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Abstract. We investigate the convergence rates of the trajectories generated by implicit
first and second order dynamical systems associated to the determination of the zeros of
the sum of a maximally monotone operator and a monotone and Lipschitz continuous one
in a real Hilbert space. We show that these trajectories strongly converge with exponential
rate to a zero of the sum, provided the latter is strongly monotone. We derive from here
convergence rates for the trajectories generated by dynamical systems associated to the
minimization of the sum of a proper, convex and lower semicontinuous function with a
smooth convex one provided the objective function fulfills a strong convexity assumption.
In the particular case of minimizing a smooth and strongly convex function, we prove that
its values converge along the trajectory to its minimum value with exponential rate, too.
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1 Introduction and preliminaries

The main topic of this paper is the investigation of convergence rates for implicit dynamical
systems associated with monotone inclusion problems of the form

find x∗ ∈ H such that 0 ∈ Ax∗ +Bx∗, (1)

whereH is a real Hilbert space, A : H⇒ H is a maximally monotone operator, B : H → H
is a monotone and 1

β -Lipschitz continuous operator for β > 0 and A + B is ρ-strongly
monotone for ρ > 0. Dynamical systems of implicit type have been already considered in
the literature in [1, 2, 7, 9, 12,14–17].

We deal in a first instance with the first order dynamical system with variable relax-
ation parameters {

ẋ(t) = λ(t)
[
JηA

(
x(t)− ηB(x(t))

)
− x(t)

]
x(0) = x0,

(2)
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where x0 ∈ H, λ : [0,+∞) → [0,∞) is a Lebesgue measurable function and JηA denotes
the resolvent of the operator ηA for η > 0.

We notice that Abbas and Attouch considered in [1, Section 4.2] the dynamical system
of same type {

ẋ(t) + x(t) = proxµΦ

(
x(t)− µB(x(t))

)
x(0) = x0

(3)

in connection to the determination of the zeros of ∂Φ + B, where Φ : H → R ∪ {+∞} is
a proper, convex and lower semicontinuous function, B : H → H is a cocoercive operator,
∂Φ denotes the convex subdifferential of Φ and proxµΦ denotes the proximal point operator
of µΦ.

Before that, Antipin in [7] and Bolte in [14] studied the convergence of the trajectories
generated by {

ẋ(t) + x(t) = PC
(
x(t)− µ∇g(x(t))

)
x(0) = x0

(4)

to a minimizer of the smooth and convex function g : H → R over the nonempty, convex
and closed set C ⊆ H, where µ > 0 and PC denotes the projection operator on the set C.

In the second part of the paper we approach the monotone inclusion (1) via the second
order dynamical system with variable damping and relaxation parameters{

ẍ(t) + γ(t)ẋ(t) + λ(t)
[
x(t)− JηA

(
x(t)− ηB(x(t))

)]
= 0

x(0) = u0, ẋ(0) = v0,
(5)

where u0, v0 ∈ H, λ : [0,+∞)→ [0,∞) and γ : [0,+∞)→ [0,∞) are Lebesgue measurable
functions, and η > 0.

Second order dynamical systems of the form{
ẍ(t) + γẋ(t) + x(t)− Tx(t) = 0
x(0) = u0, ẋ(0) = v0,

(6)

for γ > 0 and T : H → H a nonexpansive operator, have been treated by Attouch and
Alvarez in [8] in connection to the problem of approaching the fixed points of T .

For the minimization of the smooth and convex function g : H → R over the nonempty,
convex and closed set C ⊆ H, a continuous in time second order gradient-projection
approach has been considered in [7, 8], having as starting point the dynamical system{

ẍ(t) + γẋ(t) + x(t)− PC(x(t)− η∇g(x(t))) = 0
x(0) = u0, ẋ(0) = v0,

(7)

with constant damping parameter γ > 0 and constant step size η > 0.
For an exhaustive asymptotic analysis of the first and second order dynamical systems

(2) and (5), in case B is cocoercive, we refer the reader to [15] and [17], respectively.
According to the above-named works, one can expect under mild assumptions on the
relaxation and, in the second order setting, on the damping functions, that the generated
trajectories converge to a zero of A + B. The main scope of this paper is to show that
when weakening the assumptions on B to monotonicity and Lipschitz continuity, however,
provided that A+B is strongly monotone, the trajectories converge strongly to the unique
zero of A+B with an exponential rate. Exponential convergence rates have been obtained
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also by Antipin in [7] for the dynamical systems (4) and (7), by imposing for the smooth
function g supplementary strong convexity assumptions.

