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A strong polynomial gradient algorithm in Linear Programming 
 

Abstract.  
It has been an open question whether the Linear Programming (LP) problem can be solved in strong polynomial 

time. The simplex algorithm does not offer a polynomial bound, and polynomial algorithms by Khachiyan and 

Karmarkar don’t have the strong characteristic. The curious fact that non-linear algorithms would be needed to 

deliver the strongest complexity result for LP served as the motivation to look at feasible gradient methods. 

Experiments and theory show that a linear algorithm has the desired strong characteristic. 
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1. Introduction 

 

The Linear Programming problem (LP) was presented some 75 years ago. It may be defined in primal 

standard form as follows : max { c 
T
 x | A x ≤ b , x ≥ 0 } where A is an m x n matrix,  x and c are row 

vectors in R
n 
, b belongs to R

m
, and rows of A are denoted as a(i),  i=1,…,m. Since Dantzig 1950 [2], 

Khachiyan 1979 [4], and Karmarkar 1982 [5] an impressive body of literature on the problem has been 

generated. However directly after the publications of Khachiyan and Karmarkar one might have been 

astonished about the fact, that this linear problem derived its best complexity result from non-linear 

algorithms. Think for instance of Ockham’s famous razor. So it seems natural to look for a linear 

algorithm offering at least the same complexity result. Looking at the extremely simple definition of 

the problem we see a couple of purely linear constraints, in combination with the linear gradient of the 

objective, all elements that are absolutely constant throughout the problem space.  

And it is not that hard to devise a simple algorithm that operates on the basis of the gradient. But what 

would be the profit ? M.J. Todd’s paper “The many facets of linear programming” [6] gives an historic 

overview of various algorithmic developments, but pays almost no attention to gradient-like methods. 

His comment: ‘These try to follow projected gradient directions from one feasible point to another. 

Since this seems like such a natural strategy, and apparently so obviously superior to edge-following 

methods, such methods have been proposed numerous times in slightly varying guises.’ But the 

approach never became mainstream, and interestingly, no complexity result for these gradient-like 

methods is given. Diagnosing the (linear) simplex approach we see that it looks for improvement by 

scanning basic solutions only, so excluding as tentative candidates many feasible solutions that can be 

reached directly by a feasible path based on directions close to the gradient. In the ellipsoid approach 

there is an approximation initially overestimating the relevant feasible space which is divided in half 

in each iteration by means of a separating hyperplane that has no direct relation to the constraints of 

LP. In the interior point method there is an approximation underestimating the relevant feasible space 

in favour of the construction of a direction weakly related to the gradient that may lead far through the 

interior of the feasible region. So the concepts used in mainstream approaches are: approximated or 

partial use of the feasible space, separating hyperplanes approximately related to constraints, and 

feasible directions weakly related to the gradient. Ockham suggests : in your problem you have just a 

fixed direction to follow, but stay within the constraints that are imposed on your movements ! 

Probably he had no notion of the concept of a convex space, so that is what will have to be added. 

Following Ockham’s suggestion the first action is to see which move can be made in the direction of 

the original gradient. If LP is not unbounded a constraint is found that hinders further movement in 

this direction. Going further would mean entering the non-feasible half-space associated with this 

constraint. But the exclusion from the gradient of directions leading into this half-space generates a 

local feasible part of the gradient that is as close as possible to the original gradient. And this ‘feasible 

gradient’ fg is a proper basis to move on. In this way it is possible to reach n binding constraints giving 

fg = 0 because the directions associated with these n constraints span the problem space completely. 
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The question then : is the optimum solution to LP found ? This can be decided on the basis of Farkas’ 

Lemma [1] saying that in the optimum the following condition must be met : c is in the cone of the 

normal vectors to the binding constraints, or c = ∑  μ(i) a(i) where μ(i) ≥ 0, where a(i) is a binding 

constraint. The multipliers μ(i) are computed most easily on the basis of an orthogonal representation 

of the set of binding constraints, that can be found by the Gram-Schmidt orthogonalization procedure. 

