
Annals of Operations Research manuscript No.
(will be inserted by the editor)

An ILP-based local search procedure for the VRP with
pickups and deliveries

Agust́ın Montero · Juan José Miranda-Bront ·
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Abstract In this paper we address the Vehicle Routing Problem with Pickups and
Deliveries (VRPPD), an extension of the classical Vehicle Routing Problem (VRP)
where we consider precedences among customers, and develop an Integer Linear
Programming (ILP) based local search procedure. We consider the capacitated
one-to-one variant, where a particular precedence must be satisfied between pairs
of origin-destination customers. We extend the scheme proposed in De Franceschi
et al. [7] for the Distance-Constrained Capacitated VRP, which has been suc-
cessfully applied to other variants of the VRP. Starting from an initial feasible
solution, this scheme follows the destroy/repair paradigm where a set of vertices is
removed from the routes and reinserted by solving heuristically an associated ILP
formulation with an exponential number of variables, named Reallocation Model. In
this research, we propose two formulations for the Reallocation Model when con-
sidering pickup and delivery constraints and compare their behavior within the
framework in terms of the trade off between the quality of the solutions obtained
and the computational effort required. Based on the computational experience,
the proposed scheme shows good potential to be applied in practice to this kind
of problems and is a good starting point to consider more complex versions of the
VRPPD.
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1 Introduction and literature review

Vehicle Routing Problems (VRPs) is the name given to a wide family of Combina-
torial Optimization problems related to goods distribution and service provision
through a transportation network. This kind of problems arise typically in the in-
dustry and the service sector, and many different variations are defined according
to practical situations and operational constraints imposed by the context of the
applications. In general, VRPs are easy to formulate and to understand but difficult
to solve since they are NP-Hard problems. Toth and Vigo [24] and Golden et al.
[10] provide a very complete description as well as heuristic and exact approaches
for different variants of the VRP. An important family of VRPs is the so-called
VRP with Pickups and Deliveries (VRPPD), where goods are transported from
an origin location towards a destination. These problems appear, among others, in
the courier service industry, robotics and in transportation of people (see, e.g. [5]).
Many different formulations and definitions can be found in the related literature.
Berbeglia et al. [4] provide an extensive and complete review, including a classi-
fication, for the VRPPD. Compared with the standard VRP, the characteristics
of the VRPPD naturally induce precedence constraints among customers that must
be satisfied by every feasible solution.

In the last decade, due to the advances obtained in the resolution of Integer
Linear Programming Problems (ILPs), there has been a trend aiming to formulate
and solve auxiliary subproblems as ILPs. When considering algorithms for ILPs in
general, this technique is usually referred as MIPping. For example, Local Branching
[9,11] is a branching technique used to strategically explore the enumeration tree
in order to obtain early good quality primal solutions by exploring neighborhoods
of the incumbent solution. Another example is proposed in Danna et al. [6]. Fol-
lowing a similar approach, Matheuristic (Mathematical Programming Heuristics)
is the name given to the (meta) heuristics developed for particular problems that
include the resolution of an auxiliary ILP at some point in the algorithm. Ball [3]
provides an extensive survey of heuristic approaches using mathematical program-
ming models in general and Archetti and Speranza [1] perform a similar task but
focusing in VRPs.

An interesting approach is proposed in De Franceschi et al. [7] for the ex-
ploration of an exponential neighborhood of a Distance-Constrained Capacitated
VRP (DCVRP). Starting from a feasible solution for the problem, following the
destroy/repair paradigm, a subset of customers is extracted from the solution and
an ILP is formulated in order to re-insert them, maintaining feasibility and aiming
to obtain an improved solution. The ILP formulation, named Reallocation Model

(RM), has an exponential number of variables. However, for practical purposes,
only a restricted subset of variables is heuristically generated in a pricing step and
an upper limit on the execution time is imposed for the solution of the resulting
ILP. This procedure is iteratively executed by introducing a randomization step
for the selection of the customers to be removed in order to escape from local
optimum solutions. This scheme is extensively studied in a large set of benchmark
DCVRP instances, obtaining remarkable results and being able to improve the
best-known solution in 13 cases.

In a follow up paper, Toth and Tramontani [23] propose an improvement for
the solution of the RM by reducing (heuristically) the size of the neighborhood and
exploring it by solving, again heuristically, the Column Generation Problem asso-
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ciated with the LP relaxation. The authors evaluate this improved scheme in 50
benchmark CVRP and DCVRP instances obtaining good quality results and being
able to find 11 new best solutions. A similar approach has been considered in Salari
et al. [22] for the Open Vehicle Routing Problem (OVRP), where the approach
showed to be effective being able to obtain in most cases the best known solutions
and to find new best solutions in 10 instances. Finally, Naji-Azimi et al. [18] insert
this scheme as a Local Search operator within a Variable Neighborhood Search
(VNS) framework for the m-Capacitated Ring Star Problem, where it is combined
with standard operators such as swap and an adaptation of a Lin-Kernighan op-
erator (see, e.g., [15,12]). As a result, the approach shows to be competitive with
the most effective algorithms present in the literature for the problem.

These experiences prove the approach to be quite effective on different variants
of the VRP, with potential to be used in practice, and that it is worth extending the
scheme and the RM in order to incorporate new operational constraints. Indeed, De
Franceschi et al. [7] suggest to extend the RM to incorporate precedence constraints,
including both modeling aspects as well as an experimental study. Our aim goes
in this direction. We consider a variant of the VRPPD where a fleet of vehicles
has to visit an even number of customers that are grouped in pairs, one of them
indicating the origin and the other the destination of a commodity, imposing a
precedence that must be satisfied by every feasible route.

The contribution of the paper is threefold. Firstly, from a theoretical point of
view, we extend the RM and the overall scheme for the case where the prece-
dences mentioned above are present. Compared with the original scheme, the
overall framework has to be reconsidered and it is necessary to redefine and ex-
tend some basic notation, definitions and procedures. In order to guarantee the
feasibility of the solutions, the algorithm is modified to handle these particular
constraints. For instance, if from a pair of pickup and delivery only one of them
is removed, then it can only be reinserted within the same route due to the prece-
dence constraints. Secondly, we propose two different ILP formulations to adapt
the RM to this context. The modeling of the precedence constraints has a direct
impact on the pricing step of the algorithm. In addition, we also slightly modify
the pricing step of the scheme by introducing a dynamic criterion for the selection
of candidate variables to be included in the final RM. Finally, from a computa-
tional standpoint, we implement the framework and compare the behavior of these
two models experimentally over a large set of instances having more than 400 cus-
tomers. The results obtained show that the overall approach has potential to be
used in practice and also gives a strong evidence towards one of the ILPs, which
obtains consistently better results than the other.

The remainder of the paper is organized as follows. In Section 2 we present
the definition of the VRPPD considered as well as some basic notation used along
the paper and a general overview of the scheme. In Section 3 we formulate the
extensions of the RM for our problem and the adaptations required to the scheme.
In Section 4 we show and discuss the computational results and finally, in Section
5 we draw some conclusions and discuss future research alternatives.
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2 Basic definitions and the SERR algorithm

As mentioned in the introduction, we address the Vehicle Routing Problem with
pickups and deliveries (VRPPD). Formally, let G = (V,E) be an undirected com-
plete graph, with V = {v0, v1, . . . , v2n} the set of vertices and E the set of edges,
where v0 represents the depot. We consider an homogeneous fleet with m vehi-
cles, each of them having capacity Q. Each edge (vi, vj) ∈ E has an associated
cost cvivj ≥ 0 and the objective is to transport n different commodities. Each
commodity k (k = 1, . . . , n) has to be transported from vk to vn+k. Therefore, a
precedence relation between vertices vk, vn+k is established, for k = 1, . . . , n, where
vk is called the pickup vertex and vn+k the delivery vertex. Such a commodity
requires qvk units of capacity in a vehicle. We further define P = {v1, . . . , vn}
and D = {vn+1, . . . , v2n} the sets of pickups and deliveries respectively, where
V = {v0} ∪ P ∪ D. The demand for vertex vk ∈ V is denoted by dvk , where
dvk = qvk , vk ∈ P , and the demand for vertex vn+k ∈ D is dvn+k = −qvk , i.e., indi-
cating that the commodity is collected at the pickup vertex vk and occupies space
in the vehicle until it is delivered at vertex vn+k. We assume that the demand for
vertex 0 is d0 = 0. The objective is to find exactly m routes covering each vertex
exactly once, satisfying the precedences between vk and vn+k, for k = 1, . . . , n,
without exceeding the capacity of the vehicles and at minimum total cost.

