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Abstract

University examination scheduling is a difficult and heavily administrative task, particularly when
the number of students and courses is high. Changes in educational paradigms, an increase in
the number of students, the aggregation of schools, more flexible curricula, among others, are
responsible for an increase in the difficulty of the problem. As a consequence, there is a contin-
uous demand for new and more efficient approaches. Optimisation and Constraint Programming
communities have devoted considerable attention to this difficult problem. Just the definition of
a satisfactory, not to mention optimal, timetabling may be complex. In fact, to characterise a
timetabling solution, a single criteria may not be enough, since what may be considered good
for one group of students may be regarded inappropriate for other students, or teachers. In this
paper, four criteria were used to characterise the spreading of the exams over the examination
period. A set of constraints regarding the non-overlapping of exams with students in common was
considered. A multi-objective optimisation program was used to handle the four criteria and a
Tabu Search was implemented to find a good feasible solution for this problem. Two new features
to increase the automation of the algorithm were proposed. First, it uses a Fuzzy Inference Ruled
Based System to choose the tabu tenure of the elements in the tabu list. Secondly, a modified
version of the Compromise Ratio (CR) is proposed, where the usual fixed weights are replaced by
weighting functions to rank the neighbourhood solutions in each iteration. Sufficient conditions
which guarantee the monotonicity of the weighting functions are presented.

Keywords: Multi-objective examination timetabling, Compromise Ratio, Tabu Search,
weighting functions.

1. Introduction

Timetabling problems are an important field in management. They have applications in many
institutions and services, such as hospitals, transportation enterprises and educational establish-
ments. Finding a good timetable is crucial, not only for a successful management, but also to
ensure the quality of the service. These problems have attracted the interest of the operations
research community and many contributions were made to solve timetabling problems in different
areas, like in Sports ([37],[75]); Transportation ([46],[22], [64]) and Schools ([3], [28], [39], [43],[69],
[72]). Universities, as well as other educational establishments, have to deal mainly with course
([70], [21], [8], [57], [2],[9],[47], [51],[49], [76], [10], [63]) and examination timetabling ([7], [17], [19],
[16], [23], [27], [26], [24], [29], [32], [35], [38], [33], [34],[42], [48], [53],[54], [55], [61], [62], [65], [73],
[74], [77], [79]). This paper deals only with examination timetabling, although the methodologies
could be adapted to other cases and other problems.
Since the early introductory paper of Werra (1985) [31], a number of excellent contributions can
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be found in the examination timetabling literature. Some classical references are: Carter (1986)
[25], Carter and Laporte (1996) [24], Burke, Jackson et al (1997) [15], Schaerf (1999) [69]. The
more recent survey of Qu et al (2009) [65] is also worth mentioning. Different methods have
been proposed over the years. For example, Clustering Methods were described in Desroches et
al (1978) [32] and Arani and Lotfi (1989) [5]. The examination timetabling problem can be mod-
elled as a node colouring problem in a graph. For this reason, most of the heuristics for node
colouring can also be applied to this problem. Some of the best known methods in this category
depend mainly on an ordering strategy. The most common are: Saturation Degree, Brélaz 1979
[12]; Largest Degree, Broder 1964 [13]; Largest Weighted Degree, Carter, Laporte et al. 1996 [24];
Largest Enrolment, Wood 1968 [78] and Colour Degree, Carter, Laporte et al. 1996 [24]. A Fuzzy
Inference System to order the exams is proposed by Asmuni et. al. (2004) [6]. In the category
of Meta-heuristics, there are some successful Tabu Search approaches (Di Gaspero and Schaerf
(2001) [34], Di Gaspero (2002) [33] and White and Xie (2001) [77]) and applications of Simulated
Annealing (Thompson and Dowsland (1998) [74], (1996) [73]). Other noteworthy meta-heuristics
are the Great Deluge Method, Dueck (1993) [36], Burke and Newall (2003) [17] and Burke et al
(2004) [14], and the Variable Neighbourhood Search (VNS), Mladenovic and Hansen (1997) [58],
(2003) [44]. In Burke et al (2006) [16], the authors applied the VNS not as a local search but
as a hyper-heuristic. Erben (2001) [38] developed a Grouping Genetic Algorithm for the node
colouring, which also applies to the examination timetabling problem. Costa and Hertz (1998)
[30] developed a method based on Ant Colony (ANTCOL) for the node colouring problem and
suggested the application to timetabling problems, as accomplished by Dowsland and Thompson
(2005) [35]. Memetic Search (MS) combines evolutionary algorithms with local search. Its use
for the examination timetabling problem was proposed by Burke and Newall (1999) [18]. There
are some methodologies that cannot be correctly described as meta-heuristics, such as the work
of Caramia, Dell’Olmo and Italiano (2001) [23]. The authors used a greedy method to assign
the exams to the smallest possible number of periods, using a technique named Penalty Trader.
Abdullah et al (2007) [1] developed an algorithm based on the Ahuja and Orlin neighbourhood,
Ahuja et al (2001) [4]. Even though this last method is computationally heavy, it presents some
of the best results for a collection of instances frequently used by many researchers in examination
timetabling problems.

In recent years, the tendency towards the flexibility of curricula and the increase in the number
of students enrolled in each course have increased the difficulty of examination scheduling. In
addition, the different agents involved in this problem have different perspectives and a compromise
is necessary. In fact, students regard the spreading of consecutive exams as an important feature,
since it allows more time for preparation, while in general teachers tend to favour a shorter
examination period length to have more time to prepare the next semester and to do research.
To model these preferences, a multi-objective approach was used. To find a good solution for this
hard optimisation problem, a Tabu Search (TS) was implemented. Two particular features for TS
were proposed and are described in the next subsection.

1.1. Contributions of this paper

One important aspect of methodologies for examination timetabling is automation. In fact, the
task of scheduling examinations is performed by staff members whose expertise in computational
and optimisation methods may not be assumed. Methods that depend on parameter-tuning or
on experts’ decisions are impractical in this case. Automation is the main motivation for the
work presented in this paper. Tabu Search has proved to be an efficient approach for examination
scheduling, but its drawback is the tuning of the tabu tenure, which has a great influence in
the performance of the algorithm and is also a cumbersome task. To overcome this problem, an
automatic tuning strategy for setting the tabu tenure was implemented which was adapted from
[60] to the multi-objective case.