If there is no negative multiplier the optimum has been found, but constraints with a negative 

multiplier should locally not be considered binding. But then, again locally, a new search space can be 

opened, and computing fg on the basis of a new orthogonal representation of the binding constraints 

that are left over will result in fg > 0. So having reached a basic solution it can be assessed whether the 

optimum has been reached, and if not so, there will be a new direction fg to follow to find a new and 

better basic solution to LP. The next and probably most crucial question is : how many basic solution 

will be reached before reaching the solution, the optimum or the conclusion that LP is unbounded. To 

answer the question the convexity of the feasible region has to be brought on stage. The convexity 

guarantees that the sets of binding constraints of successive basic solutions differ in at least one 

constraint, and moreover, as will be shown in the sequel, this at least one constraint is discarded 

permanently as a candidate for the binding set in the optimum. This means that at most m+1 basic 

solutions are visited. Thereby strong polynomial complexity is guaranteed. To reach this point no 

other concept is used than available in the definition of LP, so the approach complies completely with 

Ockham’s razor. There is no need to solve a quadratic optimization problem to find ‘the best direction’ 

to follow in basic solutions, following fg in a kind of ‘simultaneous coordinate descent’ suffices. There 

is also no need to construct separating hyperplanes, the original constraints of LP can be used as such.  

 

2. Feasible direction and step-size in the gradient approach  

 

Critical operations in every iteration of a gradient algorithm are first the computation of the available 

feasible direction, and second the computation of the step size. This section specifies the methods to 

be used. 

The first question to be asked is how far a start solution x(0) can be improved into x(1) simply, by 

proceeding for a step-size s(1) in the direction of the gradient, the problems object-vector c. So 

 x(1) = x(0) + s(1) c 

where x(1) too has to be a feasible solution, so, 

 a(i) 
T
 x(1) <= b(i)    all i 

 a(i) 
T
 x(0) + s(1) a(i) 

T
 c <= b(i)   all i 

 s(1) <= ( b(i) – a(i) 
T 

x(0) ) / a(i) 
T
 c  all i 

so the maximum step without violating any constraint is   

min ( b(i) – a(i) 
T
 x(0) ) / a(i) 

T
 c 

   i 

But by then there is at least one constraint that has to be considered binding, and assume the minimum 

is found for i = bi1, the index of the binding constraint found in step 1, meaning a(bi1) 
T
 x(1) = b(bi1), 

so there is no more slack that can be used in the direction c of the original gradient. In the meantime, it 

is clear that for the computation of an improving step one only has to consider those constraints for 

which one has in this first step a(i) 
T
 c > 0 because a feasible solution is already available, so only 

these are candidates to become binding. In order not to violate the constraint a(bi1) in further steps of 

our computation, one has to exclude every solution in the non-feasible half-space of this binding 

constraint. For the best direction that is left now, one has to exclude from the gradient c exactly and 

exclusively the component directing into this half-space. 

The resulting feasible gradient fg(1) in x(1) may then be written as 

 fg(1) = c – { c 
T
 a(bi1) / a(bi1) 

T
 a(bi1) } a(bi1) 

and in x(1) this is truly the best feasible direction. In the next iteration one looks for the best value of 

 x(2) = x(1) + s(2) fg(1) 

thereby determining a new binding constraint a(bi2). In further iterations one will have to exclude the 

non-admissible half-spaces related to a(bi1) and a(bi2). It is convenient to determine an orthogonal 

basis consisting of vectors aog(bi1),  aog(bi2), etc to span the combined non-admissible space related 

to binding constraints a(bi1),  a(bi2), etc.  

This may be done with the Gram-Schmidt procedure 
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 aog(bi) = a(bi) - ∑ { bj < bi } { a(bi) 
T
 aog(bj) / aog(bj) 

T
 aog(bj) } aog(bj)  

In this way one has 

 fg(1) = c – { c 
T
 aog(bi1) / aog(bi1) 

T
 aog(bi1) } aog(bi1) 

 fg(2) = c – { c 
T
 aog(bi1) / aog(bi1) 

T
 aog(bi1) } aog(bi1)  

  – { c 
T
 aog(bi2) / aog(bi2) 

T
 aog(bi2 )} aog(bi2) 

while in step k+1 of the algorithm this will result in  

 fg(k) = c –  ∑  { c 
T
 aog(bij) / aog(bij) 

T
 aog(bij)} aog(bij)  

   1 ≤ j ≤ k 

Clearly the number of operations involved in these computations is only mildly polynomial related to 

m and n, while the operations used are just the simple arithmetic operations addition, subtraction, 

multiplication and division.  