Following the three-field notation proposed in Berbeglia et al. [4], the problem
can be classified as a capacitated 1 − 1|P/D|m, meaning that the distribution is
one-to-one, i.e., each commodity has to be distributed from a unique origin to a
unique destination; each vertex is either a pickup or a delivery, but not both; and
that (exactly)m vehicles have to be used. A similar version of the problem has been
considered in Hernández-Pérez and Salazar-González [13] with an exact approach
and in Rodŕıguez-Mart́ın and Salazar-Gonzalez [20] in a heuristic framework. The
main differences with respect to our case are that they consider the single-vehicle
case, i.e. m = 1, and that they allow a vertex to be a pickup and a delivery at the
same time. In the related literature, in many cases the VRPPD involves also time

windows, in which customers must be visited (see, e.g., Toth and Vigo [24]).

We begin by describing the main idea behind the general scheme suggested by
De Franceschi et al. [7], called SERR (Selection, Extraction, Recombination and
Reallocation), which aims to consider an exponential neighborhood of a feasible
solution. The sketch of the procedure is shown in Algorithm 1. Following their
notation, let Z be the set of all feasible solutions for the DCVRP, and consider
z0 ∈ Z an initial (feasible) solution. By applying the destroy/repair paradigm,
heuristically select a set of vertices, named F , remove these vertices from z0, and
generate a restricted solution z0(F) by linking consecutive vertices in z0 after
the extraction. There may be more than one removal criterion, and the strategy
to combine them is reflected in Step 2. Each arc in z0(F) is called an insertion
point, and we denote as I = I(z0,F) the set of all insertion points in z0(F). The
neighborhood is denoted by N(z0,F) and is defined as follows. Let S = S(F) be
the set of all possible sequences, without repetitions and of any possible length,
obtained by recombinations of the vertices in F . Each s ∈ S can be assigned to
one of the insertion points in I, and to each insertion point at most one sequence
can be assigned. The neighborhood N(z0,F) considers all feasible solutions that
can be obtained by assigning sequences in S to insertion points I, and the aim
is to obtain an improved solution by exploring such neighborhood by solving an
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ILP. Clearly, the number of variables in the formulation could be extremely large
and therefore only a subset of them are heuristically generated. The ILP is also
heuristically solved using a general purpose ILP solver.

Figure 1 illustrates an example of the VRPPD and how the SERR could be
applied in our context. We consider an instance with V = {0} ∪ P ∪ D, where
P = {p1, . . . , p6} and D = {d1, . . . , d6}, and vertex pi denotes the pickup vertex
of the delivery di, i = 1, . . . , 6. For simplicity, we assume that the capacity is not
restrictive and therefore the demands are omitted. Figure 1(a) shows a starting fea-
sible solution, and in Figure 1(b) the selected vertices to be extracted are marked.
In addition, dashed arcs denote arcs which are also removed from the solution,
due to the selected vertices. In this case, the set F = {p2, p4, p5, d2, d3, d4, d5}.
Figure 1(c) shows how the restricted solution z0(F) is constructed, where I =
{i1 = (0, p1), i2 = (p1, d1), i3 = (d1, 0), i4 = (0, p3), i5 = (p3, 0), i6 = (0, p6), i7 =
(p6, d6), i8 = (d6, 0)}. Finally, Figure 1(d) shows the new solution, which is the
result of assigning sequence s1 =< p2, d2 > to insertion point i4, s2 =< d3 > to i5,
s3 =< p4, p5 > to i6, s4 =< d5 > to i7 and s5 =< d4 > to i8.

Algorithm 1 SERR: Selection, Extraction, Recombination and Reallocation (De
Franceschi et al. [7])

1. (Initialization) Apply an initial heuristic to find a feasible solution z0.

2. (Selection) Apply one of the criteria to select the vertices to be extracted.

3. (Extraction) Extract the vertices selected in Step 2 and construct the restricted solution
by short-cutting the consecutive extracted vertices. The set I contains all the edges in the
restricted solution, called insertion points.

4. (Recombination) The sequences of consecutive vertices extracted in the previous step, called
basic sequences, are stored in a sequence pool. Then, heuristically generate new sequences
using the vertices in F and add them to the sequence pool. This procedure is repeated
iteratively and the dual information provided by the LP relaxation of the Reallocation
Model RM (see Step 5) is used to determine which sequences to keep in the pool. In
addition, each sequence in the pool is heuristically associated with a subset Is ⊆ I of
insertion points, indicating that sequences s can be inserted in insertion point i ∈ Is. In
particular, a basic sequence s contains in Is the original insertion point from which it has
been removed, called a pivot. In this fashion, the current solution can be retrieved.

5. (Reallocation) Decide a feasible assignment of sequences in the pool to insertion points
by formulating and heuristically solving an ILP (Reallocation Model, RM) using a general
purpose solver. Define binary variables xsi to take value 1 if sequence s ∈ S is assigned
to insertion point i ∈ Is. Impose an upper limit on the execution time for the solver and
obtain the best solution found.

6. (Termination) If an improved solution has been found in the last K iterations, repeat from
Step 2. Otherwise, return the best solution found.

Finally, we note that the presence of precedence constraints in the VRPPD
introduces several limitations to the framework when compared to the DCVRP or
the CVRP. Clearly, the ILP formulated for the reallocation step must account for
precedences, in order to generate feasible solutions. Moreover, some other steps
which are quite general for the CVRP and the DCVRP must be adapted as well.
In the next section we study and describe in detail each step of the scheme adapted
for the VRPPD.



6 Agust́ın Montero et al.

p1

p2

d1

d2

p3

d3

p4
p5

p6

d4
d5

d6

v

(a) Initial solution

p1

p2

d1

d2

p3

d3

p4
p5

p6

d4
d5

d6

v

(b) Selected vertices

p1

p2

d1

d2

p3

d3

p4
p5

p6

d4
d5

d6

v

(c) Restricted solution (infeasible)

p1

p2

d1

d2

p3

d3

p4
p5

p6

d4
d5

d6

v

(d) New solution

Fig. 1 Example of extraction and reallocation of vertices.

3 Extension to the VRP with Pickups and Deliveries

In this section we describe the adaptation of the SERR to the VRPPD. Due to the
inclusion of precedences between pairs of vertices, the adaptation is not limited
to the ILP formulation of the reallocation step. For instance, the vertex selection
criteria and the sequence generation stage that remain unchanged for other VRPs,
must be reconsidered regarding the VRPPD and further decisions are required.

3.1 Initial solution

In order to evaluate the behavior of the RM, we implement an ad-hoc heuris-
tic procedure consisting of a greedy construction phase followed by a Variable

Neighborhood Descent (VND) procedure. We remark, as stated in previous research
regarding the RM and validated in our preliminary computational results, that
the initial solution has an impact on the final solution and on the overall behavior
of the scheme. Therefore, we initially consider a standard constructive approach,
followed by a local search procedure. The approach is then generalized in a ran-
domized fashion with some minor modifications. These two alternatives are used
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in different experiments to assess the quality of the approach and to give some
insights regarding its behavior, which are shown in Section 4.

We begin by pointing out that the problem of finding a feasible solution for
the VRPPD considered in this paper can be easily solved by grouping pairs of
pickup and deliveries and generating exactly m routes -recall that we are imposing
to use exactly m vehicles. In this way, the capacity of a vehicle is never exceeded
since each commodity travels alone in the vehicle. Indeed, the construction phase
implements this idea in a greedy fashion. Initially, for each request we compute
the cost of using a route to satisfy it, and select the m requests with smaller cost.
Once the m routes are generated, we iteratively add one unattended request at a
time by selecting the request and the route that, when extended by adding the
request at the end, generates the smallest increment in the cost of the current
solution.

The second step is to apply a VND procedure to improve the current solution.
For this purpose, we consider an adaptation of three local search operators pro-
posed in Nanry and Barnes [19] which are applied iteratively with a best move
criterion, until no improvements can be achieved. These operators are:

– Single Paired Insertion (SPI): For every request (vk, vn+k), k = 1, . . . , n in
route r, remove vertices vk and vn+k and evaluate every feasible insertion in
every other route r′ ̸= r. Select the request and insertion generating the least
cost solution.

– Swapping pairs Between Routes (SBR): Given two requests (vk, vn+k) and
(vl, vn+l) allocated to different routes r and r′, respectively, evaluate swapping
(vk, vn+k) to r′ and (vl, vn+l) to r, considering also the best feasible insertion
within each route. Select the pair of requests generating the least cost solution.

– Within Route Insertion (WRI): This is a route improvement operator. For
every route and, for every request in it, evaluate every feasible allocation of
both the pickup and the delivery and select the one generating the least cost
route.

Within the VND procedure, the operators are applied in the order they are
presented and we consider the next operator once no improvements can be found
with the actual one. Finally, define z0 as the solution found by this procedure
when no improvement can be found by any of the operators.