In every iteration of the TS, a base solution was used to define a neighbourhood from which
a new solution is chosen as the starting point for the next iteration. Each solution has a set
of attributes which correspond to the multiple objectives. The evaluation and ranking of the
solutions in the neighbourhood is a multi-criteria decision problem. Compromise Ratio [50] is
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a known method in multi-criteria for ranking points with a set of attributes. In this paper, a
modification of the Compromise Ratio is proposed which consists in the replacement of fixed
weights by weighting functions [66]. The advantage of using weighting functions is a more flexible
modelling of preferences. Once these are defined, they capture the essence of the decision-maker
reasoning, henceforth, avoiding continuous human interference and ensuring algorithm automation.
The idea of introducing weighting functions in Compromise Ratio is one of the major contributions
of this paper. The weighting functions must ensure the monotonicity of the operator. In order to
characterise such function, a set of sufficient conditions were established. The theoretical results
with sufficient conditions for the monotonicity of this operator presented in Theorem 1 and the
identification of a set of functions that verify those conditions described in Theorem 2 can also be
considered important contributions to this paper. The merits of this approach are clearly not only
conceptual but also practical. Although this technique was applied to examination timetabling,
it may be extended to other applications. In particular, the modifications introduced in the
Compromise Ratio can be applied to general multi-attribute problems.

1.2. Structure of the paper

After the literature review and motivation, this paper is structured in the following way. Section
2 describes the mathematical formulation of the problem. The new proposed features related to the
implementation of the Tabu Search are presented in Section 3. The management of the tabu tenure
using a Fuzzy Rule Based System (FRBS) is studied in Section 3.5. The multi-criteria problem
related to the neighbourhood evaluation is explained in Section 4. In this same Section, the
Compromise Ratio method and the main results regarding the application of weighting functions
are also addressed. In Section 5, the computational results are reported. Some conclusions are
given in Section 6.

2. Model assumptions and mathematical formulation

A general examination timetabling problem consists of finding such a schedule where the
number of overlapping exams for each student is minimal or none. Moreover, other requirements,
such as rooms and invigilators, also need to be fulfilled. Usually, the most difficult part of the
problem is to find a schedule that has a good distribution of the exams over the examination
period. In some cases, this period is not previously fixed and the minimisation of the examination
period length may be a goal. In this case, a set of constraints are defined to guarantee that a
schedule does not have any overlapping exams with students in common. However, in most cases,
the examination period is previously established, since the academic calendar must be defined
at the beginning of the academic year, prior to students’ enrolment in courses. Generally, past
experience is sufficient to dictate a comfortable choice of the examination period length. Regarding
rooms and invigilators, many authors prefer to deal with these issues in a second phase, since these
constraints are less restrictive and easier to verify. Following these arguments, we will consider in
this paper that:

- the period of exams is predefined and corresponds to a sequence of time slots;

- the overlapping of exams with candidates in common is not allowed;

- invigilators and rooms are not considered;

- the goal is to have a good distribution of the exams over the evaluation period.

The next question is how to define these goals as an objective function. The quality of an exami-
nation schedule from the individual point of view of each student will most likely depend on the
spreading of exams, which allows for more preparation time between consecutive exams. Let,

N = number of exams. (1)

cij = number of students enrolled in course i and j for i, j = 1, . . . , N. (2)

P = number of slots. (3)
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The slots assigned to pairs of exams i and j where cij ̸= 0 should be as distant as possible. The

total number of common enrolments, M =
∑N−1

i=1

∑N
j>i cij , gives a good measure of the difficulty

in achieving this goal. The characterisation of a well distributed calendar is also difficult to model
in just one objective. In fact, different aspects should be considered, such as the avoidance for
every pair of exams i and j such that cij ̸= 0, of their schedule:

1 - in consecutive periods on the same day;

2 - on the same day;

3 - in overnight consecutive periods (except from Saturday to Monday);

4 - on consecutive days.

The order by which the above criteria are presented is related to their degree of undesirability. For
instance, it is worse to have two exams in consecutive slots on the same day than in consecutive
days. The first criterion is only applied if there is more than one slot per day. The second criterion
only makes sense if there are more than two daily periods, for instance, one period in the morning
and two in the afternoon. It is clear that in most situations it is not possible to enforce all four
conditions for all students as hard constraints. This would make the search for a feasible solution
almost impracticable. Hence, they should be set as soft constraints and addressed as goals. The
minimisation of these four criteria will produce desirable timetables.
To encode the solution, a vector of variables T = (ti), i = 1, . . . , N was considered, where ti rep-
resents the time slot assign to exam i. The set of variables dti , i = 1, . . . , N , represent the day
associated to timeslot slot ti in which exam i takes place. Their definition is convenient for a more
elegant and clearer formulation. However, this definition is not necessary in practice, especially
if the number of slots per day is fixed. When for i and j ∈ {1, . . . , N}, i ̸= j, cij ̸= 0, then cij
students are affected by the scheduled vicinity of exams i and j. In the following, this situations
are described as producing cij “conflicts” for simplicity. As in [20] the following four objectives
are considered:

- Total number of conflicts generated by the occurrence of exams in adjacent slots on the same
day,

f1(T ) =
N−1∑
i=1

N∑
j=i+1

cij .adjs(ti, tj) , where adjs(ti, tj) =

{
1 if (|ti − tj | = 1) ∧ (dti = dtj )
0 otherwise.

(4)

- Total number of conflicts generated by the occurrence of two or more exams on the same day,

f2(T ) =

N−1∑
i=1

N∑
j=i+1

cij .sday(ti, tj) , where sday(ti, tj) =

{
1 if dti = dtj
0 otherwise.

(5)

- Total number of conflicts generated by the occurrence of exams in overnight adjacent periods,

f3(T ) =
N−1∑
i=1

N∑
j=i+1

cij .ovnt(ti, tj) , where ovnt(ti, tj) =

{
1 if (|ti − tj | = 1) ∧ (|dti − dtj | = 1)
0 otherwise.

(6)

- Total number of conflicts generated by the occurrence of exams in adjacent days,

f4(T ) =
N−1∑
i=1

N∑
j=i+1

cij .adjd(ti, tj) , where adjd(ti, tj) =

{
1 if |dti − dtj | = 1
0 otherwise.

(7)
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From (4) to (7) it follows that f1(T ) ≤ f2(T ) and f3(T ) ≤ f4(T ). A single set of hard constraints
was considered, to guarantee that no student has more than one exam in the same slot,

N−1∑
i=1

N∑
j=i+1

cij .clash(ti, tj) = 0 , where clash(ti, tj) =

{
1 if ti = tj
0 otherwise.