We transfer the results obtained for both first and second order dynamical systems to
optimization problems of the form

min
x∈H

f(x) + g(x), (8)

where f : H → R∪{+∞} is a proper, convex and lower semicontinuous function, g : H → R
is a convex and (Fréchet) differentiable function with 1

β -Lipschitz continuous gradient for
β > 0 and f + g is ρ-strongly convex for ρ > 0, by taking into consideration that its set of
minimizers coincides with the solution set of the monotone inclusion problem

find x∗ ∈ H such that 0 ∈ ∂f(x∗) +∇g(x∗).

When further particularizing this context to the one of solving minimization problems like

min
x∈H

g(x), (9)

where g : H → R is a ρ-strongly convex and (Fréchet) differentiable function with 1
β -

Lipschitz continuous gradient for ρ > 0 and β > 0, we show that the values of g converge
along the trajectories generated by the corresponding first and second order dynamical
systems to its minimum value also with exponential rate.

The rest of this section is devoted to some notations and definitions used in the paper.
We denote by H a real Hilbert space with inner product 〈·, ·〉 and corresponding norm
‖ · ‖ =

√
〈·, ·〉. For an arbitrary set-valued operator A : H ⇒ H we denote by GrA =

{(x, u) ∈ H ×H : u ∈ Ax} its graph. We use also the notation zerA = {x ∈ H : 0 ∈ Ax}
for the set of zeros of A. We say that A is monotone, if 〈x − y, u − v〉 ≥ 0 for all
(x, u), (y, v) ∈ GrA. A monotone operator A is said to be maximally monotone, if there
exists no proper monotone extension of the graph of A on H × H. The resolvent of A,
JA : H ⇒ H, is defined by JA = (Id +A)−1, where Id : H → H denotes the identity
operator on H. If A is maximally monotone, then JA : H → H is single-valued and
maximally monotone (see [13, Proposition 23.7 and Corollary 23.10]). For an arbitrary
γ > 0 we have (see [13, Proposition 23.2])

p ∈ JγAx if and only if (p, γ−1(x− p)) ∈ GrA. (10)

The operator A is said to be ρ-strongly monotone for ρ > 0, if 〈x− y, u− v〉 ≥ ρ‖x− y‖2
for all (x, u), (y, v) ∈ GrA.

As in [2,12], we consider the following definition of an absolutely continuous function.

Definition 1 (see, for instance, [2, 12]) A function x : [0, b]→ H (where b > 0) is said to
be absolutely continuous if one of the following equivalent properties holds:

(i) there exists an integrable function y : [0, b]→ H such that

x(t) = x(0) +

∫ t

0
y(s)ds ∀t ∈ [0, b];

(ii) x is continuous and its distributional derivative is Lebesgue integrable on [0, b];
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(iii) for every ε > 0, there exists η > 0 such that for any finite family of intervals
Ik = (ak, bk) ⊆ [0, b] we have the implication(

Ik ∩ Ij = ∅ and
∑
k

|bk − ak| < η

)
=⇒

∑
k

‖x(bk)− x(ak)‖ < ε.

Remark 1 (a) It follows from the definition that an absolutely continuous function is
differentiable almost everywhere, its derivative coincides with its distributional derivative
almost everywhere and one can recover the function from its derivative ẋ = y by the
integration formula (i).

(b) If x : [0, b] → H, where b > 0, is absolutely continuous and B : H → H is L-
Lipschitz continuous for L ≥ 0, then the function z = B ◦ x is absolutely continuous, too.
This can be easily seen by using the characterization of absolute continuity in Definition
1(iii). Moreover, z is differentiable almost everywhere on [0, b] and the inequality ‖ż(t)‖ ≤
L‖ẋ(t)‖ holds for almost every t ∈ [0, b].

2 Converges rates for first order dynamical systems

The starting point of the investigations we carry out in this section is the first order
dynamical system (2) that we formulated in relation to the monotone inclusion problem
(1). We say that x : [0,+∞) → H is a strong global solution of (2), if the following
properties are satisfied:

(i) x : [0,+∞) → H is locally absolutely continuous, that is, absolutely continuous on
each interval [0, b] for 0 < b < +∞;

(ii) For almost every t ∈ [0,+∞) it holds ẋ(t) = λ(t)
[
JηA

(
x(t)− ηB(x(t))

)
− x(t)

]
;

(iii) x(0) = x0.
The existence and uniqueness of strong global solutions of the system (2) follow from

the Cauchy-Lipschitz-Picard Theorem, by noticing that the operator T = JηA◦(Id−ηB)−
Id is Lipschitz continuous (see also [15, Section 2]).

The following result can bee seen as the continuous counterpart of [13, Proposition
25.9], where it is shown that the sequence iteratively generated by the forward-backward
algorithm linearly converges to the unique solution of (1), provided that one of the two
involved operators is strongly monotone.

