk polynomials, i.e., that Kj(i) ≥ Kj(1) for all i = 0, . . . , d) for all pairs (d, q) with
d ≤ 30 and q ≤ 15. We have no hard proof however, except for the case j = d, of course.

Under the condition that λ is indeed the largest Laplacian eigenvalue of H(d, q, j), this
would imply that the eigenvalue bound (6) for the max-k-cut equals

qd(k − 1)

2k
λ =

k − 1

2k
qd+1(q − 1)j−1

(
d− 1

j − 1

)
.

In Section 4.1, we showed that the matrix

Ȳ = qd
k − 1

kd(q − 1)
F,

is feasible for (10). Moreover, if k ≤ q, then

Ȳ ≥ − k − 1

k(q − 1)
Jqd ≥ −

1

k
Jqd .

From Proposition 4, we thus obtain the following result.

Theorem 9. Let k ≤ q, j ≥ d− d−1
q , with j even if q = 2, and consider the graph H(d, q, j).

If λ in (13) is the maximal Laplacian eigenvalue, then for the max-k-cut problem, the
eigenvalue bound (6) and the SDP bound (1) are equal.

Next, we will construct optimal q-cuts, showing that the eigenvalue bound (6) is tight
for k = q. Because the adjacency matrix of H(d, q, d) is of the form (Jq−Iq)⊗(Jq−Iq)⊗d−1,
it follows that the max-q-cut of this graph is equal to the number of edges 1

2(q−1)dqd, which
indeed proves that the eigenvalue bound is tight. It also shows that the chromatic number
is at most q. Together with the eigenvalue (lower) bound for the chromatic number, this
shows that the chromatic number of H(d, q, d) equals q.

For the case k = q = 2, Alon and Sudakov construct a max-cut using a specific
eigenvector corresponding to the largest Laplacian eigenvalue (or to the smallest eigenvalue
of the adjacency matrix, to speak in their terms). For q = 2, the specific eigenvectors have
entries only 1 and −1, and these values induce the cut. Looking at these eigenvectors
more carefully, we can describe such a cut, and more generally a q-cut for H(d, q, j) in a
combinatorial way as follows. Recall that we can write the vertex set as V = {1, . . . , q}n.
Fix a coordinate, say the first, and partition V in q parts according to the value of the
vertex in this coordinate, i.e., let Vi = {x ∈ V : x1 = i}, for i = 1, . . . , q. It is quite
straightforward to count the number of edges in this q-cut for H(d, q, j) as follows. Let
i = 1, . . . , q, and consider a vertex x in Vi. Let h 6= i. Then every vertex in Vh that
is adjacent to x differs from x in the first coordinate, so it should differ in j − 1 of the
remaining d− 1 coordinates. This implies that x has

(
d−1
j−1
)
(q− 1)j−1 neighbors in Vh, and
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hence there are qd−1
(
d−1
j−1
)
(q − 1)j−1 edges between Vi and Vh. The total number of edges

in the q-cut is therefore

1

2
q(q − 1)qd−1

(
d− 1

j − 1

)
(q − 1)j−1 =

n(q − 1)

2q
λ,

and hence the eigenvalue bound (6) is tight, again provided that λ is indeed the largest
Laplacian eigenvalue.

Theorem 10. Let j ≥ d − d−1
q , with j even if q = 2, and consider the graph H(d, q, j).

If λ in (13) is the maximal Laplacian eigenvalue, then the optimal value of the max-q-cut
equals the eigenvalue bound (6).

5 Conclusion

In this paper, we presented several new bounds for the max-k-cut problem and the chro-
matic number of a graph, and analyzed their quality on specific classes of graphs.

In particular, in Theorem 3 we derived an eigenvalue bound for the max-k-cut problem
for k ≥ 2, extending a well-known eigenvalue bound for the max-cut problem by Mohar
and Poljak [32]. We exploited this new eigenvalue bound (6) to derive a new lower bound
(11) on the chromatic number of a graph. This new bound, when applied to regular
graphs, reduces to the well-known Hoffman bound [28] on the chromatic number. In
general however, our bound is not dominated by the Hoffman bound, nor the other way
around. In Section 3.2 we showed how to improve the eigenvalue bound (6). The resulting
bound does not have a closed form expression, but equals the optimal solution of the SDP
relaxation (10).

For walk-regular graphs, we showed that the eigenvalue bound (6) is equal to the
improved eigenvalue bound (9). For strongly regular graphs, we derived a closed form
bound that dominates the previously mentioned eigenvalue bounds. Finally, under some
assumption on the behavior of the Kravchuk polynomials (which we tested extensively, see
Conjecture 8), we showed that for j ≥ d− d−1

q , the optimal value of the max-q-cut equals
the eigenvalue bound (6) for the graphs H(d, q, j) in the Hamming association scheme.
This extends a similar result for the binary Hamming graphs and the max-cut problem by
Alon and Sudakov [1]. Under the same assumption, we also proved that for the max-k-cut
problem for H(d, q, j), with j ≥ d− d−1

q and k ≤ q, the eigenvalue bound (6) and the SDP
bound (1) are equal.

References

[1] N. Alon and B. Sudakov. Bipartite subgraphs and the smallest eigenvalue. Combinatorics,
Probability and Computing, 9(1):1–12, 2000.

[2] M.F. Anjos, B. Ghaddar, L. Hupp, F. Liers, and A. Wiegele. Solving k-way graph partitioning
problems to optimality: The impact of semidefinite relaxations and the bundle method. In:
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