(8)

3. Tabu search

Tabu search [40], [41] is a meta-heuristic that has successfully been applied to find good feasible
solutions for hard optimisation problems. In general, it can be described as an iterative neigh-
bourhood search method which incorporates techniques for escaping local optima while trying to
avoid cycling through the construction of a tabu list. The tabu list consists of information that
tries to prevent revisiting points. Each element in the list is a partial or a complete solution, or
just a simple rule. An initial feasible solution (vector of variables) is necessary. A general and
basic TS iteration k, consists in generating from a known feasible solution Tk points in its neigh-
bourhood that are not tabu. A neighbourhood of a solution Tk consists of a collection of solutions
(unequivocally obtained from Tk by the application of a set of operations) that differ from Tk in
the value assigned to a group of variables. In general, these points are evaluated using an objective
function and the one that has the best evaluation is chosen as the new search point, Tk+1, as the
starting point for the next iteration. To avoid revisiting this same point, the tabu list is updated.
The search point, or an action related to it (a move), is added to the tabu list and remains there
for a number of iterations which are designated as “tabu tenure”. However, the tabu status can
be revoked by an aspiration criterion. This process is repeated until some termination criteria are
reached, for instance the maximum number of iterations. There are many interesting additional
refinements that can greatly increase the performance of the TS. In summary, a first level Tabu
Search (TS) uses the following concepts in each k iteration.

• Current (search) solution Tk.

• Search Neighbourhood - Points that will be inspected from the current solution.

• Move - A set of simple operations on Tk that generates a particular neighbour solution.

• Evaluation - A procedure to evaluate the points in the neighbourhood.

• Tabu list - The tabu moves that are not allowed in the current iteration.

• Tabu tenure - The duration (number of consecutive iterations) of the tabu status.

• Tabu length - The length of the tabu list.

• Aspiration criteria - Enables to override the tabu status.

In a multi-objective problem either “a priori” aggregation of the objective functions is per-
formed or, in each iteration, the value of each objective function is calculated for each point in
the neighbourhood leading to a multi-attribute problem. In this paper this last option was imple-
mented to avoiding preconditioning, and to be able to change the preferences towards the different
criteria along the sequence of iterations. This could also act as a sort of diversification strategy.

The details of the application of the TS can be found in [60], while a general overview of the
main features of the TS is presented next.

3.1. Solution Encoding

As mentioned before, the solution is encoded by a vector with a dimension equal to the number
of exams. The integer value recorded in the i-component of the vector is ti and corresponds to the
time slot assigned to exam i. A small example is given in Table 1, where exams {1, 2, 3, 4} and
{5, 6, 7, 8} are assigned to slot 1 and slot 2, respectively.
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Table 1: A small example solution T0 for an exam timetabling problem with 8 exam and 2 time slots

Index of the vector ( Exams ) 1 2 3 4 5 6 7 8
Vector component ( Time slot ) 1 1 1 1 2 2 2 2

3.2. Initial Solution

A graph colouring heuristic known as ”Saturation Degree” [12], based on the work of Carter
and Laporte [24], was used to find a starting solution. This heuristic has a good performance
in comparison with several other heuristic approaches. This greedy heuristic mainly consists in
ranking exams by increasing order of the number of their still available slots. For instance, if exam
i and j can only be assigned to two and three slots, respectively, then exam i is ranked before
exam j. After this ranking is established, the first exam is assigned to the first available slot and
the ranking of exams is updated. In case of a tie, the preference is given to the exam with more
students.

3.3. Neighbourhood

A feasible neighbourhood of a solution T0 consists of a set of feasible solutions that can be
obtained from T0 by the application of a rule that changes the value of a subset of variables in
T0. In our case, it consisted of different assignments of slots to some exams and two different
neighbourhoods were considered. An elementary one, corresponding to a given timetable T0, to
all timetabling Ti differing from T0 in the assignment of just one exam. For this neighbourhood, a
move consists of a slot change for a given exam. Considering a pair (i, j) where i, j are the exam
and slot number, respectively, a move is represented by the change of j to k.

(i, j) → (i,k)

For example, considering again the set of 8 exams and 2 slots, a possible neighbour of T0 is
timetable Ti where exam 3 changes from slot (period) 1 to 2.

T0
Exams 1 2 3 4 5 6 7 8
Slot 1 1 1 1 2 2 2 2

(3,1) → (3,2)

Ti
Exams 1 2 3 4 5 6 7 8
Slot 1 1 2 1 2 2 2 2

The second neighbourhood is based on Kempe chains as introduced by Morgenstern [59]. A
neighbourhood of timetable T0 is a set of feasible timetables differing from T0 by the exchange of
exams between two time slots. A move corresponds to a feasible swapping of a subset of exams
between two periods.

(i, j) → (i, s), for i ∈ I
(r, s) → (r, j), for r ∈ R.

The neighbourhood based on Kempe chains is initiated with a single move,

(i, j) → (i, s) for i ∈ I0 = {i0} ⊆ J,

where J and S are the sets of exams previously assigned to slot j and s, respectively. When exam
i0 is moved to the new time slot s, a chain of simple movements is triggered. All scheduled exams
in period s that have a conflict with i0 (r ∈ R0 ⊆ S) are moved to slot j. If this set of exams R0

has any conflict in slot j, the previously scheduled exams in j, in conflict with R0, say I1 ⊆ J , are
moved to period s. This chain of simple movements continues until there are no conflicts between
exams. The smallest Kempe chain move is a swap of periods by one exam. In order to preserve
feasibility, it may happen that these exchanges must be continued between the exams of the two
slots as described above. On the other hand, a complete transfer of exams between two slots may
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Figure 1: Sequence of moves

happen. It is noteworthy that a feasible solution will always be reached given any two slots. For
both neighbourhoods, a complete inspection of the neighbouring solutions was performed.

For instance, given the example above of timetable T0, a neighbouring solution Ti is obtained
when exams 1 and 2 in period 1 and exams 5,6 and 7 in period 2 swap periods.

T0
Exams 1 2 3 4 5 6 7 8
Slot 1 1 1 1 2 2 2 2
(i,1) −→ (i,2, ) for i ∈ {1, 2}
(r,2) −→ (r,1), for r ∈ {5, 6, 7}

Ti
Exams 1 2 3 4 5 6 7 8
Slot 2 2 1 1 1 1 1 2

3.4. Memory

The memory management depends on the considered neighbourhood. For the simple neigh-
bourhood, the index of the exam that is moved is recorded. As a consequence, in a number of
iterations equal to the tabu tenure, the time slot of this exam is not allowed to change. For
the Kempe chains neighbourhood, recording all the chain of moves required too much time and
memory. On the other hand, recording all the exams that changed period may lead to an over
restricting tabu list. After a few iterations, it could happen that all possible movements are tabu.
As a compromise, a pair consisting of both the exam and the time slot of each exam involved
in the chain of movements was recorded. So if exam i moved to slot k then the pair (i, k) was
added to the tabu list. Exam i is allowed to change from time slot k to r, but cannot return
to time slot k until (i, k) remains in the tabu list. In each iteration, the tabu tenure of each
element in the tabu list is decreased by one unit. The length of the tabu status for each move is
determined individually using a FRBS, as in [60], but adapted to the multi-objective case as it is
next described.