Theorem 2 Let A : H⇒ H be a maximally monotone operator, B : H → H a monotone
and 1

β -Lipschitz continuous operator for β > 0 such that A+B is ρ-strongly monotone for
ρ > 0 and x∗ be the unique point in zer(A+B). Let λ : [0,+∞)→ [0,+∞) be a Lebesgue
measurable function such that there exist real numbers λ and λ fulfilling

0 < λ ≤ inf
t≥0

λ(t) ≤ sup
t≥0

λ(t) ≤ λ.

Chose α > 0 and η > 0 such that

α < 2ρβ2λ and
1

β
+

λ

2α
≤ ρ+

1

η
.
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If x0 ∈ H and x : [0,+∞) → H is the unique strong global solution of the dynamical
system (2), then for every t ∈ [0,+∞) one has

‖x(t)− x∗‖2 ≤ ‖x0 − x∗‖2 exp(−Ct),

where C :=
2ρλ− α

β2

2ρ+ 1
η

> 0.

Proof. Notice that B is a maximally monotone operator (see [13, Corollary 20.25]) and,
since B has full domain, A + B is maximally monotone, too (see [13, Corollary 24.4]).
Therefore, due to the strong monotonicity of A + B, zer(A + B) is a singleton (see [13,
Corollary 23.37]).

A direct consequence of (2) and of the definition of the resolvent is the inclusion

− 1

ηλ(t)
ẋ(t)−B(x(t)) +B

(
1

λ(t)
ẋ(t) + x(t)

)
∈ (A+B)

(
1

λ(t)
ẋ(t) + x(t)

)
,

which holds for almost every t ∈ [0,+∞). Combining it with 0 ∈ (A + B)(x∗) and the
strong monotonicity of A+B, it yields for almost every t ∈ [0,+∞)

ρ

∥∥∥∥ 1

λ(t)
ẋ(t) + x(t)− x∗

∥∥∥∥2

≤〈
1

λ(t)
ẋ(t) + x(t)− x∗,− 1

ηλ(t)
ẋ(t)−B(x(t)) +B

(
1

λ(t)
ẋ(t) + x(t)

)〉
.

By using the notation h(t) = 1
2‖x(t) − x∗‖2 for t ∈ [0,+∞), the Cauchy-Schwartz

inequality, the Lipschitz property of B and the fact that ḣ(t) = 〈x(t) − x∗, ẋ(t)〉, we
deduce that for almost every t ∈ [0,+∞)

ρ

∥∥∥∥ 1

λ(t)
ẋ(t) + x(t)− x∗

∥∥∥∥2

≤− 1

ηλ2(t)
‖ẋ(t)‖2 +

1

λ(t)

〈
ẋ(t), B

(
1

λ(t)
ẋ(t) + x(t)

)
−B(x(t))

〉
− 1

ηλ(t)
ḣ(t) +

〈
x(t)− x∗, B

(
1

λ(t)
ẋ(t) + x(t)

)
−B(x(t))

〉
≤− 1

ηλ2(t)
‖ẋ(t)‖2 +

1

βλ2(t)
‖ẋ(t)‖2 − 1

ηλ(t)
ḣ(t)

+
1

βλ(t)
‖x(t)− x∗‖‖ẋ(t)‖

≤ − 1

ηλ2(t)
‖ẋ(t)‖2 +

1

βλ2(t)
‖ẋ(t)‖2 − 1

ηλ(t)
ḣ(t)

+
α

β2λ(t)
h(t) +

1

2αλ(t)
‖ẋ(t)‖2.

As

ρ

∥∥∥∥ 1

λ(t)
ẋ(t) + x(t)− x∗

∥∥∥∥2

=
ρ

λ2(t)
‖ẋ(t)‖2 +

2ρ

λ(t)
ḣ(t) + 2ρh(t),

we obtain for almost every t ∈ [0,+∞) the inequality(
2ρ

λ(t)
+

1

ηλ(t)

)
ḣ(t) +

(
2ρ− α

β2λ(t)

)
h(t)+(

ρ

λ2(t)
+

1

ηλ2(t)
− 1

βλ2(t)
− 1

2αλ(t)

)
‖ẋ(t)‖2 ≤ 0.
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However, the way in which the involved parameters were chosen imply for almost every
t ∈ [0,+∞) that (

2ρ

λ(t)
+

1

ηλ(t)

)
ḣ(t) +

(
2ρ− α

β2λ(t)

)
h(t) ≤ 0

or, equivalently,

ḣ(t) +
2ρλ(t)− α

β2

2ρ+ 1
η

h(t) ≤ 0.