As mentioned before, we consider as well a randomized version of this algo-
rithm in order to provide some variability on the initial solution. The randomized
step is rather straightforward, and consists of applying the same procedure de-
scribed in the greedy step but the order of the requests is randomly determined
beforehand. A predefined number of orderings is considered, obtaining as a result
a basic multistart scheme. For each of these initial solutions, the VND procedure
is applied with some minor modifications. The SBR operator, which is the most
time consuming, is not considered. We also noted that the quality of the results
is not considerably affected. In addition, the remaining operators are applied in
a first-improvement fashion. These two modifications result in a faster approach
than the original one.
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3.2 Vertex selection strategy

The precedence between vertices imposed by requests has an impact on the ver-
tex extraction step, and the decisions made at this point affect the definition of
the neighborhood N(z0,F) as well as the subsequent stages of the procedure. In
particular, given that precedences are established between pairs of vertices, we
observe two possible scenarios regarding the extracted vertices in F . Suppose that
at least one vertex of the request (vk, vn+k) is in F , for some vk. Then: (i) either
for some vk ∈ F or vn+k ∈ F , but not both; (ii) both vertices are extracted, i.e.,
vk, vn+k ∈ F . In the former, the reallocation of the extracted vertex is limited
to its original route, which is somehow restrictive. On the contrary, the latter is
more general and allows the request to be eventually reallocated in another route.
Moreover, when considering a sequence s ∈ S containing both vk and vn+k we
must guarantee that they appear in the correct order. In addition, removing the
complete request also guarantees that the non-empty routes left in the restricted
solution are always feasible, which is not necessarily true in the other case. This
fact may have an impact regarding the feasibility of the ILP formulation considered
and the overall scheme described in the following sections.

Recall the example in Figure 1, in particular the extraction of vertex d3. Since
the pickup vertex p3 is left in the restricted solution, d3 can only be assigned to
the route where p3 is present and, furthermore, it must be assigned to an insertion
point that appears after p3, otherwise the solution would be infeasible. Regarding
the second situation, observe that sequence s1 =< p2, d2 > satisfies the precedence
imposed by the request. This intuition is formalized in the following result.

Proposition 1 Let z0 ∈ Z, G ⊆ F ⊆ P ∪D. Then, N(z0,G) ⊆ N(z0,F).

Proof We show that for any feasible solution in N(z0,G) we can construct an
equivalent one in N(z0,F). Consider an initial solution z0 and a feasible solution
z1 ∈ N(z0,G). For each insertion point i = (a, b) ∈ I(z0,F), given that G ⊆ F ,
either one of the following holds: (i) i = (a, b) ∈ I(z0,G), or (ii) a sequence of
consecutive insertion points i0 = (a, u0), i1 = (u0, u1), . . . , ik = (uk−1, b) ∈ I(z0,G),
with u1, . . . , uk ∈ F since in both cases we are starting from the same initial
solution z0. To construct z1, starting from z0(F), we proceed as follows. Consider
each insertion point i = (a, b) ∈ I(z0,F) separately. In case condition (i) holds,
then assign exactly the same sequence as in z1, if any. Otherwise, condition (ii)
holds and let, w.l.o.g., s̄0, . . . , s̄k be the sequences assigned to i0, . . . , ik, respectively.
Eventually, some of them (or even all) can be the empty sequence, indicating that
no assignment has been made in z1 to the corresponding insertion point. Then,
construct the sequence s̄ as the concatenation among the intermediate vertices
and the assigned sequences, i.e., s̄ =< s̄0, u0, s̄1, u1, . . . , uk−1, s̄k >, where we abuse
notation and allow the concatenation of sequences with simple elements. Then,
the sequence of vertices between a and b is the same as in z1. Applying this same
reasoning for all insertion points we obtain z1 the resulting feasible solution. ⊓⊔

Based on this discussion we decided to remove requests instead of vertices, obtain-
ing as a result a more general neighborhood.

De Franceschi et al. [7] suggest three different schemes for (randomly) selecting
the vertices to be included in F for the DCVRP, which are also considered with
minor modifications in Toth and Tramontani [23] and Salari et al. [22]:
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– Random-Alternate: randomly selects some routes and, also randomly, re-
moves vertices depending on the parity of the position in the solution;

– Scattered(p): each vertex can be removed from the solution with uniform
probability p;

– Neighborhood: randomly select some vertices v ∈ V and consider a small
neighborhood for each of them. Remove some of the vertices in such neighbor-
hood according to a pre-defined criterion (we refer the reader to De Franceschi
et al. [7] for a detailed explanation).

We adapt these schemes to the VRPPD in the following fashion: execute the
selection scheme over the vertices in P and, whenever a pickup vertex vk is selected,
extract also the corresponding delivery vn+k defining the request. All the three
schemes have been implemented and tested, including several combinations among
them.

3.3 Reallocation models

In this section we formalize some of the ideas mentioned in the previous sections
and propose two ILPs to explore N(z0,F). Recall that we denote by Z the set
of all feasible solutions for the VRPPD, z0 ∈ Z an initial feasible solution, F the
set of extracted vertices from z0 and z0(F) the resulting restricted solution having
the set of insertion points I, and S the set of all feasible sequences composed
by vertices in F . We further denote with R to the set of routes in a (restricted)
solution.

Given an insertion point i = (a, b) ∈ I, we say that i allocates vertices {vj ∈
F : j = 1, . . . , h} through sequence s = (v1, . . . , vh) ∈ S if arc (a, b) in the restricted
solution is replaced by arcs (a, v1), (v1, v2), . . . , (vh, b) in the new solution. In order
to obtain a new feasible solution, sequences s ∈ S considered for reallocation
have to satisfy some basic properties. In the VRPPD, precedences clearly have
an impact in the order in which vertices must appear in the sequence as well as
capacities, since visiting a delivery vertex increases the remaining capacity in the
vehicle. For a sequence s = (v1, . . . , vh), let V (s) ⊆ F be the set of vertices in s

and we define the total demand of s as

d(s) =
h∑

j=1

dvj (1)

and maximum demand consumption of s as

d̄(s) = max

{
0, max

l=1,...,h

l∑
j=1

dvj

}
. (2)

Therefore, a sequence of vertices s is feasible if the following conditions are
satisfied:

1. for every pair of vertices defining a request (vk, vn+k) ∈ V (s), for some k =
1, . . . , n, vk must appear before vn+k, and

2. it does not exceed the capacity of the vehicle at any point in the sequence, i.e.,
d̄(s) ≤ Q.
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In addition to feasibility, we must account for the incurred cost when allocating
a sequence s ∈ S into insertion point i = (a, b) ∈ I. For s = (v1, . . . , vh), let

c(s) =
h−1∑
j=1

cvjvj+1

denote the cost of sequence s and γsi = cav1 + c(s) + cvhb − cab denote the cost
incurred when replacing arc (a, b) by sequence s, including the cost of the linking
arcs with the endpoints of i. This definition differs from the previous research
regarding the CVRP and DCVRP, where γsi considers the cost of the best insertion
between s and the reverse of s, reducing in this way the number of sequences. In
the VRPPD, however, if s includes among its vertices a complete request, then by
the condition established in 1 the reverse of s is not feasible. We further denote
with S(v) ⊆ S for v ∈ F as the set of sequences containing vertex v and SE(v) to
the set of sequences containing vertex v but not its corresponding delivery if v is
a pickup, or its corresponding pickup if v is a delivery. For s ∈ S, we define the set
V E
P (s) ⊆ P ∩ V (s) as the set of pick-up vertices appearing in s that are exclusive,

that is, vertices vk such that the corresponding delivery vn+k /∈ V (s). Similarly,
we define V E

D (s) ⊆ D ∩ V (s) for the deliveries.
Regarding the restricted solution z0(F), we also need to introduce some nota-

tion. A route r ∈ R has an orientation and we define I(r) to the set of insertion
points in r, where we also assume that insertion points in I(r) are numbered ac-
cording to their relative position in r. Therefore, given i, j ∈ I(r), i ̸= j, either
i < j or j < i. This is consistent with the previous remark regarding the orientation
of sequences, since otherwise we cannot guarantee the new solution to be feasible.
Conversely, given i ∈ I(r) we define ri = r, i.e., ri is the unique route containing
insertion point i ∈ I.

To account for the capacity constraint, given an insertion point i ∈ I(r) we
define the accumulated restricted demand for i as

da(i) =
∑

j=(aj ,bj)∈I(r)
j≤i

daj , (3)

which accounts for the accumulated demand of the restricted solution if no se-
quence is assigned before i. Finally, we consider the case where all customers in a
route are removed. In this case, a unique insertion point i = (0, 0) is considered.
We abuse notation and denote r = {0} to indicate that the route has only the
depot, and i = (0, 0) is the unique insertion point in the route.