3.5. Fuzzy Rule Based System to manage the length of a tabu move

The number of iterations during which a tabu remains in the tabu list (tabu tenure) has a
great impact in the performance of the TS. If the tabu tenure is low, it can happen that in a few
iterations a local optima is revisited and so the algorithm goes into a loop. On the other hand, it
favours an intensification of the search in a region. If the tabu tenure is high, the search space is
diversified, but a refined local search is less likely to occur and good solutions may go unnoticed.
In practice, it is common to run the method repeatedly for the same instance while varying the
value of the tabu tenure. This task is cumbersome if conducted manually. The importance of an
automatic implementation of the TS is paramount if we consider that most of the staff responsible
for the creation of the timetables has no technical skills to conduct the parametrisation of the TS.
Ideally, the algorithm should be able to automatically choose between low and high values for the
tabu tenure in order to combine intensification with diversification. This tuning strategy can be
formulated as a decision problem. To perform the task of deciding the length of the corresponding
tabu tenure, a Fuzzy Rule Based System (FRBS) was implemented in each iteration and for each
tabu item. The details of this implementation can be found in [60]. In a brief description, the idea
behind the FRBS is to emulate a strategy that penalizes moves (assigning a high value for the
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tabu tenure) that in the recent past iterations were often present in the tabu list. In opposition,
moves that were rare and not recently present in the tabu list received lower values for the tabu
tenure. Given the tabu list history, two measures were recorded for each element in the tabu list:

Frequency - its relative frequency, that is, the ratio between the number of times it has entered
the tabu list and the actual number of iterations;

Inactivity- the last iteration in which it entered the tabu list.

Frequency

In
a

c
ti
v
it
y

Frequency

In
a

c
ti
v
it
y

Figure 2: Tabu Tenure depending on Frequency and Inactivity

The idea is to construct a Rule Based System where, for each entering tabu item, giving it
corresponding pair (Frequency,Inactivity) a rule is fired indicating how long (number of iterations)
it will remain in the tabu list, that is, its tabu tenure.
The two concepts (Frequency and Inactivity) were defined as Linguistic Variables [80] with 3
linguist terms each − LOW, MEDIUM and HIGH, and fuzzyfied using a gaussian membership
function. Since there are two linguistic variables, with 3 linguistic terms, a total of 9 rules were
used to find a value zi, i = 1, . . . , 9 as shown in Table 2. This value is used to produce an
integer value, the tabu tenure, using a 0-order Sugeno system [71]. The details are similar to the
implementation in [60].

Rule 1: IF Frequency is LOW AND Inactivity is HIGH THEN z1
Rule 2: IF Frequency is MEDIUM AND Inactivity is HIGH THEN z2
Rule 3: IF Frequency is HIGH AND Inactivity is HIGH THEN z3
Rule 4: IF Frequency is LOW AND Inactivity is MEDIUM THEN z4
Rule 5: IF Frequency is MEDIUM AND Inactivity is MEDIUM THEN z5
Rule 6: IF Frequency is HIGH AND Inactivity is MEDIUM THEN z6
Rule 7: IF Frequency is LOW AND Inactivity is LOW THEN z7
Rule 8: IF Frequency is MEDIUM AND Inactivity is LOW THEN z8
Rule 9: IF Frequency is HIGH AND Inactivity is LOW THEN z9

Table 2: Rules in FRBS

To graphically show the behaviour of the Sugeno system, Figure 2 illustrates the pattern of
the tabu tenure value according to the values of Frequency and Inactivity. Darker colours indicate
higher values for the tabu tenure. Further details can be found in [60].

3.6. Neighbourhood evaluation and selection

For the current iteration solution, a set of neighbouring points is generated and evaluated. The
best point according to some criteria will be chosen as the new starting point for the next iteration.
In a single objective problem, its value is often used to rank the solutions. In the multi-objective
case, one possibility is to aggregate the several functions into a single objective. In this paper we
chose a different approach and a multi-attribute problem was considered. The reason for doing so
was to avoid a premature conditioning of the problem, allowing a broader inspection of solutions
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in a sort of diversification strategy.
For a given set of points, T1, T2, . . . , Tr, their corresponding values of the above mentioned objec-
tives functions f1, f2, f3, f4 were calculated. To select a point, a multi-attribute decision-making
(MADM) problem had to be solved where the points are regarded as alternatives and the value of
the objective functions can be viewed as attributes.

3.7. Data Normalisation

Typically, the attributes in multi-attribute problems are normalised since they may be defined
according to different measures. To make them comparable, a rescaling of the values is most often
performed. One common technique is the division by the maximum, but in some cases it happens
that the reference value is a smaller value than the maximum. For instance, when one attribute
is price, the user may have a threshold that is lower than the most expensive item. In this case,
the utility of an item where price is above the threshold should be set to zero. Our approach was

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
exp(−x2/d)  for m=30

Figure 3: Gaussian mapping function

to map the values on the interval [0, 1], in a sort of fuzzyfication approach. The positive tale of a
gaussian function with zero mean and unitary variance was used. This function’s smoothness and
shape performs a good representation of utility. In this case, the 0 is transformed into the highest
possible value of 1. It corresponds to the ideal situation of complete satisfaction of the objective
function. For values near the ideal, the penalty is not severe, but there is a deep accentuation of
this severity for values higher than an average value. The same expression for the four objectives
fi(T ), i = 1, . . . , 4 was used:

f̃i(T ) = e

(
(fi(T ))2

di

)
where di =

m2
i

log(10−2)
, (9)

where the only difference is in the value of the constant mi for i = 1, . . . , 4. These values were set
to

m1 = 0.10M, (10)

m2 = 0.15M, (11)

m3 = 0.25M, (12)

m4 = M, (13)

where M is the total number of enrolments for exams. These mi values are related to a threshold
that corresponds to the highest reasonable value above which it is considered an undesirable
situation. The value of 10−2 in (9) depends on the working precision and corresponds to f̃i(mi).

Numerical example 1. Given a set of 100 students and considering M = 400, Table 3 depicts
an attribute value (fi), the constant mi, the value di in (9), and the normalised attribute value

f̃i. Moreover, each row corresponds to different objective function values which can be viewed as
attributes.
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Table 3: Normalised values

i fi mi di f̃i
1 20 40 347.44 0.32
2 61 60 781.73 0.01
3 80 100 2171.47 0.05
4 120 400 34743.56 0.66

This small example helps to understand the effect of constants mi. In a total of 400 exams
enrolments, 40, 60, 100 and 400 represent a threshold for each objective above which the utility is
less or equal than 10−2.