This further implies
ḣ(t) + Ch(t) ≤ 0

for almost every t ∈ [0,+∞). By multiplying this inequality with exp(Ct) and integrating
from 0 to T , where T ≥ 0, one easily obtains the conclusion. �

We come now to the convex optimization problem (8) and notice that, since argmin(f+
g) = zer(∂(f + g)) = zer(∂f +∇g), one can approach this set by means of the trajectories
of the dynamical system (2) written for A = ∂f and B = ∇g. Here, ∂f : H⇒ H, defined
by

∂f(x) = {u ∈ H : f(y) ≥ f(x) + 〈u, y − x〉 ∀y ∈ H},

if f(x) ∈ R and ∂f(x) = ∅, otherwise, denotes the convex subdifferential of f , which is a
maximally monotone operator, provided that f is proper, convex and lower semicontinuous
(see [22]). We notice that, for η > 0, the resolvent of η∂f is given by Jη∂f = proxηf
(see [13]), where proxηf : H → H,

proxηf (x) = argmin
y∈H

{
f(y) +

1

2η
‖y − x‖2

}
, (11)

denotes the proximal point operator of ηf . This being said, the dynamical system (2)
becomes {

ẋ(t) = λ(t)
[
proxηf

(
x(t)− η∇g(x(t))

)
− x(t)

]
x(0) = x0.

(12)

The following result is a direct consequence of Theorem 2. Let us also notice that f + g
is said to be ρ-strongly convex for ρ > 0, if f + g − ρ

2‖ · ‖
2 is a convex function. In

this situation ∂(f + g) = ∂f + ∇g is a ρ-strongly monotone operator (see [13, Example
22.3(iv)].)

Theorem 3 Let f : H → R ∪ {+∞} be a proper, convex and lower semicontinuous
function, g : H → R be a convex and (Fréchet) differentiable function with 1

β -Lipschitz
continuous gradient for β > 0 such that f + g is ρ-strongly convex for ρ > 0 and x∗ be the
unique minimizer of f + g over H. Let λ : [0,+∞) → [0,+∞) be a Lebesgue measurable
function such that there exist real numbers λ and λ fulfilling

0 < λ ≤ inf
t≥0

λ(t) ≤ sup
t≥0

λ(t) ≤ λ.

Chose α > 0 and η > 0 such that

α < 2ρβ2λ and
1

β
+

λ

2α
≤ ρ+

1

η
.
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If x0 ∈ H and x : [0,+∞) → H is the unique strong global solution of the dynamical
system (12), then for every t ∈ [0.+∞) one has

‖x(t)− x∗‖2 ≤ ‖x0 − x∗‖2 exp(−Ct),

where C :=
2ρλ− α

β2

2ρ+ 1
η

> 0.

In the last part of this section we approach the convex minimization problem (9) via
the first order dynamical system{

ẋ(t) + λ(t)∇g(x(t)) = 0
x(0) = x0.

(13)

The following result quantifies the rate of convergence of g to its minimum value along
the trajectories generated by (13).

Theorem 4 Let g : H → R be a ρ-strongly convex and (Fréchet) differentiable function
with 1

β -Lipschitz continuous gradient for ρ > 0 and β > 0 and x∗ be the unique minimizer
of g over H. Let λ : [0,+∞)→ [0,+∞) be a Lebesgue measurable function such that there
exists a real number λ ∈ R fulfilling

0 < λ ≤ inf
t≥0

λ(t).

Chose α > 0 such that
α ≤ 2λβρ2.

If x0 ∈ H and x : [0,+∞) → H is the unique strong global solution of the dynamical
system (13), then for every t ∈ [0,+∞) one has

0 ≤ ρ

2
‖x(t)−x∗‖2 ≤ g(x(t))−g(x∗) ≤ (g(x0)−g(x∗)) exp(−αt) ≤ 1

2β
‖x0−x∗‖2 exp(−αt).

Proof. The second inequality is a consequence of the strong convexity of the function
g. Further, we recall that according to the descent lemma, which is valid for an arbitrary
differentiable function with Lipschitz continuous gradient (see [20, Lemma 1.2.3]), we have

g(u) ≤ g(v) + 〈∇g(v), u− v〉+
1

2β
‖u− v‖2 ∀u, v ∈ H.

By setting in the previous relation, for every t ∈ [0,+∞), u := x(t) and v := x∗ and by
taking into account that ∇g(x∗) = 0, we obtain

g(x(t))− g(x∗) ≤ 1

2β
‖x(t)− x∗‖2. (14)

From here, the last inequality in the conclusion follows automatically.
Using the strong convexity of g we have for every t ∈ [0,+∞) that

ρ‖x(t)− x∗‖2 ≤ 〈x(t)− x∗,∇g(x(t))〉 ≤ ‖x(t)− x∗‖‖∇g(x(t))‖,

thus
ρ‖x(t)− x∗‖ ≤ ‖∇g(x(t))‖. (15)
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Finally, from the first equation in (13), (14), (15) and using the way in which α was chosen,
we obtain for almost every t ∈ [0,+∞)

d

dt

(
g(x(t))− g(x∗)

)
+ α(g(x(t))− g(x∗)) = 〈ẋ(t),∇g(x(t))〉+ α(g(x(t))− g(x∗))

≤− λ(t)‖∇g(x(t))‖2 +
α

2β
‖x(t)− x∗‖2

≤
(
−λ(t) +

α

2βρ2

)
‖∇g(x(t))‖2

≤0.