Let binary variable xsi, s ∈ S and i ∈ I, take value 1 iff sequence s is allocated
at insertion point i. We proceed to show a first ILP formulation to explore N(z0,F)
in the case of the VRPPD that we name RMPD.

min
∑
s∈S

∑
i∈I

γsixsi (4)

s.t.
∑

s∈S(v)

∑
i∈I

xsi = 1 v ∈ F (5)

∑
s∈S

xsi ≤ 1 i ∈ I (6)
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s∈S

d̄(s) xsi ≤ Q− da(i)−
∑
j<i

j∈I(ri)

∑
s∈S

d(s) xsj i ∈ I (7)

1 ≤
∑
s∈S

xsi r ∈ R, r = {0}

i ∈ r (8)

xs1,i + xs2,j ≤ 1 ∃ vk ∈ P ∩ F , s1 ∈ S(vk), ;
s2 ∈ S(vn+k), ri ̸= rj , i, j ∈ I (9)

xs2,i + xs1,j ≤ 1 ∃ vk ∈ P ∩ F , s1 ∈ S(vk),
s2 ∈ S(vn+k), ri = rj , i < j, i, j ∈ I (10)

xsi ∈ {0, 1} s ∈ S, i ∈ I (11)

The objective function (4) minimizes the total cost obtained by reallocating
sequences of vertices, aiming to obtain the best feasible reinsertion. Constraints
(5) force each removed vertex to be covered by exactly one sequence, and therefore
visited exactly once in the new solution. Constraints (6) establish that at most
one sequence is assigned to each insertion point, and thus guaranteeing the correct
computation of the cost of the new solution. Restrictions (7) force the assignment
of a sequence to an insertion point to not exceed the capacity of the vehicle,
considering also the (possible) assignments made to insertion points appearing
before in the route. Constraints (8) guarantee that exactly m routes are used in
the solution, by forcing at least one assignment if all vertices have been removed
from a route. Finally, constraints (9) and (10) account for the precedences imposed
by requests. Given a request (vk, vn+k), the former are referred as inter route

precedence constraints and establish that two sequences containing the pickup and
the delivery, respectively, cannot be assigned to different routes. The latter are
referred as intra route precedence constraints and establish that, within a route, these
two sequences must be assigned to insertion points satisfying the corresponding
precedence. Finally, constraints (11) define the decision variables as binaries.

The first two sets of constraints are exactly the same as in the formulation
proposed by De Franceschi et al. [7]. Constraints (7) have been adapted to cap-
ture the particular characteristics of the VRPPD regarding the load of the vehicle.
Constraints (8), (9) and (10) are new with respect to the previous research. Al-
though they are an intuitive and natural way of modeling precedences, constraints
(9) and (10) present a few drawbacks from a computational standpoint. Firstly,
we note that the number of constraints to be included in the ILP formulation can
increase considerably since constraints are defined by pairs of sequences and pairs
of insertion points. This require a significant computation time to generate as well
as to solve the LP relaxation.

The second drawback concerns the heuristic resolution of the RMPD where, as
proposed in De Franceschi et al. [7], the ILP is not solved to optimality but instead
a restricted set of variables are generated, added to the formulation and then a
general purpose ILP solver is used. To generate the variables, De Franceschi et al.
[7] suggest to heuristically generate sequences and, based on the dual information,
compute the reduced costs to decide which variables to include in the ILP formula-
tion. Toth and Tramontani [23] suggest for the DCVRP to use column generation
techniques by heuristically solving the associated column generation subproblem.
Regarding the RMPD, these two approaches need to be carefully reconsidered.
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Both the pricing step as well as the column generation mentioned before require
the dual information to be available. If the RMPD has been populated only with
a restricted set of variables, the constraints (9) and (10) present in the current
restricted formulation will refer only to variables in this set. On the contrary, con-
straints (9) and (10) concerning variables which have not been included so far
will not be part of the formulation. Therefore, the reduced cost of a candidate
variable to be included in the restricted set cannot be computed using the current
present dual information in the restricted ILP formulation. This type of problems
are known as Column-Dependent Rows (CDR) and a possible approach could be to
adapt some of the strategies proposed in, e.g., Muter et al. [16] and Muter et al.
[17] to formulate the RMPD. However, we consider that such an approach would
be too complex and very time consuming when in the end the resulting ILP is
solved heuristically.

In order to adapt the pricing scheme proposed in De Franceschi et al. [7],
which is described in the next section, we consider approximating the reduced cost
heuristically using the information available at the time. Consider a reduced RMPD
having only a subset of variables and constraints and that the corresponding LP
relaxation has been solved. Let also (π̃1, π̃2, π̃3, π̃4) be the vector of dual variables
associated with constraints (5), (6), (7) and (8), respectively. Let s ∈ S and i ∈ I
such that xsi has not been already added to the reduced LP, then the truncated

reduced cost of variable xsi, r̂csi, can be computed as:

r̂csi :=


γsi −

∑
v∈V (s)

π̃1
v − π̃2

i − d̄(s)π̃3
i + π̃4

ri if ri = {0}

γsi −
∑

v∈V (s)

π̃1
v − π̃2

i −
∑
i<k

k∈I(ri)

d(s)π̃3
k − d̄(s)π̃3

i otherwise. (12)

To overcome these issues, we strengthen the ILP and substitute the precedence
constraints (9) and (10) by a new set of constraints. Indeed, the idea relies in
the fact that for a request (vk, vn+k), by constraints (5) there will be exactly one
sequence containing pickup vertex vk and exactly one sequence containing delivery
vertex vn+k. As a result, both inter and intra route precedences can be defined by
including one constraint for each combination of a request and an insertion point.
This reduces the size of the formulation and, with a proper initialization of the
ILP formulation, allows the exact computation of the reduced cost of a variable.
The resulting formulation, named Strengthened RMPD (S-RMPD), is shown below.

min
∑
s∈S

∑
i∈I

γsixsi

s.t.(5)− (8)∑
j∈I
rj ̸=r

∑
s∈SE(vn+k)

xsj +
∑

i∈I(r)

∑
s∈SE(vk)

xsi ≤ 1 vk ∈ P ∩ F , r ∈ R (13)

∑
s∈SE(vk)

xsi ≤
∑
j>i

j∈I(ri)

∑
s∈SE(vn+k)

xsj vk ∈ P ∩ F , i ∈ I (14)

xsi ∈ {0, 1} s ∈ S, i ∈ I
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Consider again (π̃1, π̃2, π̃3, π̃4) the vector of dual variables associated with con-
straints (5), (6), (7) and (8), respectively. Let also (ρ1, ρ2) be the dual variables
associated with constraints (13) and (14), respectively. Therefore, the reduced cost
r̄csi, for s ∈ S and i ∈ I, assuming |ri| > 0, is

r̄csi = γsi −
∑

v∈V (s)

π̃1
v − π̃2

i −
∑
i<k

k∈I(ri)

d(s)π̃3
k − d̄(s)π̃3

i + π̃4
ri

−
∑

vk∈V E
P (s)

ρ1vkri −
∑
rj∈R
rj ̸=ri

∑
vk:

vn+k∈V E
D (s)

ρ1vkrj

−
∑

vk∈V E
P (s)

ρ2vki +
∑
i>l

l∈I(ri)

∑
vk:

vn+k∈V E
D (s)

ρ2vkl (15)

where for the sake of notation the case having ri ̸= {0} is omitted and can be
easily computed similarly to (12).

Note that, as opposed to the RMPD, equation (15) computes the reduced
cost of a variable xsi. In addition, the number of constraints in the formulation
is known a priori and does not depend on the number of sequences generated.
This is particularly important because it has a direct impact on the quality of the
heuristic set of variables considered, as explained in the pricing stage in the next
section, as well as in the size of the resulting ILP formulation.

3.4 Vertex recombinations and construction of the RM

We finally present the details involved in the resolution of the RM, starting with
the construction of the ILP formulation. As mentioned in the introduction, only a
subset of the variables xsi is considered, and such subset is constructed in a heuris-
tic fashion. We remark that the procedure is similar for the two ILP formulations
presented in the previous section, RMPD and S-RMPD, and the difference relies
in the computation of the reduced costs in each case, as expressed in equations
(12) and (15), respectively.

Initially, we associate each basic sequence to its pivot position, in order to
guarantee that the original solution can be reconstructed, and that any solution
obtained will be at least as good as the starting solution. In addition, for im-
plementation purposes, we add an arbitrary set of variables to ensure that all
constraints have at least one variable with a nonzero coefficient and that the ILP
is feasible. For each insertion point i ∈ I in the restricted solution, we consider
unitary sequences s =< v >, v ∈ F , and add the variables corresponding to the
25% sequences with the smallest insertion cost.

Having these variables in the model, as well as their corresponding constraints,
solve the LP formulation and compute the dual information in order to heuris-
tically generate candidate variables and, based on their reduced cost, select the
best ones in a pricing step. Once a new subset of variables has been included, the
restricted LP is re-optimized in order to update the dual information available.
This procedure is repeated until a particular stopping criterion is met.