4. Compromise Ratio

In each iteration of the TS, the set of V neighbouring points Ti, for i = 1, · · · , V , are evaluated
using the four objective functions. After normalising the values, a matrix X with V alternatives
and 4 attributes is obtained.

X

ATTRIBUTES︷ ︸︸ ︷
f̃1 f̃2 f̃3 f̃4

ALTERNATIVES


T1

T2

...
TV


x11 x12 x13 x14

x21 x22 x23 x24

. . . . . . . . . . . .
xV 1 xV 2 xV 3 xV 4


To proceed to the next iteration, it is necessary to choose one of the timetabling solutions from
{T1, T2, . . . , TV } which will be set as the next reference solution. If a solution dominates all the
others its choice is clear. Domination of a solution Ti with attributes (x∗

i1, x
∗
i2, x

∗
i3, x

∗
i4) implies

that,
x∗
ik = max

j=1,...,V
{xjk }, for k = 1, 2, 3, 4.

Typically, none of these solutions dominate the others. Hence, it is necessary to make a choice
based on the 4 criteria already mentioned. Different multi-attribute methods like AHP [68], ELEC-
TRE [67], PROMETHEE [11] can be used to elect a solution. Since this multi-attribute problem
must be solved in every iteration, the aforementioned techniques are not suitable. Their inclusion
as a subroutine in each iteration of the TS represents a significant computational effort. Other
simple methods, such as MaxiMin, MiniMax and Conjuntive&Disjunctive, could be implemented,
but they lack some sophistication necessary to produce a good selection strategy, which is a vital
step in the success of the Tabu Search. A good balance between computational simplicity and
a satisfactory criteria to rank the solutions leads to the choice of Compromise Ratio [50]. This
method can be viewed as an extension of TOPSIS [45].

The Compromise Ratio is based on the idea that the best alternative should be as close as
possible to the ideal solution a+ (a four-dimensional vector of ones in our case), and as far as
possible from the negative-ideal solution a− (a four-dimensional vector of zeros). If the attributes
have different degrees of importance for the decision-maker, a component-wise weighting of matrix
Xn×m = (xij) may be performed,

vij = xij × wij . (14)

In general, the weights depend only on the attributes, so wij = wj . For each point Ti, we needed
to compute the distances to the ideal and negative-ideal point, respectively
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Figure 4: Distance to ideal and negative-ideal point.

D+
p (Ti) = p

√√√√ m∑
j=1

(a+j − vij)
p , ∀i = 1, ..., n (15)

D−
p (Ti) = p

√√√√ m∑
j=1

(vij − a−j )
p , ∀i = 1, ..., n. (16)

Given these distances and in order to rank the alternatives, the following parametrised ratio was
used,

ξp(Ti) = θ ×
D1p(T

+)−D+
p (Ti)

D1p(T+)−D2p(T+)
+ (1− θ)×

D−
p (Ti)−D2p(T

−)

D1p(T−)−D2p(T−)
, (17)

where θ ∈ [0, 1], and  D1p(T
+) = max

i∈{1,...,n}
{D+

p (Ti)}

D2p(T
+) = min

i∈{1,...,n}
{D+

p (Ti)} D1p(T
−) = max

i∈{1,...,n}
{D−

p (Ti)}

D2p(T
−) = min

i∈{1,...,n}
{D−

p (Ti)}

.

The value of θ reflects the decision-maker’s attitude towards the proximity to the ideal and the
negative-ideal solution. If θ is close to 1, it means that solutions near the ideal are more valued
than solutions away from the negative-ideal. Equal importance to both distances is given by
θ = 1/2. Solutions are ranked based on ξp(Ti), which measures how alternative Ti complies with
the compromise established by θ. Note that if a solution Ti is simultaneously the closest to the
ideal solutions and the furthest from the negative-ideal solution, then ξp(Ti) = 1 attains the
maximal value.

4.1. Weighting functions

The weights in (14) are defined by the user, and highly influence the final ranking of the
alternatives. Hence, their choice must be careful. An interactive definition of the weights by the
user is a drawback since an important feature of timetabling software is automation. In addition,
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capturing preferences by a simple linear model seems too restrictive. Sometimes, the decision-
maker does not react in a linear or independent fashion regarding the attributes. For instance,
consider the classical situation of buying a car. The evaluation of alternatives can include price
and comfort as main attributes. If the car is expensive, it is also expected to be very comfortable.
However, if the car is not expensive, then there is no such expectation. In this situation, the
value of one attribute influences the weight given to another attribute. The same happens to the
attributes regarding the examination timetabling problem. For instance, if many students have
more than one exam on the same day, then it is necessary to reinforce the weight that penalises
the occurrence of exams in consecutive periods. In [66], to model similar situations, the use
of weighting functions instead of fixed weights was proposed. The gain is that preferences are
modelled in a more general way, capturing more complex relations than in a simple linear model.
The weights are defined by the following expression,

w̃ij(xij) =
gj(xij)

m∑
t=1

gt(xit)

, (18)

where the gj are weights generating functions.
Mixture operators, in the context of aggregation operators were introduced in [52], and in [66]

some interesting applications were presented. In this work, weighting functions are used in the
context of Compromise Ratio. By replacing in (14) the weights by weighting functions, a new
procedure for ranking the alternatives is proposed which has a more realistic way of modelling
preferences.

4.2. Modified Compromise Ratio

If we use weighting functions, then the ideal point a+ becomes

1∑m
t=1 gt(1)

(g1(1), . . . , gm(1)) , (19)

and the negative-ideal is the null vector The equations analogue to (15) and (16) are

D+
p (Ti) = p

√√√√ m∑
j=1

(
a+j − xijw̃ij(xij)

)p
, ∀i = 1, ..., n, (20)

D−
p (Ti) = p

√√√√ m∑
j=1

(xijw̃ij(xij))
p

, ∀i = 1, ..., n. (21)

Now the issue is to choose the functional expression of the weighting functions. We know that the
operator ξp is not monotonic for all weighting functions. In order to guarantee the monotonicity
of ξp, we devised a condition similar to the one presented in [52] and [56].

Theorem 1. The inequalities

0 ≤ gk ≤ 1, ∀k ∈ {1, . . . ,m}, (22)

∂gk
∂xik

≥ 0, ∀k ∈ {1, . . . ,m}, (23)

xp−1
ik gk − ∂gk

∂xik
≥ 0, ∀k ∈ {1, . . . ,m}, (24)

are sufficient conditions for the monotonicity of ξp as defined in (17).
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Proof To guarantee the monotonicity of ξp it is sufficient to ensure that
∂ξp
∂xik

≥ 0. Since

ξp(Ti) = θ ×
D1p(T

+)−D+
p (Ti)

D1p(T+)−D2p(T+)
+ (1− θ)×

D−
p (Ti)−D2p(T

−)

D1p(T−)−D2p(T−)
,

then if
∂D+

p

∂xik
≤ 0, and

∂D−
p

∂xik
≥ 0, we have

∂ξp
∂xik

≥ 0. First it is proved that

∂D+
p

∂xik
≤ 0.