By multiplying this inequality with exp(αt) and integrating from 0 to T , where T ≥ 0,
one easily obtains also the third inequality. �

3 Converges rates for second order dynamical systems

The starting point of the investigations we go through in this section is again the monotone
inclusion problem (1), however, this time approached via the second order dynamical
system (5). We say that x : [0,+∞)→ H is a strong global solution of (5), if the following
properties are satisfied:

(i) x, ẋ : [0,+∞)→ H are locally absolutely continuous;
(ii) For almost every t ∈ [0,+∞) it holds

ẍ(t) + γ(t)ẋ(t) + λ(t)
[
x(t)− JηA

(
x(t)− ηB(x(t))

)]
= 0;

(iii) x(0) = u0, ẋ(0) = v0.
The existence and uniqueness of strong global solutions of the system (5) follow from

the Cauchy-Lipschitz-Picard Theorem applied in a product space (see also [17]).
The following result will be useful when deriving the convergence rates.

Lemma 5 Let h, γ, b1, b2, b3, u : [0,+∞) → R be given functions such that h, γ, b2, u are
locally absolutely continuous and ḣ is locally absolutely continuous, too. Assume that

h(t), b2(t), u(t) ≥ 0 ∀t ∈ [0,+∞)

and that there exists γ > 1 such that

γ(t) ≥ γ > 1 ∀t ∈ [0,+∞).

Further, assume that for almost every t ∈ [0,+∞) one has

γ(t) + γ̇(t) ≤ b1(t) + 1, (16)

b2(t) + ḃ2(t) ≤ b3(t) (17)

and
ḧ(t) + γ(t)ḣ(t) + b1(t)h(t) + b2(t)u̇(t) + b3(t)u(t) ≤ 0. (18)

Then there exists M > 0 such that the following statements hold:

8



(i) if 1 < γ < 2, then for almost every t ∈ [0,+∞)

0 ≤ h(t) ≤
(
h(0) +

M

2− γ

)
exp(−(γ − 1)t);

(ii) if 2 < γ, then for almost every t ∈ [0,+∞)

0 ≤ h(t) ≤ h(0) exp(−(γ − 1)t) +
M

γ − 2
exp(−t) ≤

(
h(0) +

M

γ − 2

)
exp(−t);

(iii) if γ = 2, then for almost every t ∈ [0,+∞)

0 ≤ h(t) ≤ (h(0) +Mt) exp(−t).

Proof. We multiply the inequality (18) with exp(t) and use the identities

exp(t)ḧ(t) =
d

dt

(
exp(t)ḣ(t)

)
− exp(t)ḣ(t)

exp(t)u̇(t) =
d

dt
(exp(t)u(t))− exp(t)u(t)

exp(t)ḣ(t) =
d

dt

(
exp(t)h(t)

)
− exp(t)h(t)

in order to derive for almost every t ∈ [0,+∞) the inequality

d

dt

(
exp(t)ḣ(t)

)
+ (γ(t)− 1)

d

dt

(
exp(t)h(t)

)
+

exp(t)h(t)(b1(t) + 1− γ(t)) + b2(t)
d

dt

(
exp(t)u(t)

)
+ (b3(t)− b2(t)) exp(t)u(t) ≤ 0.

By using also

(γ(t)− 1)
d

dt

(
exp(t)h(t)

)
=

d

dt

(
(γ(t)− 1) exp(t)h(t)

)
− γ̇(t) exp(t)h(t)

b2(t)
d

dt

(
exp(t)u(t)

)
=

d

dt

(
b2(t) exp(t)u(t)

)
− ḃ2(t) exp(t)u(t)

we obtain for almost every t ∈ [0,+∞)

d

dt

(
exp(t)ḣ(t)

)
+
d

dt

(
(γ(t)− 1) exp(t)h(t)

)
+
d

dt

(
b2(t) exp(t)u(t)

)
+(

b1(t) + 1− γ(t)− γ̇(t)
)

exp(t)h(t) +
(
b3(t)− b2(t)− ḃ2(t)

)
exp(t)u(t) ≤ 0.