 

3. Computation of the multipliers 

 

The computation of the multipliers in the test for optimality in basic solutions is derived from the fact 

that, according to Farkas’ Lemma, in the optimum c may be written as a positive linear combination of 

the normal vectors to the constraints in set B of binding constraints with indexset BI 

 c = ∑ { i in BI } μ(i) a(i)  μ(i) > 0, i in BI 

This at least is the general formulation of the optimality condition found in the literature. The meaning 

is that, by Farkas’ Lemma, a theorem of the alternative, either c is in the cone of the a(i) in B, or there 

exists a hyperplane separating c from this cone, guaranteeing, that there is a direction away from the 

cone with a positive projection on c, and this must be a feasible direction. This becomes more clear if 

Farkas’ Lemma is not related to the a(i) but instead to the orthogonal set aog(i), derived directly from 

the a(i) in B in the present basic solution.  But the a(i) and the aog(i) in B equally span the space 

excluded as infeasible for LP. So applying Farkas’ Lemma to the aog(i)  

 c = ∑ { i in B } μog(i) aog(i)  μog(i) > 0, i in BI 

will generate the same conclusion, as when applied to the a(i), and a negative multiplier proves the 

existence of a feasible direction with a positive projection on c. For let a(ineg) be a constraint with a 

negative multiplier then 

 c 
T
 aog(ineg) = μ(ineg) aog(ineg) 

T
 aog(ineg) < 0 

meaning that aog(ineg) is locally not binding. 

However it should be clear that the aog(i) are constructed in a sequential manner, which implies that 

aog(1) equals a(1) , aog(2) is orthogonal relative to aog(1) , aog(i) is orthogonal relative to all aog(j) 

with j<i ! With this in mind the computation of the multipliers can be organized in the following way. 

To start with we have 

 c = ∑ { i in BI } μog(i) aog(i) 

with il being the last index entering BI we get 

      c 
T
 aog(il) = ∑ { i  in BI } μog(i) aog(i) 

T
 aog(il)  

    = μog(il) aog(il) 
T
 aog(il) 

This is correct because the orthogonality of the vectors aog guarantees that 

 aog(i) 
T
 aog(i) > 0  all i 

aog(i) 
T
 aog(j) = 0   i not equal j 

So 

μog(il) = c 
T
 aog(il) / aog(il) 

T
 aog(il) 

Now that the multiplier for il is known we may write Farkas’relation as follows 

 c - μog(il) aog(il) = ∑ { i ≠ il in BI(step 4) } μog(i) aog(i)  

But this relation can be used in a quasi-recursive way to compute the other multipliers, because  the 

left hand side is completely known. 

 

4. A feasible gradient algorithm 

 

The computations of a feasible direction, and a feasible step-size, and the computation of the 

multipliers resulting from Farkas’ Lemma, are relevant in the proposed feasible gradient algorithm. 

 

4.1 Specification of the feasible gradient algorithm 
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In case a feasible solution x(0) is available one proceeds as follows : 

(step 1)  initially set k=0, a feasible solution is x(0), the feasible gradient is fg(0) = c and 

identify index-sets BI(k) of binding, and NBI(k) of non-binding constraints,  

initially  BI(k) empty,  NBI(k) = { i  not in BI(k) } 

(step 2)  compute the orthogonal set B(k) for the binding constraints 

  by means of the Gram-Schmidt procedure, so 

  B(k) = { aog(i) | i,j in BI(k) ; aog(i) 
T
 aog(j) = 0, j≠i; aog(i) 

T
 aog(i) > 0 } 

(step 3)  compute the actual feasible gradient 

  fg(k) = c – ∑ { aog(j) in B(k) } { c 
T
 aog(j) / aog(j) 

T
 aog(j) } aog(j) 

(step 4)  if fg(k) 
T
 fg(k) > 0 : go to step 5, else 

   if fg(k) 
T
 fg(k) = 0 : an optimality check must be performed,  

so compute the multipliers on the basis of Farkas’ Lemma applied to the aog(i) 