By definition

D+
p (Ti) = p

√√√√ m∑
j=1

(
gj(1)− xijgj(xij)∑m

t=1 gt(xit)

)p

, for p ≥ 1. (25)

To simplify (25) consider the expressions:

γq(xi) =

(
gq(1)− xiqgq(xiq)

ε(xi)

)p

for q = 1, . . . ,m, (26)

where xi = (xi1, . . . , xim) , ε(xi) =
∑m

t=1 gt(xit), and σ(xi) =

m∑
q=1

γq(xi).

Now

D+
p (Ti) =

p
√

σ(xi) = p

√√√√ m∑
q=1

γq(xi) = p

√√√√ m∑
j=1

(
gj(1)− xijgj(xij)

ε(xi)

)p

, for p ≥ 1, (27)

and we have

∂D+
p

∂xik
=

1

p

∂σ
∂xik

(D+
p (Ti))p−1

. (28)

Once ∂ε
∂xik

= ∂gk
∂xik

, and ∂σ
∂xik

=
∑m

q=1
∂γq(xi)
∂xik

, then when q = k we have

∂γq
∂xik

= p

(
gk(1)− xikgk(xik)

ε(xi)

)p−1

(
−xik

∂gk
∂xik

− gk(xik)
)
ε(xi)− ∂gk

∂xik
(gk(1)− xikgk(xik))

ε(xi)2
. (29)

Using the left inequality of hypothesis (22) we may conclude that

ε(xi) ≥ 0. (30)

Since xij ≤ 1 and using condition (23) we know that

gk(1)− xikgk(xik) ≥ 0. (31)

From (30) and (31) and taking in consideration that p ≥ 1, we proved that

p

(
gk(1)− xikgk(xiq)

ε(xi)

)p−1

≥ 0. (32)

Since xij ≥ 0, and using condition (30), hypotheses (23), and the left side of condition (22) we
have (

−xik
∂gk
∂xik

− gk(xik)

)
ε(xi) ≤ 0. (33)
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From (31) and (23),

− ∂gk
∂xik

(gk(1)− xikgk(xik)) ≤ 0. (34)

So from (32), (33) and (34) it is proved that

∂γq
∂xik

≤ 0. (35)

Now, when q ̸= k we have

∂γq
∂xik

= p

(
gq(1)− xiqgq(xiq)

ε(xi)

)p−1 −∂gk
∂xik

(gq(1)− xiqgq(xiq))

ε(xi)2
,

and by (32) and (34) we obtain

∂γq
∂xik

≤ 0. (36)

From (35) and (36)

∂σ

∂xik
≤ 0. (37)

Since D+
p ≥ 0 and p ≥ 1 then

1

p(D+
p (Ti))p−1

≥ 0. (38)

Using (28), (37), and (38) we may conclude that

∂D+
p

∂xik
≤ 0. (39)

Next we prove that

∂D−
p

∂xik
≥ 0. (40)

First we take in consideration that

D−
p (Ti) = p

√√√√ m∑
j=1

(
xijgj(xij)∑m
t=1 gt(xit)

)p

, for p ≥ 1. (41)

Again for simplification we introduce the following,

γq(xi) =

(
xiqgq(xiq)

ε(xi)

)p

for q = 1, . . . ,m (42)

where xi = (xi1, . . . , xim) , ε(xi) =
∑m

t=1 gt(xit), and σ(xi) =

m∑
q=1

γq(xi). Now,

∂D−
p

∂xik
=

1

p

∂σ
∂xik

(D−
p (Ti))p−1

. (43)

14



Once ∂ε
∂xik

= ∂gk
∂xik

, and ∂σ
∂xik

=
∑m

q=1

∂γq(xi)

∂xik
, then when q = k we have

∂γq

∂xik
= p

(
xikgk(xik)

ε(xi)

)p−1

(
xik

∂gk
∂xik

+ gk(xik)
)
ε(xi)− ∂gk

∂xik
(xikgk(xik))

ε(xi)2
(44)

= p

(
xikgk(xik)

ε(xi)

)p−1

(
xik

∂gk
∂xik

+ gk(xik)
)
ε(xi)

ε(xi)2
(45)

−p

(
xikgk(xik)

ε(xi)

)p−1 − ∂gk
∂xik

(xikgk(xik))

ε(xi)2
. (46)

Using the right inequality of hypothesis (22), and the fact that xik ≤ 1 we may conclude that

∂γq

∂xik
≥ p

(
xikgk(xik)

ε(xi)

)p−1

(
xik

∂gk
∂xik

+ gk(xik)
)
ε(xi)

ε(xi)2
(47)

−p

(
1

ε(xi)

)p−1 − ∂gk
∂xik

(xikgk(xik))

ε(xi)2
. (48)

When q ̸= k we obtain

∂γq

∂xik
= p

(
xiqgq(xiq)

ε(xi)

)p−1 −∂gk
∂xik

(xiqgq(xiq))

ε(xi)2
.

Since gk(xik) ≤ 1, and xik ≤ 1 we have

∂γq

∂xik
≥ −p

(
1

ε(xi)

)p−1 − ∂gk
∂xik

(xikgk(xik))

ε(xi)2
. (49)

From (48) and (49) we obtain

∂σ

∂xik
≥ p

(
xikgk(xik)

ε(xi)

)p−1

(
xik

∂gk
∂xik

+ gk(xik)
)
ε(xi)

ε(xi)2
(50)

−p

(
1

ε(xi)

)p−1 − ∂gk
∂xik

ε(xi)2

m∑
s=1

(xisgs(xis)) . (51)

Since xis ≤ 1, ε(xi) ≥
∑m

s=1 (xisgs(xis)), and we conclude that

∂σ

∂xik
≥ p

(
xikgk(xik)

ε(xi)

)p−1

(
xik

∂gk
∂xik

+ gk(xik)
)
ε(xi)

ε(xi)2
(52)

−p

(
1

ε(xi)

)p−1 − ∂gk
∂xik

ε(xi)2
ε(xi), (53)

∂σ

∂xik
≥ p

1

ε(xi)p
gk(xik)

p−1xp
ik

∂gk
∂xik

+ p
1

ε(xi)p

(
xp−1
ik gk(xik)

p − ∂gk
∂xik

)
. (54)

Given conditions (22), (23), ε(xi) ≥ 0, and p ≥ 1 we obtain

p
1

ε(xi)p
gk(xik)

p−1xp
ik

∂gk
∂xik

≥ 0. (55)

The hypotheses (24), ε(xi) ≥ 0, and p ≥ 1 ensure that

p
1

ε(xi)p

(
xp−1
ik gk(xik)

p − ∂gk
∂xik

)
≥ 0. (56)
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Finally, from (56)
∂D−

p

∂xik
≥ 0, which concludes the proof.�

The next issue is the choice of the weighting functions verifying conditions of Theorem 1. Clearly
linear functions do not meet the requirements, so other functions are proposed in Theorem 2.