The hypotheses regarding the parameters involved imply that the function

t→ exp(t)ḣ(t) + (γ(t)− 1) exp(t)h(t) + b2(t) exp(t)u(t)

is monotonically decreasing, hence there exists M > 0 such that

exp(t)ḣ(t) + (γ(t)− 1) exp(t)h(t) + b2(t) exp(t)u(t) ≤M.
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Since u(t), b2(t) ≥ 0 we get

ḣ(t) + (γ(t)− 1)h(t) ≤M exp(−t),

hence
ḣ(t) + (γ − 1)h(t) ≤M exp(−t)

for every t ∈ [0,+∞). This implies that

d

dt

(
exp((γ − 1)t)h(t)

)
≤M exp((γ − 2)t),

for every t ∈ [0,+∞), from which the conclusion follows easily by integration. �

We come now to the first main result of this section.

Theorem 6 Let A : H⇒ H be a maximally monotone operator, B : H → H a monotone
and 1

β -Lipschitz continuous operator for β > 0 such that A+B is ρ-strongly monotone for
ρ > 0 and x∗ be the unique point in zer(A + B). Chose α, δ ∈ (0, 1) and η > 0 such that

δβρ < 1 and 1
η =

(
1
β + 1

4ρβ2α

)
1
δ − ρ > 0.

Let λ : [0,+∞) → [0,+∞) be a locally absolutely continuous function fulfilling for
every t ∈ [0,+∞)

θ(t) := λ(t)
δ

1− δ

ρ+
(

1
β + 1

4ρβ2α

)
1
δ

1
β + 1

4ρβ2α

≤ λ(t)
2ρ(1− α)

ρ+
(

1
β + 1

4ρβ2α

)
1
δ

+ λ2(t)

 2ρ(1− α)

ρ+
(

1
β + 1

4ρβ2α

)
1
δ

2

and such that there exists a real number λ with the property that

0 < λ ≤ inf
t≥0

λ(t)

and

2 < θ := λ
δ

1− δ

ρ+
(

1
β + 1

4ρβ2α

)
1
δ

1
β + 1

4ρβ2α

.

Further, let γ : [0,+∞)→ [0,+∞) be a locally absolutely continuous function fulfilling

1 +
√

1 + 4θ(t)

2
≤ γ(t) ≤ 1 + λ(t)

2ρ(1− α)

ρ+
(

1
β + 1

4ρβ2α

)
1
δ

for every t ∈ [0,+∞) (19)

and

γ̇(t) ≤ 0 and
d

dt

(
γ(t)

λ(t)

)
≤ 0 for almost every t ∈ [0,+∞). (20)

Let u0, v0 ∈ H and x : [0,+∞)→ H be the unique strong global solution of the dynamical
system (5).
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Then γ(t) ≥ γ := 1+
√

1+4θ
2 > 2 for every t ∈ [0,+∞) and there exists M > 0 such that

for every t ∈ [0,+∞)

0 ≤ ‖x(t)− x∗‖2 ≤ ‖u0 − x∗‖2 exp(−(γ − 1)t) +
M

γ − 2
exp(−t)

≤
(
‖u0 − x∗‖2 +

M

γ − 2

)
exp(−t).

Proof. From the definition of the resolvent we have for almost every t ∈ [0,+∞)

B

(
1

λ(t)
ẍ(t) +

γ(t)

λ(t)
ẋ(t) + x(t)

)
−B(x(t))− 1

ηλ(t)
ẍ(t)− γ(t)

ηλ(t)
ẋ(t) ∈

(A+B)

(
1

λ(t)
ẍ(t) +

γ(t)

λ(t)
ẋ(t) + x(t)

)
. (21)

We combine this with 0 ∈ (A + B)x∗, the strong monotonicity of A + B, the Lipschitz
continuity of B and, by also using the Cauchy-Schwartz inequality, we get for almost every
t ∈ [0,+∞)

ρ

λ2(t)
‖ẍ(t) + γ(t)ẋ(t)‖2 +

2ρ

λ(t)
〈x(t)− x∗, ẍ(t) + γ(t)ẋ(t)〉+ ρ‖x(t)− x∗‖2

=ρ

∥∥∥∥ 1

λ(t)
ẍ(t) +

γ(t)

λ(t)
ẋ(t) + x(t)− x∗

∥∥∥∥2

≤
〈

1

λ(t)
ẍ(t) +

γ(t)

λ(t)
ẋ(t) + x(t)− x∗, B

(
1

λ(t)
ẍ(t) +

γ(t)

λ(t)
ẋ(t) + x(t)

)
−B(x(t))

〉
−
〈

1

λ(t)
ẍ(t) +

γ(t)

λ(t)
ẋ(t) + x(t)− x∗, 1

ηλ(t)
ẍ(t) +

γ(t)

ηλ(t)
ẋ(t)

〉
=

1

λ(t)

〈
ẍ(t) + γ(t)ẋ(t), B

(
1

λ(t)
ẍ(t) +

γ(t)

λ(t)
ẋ(t) + x(t)

)
−B(x(t))

〉
+

〈
x(t)− x∗, B

(
1

λ(t)
ẍ(t) +

γ(t)