The pricing step considers each insertion point independently. For each i ∈ I,
sequences s ∈ S of at most length Lmax are generated and the reduced cost of
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the corresponding variable xsi, rcsi, is used to determine whether the variable is
a candidate one or not. Limiting the size of the sequences has an impact both on
the computation time required for building the model, which cannot be neglected,
and also on the behavior of the ILP formulation. For example, considering large
sequences may produce many incompatibilities among them due to precedence
violations. The sequences are constructed by iteratively increasing their length
and, in each iteration, the best Nmin sequences -in terms of the reduced costs-
are added to the formulation and used in the next iteration. From the remain-
ing sequences, those having the corresponding reduced cost below a threshold
value RC are considered as well, selecting at most Nmax of them. The parameters
Lmax, Nmin, Nmax and value RC are determined experimentally.

For the parameter RC, we propose a modification regarding the procedure de-
veloped by De Franceschi et al. [7]. Instead of considering a fixed value, we suggest
to dynamically update this threshold using the average of the candidate variables
selected so far, and to reset this value whenever new dual information becomes
available. On preliminary computational results, this modification produced very
good results compared to the static version with different values. The motivation
behind this change is that, as opposed to the other parameters, RC is very sensi-
tive to the characteristics of the instance and defining a general value seems to be
difficult to adjust experimentally. To avoid confusions, we redefine this value and
denote it as rcdyn. Before starting, rcdyn = ∞ and initially it is computed as the
average of the first Nmin +Nmax variables with the smallest reduced cost.

The sketch of the pricing step for a particular insertion point i ∈ I is shown in
Algorithm 2. We remark that the LP relaxation is re-optimized after the pricing
step has been applied for all insertion points, and we set rcdyn = ∞ and start the
pricing procedure again. Intuitively, the value of rcdyn is recomputed from scratch
whenever the dual information is updated. The procedure is applied iteratively
until a limit of 5 consecutive LP re-optimizations without improvements is reached,
or a maximum of 200 iterations overall. Then, the resulting ILP formulation is
constructed and solved by a general purpose solver. To avoid generating duplicated
variables, hashing techniques were used in the implementation of the algorithm.

Algorithm 2 VRPPD Pricing Step

Input: insertion point i, π̃ optimal dual variables for the current LP, Nmin, Nmax, Lmax.

1. (Initialization) Set L := 0, S := {<>}
2. L = L+ 1 represents the actual size of the generated sequences.

3. (Generation) For each s ∈ S, v ∈ F such that v /∈ s, generate all sequences of size L
obtained by feasible insertions of v into s, that is, without violating the maximum capacity
and the precedences.

4. (Evaluation) For each s generated in Step 3, consider the variable xsi and evaluate its
corresponding reduced cost rcsi(π̃). Set S = ∅.

5. (Selection) Sort sequences increasingly according to their reduced cost rcsi. Insert in S the
first Nmin sequences, and at most Nmax from the remaining such that rcsi(π̃) ≤ rcdyn.
Insert in the RM the variables xsi corresponding to the selected variables. Update rcdyn

using the reduced costs of the candidate variables.

6. (Termination) If L < Lmax, start again from Step 2. Otherwise, terminate the procedure.
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4 Computational experiments

The method described in the previous section has been implemented in c++, using
g++ 4.8.2, CPLEX 12.4 as a general purpose LP and ILP solver, and a CentOS
6.4 as operating system. The experiments are run on an Intel Core i7 3.40 GHz
with 16Gb of RAM.

Regarding the instances, we report over four different sets from related prob-
lems, previously adapted to the version of the VRPPD considered in this paper:

– Set 1: Instances for the DCVRP from the VRPLIB 1, where the pairs defining
each request are randomly generated. The number of vehicles is fixed to the
maximum established in each instance.

– Set 2: Homberger instances2, adapted by discarding time windows and ran-
domly generating the pairs defining each request, similarly to the previous
case. We consider all instances with n = 200, and a subset of the instances
with n = 400. We set m = 20 for the instances having n = 200, and m = 10
when n = 400. This decision relies on the fact that, on preliminary experiments,
we observed that the solutions tend to be mainly small routes satisfying each
of them a few requests when having many routes. Therefore, in order to allow
more flexibility to the solution set, we decided to reduce the number of routes.

– Set 3: A subset of the instances for the single vehicle case and infinite capacity,
known as PDTSP, used in Dumitrescu et al. [8]3. From the instances used in
this paper, we consider the subset of random instances. We use these instances
to assess for the quality of the results obtained by our approach given that
the optimal solution is known for many of them. We remark that PDTSP is
a particular case and some of the constraints are relaxed (i.e., capacity and
inter-route movements).

– Set 4: PDVRPTW instances from Li and Lim [14], also considered in Ropke and
Pisinger [21]4. Similar to Set 1, the information regarding the time windows
is discarded. Since our problem requires a fixed number of routes, we set this
parameter using the information of the Best Known Solution (BKS) for each
instance.

In sets 1 and 2, the demand of a request is computed as the average of the demands
from the corresponding two customers in the original instance. This prevents the
instance to become infeasible due to capacity limitations. For Set 1, for the in-
stances having an odd number of customers the one having the highest number is
discarded.

Regarding the methods evaluated, we consider two approaches following the
scheme described in the previous section and where the difference relies in the ILP
formulation used for the reallocation step. Therefore, we abuse notation and refer

1 Instances retrieved from http://www.or.deis.unibo.it/research_pages/ORinstances/
VRPLIB/VRPLIB.html. Last access: July 2016.

2 Instances retrieved from http://neo.lcc.uma.es/vrp/vrp-instances/
capacitated-vrp-with-time-windows-instances/. Last access: July 2016.

3 Instances retrieved from http://www.diku.dk/~sropke/DataSets/. Last access: July 2016.
4 Instances retrieved from http://www.sintef.no/projectweb/top/pdptw/

li-lim-benchmark/100-customers/. Last access: July 2016. Due to some differences re-
garding the solutions obtained in some of the instances with respect to the ones published by
Li and Lim [14], we consider the optimal and best known solutions for the instances in this
site.

http://www.or.deis.unibo.it/research_pages/ORinstances/VRPLIB/VRPLIB.html
http://www.or.deis.unibo.it/research_pages/ORinstances/VRPLIB/VRPLIB.html
http://neo.lcc.uma.es/vrp/vrp-instances/capacitated-vrp-with-time-windows-instances/
http://neo.lcc.uma.es/vrp/vrp-instances/capacitated-vrp-with-time-windows-instances/
http://www.diku.dk/~sropke/DataSets/
http://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/100-customers/
http://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/100-customers/
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to the methods as RMPD and S-RMPD to account for the standard and lifted
RMs, respectively. We also remark that we do not restrict the execution time of
the ILP solver, in order to study and obtain a deeper insight on the behavior of
the formulation in practice. Preliminary experiments were conducted in order to
define the combination of parameters for each method. We observed that the best
results were obtained by Scattered(p) using p = 0.35. Therefore, this scheme
will be the one considered for the experiments. The intuition behind the length
of the sequences is the following. For RMPD, having long sequences generate
a large number of precedence constraints, which results in a considerable time
to generate the ILP formulation. Regarding the S-RMPD, the lifted precedence
constraints allow to consider longer sequences and the impact regarding the size of
the resulting ILP formulation is manageable. As to the values of Nmin and Nmax,
we observe better results by deciding whether to include or not a variable in the
formulation based on the dual information. This is of course influenced by the
presence of the dynamic pricing. The resulting combinations are:

– RMPD: We set Lmax = 3, Nmin = 1, Nmax = 6, Scattered(p) with p = 0.35,
– S-RMPD: We set Lmax = 7, Nmin = 1, Nmax = 6, Scattered(p) with p = 0.35.

The computational results are divided in two parts. First, we conduct a series
of experiments over sets 1 and 2 to compare the results obtained for RMPD and
S-RMPD, where the latter produces the best results in terms of quality and com-
putational times. Based on these results, we conducted further experiments on a
larger set of instances to analyze the particular behavior of S-RMPD.

4.1 Comparison between RMPD and S-RMPD

For each instance, both methods start from the same initial feasible solution as
described in Section 3.1. We report the value of the solution obtained by the initial
heuristic and the computation time required. For both RMPD and S-RMPD, we
report the improvement percentage obtained at two different moments during the
process, i.e., a partial improvement %Im-p and an overall improvement %Im-t, to
be specified later, as well as the overall number of iterations #it and the total
time spent for the optimization of the ILP formulation, ILP-T. Regarding the
execution time, for instances having less than 400 customers we impose a maximum
of 3600 seconds. However, since the time required for both the construction and
the resolution of the ILP is considerable and depends on n, for instances having
n ≥ 400 we impose a maximum of 9000 seconds for the execution time. We remark
that this value represents the limit to start the optimization of an ILP, and both
methods may eventually use some extra time to perform the last optimization. In
addition, we let %Im-p be the value of the improvement obtained at 900 seconds
when n < 400, and the improvement obtained after 3600 seconds when n ≥ 400.
This partial improvement aims to give an insight of the behavior of the algorithms
during the whole process and not only at the end. In both cases, %Im-t represents
the overall improvement obtained for the instance. In the tables shown below, the
best improvements are shown in bold.