Theorem 2. The following functions verify the hypotheses (22) to (24) of Theorem 1.

g(x) = (α− δ)xp + δ, (57)

g(x) = δ
(α
δ

)xp

, (58)

g(x) = log
(
1 + eα−δ − 1)xp

)
+ δ. (59)

In (57), (58), and (59), the constant α belongs to the unit interval and represents the importance
(weight) of the attribute when its satisfaction is maximal. Constant δ represents the importance
(weight) of the attribute when its satisfaction is minimal. However, δ must belong to the interval
[lower bound, α], where lower bound depends on the α value. In the computational experiments,
the function (57) and a value of p = 2 was used for all attributes. From the conditions presented
in Theorem 1 the value of lower bound was set to 2

3α.

Numerical example 2. Using the normalisation defined (9), we considered 3 different solutions
T0, T1 and T2, δ = 0.1 and αi for i = 1, 2, 3, 4 in (57) equal to (0.9, 0.8 , 0.7, 0.75), respectively.
Tables 4 and 5 summarise the results of the weighted Compromise Ratio.

Table 4: Variation of ponderation by weighting functions for three solutions

T0 x0i gi w̃0i ṽ0i T1 x1i gi w̃1i ṽ1i T2 x2i gi w̃2i ṽ2i

3 0.97 0.88 0.32 0.31 10 0.75 0.77 0.30 0.23 10 0.75 0.77 0.32 0.24
20 0.60 0.63 0.22 0.13 20 0.60 0.63 0.25 0.15 20 0.60 0.63 0.26 0.16
20 0.83 0.67 0.24 0.20 25 0.75 0.64 0.25 0.19 100 0.01 0.50 0.21 0.00
90 0.79 0.61 0.22 0.17 200 0.32 0.49 0.19 0.06 200 0.32 0.49 0.21 0.06

The columns x0i, x1i and x2i in Table 4 represent the normalized values. For each xj, the
weighting generation function’s values from (57) are given in column gi and the weights as in (18)
are represented in column w̃ij. The average values similar to (14) are displayed in columns ṽji.
Analysing the bold values in the second row below the header for the same value of 20, we see
that the corresponding weight is aggravated in the sequence of the three solutions, influenced by
the remaining values. Considering now another set of solutions in Table 5, the performance of the
combination of the weighting functions with Compromise Ratio (ξW )is exemplified in comparison
with a classical Compromise Ratio (ξL) and a linear operator (Lin-Ag) with α weights. For the
Compromise Ratio, three different values of θ (17) are tested.

Table 5: Comparison of operators

T0 = (3, 30, 40, 77) T1 = (5, 28, 45, 95) T2 = (10, 20, 40, 75)
θ = 0.3 0.71 0.35 0.30

ξW θ = 0.5 0.51 0.25 0,50
θ = 0.8 0.22 0.10 0.80
θ = 0.3 0.72 0.00 1,00

ξL θ = 0.5 0.60 0.00 1.00
θ = 0.8 0.40 0.00 1,00

Lin-Ag α = (0.9, 0.8, 0.7, 0.75) 0.66 0.62 0.67

The results show that the linear aggregation hardly differentiates the three solutions. It is also
clear that the Compromise Ratio with weighting function has a greater ability to capture subtle
differences among solutions and is more sensitive towards changes in θ.
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5. Computational experience

Table 6: Data set

Data set Institution No of Periods No of exams No of students D.C.M.

yor-f-83 York Mills Collegiate Ins., Toronto 21 181 941 0,27
uta-s-92 Faculty of Arts and Sciences, Uni. of Toronto 35 622 21267 0,13
tre-s-92 Trent Uni., Peterborough, Ontario 23 261 4360 0,18
hec-s-92 Ecole des Hautes Et. Com., Montreal 18 81 2823 0,42

ute-s-92 Faculty of Engineering, Uni. of Toronto 10 184 2750 0,08
ear-f-83 Earl Haig Collegiate Inst., Toronto 24 190 1125 0,29
rye-s-93 Ryeson Uni., Toronto 23 486 11483 0,07
kfu-s-93 King Fahd Uni., Dharan 20 461 5349 0,06

car-f-92 Carleton Uni., Ottawa 32 543 18419 0,14
car-s-91 Carleton Uni., Ottawa 35 682 16925 0,13
sta-f-83 St. Andrew’s Junior H.S., Toronto 13 139 611 0,14

The algorithm proposed in this paper for the multi-objective approach for exams timetabling
problem was tested using the Toronto’s benchmark data set [24]. The main characteristics of the
data instances are displayed in Table 6. The last column D.C.M. represents the density of the
conflict matrix. This matrix has a number of columns and rows equal to the number of exams,
and each entry (i, j) represents the number of students enrolled in both courses, indexed by i and
j. The percentage of non-zero elements represents its density. In general, higher density values
increase the difficulty of the problem.

The experiments were performed on a Pentium Intel Core2 Duo T9400 with 2.53GHz and 3 Gb
of memory. The stopping conditions used in Tabu Search were 1 hour or 25000 iterations. In all
experiments, the algorithm stopped after 1 hour, never reaching 25000 iterations. For some larger
instances, we allowed the algorithm to run for 2 hours. The main goal was to test the algorithm
for the minimisation of all the objectives and also to understand how the algorithm performs when
using different weighting factors - α in (57) (δ was fixed to lower bound which was set to 2

3α).