λ(t)
ẋ(t) + x(t)

)
−B(x(t))

〉
− 1

ηλ2(t)
‖ẍ(t) + γ(t)ẋ(t)‖2 − 1

ηλ(t)
〈x(t)− x∗, ẍ(t) + γ(t)ẋ(t)〉

≤ 1

βλ2(t)
‖ẍ(t) + γ(t)ẋ(t)‖2 − 1

ηλ2(t)
‖ẍ(t) + γ(t)ẋ(t)‖2

+
1

4ρβ2αλ2(t)
‖ẍ(t) + γ(t)ẋ(t)‖2 + ρα‖x(t)− x∗‖2 − 1

ηλ(t)
〈x(t)− x∗, ẍ(t) + γ(t)ẋ(t)〉 .

Using again the notation h(t) = 1
2‖x(t)− x∗‖2, we have for almost every t ∈ [0,+∞)

‖ẍ(t) + γ(t)ẋ(t)‖2 = ‖ẍ(t)‖2 + γ2(t)‖ẋ(t)‖2 + γ(t)
d

dt
(‖ẋ(t)‖2) (22)

and
〈x(t)− x∗, ẍ(t) + γ(t)ẋ(t)〉 = ḧ(t) + γ(t)ḣ(t)− ‖ẋ(t)‖2.

11



Therefore, we obtain for almost every t ∈ [0,+∞)(
ρ

λ2(t)
+

1

ηλ2(t)
− 1

βλ2(t)
− 1

4ρβ2αλ2(t)

)
‖ẍ(t)‖2

+

[
γ2(t)

(
ρ

λ2(t)
+

1

ηλ2(t)
− 1

βλ2(t)
− 1

4ρβ2αλ2(t)

)
− 2ρ

λ(t)
− 1

ηλ(t)

]
‖ẋ(t)‖2

+ γ(t)

(
ρ

λ2(t)
+

1

ηλ2(t)
− 1

βλ2(t)
− 1

4ρβ2αλ2(t)

)
d

dt

(
‖ẋ(t)‖2

)
+

(
2ρ

λ(t)
+

1

ηλ(t)

)
ḧ(t) + γ(t)

(
2ρ

λ(t)
+

1

ηλ(t)

)
ḣ(t) + 2ρ(1− α)h(t) ≤ 0.

The hypotheses imply that

ρ

λ2(t)
+

1

ηλ2(t)
− 1

βλ2(t)
− 1

4ρβ2αλ2(t)
=

1

λ2(t)

(
ρ+

1

η
− 1

β
− 1

4ρβ2α

)
> 0,

hence the first term in the left hand side of the above inequality can be neglected and we
obtain for almost every t ∈ [0,+∞) that

ḧ(t) + γ(t)ḣ(t) + b1(t)h(t) + b2(t)
d

dt
(‖ẋ(t)‖2) + b3(t)‖ẋ(t)‖2 ≤ 0, (23)

where

b1(t) := λ(t)
2ρ(1− α)

2ρ+ 1
η

> 0

b2(t) := γ(t)

ρ
λ2(t)

+ 1
ηλ2(t)

− 1
βλ2(t)

− 1
4ρβ2αλ2(t)

2ρ
λ(t) + 1

ηλ(t)

=
γ(t)

λ(t)

ρ+ 1
η −

1
β −

1
4ρβ2α

2ρ+ 1
η

> 0

and

b3(t) :=
γ2(t)

(
ρ

λ2(t)
+ 1

ηλ2(t)
− 1

βλ2(t)
− 1

4ρβ2αλ2(t)

)
− 2ρ

λ(t) −
1

ηλ(t)

2ρ
λ(t) + 1

ηλ(t)

.

This shows that (18) in Lemma 5 for u := ‖ẋ(·)‖2 is fulfilled. In order to apply Lemma 5,
we have only to prove that (16) and (17) are satisfied, as every other assumption in this
statement is obviously guaranteed.

A simple calculation shows that

b3(t) ≥ b2(t)⇐⇒ γ2(t)− γ(t) ≥
2ρ
λ(t) + 1

ηλ(t)
ρ

λ2(t)
+ 1

ηλ2(t)
− 1

βλ2(t)
− 1

4ρβ2αλ2(t)

= θ(t), (24)

which is true according to (19), thus b3(t) ≥ b2(t) for every t ∈ [0,+∞). On the other
hand (see (20)),

ḃ2(t) ≤ 0

for almost every t ∈ [0,+∞), from which (17) follows.
Further, again by using (19), observe that

1 + b1(t) = 1 + λ(t)
2ρ(1− α)

ρ+
(

1
β + 1

4ρβ2α

)
1
δ

≥ γ(t)

12



for every t ∈ [0,+∞), which, combined with

γ̇(t) ≤ 0

for almost every t ∈ [0,+∞), shows that (16) is also fulfilled.
The conclusion follows from Lemma 5(ii), by noticing that γ > 2, as θ > 2. �

Remark 7 One can notice that when γ̇(t) ≤ 0 for almost every t ∈ [0,+∞), the second
assumption in (20) is fulfilled provided that λ̇(t) ≥ 0 for almost every t ∈ [0,+∞).