We show in Table 1 the results obtained for Set 1. The columns n and m

stand for the number of customers and vehicles considered, respectively. The main
message of this table is that S-RMPD obtains better results than RMPD in almost
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all instances, and in the remaining ones the values obtained by S-RMPD are very
close to the ones produced by RMPD. For instances having a few vertices, the
methods find similar solutions and only small differences can be observed in some of
the instances, always in favor of S-RMPD. For medium and large instances, i.e. n ≥
200, the improvements obtained by S-RMPD are significantly larger compared to
those obtained by RMPD, where in almost all cases the improvements are at least
the double and we remark that on some instances it behaves also three or four times
better. This difference is justified by the number of iterations performed, where
we can observe that S-RMPD is able to perform more iterations than RMPD,
and also in the time spent for solving the corresponding ILP formulation. These
two factors, combined with the fact that S-RMPD allows to exactly assess the
quality of a variable by the complete computation of its corresponding reduced
cost, increase the chances of finding better solutions. Furthermore, we can make
the following observation: in almost all instances, the solution found by S-RMPD
in the intermediate evaluation, reported in column %Im-p is better than the final
solution obtained by RMPD. This suggests that the lifting formulation produces,
as expected, better results in less computation times.

Instance n m
Start RMPD S-RMPD

Obj. Time %Im-p %Im-t #it ILP-T %Im-p %Im-t #it ILP-T
D022-04g 20 4 485.70 0.0 2.9 2.9 22581 277.4 2.9 2.9 70686 110.02
D023-03g 22 3 815.57 0.0 0.0 0.0 23543 284.6 0.0 0.0 63221 131.67
D030-03g 28 3 687.97 0.0 0.3 0.3 13085 383.1 3.2 3.2 31461 179.39
D033-04g 32 4 949.06 0.0 2.8 2.8 8146 460.4 2.8 2.8 18962 191.62
D051-06c 50 6 830.42 0.0 8.5 8.5 2471 448.9 9.1 9.1 5744 79.52
D076-11c 74 11 1269.05 0.1 2.5 2.5 669 670.2 2.5 2.6 2137 169.92
D101-09c 100 9 1322.06 0.3 5.5 5.9 374 645.3 5.6 5.9 885 116.01
D101-11c 100 11 1720.02 0.1 11.4 12.5 329 780.0 12.6 12.6 887 131.81
D121-11c 120 11 1795.78 1.6 0.4 1.7 232 657.5 1.5 1.5 497 107.39
D151-14b 150 14 1826.37 2.7 0.1 0.1 106 840.3 0.2 0.2 388 181.81
D151-14c 150 14 1702.51 1.7 0.4 0.6 118 730.7 2.2 2.2 388 134.69
D200-18b 198 18 2344.25 3.6 1.3 1.4 35 1120.1 4.5 7.4 219 297.88
D200-18c 198 18 2364.66 4.1 0.8 4.2 8 1608.0 8.7 8.7 225 249.63
D201-05k 200 5 10916.14 27.4 3.9 4.9 90 533.5 6.8 8.0 219 112.8
D241-10k 240 10 8926.83 41.9 0.2 0.8 33 770.2 5.4 10.1 96 240.85
D281-08k 280 8 14354.97 56.5 0.5 0.5 29 531.6 2.0 4.0 86 52.12
D321-10k 320 10 13967.40 130.7 0.3 0.7 16 658.3 0.8 1.8 71 73.94
D361-09k 360 9 17681.01 298.7 0.2 0.3 10 572.9 3.6 5.2 33 106.59
D401-10k 400 10 18759.52 1205.1 0.7 3.9 30 4376.5 4.2 8.3 107 913.1
D441-11K 440 11 19970.15 879.0 0.1 2.1 19 4902.0 3.5 6.3 75 802.44
D481-12k 480 12 25212.01 1796.0 0.7 2.7 15 4026.5 3.7 11.2 61 1019.07

Table 1 Computational results on VRPLIB instances.

In Table 2 we present the results for the instances in Set 2 where n = 200
and m = 20. The tendency is similar as in the previous experiment, with S-
RMPD outperforming RMPD in 58 out of the 60 instances. Furthermore, even
considering the results obtained after 900 seconds S-RMPD obtains better results
than RMPD. The latter is only able to obtain better improvements in 3 of the
instances, and the results obtained by S-RMPD are comparable. We remark the
special case of instance RC2 2 1, where neither RMPD nor S-RMPD are able to
find any improvement. We conducted further experiments, firstly varying the order
of the local search operators, and noted that the initial solutions are indeed worse
than the actual (around 5%) and that the final results obtained are approximately
1% below the reported one. In addition, we tested also 5 different seeds for the
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current configuration, and only in one case the solution is 0.66% better than the
reported one. This suggests that, for this case, the initial solution is indeed a good
one and obtaining an improved solution is difficult.

Instance
Start RMPD S-RMPD

Obj. Time %Im-p %Im-t #it ILP-T %Im-p %Im-t #it ILP-T
C1 210 4941.23 2.4 1.5 2.3 39 1033.7 4.2 5.3 223 201.58
C2 210 4038.27 6.3 4.5 4.6 54 749.6 5.8 6.2 197 81.39
R1 210 5543.26 1.6 3.9 7.0 18 2249.8 9.7 11.1 229 205.97
R2 210 4743.28 4.4 2.3 3.9 59 673.0 8.0 8.0 199 90.20
C1 2 1 5481.69 1.5 2.7 5.9 24 1296.7 8.2 8.2 220 218.02
C1 2 2 5237.93 2.1 1.9 2.6 23 1441.7 4.3 4.9 227 278.48
C1 2 3 4900.27 3.8 0.1 1.3 12 1724.6 11.5 11.7 193 365.15
C1 2 4 5373.86 3.9 1.1 3.7 18 1437.1 6.1 6.1 174 520.33
C1 2 5 5200.77 1.3 0.7 2.7 13 1563.3 7.0 7.7 208 306.84
C1 2 6 5314.53 2.8 3.6 3.6 8 2437.4 8.7 10.2 174 542.11
C1 2 7 5173.74 2.5 3.7 5.2 30 1208.7 6.7 7.3 217 237.13
C1 2 8 5369.94 3.3 3.5 3.8 27 1236.7 4.3 4.3 217 295.02
C1 2 9 4980.07 2.1 3.0 4.2 28 1239.3 5.3 6.3 201 311.04
C2 2 1 3900.40 20.6 1.5 2.3 56 729.2 3.8 3.8 186 124.35
C2 2 2 3771.91 28.0 1.9 2.2 56 701.9 2.5 2.8 178 127.54
C2 2 3 3907.69 10.1 3.5 4.7 50 852.2 4.4 4.5 189 144.14
C2 2 4 3984.96 7.0 1.5 1.9 58 644.7 3.1 8.8 199 84.04
C2 2 5 3962.39 19.8 6.2 7.3 48 821.8 8.6 8.8 180 108.63
C2 2 6 4003.66 6.2 0.1 0.2 56 675.9 0.3 1.0 201 95.95
C2 2 7 4199.97 20.8 5.2 5.6 45 971.6 3.1 5.3 166 224.89
C2 2 8 3906.58 6.1 0.7 0.8 57 696.5 0.9 1.8 199 113.99
C2 2 9 3550.32 13.3 0.2 0.3 60 611.5 1.1 1.5 178 82.04
R1 2 1 5195.44 4.5 0.7 0.8 37 1068.4 0.8 0.8 229 204.10
R1 2 2 5348.37 2.6 1.0 2.1 27 1229.8 5.3 6.2 214 252.09
R1 2 3 5244.79 3.2 2.3 3.1 29 1193.0 5.8 6.2 213 243.21
R1 2 4 5364.92 4.4 1.0 1.5 29 1176.5 4.3 5.0 213 281.28
R1 2 5 5622.63 3.7 1.3 1.9 16 2786.8 5.7 8.4 160 657.44
R1 2 6 5395.59 2.4 1.1 5.7 29 2056.0 7.1 7.1 221 236.79
R1 2 7 5368.91 3.4 0.6 1.4 21 1873.3 6.7 6.7 198 387.19
R1 2 8 5593.93 2.1 1.0 2.7 13 1800.4 6.0 6.3 225 224.17
R1 2 9 5337.44 2.9 3.5 4.4 38 1002.1 5.2 5.3 236 210.37
R2 2 1 4348.15 10.2 4.4 5.0 60 662.6 5.8 5.8 191 120.45
R2 2 2 4387.83 17.2 4.0 4.8 59 671.8 4.8 4.8 175 119.49
R2 2 3 4644.41 8.7 5.6 8.9 52 830.2 11.4 11.5 169 138.77
R2 2 4 4624.38 8.3 2.2 3.1 56 699.3 6.1 6.6 182 88.17
R2 2 5 4339.37 19.2 3.6 4.7 59 655.5 7.4 7.6 170 121.65
R2 2 6 4099.04 9.5 4.1 4.3 62 705.7 4.5 4.6 167 133.68
R2 2 7 4743.23 6.4 4.5 4.9 58 687.5 6.4 10.1 189 93.38
R2 2 8 4250.89 4.9 0.2 0.6 62 617.8 1.0 1.0 187 89.44
R2 2 9 4270.29 11.4 1.1 1.2 60 622.7 2.1 2.4 193 85.32
RC1 210 5448.18 1.5 0.7 1.4 31 1176.0 3.0 3.2 215 390.21
RC2 210 4484.72 7.9 0.0 0.4 60 685.3 6.2 6.2 182 98.48
RC1 2 1 4750.28 4.1 3.8 5.0 23 1319.3 6.6 7.8 187 384.68
RC1 2 2 5290.72 2.1 2.6 5.7 11 1609.9 5.5 7.8 176 528.6
RC1 2 3 5138.55 2.8 0.2 0.8 20 1514.9 1.9 2.8 193 409.52
RC1 2 4 5121.29 2.7 1.7 2.6 28 1266.1 5.5 6.5 190 431.23
RC1 2 5 5152.87 6.7 1.8 1.9 7 1804.5 4.5 4.7 190 472.49
RC1 2 6 4889.95 5.2 1.5 1.7 8 1893.9 4.1 4.7 143 807.29
RC1 2 7 5260.66 4.7 2.8 2.9 14 1513.5 5.5 7.1 184 471.36
RC1 2 8 5250.98 1.3 1.8 3.8 33 1142.7 4.5 5.2 224 270.48
RC1 2 9 5137.59 4.4 0.6 1.3 9 1604.8 2.9 3.2 181 496.00
RC2 2 1 4151.95 7.7 0.0 0.0 58 647.2 0.0 0.0 216 61.99
RC2 2 2 4138.40 14.7 1.4 1.7 62 681.0 1.9 2.5 182 114.17
RC2 2 3 4197.74 17.8 1.7 1.9 55 753.5 3.8 4.3 169 121.17
RC2 2 4 4314.48 3.9 2.2 2.2 57 696.5 2.2 2.2 210 99.01
RC2 2 5 4622.44 9.7 6.0 6.2 64 643.3 8.6 10.2 180 138.91
RC2 2 6 4182.00 19.2 0.9 1.0 61 669.9 2.2 3.8 191 115.55
RC2 2 7 4360.36 10.1 4.2 4.6 57 715.3 6.5 8.4 192 110.76
RC2 2 8 4391.38 6.9 3.6 3.6 60 635.2 3.8 6.5 203 102.64
RC2 2 9 4264.23 10.0 0.9 1.0 59 682.3 3.3 3.5 173 162.17