  - if all multipliers > 0 : stop : the optimal LP solution has been reached 

- if not, remove constraints with negative multiplier from B(k), add them to NBI(k),  

and go to step 2 

(step 5)  compute the maximum feasible step away from x(k) along fg(k) 

  s(k) =                    min          { b(i) – a(i) 
T
 x(k) } / a(i) 

T
 fg(k) 

   { i in NBI(k) , a(i) 
T
 fg(k)>0 }  

  if s(k) is infinite : stop : LP is unbounded 

  if the minimum is not unique, select constraint i with a(i) 
T
 fg(k) maximal 

  add the proper index in BI(k) and remove it from NBI(k) 

(step 6)  x(k+1) = x(k) + s(k) fg(k) 

(step 7)  set k = k+1 and go to step2 

 

4.2 Computational experience 

The performance of the algorithm has been tested on a large number of random LP test problems, in 

ranges as indicated in Table 1. For n and m <= 100 we tested with 10.000 problems in a series, for 

150<=n and m<=300 with 1000 problems, and for n or m=500 with 100 problems.  

We compare the number of basic solutions in phase1 plus the number in phase 2 needed to reach the 

optimum with the number of constraints. The worst case performance in a series for an (n,m) pair is 

defined in the following indicator: 

 

(maximum number of basic solutions reached in a series in phase1 + idem phase2) / (n+m) 

 

and the results are in Table 1. The interesting characteristic of the results is that the number of basic 

solutions needed to reach the optimal solution is limited by the number of constraints in LP. This in 

sharp contrast with the findings communicated by Klee and Minty [3] in relation to the simplex 

algorithm. Testing the gradient algorithm on Klee-Minty-type problems has been successful too. 

 

   
m                 

      5 25 50 75 100 150 200 300 500 

n 5 
 

1,20 0,90 0,73 0,68 0,64 0,53 0,52 0,480 0,438 

  25 
 

0,07 0,56 0,65 0,56 0,51 
   

  

  50 
 

0,04 0,21 0,42 0,38 0,45 
  

0,254   

  75 
 

0,03 0,13 0,22 0,27 0,29 
   

  

  100 
 

0,02 0,08 0,23 0,17 0,28 
  

0,200   

  150 
 

0,013 
    

0,20 
  

  

  200 
 

0,010 
     

0,16 
 

  

  300 
 

0,007 
 

0,006 
 

0,005 
  

0,100   

  500   0,004                 

 

Table 1  Sub-linear growth in numbers of basic solutions needed to reach the optimum 
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But having reached this point it must be concluded that still no definitive result as to the complexity of 

the proposed approach is available. After the guidance of Ockham, we meet the warning from Popper ! 

 

5. Complexity analysis 
 

The complexity analysis of the proposed gradient algorithm has to consider three cases :  

5.1 Consider first the situation that the conclusion that LP is unbounded is reached while in every 

iteration fg(k) > 0. The maximum number of iterations is n, as the dimension of the problem space is n. 

5.2 Consider next the situation that all multipliers are positive the first time a solution is reached 

where fg(k) = 0 . As the dimension of the problem space is n, this number will be exactly equal to n. 

5.3 Consider now the case that  fg(k) = 0 and there is at least one negative multiplier. The 

conclusion must be, that the optimum has not yet been reached, cf. Farkas’ Lemma, and according to 

the algorithm we will now remove from B(k) all constraints with a negative multiplier.  

 

Now what should happen next ? And the answer is based on the convexity of the feasible region. 

 

Lemma 1  If the algorithm finds basic solution x(k) with binding set B(k) and basic solution x(l) with  

                  binding set B(l) where c 
T
 x(k) <  c 

T
 x(l) then B(k)  ≠  B(l).  

Proof    Suppose an improved basic solution  x(l) would exist while B(k) = B(l), then this would mean 

that x(l) and x(k) are on the same binding constraints in the convex hull of the feasible region of LP.  