Table 7: Computational results - Complete discrimination

yor-f-83 Objective 1 Objective 2 Objective 3 Objective 4

(1,1,1,1) 4346 627 1279 182
(1,0.2,0.2,0.2) 2660 1141 2076 423
(0.2,1,0.2,0.2) 4406 342 1422 607
(0.2,0.2,1,0.2) 4687 619 1137 346
(0.2,0.2,0.2,1) 4947 934 1416 99

uta-s-92 Objective 1 Objective 2 Objective 3 Objective 4

(1,1,1,1) 11310 1861 3188 936
(1,0.2,0.2,0.2) 8694 4962 7505 759
(0.2,1,0.2,0.2) 13767 1619 3712 2167
(0.2,0.2,1,0.2) 12505 1674 2554 1076
(0.2,0.2,0.2,1) 10606 5189 7295 600

tre-s-92 Objective 1 Objective 2 Objective 3 Objective 4

(1,1,1,1) 4762 576 966 203
(1,0.2,0.2,0.2) 3175 978 1893 401
(0.2,1,0.2,0.2) 4920 332 1297 599
(0.2,0.2,1,0.2) 5001 554 899 356
(0.2,0.2,0.2,1) 5637 919 1471 149

hec-s-92 Objective 1 Objective 2 Objective 3 Objective 4

(1,1,1,1) 5103 475 870 170
(1,0.2,0.2,0.2) 2019 1112 3054 173
(0.2,1,0.2,0.2) 5512 250 1427 581
(0.2,0.2,1,0.2) 5385 599 800 421
(0.2,0.2,0.2,1) 5830 915 1507 84

The computational results are depicted in Tables 7, 8 and 9. The α-weights for the different
objectives are described in the first column of each table as a four-dimensional vector. For instance,
in Table 7 for the data yor-f-83, the weights regarding the first, second, third and fourth objective
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are (1, 1, 1, 1). In each column, the lower value obtained for the tested α-weights is displayed in
bold.

Table 8: Computational results - Average discrimination

ute-s-92 Objective 1 Objective 2 Objective 3 Objective 4

(1,1,1,1) 2384 4885 7249 72
(1,0.2,0.2,0.2) 1747 5145 7431 471
(0.2,1,0.2,0.2) 3278 3794 6628 328
(0.2,0.2,1,0.2) 3278 4126 6624(10.01%) 328
(0.2,0.2,0.2,1) 5427 3982 6021 34

ear-f-83 Objective 1 Objective 2 Objective 3 Objective 4

(1,1,1,1) 2970 2379 3196 116
(1,0.2,0.2,0.2) 2576 2051 3480 424
(0.2,1,0.2,0.2) 5911 475 1602 542
(0.2,0.2,1,0.2) 5896 650 1292 367
(0.2,0.2,0.2,1) 5799 988 1535 126(8.67%)

rye-s-93 Objective 1 Objective 2 Objective 3 Objective 4

(1,1,1,1) 5599 10108 15023 221
(1,0.2,0.2,0.2) 8883(58.65%) 9147 14007 783
(0.2,1,0.2,0.2) 22614 1659 6331 2260
(0.2,0.2,1,0.2) 21806 1686 3318 1827
(0.2,0.2,0.2,1) 25546 3936 6527 248(12.21%)

kfu-s-93 Objective 1 Objective 2 Objective 3 Objective 4

(1,1,1,1) 9687 6230 10075 424
(1,0.2,0.2,0.2) 5123 3424 7687 481
(0.2,1,0.2,0.2) 13066 831 3271 1307
(0.2,0.2,1,0.2) 12438 1452 3359(2.69%) 872
(0.2,0.2,0.2,1) 14415 2198 3619 209

The results are presented in three tables to distinguish the outcome. In Table 7, a complete
discrimination of objectives was obtained in relation to the highest α−weight. As expected, high
values of α in one objective tend to induce lower values for that objective value at the expense of
the remaining objectives. For the data in Table 8, it is still possible to identify similar but less

strict behaviour. However, the relative gap (100x−best value
best value

%) towards the best known value
is still small in most cases. Moreover, considering that this happened just for one objective, it
cannot be considered a failure.

Table 9: Computational results - Special cases

car-f-92 Objective 1 Objective 2 Objective 3 Objective 4

(1,1,1,1) 7811 5220 6566 233
(1,0.2,0.2,0.2) 7296(8.04%) 4262 5896 373
(0.2,1,0.2,0.2) 8074 4093 5734 330
(0.2,0.2,1,0.2) 6753 4470 6378(13.37%) 339
(0.2,0.2,0.2,1) 8332 4191 5626 253(8.58%)

car-s-91 Objective 1 Objective 2 Objective 3 Objective 4

(1,1,1,1) 11457 4010 5297 286
(1,0.2,0.2,0.2) 9764 3998 5637 343
(0.2,1,0.2,0.2) 10595 3929(0%) 5090 327
(0.2,0.2,1,0.2) 10595 3929 5090(0%) 327
(0.2,0.2,0.2,1) 11452 4015 5304 286 (0%)

sta-f-83 Objective 1 Objective 2 Objective 3 Objective 4

(1,1,1,1) 8432 3195 4669 1121
(1,0.2,0.2,0.2) 8422(0%) 3202 4678 1148
(0.2,1,0.2,0.2) 8422 3202(0.22%) 4678 1148
(0.2,0.2,1,0.2) 8422 3202 4678(5.67%) 1148
(0.2,0.2,0.2,1) 9577 3254 4427 838

Preliminary results for instances uta-s-92, rye-s-93 and kfu-s-93 with a 1 hour running time
limit presented a poor ability to discriminate between objectives. This limit was increased to 2
hours for these three data sets and the quality of the results was improved. A complete discrim-
ination was obtained for uta-s-92 (Table 7) and small gaps for rye-s-93 and kfu-s-93 (Table 8).
Table 9 presents the cases where a strict discrimination between objectives was not achieved for
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two objectives. However, the gaps are still small. In car-s-91, and particularly for sta-f-83, there
are many different weights which obtain the same values. One possible explanation is that the
regions of attraction of the 4 objectives are very close. This can also be corroborated by the fact
that the absolute gaps are also small when the first row is taken as a reference.

It is interesting to note that the performance does not seem to be related to the potential difficulty
induced by higher values of D.C.M.. It can also be observed that increasing the running time may
be crucial.

6. Conclusions

In this paper, we presented a new approach to solve a multi-objective examination timetabling
problem. The difficulty in addressing these problems is well known, and so it is always a challenge
to develop more efficient approaches. The use of the Tabu Search is well justified due to the com-
plexity of the problem. In order to increase the automation of the method, a Fuzzy Inference Ruled
Based System was developed to manage an appropriate choice of the tabu tenure. In order to
evaluate the neighbouring solutions in each iteration, a modified version of the Compromise Ratio
multi-attribute method was developed. The replacement of the fixed weights by weighting gener-
ating functions was proposed. This change resulted in a more automatic, complex and realistic
modelling of preferences by the decision-maker. To guarantee the monotonicity of the aggregation
operator, some sufficient conditions were established for the weighting generation function. More-
over, a set of functions were identified which satisfy these conditions. The proposal presented in
this paper can be easily adapted to other problems and the theoretical results presented for the
modified Compromise Ratio method can be used for any other multi-attribute problem.
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