Table 2 Computational results on Homberger adapted instances, n = 200 and m = 20.
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Finally, we report in Table 3 the results obtained for the 12 instances in Set 2
consisting of 400 customers. S-RMPD outperforms RMPD in 11 out of the 12 cases
(some of them remarkably better, for example instances C1 4 2 and RC1 4 2), and
it is comparable in the only instance where RMPD produced better results. This
is consistent with the previous experiments and we observe the same tendency.
However, in this case the improvements obtained by S-RMPD are significantly
higher compared with the ones produced by RMPD. This seems to be related
with the number of iterations performed and the time required to solve the corre-
sponding ILP formulation. Indeed, once the ILP is defined, we can clearly observe
that S-RMPD requires, in general, only a small portion of the time required by
RMPD. Our conjecture is that the variables generated for the S-RMPD are of
better quality than those generated for the RMPD, and as expected the lifting
procedure applied over the precedence constraints produces a tighter formulation.

Instance
Start RMPD S-RMPD

Obj. Time %Im-p %Im-t #it ILP-T %Im-p %Im-t #it ILP-T
C1 4 1 7543.64 382.0 0.2 0.7 10 8199.8 4.0 6.8 155 1818.75
C1 4 2 8244.04 283.7 0.9 2.6 10 8908.5 10.4 15.7 128 2848.77
C2 4 1 5426.59 730.4 1.1 6.5 42 3685.3 4.9 5.3 159 528.42
C2 4 2 5860.51 806.5 0.5 3.1 47 2963.3 3.4 5.0 158 373.25
R1 4 1 8719.48 246.0 0.4 1.4 8 7828.9 4.3 8.6 151 2160.08
R1 4 2 8512.00 260.6 0.0 0.1 7 7906.4 8.9 11.1 167 1856.76
R2 4 1 6249.83 639.1 0.3 2.0 56 2595.3 0.4 4.2 143 692.97
R2 4 2 6450.44 448.6 1.3 4.1 48 3287.6 4.1 7.5 166 498.95
RC1 4 1 7879.39 233.2 0.2 0.2 6 8618.8 5.4 7.4 187 1170.97
RC1 4 2 8570.19 211.8 0.2 0.9 13 7234.1 7.9 13.6 155 2020.04
RC2 4 1 6298.29 2586.8 1.2 4.8 35 2892.5 4.0 5.1 115 443.90
RC2 4 2 7111.61 132.1 0.6 2.0 52 2706.3 7.0 14.1 184 478.13

Table 3 Computational results on Homberger instances, n = 400 and m = 10.

4.2 Evaluation of S-RMPD

Given the results reported in the previous section, we now concentrate on the
particular behavior of the S-RMPD. Firstly, we analyze the impact of the quality
of the initial solution on the final results obtained by the algorithm. For this
purpose, we consider the randomized version of the initial heuristic described in
Section 3.1. Within this framework, we generate 10 different initial solutions, on
which the modified VND procedure is applied. From the resulting solutions, we
select the best three among them as starting solutions. We name this approach
S-RMPD(10,3). In addition, in order to obtain a fair comparison regarding the
quality of the solutions and the computing time required for their computation,
the total time assigned for the execution of S-RMPD is evenly divided among the
3 starting solutions for S-RMPD(10,3). Regarding the results, for S-RMPD(10,3)
we report the objective value of the initial solution which, after applying the
overall framework, resulted in the best solution found by S-RMPD(10,3). For both
methods, we report the objective value of the best solution found (Obj-t) instead
of the improvement percentages. For S-RMPD(10,3), we also report the average
computing time for the 10 initial solutions.
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In Table 4 we report the comparison between S-RMPD and S-RMPD(10,3)
for the instances in Set 1. Recall that a time limit of 1800 seconds is imposed
to instances having less than 400 vertices, and 9000 seconds for the remaining
three instances. Therefore, S-RMPD(10,3) considers 600 seconds for each initial
solution in the first case, and 3000 seconds in the latter. The main message of
this table is that the approach is sensitive to the initial solution. The results
obtained by S-RMPD(10,3) in general are better than the original results. In this
particular table, given an instance we identify the best initial solution between the
two methods by underlining its objective value. We can observe that in this case
there is no clear tendency indicating that a better initial solution would lead to a
better final solution. In this sense, the results are aligned with the ones reported
in De Franceschi et al. [7], being able to achieve a considerable improvement when
starting from solutions of different quality.

For the three instances having 400 vertices or more, the S-RMPD(10,3) pro-
duced better results. This is justified by the fact that each initial solution of the
S-RMPD(10,3) consumes the whole time assigned for the execution, and further
improved solutions could be found if more time is available. On the other hand,
S-RMPD is able to find further improvements by using the available time with a
unique starting solution. Although we do not report the details, a similar behav-
ior is observed on the instances in Set 2. S-RMPD(10,3) produces slightly worse
results than S-RMPD, around 1% on average for n = 200 and 2% for n = 400,
but in all cases we observe that S-RMPD(10,3) is still improving the incumbent
solution when approaching to the time limit imposed.

Instance n m
S-RMPD S-RMPD(10,3)

Init. Obj. Init. Time Obj-t #it Init. Obj. Avg. Time Obj-t #it
D022-04g 20 4 485.70 0.0 471.72 70686 499.74 0.00 471.72 26264
D023-03g 22 3 815.57 0.0 815.57 63221 802.36 0.00 784.10 21473
D030-03g 28 3 687.97 0.0 665.81 31461 690.05 0.00 665.81 12314
D033-04g 32 4 949.06 0.0 922.65 18962 905.39 0.00 905.39 7638
D051-06c 50 6 830.42 0.0 755.21 5744 858.74 0.01 730.32 2057
D076-11c 74 11 1269.05 0.1 1235.60 2137 1292.87 0.02 1185.00 776
D101-09c 100 9 1322.06 0.3 1244.21 885 1265.54 0.09 1219.69 328
D101-11c 100 11 1720.02 0.1 1504.02 887 1740.39 0.07 1541.60 296
D121-11c 120 11 1795.78 1.6 1769.00 497 1922.33 0.23 1628.82 180
D151-14b 150 14 1826.37 2.7 1822.42 388 1941.17 0.28 1738.38 137
D151-14c 150 14 1702.51 1.7 1665.24 388 1767.09 0.29 1657.73 145
D200-18b 198 18 2344.25 3.6 2171.68 219 2460.54 0.65 2253.92 65
D200-18c 198 18 2364.66 4.1 2157.92 225 2495.06 0.69 2210.53 75
D201-05k 200 5 10916.14 27.4 10043.28 219 10376.77 4.22 9628.85 80
D241-10k 240 10 8926.83 41.9 8021.72 96 9081.84 3.67 8526.54 39
D281-08k 280 8 14354.97 56.5 13773.46 86 13995.92 13.34 13498.59 27
D321-10k 320 10 13967.40 130.7 13718.56 71 14069.67 13.96 13246.27 25
D361-09k 360 9 17681.01 298.7 16768.70 33 17736.52 40.39 16623.80 11
D401-10k 400 10 18759.52 1205.1 17209.13 11 18166.54 56.29 16714.09 39
D441-11K 440 11 19970.15 879.0 18712.93 7 20319.90 63.75 18731.33 32
D481-12k 480 12 25212.01 1796.0 22394.35 5 25208.57 113.25 22832.23 27

Table 4 Computational results on VRPLIB instances.