Because of the convexity of the feasible region we must conclude that every solution on the line 

connecting x(k) and x(l) is a feasible solution, and because the algorithm does not exclude any feasible 

solution from the set of possibly optimal solutions, there was no reason in x(k) not to use this line to 

improve x(k) into x(l). But this is in contradiction with the fact that in x(k) the direction x(l) – x(k) with 

a positive projection on c has not been identified as a feasible direction of improvement.□ 

 

Lemma 2  If at least one of the constraints in B(k) has a negative multiplier then at least one of the 

     constraints in B(k) does not appear in the binding set B(opt) in the optimum. 
Proof From the fact that one or more negative multipliers are found for constraints in B(k) it must be 

concluded, on the basis of Farkas’ Lemma, that x(k) is not the optimum. So  c 
T
 x(k) <  c 

T
 x(opt) and 

by Lemma 1 B(k)  ≠  B(opt).□ 

 

Lemma 3  Finding an improved basic solution x(l) asks for disappearance of at least one and possibly  

                  more constraints from B(k), thereby forcing the same number of non-binding constraints 

                  relative to B(k) to enter B(k+1). 

Proof    By Lemma 2 at least one constraint in B(k) gets discarded as a candidate for B(opt), and for 

every basic solution the binding set necessarily consists of n binding constraints.□ 

 

Lemma 4  The maximum number of basic solutions  the feasible gradient algorithm can find is m+1. 

Proof  Lemma 2 asks for the disappearance of at least one constraint as a candidate for B(opt), while  

Lemma 3 states the necessity of the entrance of at least one formerly non-binding constraint to replace  

this at least one constraint. In the first basic solution we have n constraints in B(1), leaving m 

constraints that may replace constraints that are discarded as candidate for B(opt).□ 

 

At this point the answer to the question what should happen next is available : follow the receipt of the  

feasible gradient algorithm, and if this is done the conclusion is, that at most m+1 basic solutions will  

be reached. Thereby a strong fundament for a strong complexity result has been identified. 

 

Lemma 5 (Iterations)  The feasible gradient algorithm has an absolute bound of n + m n iterations. 

Proof    To reach the first basic solution n iterations are needed, and to reach the at most m next basic 

solutions no more than m n iterations will be necessary.□ 

 

Lemma 6 (Arithmetic Operations)  The number of arithmetic operations per iteration of the feasible 

         gradient algorithm is polynomially related to m and n. 
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Proof    From the definition of the algorithm we derive a maximum to the number of arithmetic 

operations for every step of the algorithm in every single iteration: whereby the inner product of n-

vectors involves n multiplications, and whereby simple addition, subtraction, and comparison are of 

the same order. So the effort per iteration is polynomial related to m and n, being O((m+n)n). □ 

 

The results presented in the preceding Lemma’s logically lead to the main theorem : 

 

Theorem (Strong Polynomiality)  The feasible gradient algorithm offers a strong polynomial bound  

       for the solution of Linear Programming problems. 

Proof    In the solution process every set of binding constraints B(k) is generated by the process of 

successive selection of the strongest constraining constraint until the binding set contains n constraints 

and a basic solution is reached, or the problem is found to be unbounded, in step 4 resp. step 5 of the 

algorithm. According to Lemma 6 (Arithmetic Operations) and the fact that at most n iterations are 

needed to reach this situation the effort so far is clearly polynomial in m and n . 

On reaching the first or any subsequent basic solution in step 4 with fg = 0 , the computation of the 

multipliers corresponding with the constraints in the current binding set produces the information 

needed to decide whether a final solution has been reached. 

The multipliers may turn out to be all positive or some may prove to be negative, however, Lemma 4 

guarantees that no more than m+1 basic solutions will be reached. Furthermore Lemma 5 (Iterations) 

guarantees that to reach these basic solutions no more than n + n m iterations have to be performed. 

Taken together with the resulting complexity in Lemma 6 (Arithmetic Operations) this results in a 

total complexity for arithmetic operations and iterations of the feasible gradient algorithm of  

O((n + n m)(m + n)n), and the complexity of the algorithm in a Turing model of computation is  

 

O( n
3
m + n

2
m

2
 ) on O(L) numbers □ 

 

The complexity measure derived for the algorithm gives a pessimistic bound. An initial guess has led 

to the idea that only m+n iterations would be sufficient to reach the optimum. However, this idea has 

been refuted, although the results in many random problems have numbers of iterations close to m+n .  

 

6. Conclusion 

 

A feasible gradient algorithm answers a longstanding question concerning the complexity of LP. The 

approach may generate new results for linear problems, in theory as well as in computational practice.  
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