Based on this analysis, we report in Table 5 the results obtained on instances
in Set 3. The objective is to analyze the quality of the solutions obtained by the
S-RMPD(10,3). We report the results obtained on these instances by Dumitrescu
et al. [8]. Optimality gaps are computed with respect to the best solution reported
by them. For instances having 10 and 20 vertices, the initial heuristic is able to find
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the optimal solution and therefore are omitted. For the remaining instances, the
average optimality gap is 2.55%, obtaining optimal or near-optimal solutions in
many cases. We can observe gaps below 1% for instances with 30 and 40 vertices,
and below 4% for instances having 50 and 60 vertices. We can also observe that
the time required to find the best solution is considerably below the time limit
imposed for each initial solution in most of the cases. We remark that both S-
RMPD and consequently S-RMPD(10,3) are tunned considering a multi-vehicle
context. Indeed, some of the algorithmic decisions are taken assuming multiple
routes, such as the node removal procedure. Despite that inter-route and capacity
restrictions in the S-RMPD(10,3) are not binding, removing requests (i.e., a pair
pickup and delivery) are not necessary for the single vehicle route. These kind of
decisions may clearly affect the overall performance of the approach, for which
further investigations could be conducted.

Instance n
S-RMPD S-RMPD(10,3)

Best Best LB Time Opt Start Obj-t Time %Im-t
prob15a 30 5150 - 8 ✓ 5309 5286 0.00 2.64
prob15b 30 5391 - 21 ✓ 5769 5457 0.83 1.22
prob15c 30 5008 - 0 ✓ 5008 - - 0.00
prob15d 30 5566 - 14 ✓ 6034 5566 4.07 0.00
prob15e 30 5229 - 0 ✓ 5811 5229 1.15 0.00
prob20a 40 5698 - 12 ✓ 6116 5698 1.65 0.00
prob20b 40 6213 - 20 ✓ 6241 6213 0.43 0.00
prob20c 40 6200 - 19 ✓ 7043 6200 2.12 0.00
prob20d 40 6106 - 17 ✓ 6830 6243 10.97 2.24
prob20e 40 6465 - 58 ✓ 6551 6465 3.01 0.00
prob25a 50 7332 7168.14 14400 2.29 7781 7386 64.98 0.74
prob25b 50 6665 - 3138 ✓ 7346 6956 17.76 4.37
prob25c 50 7095 - 291 ✓ 8153 7347 33.29 3.55
prob25d 50 7069 - 14323 ✓ 7712 7405 56.69 4.75
prob25e 50 6754 - 72 ✓ 7740 7058 7.39 4.50
prob30a 60 7309 7196.27 14400 1.57 7900 7412 21.11 1.41
prob30b 60 6857 - 2843 ✓ 8087 7116 125.56 3.78
prob30c 60 7723 - 1891 ✓ 9019 8007 26.91 3.68
prob30d 60 7310 - 573 ✓ 7947 7310 28.30 0.00
prob30e 60 7213 7166.34 14400 0.65 7746 7294 514.33 1.12
prob35a 70 7746 - 2104 ✓ 9091 8026 149.52 3.61
prob35b 70 7904 7496.03 14400 5.44 8956 8595 234.67 8.74
prob35c 70 7949 7858.39 14400 1.15 8777 8151 478.97 2.54
prob35d 70 7905 7686.77 14400 2.84 10006 8386 82.90 6.08
prob35e 70 8530 8069.74 14400 5.70 10057 9070 69.48 6.33

Table 5 Computational results on m = 1 instances.

We extend the results to the instances in Set 4. Since the VRPPD represents a
relaxation of the problem studied in Li and Lim [14] and Ropke and Pisinger [21],
we compare the improvements obtained with respect to the solutions reported for
the PDVRPTW. The aggregated results by type of instances are shown in Table
6. For each group of instances, we report the average objective value of the Best
Known Solution (BKS) and the average of vehicles used for the PDVRPTW. In
addition, we report the results obtained by S-RMPD(10,3) in terms of the average
objective value of the starting solution that produced the best solution, as well as
the relative improvement percentage with respect to the BKS. We further include
in our experiments a variation of S-RMPD, named S-RMPD(BKS), where the
BKS is set as the unique initial solution. As expected, since we are considering
a relaxation of the problem, the improvements obtained are significant. There is
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a particular behavior for LC2 type instances, where S-RMPD(10,3) is not able
to improve the solution. This is related to the quality of the initial solutions,
and the results show that when starting from the BKS we are able to improve
these solutions. Another interesting observation regards the quality of the solutions
depending on the instance type. The improvements obtained are smaller for the
clustered instances LC1 and LC2 compared to the rest of the instances.

Instance Avg. BKS Avg. m
S-RMPD(10,3) S-RMPD(BKS)
Avg. Init %Im-t %Im-t

LC1 874.12 9.67 796.32 9.61 9.15
LC2 589.86 3.00 667.74 -4.83 0.44
LR1 1219.62 11.92 1051.48 15.68 15.40
LR2 970.84 2.73 844.73 18.03 14.94
LRC1 1386.74 11.50 1132.19 21.46 20.19
LRC2 1133.12 3.25 909.75 21.99 16.06

Table 6 Computational results on Li and Lim [14] instances.

Finally, we make some remarks regarding the impact of the number of iterations
for both RMPD and S-RMPD. If instead of limiting the execution time, we impose
a limit on the number of iterations, in general the results obtained are somehow
mixed and do not show a clear tendency. When comparing the evolution of the
objective function of the incumbent solution in terms of the number of iterations
executed, RMPD finds better solutions than S-RMPD on some instances, and the
opposite occurs in other cases. We show in Figure 2 two representative examples.
In figures 2(a) and 2(b) we show the first 17 iterations for two different instances
showing the two situations. We remark that both methods start from the same
initial solution. In addition, in figures 2(c) and 2(d), we show the results for the first
100 iterations. We remark that in these instances, RMPD is not able to reach this
number due to the time required in each iteration. These last two images illustrate
the advantage of considering formulation S-RMPD as a local search operator.

5 Conclusions and future research

In this paper we consider the Vehicle Routing Problem with Pickups and Deliveries
(VRPPD) and propose an adaptation of the Reallocation Model (RM) proposed by
De Franceschi et al. [7], which involves exploring a large neighborhood of a feasible
solution by the resolution of an ILP formulation. To account for the precedences
among customers, we adapt and redefine some basic notation and propose a first
ILP formulation, RMPD, which is then improved by applying strengthening tech-
niques to limit the number of precedence-related constraints in the formulation,
S-RMPD. In both cases, we also adapt the formulation in order to account for the
problem where exactly m vehicles have to be used. The overall scheme proposed
by De Franceschi et al. [7] is adapted for the VRPPD and the two ILP formula-
tions are evaluated experimentally on a large number of instances having up to 481
customers. The computational results show that S-RMPD outperforms RMPD in
almost all instances, and that their behavior in terms of the improvements ob-
tained as well as regarding the computational effort required makes S-RMPD a
suitable option to be applied in practice.
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(a) Instance C2 2 2, initial iterations.

(b) Instance R2 2 2, initial iterations.

(c) Instance C2 2 2, first 100 it.

(d) Instance R2 2 2, first 100 it.

Fig. 2 Objective values vs. number of iterations for two instances.

As future research, it would be interesting to extend the S-RMPD to the case
where the VRPPD includes time windows at the customers as well. Similarly to
our case, the inclusion of time windows may require considerable modifications
to the overall scheme, both at a modeling and at an experimental level, due to
feasibility issues. In terms of the RM, due to the presence of time windows, the
assignment of a sequence to an insertion point may become infeasible depending
on which sequences are assigned previously in the route, and how this affects the
arrival times at its vertices. One alternative could be to control the feasibility of
the assignments of sequences to insertion points by adapting the idea of infeasible
paths (see, e.g., Ascheuer et al. [2]) within each route, and incorporate them on
demand during the optimization of the RM.
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