Further, we would like to point out that one can oviously chose λ(t) = λ and γ(t) = γ
for every t ∈ [0,+∞), where

2 < θ := λ
δ

1− δ

ρ+
(

1
β + 1

4ρβ2α

)
1
δ

1
β + 1

4ρβ2α

≤ λ
2ρ(1− α)

ρ+
(

1
β + 1

4ρβ2α

)
1
δ

+ λ2

 2ρ(1− α)

ρ+
(

1
β + 1

4ρβ2α

)
1
δ

2

and
1 +
√

1 + 4θ

2
≤ γ ≤ 1 + λ

2ρ(1− α)

ρ+
(

1
β + 1

4ρβ2α

)
1
δ

.

When considering the convex optimization problem (8), the second order dynamical
system (5) written for A = ∂f and B = ∇g becomes{

ẍ(t) + γ(t)ẋ(t) + λ(t)
[
x(t)− proxηf

(
x(t)− η∇g(x(t))

)]
= 0

x(0) = u0, ẋ(0) = v0.
(25)

Theorem 6 gives rise to the following result.

Theorem 8 Let f : H → R ∪ {+∞} be a proper, convex and lower semicontinuous
function, g : H → R be a convex and (Fréchet) differentiable function with 1

β -Lipschitz
continuous gradient for β > 0 such that f + g is ρ-strongly convex for ρ > 0 and x∗ be the
unique minimizer of f + g over H. Chose α, δ ∈ (0, 1) and η > 0 such that δβρ < 1 and
1
η =

(
1
β + 1

4ρβ2α

)
1
δ − ρ > 0.

Let λ : [0,+∞) → [0,+∞) be a locally absolutely continuous function fulfilling for
every t ∈ [0,+∞)

θ(t) := λ(t)
δ

1− δ

ρ+
(

1
β + 1

4ρβ2α

)
1
δ

1
β + 1

4ρβ2α

≤ λ(t)
2ρ(1− α)

ρ+
(

1
β + 1

4ρβ2α

)
1
δ

+ λ2(t)

 2ρ(1− α)

ρ+
(

1
β + 1

4ρβ2α

)
1
δ

2

and such that there exists a real number λ with the property that

0 < λ ≤ inf
t≥0

λ(t)

13



and

2 < θ := λ
δ

1− δ

ρ+
(

1
β + 1

4ρβ2α

)
1
δ

1
β + 1

4ρβ2α

.

Further, let γ : [0,+∞)→ [0,+∞) be a locally absolutely continuous function fulfilling
(19) and (20), u0, v0 ∈ H and x : [0,+∞)→ H be the unique strong global solution of the
dynamical system (25).

Then γ(t) ≥ γ := 1+
√

1+4θ
2 > 2 for every t ∈ [0,+∞) and there exists M > 0 such that

for every t ∈ [0,+∞)

0 ≤ ‖x(t)− x∗‖2 ≤ ‖u0 − x∗‖2 exp(−(γ − 1)t) +
M

γ − 2
exp(−t)

≤
(
‖u0 − x∗‖2 +

M

γ − 2

)
exp(−t).

Finally, we approach the convex minimization problem (9) via the second order dy-
namical system {

ẍ(t) + γ(t)ẋ(t) + λ(t)∇g(x(t)) = 0
x(0) = u0, ẋ(0) = v0

(26)

and provide an exponential rate of convergence of g to its minimum value along the
generated trajectories. The following result can be seen as the continuous counterpart
of [19, Theorem 4], where recently a linear rate of convergence for the values of g on a
sequence iteratively generated by an inertial-type algorithm has been obtained.

Theorem 9 Let g : H → R be a ρ-strongly convex and (Fréchet) differentiable function
with 1

β -Lipschitz continuous gradient for ρ > 0 and β > 0 and x∗ be the unique minimizer
of g over H.

Let α : [0,+∞) → R be a Lebesgue measurable function such that there exists α > 1
with

inf
t≥0

α(t) ≥ max

{
α,

2

β2ρ2
− 1

}
(27)

and λ : [0,+∞) → [0,+∞) be a locally absolutely continuous function fulfilling for every
t ∈ [0,+∞)

α(t)

βρ2
≤ λ(t) ≤ β

2

(
α(t) + α2(t)

)
. (28)

Further, let γ : [0,+∞)→ [0,+∞) be a locally absolutely continuous function fulfilling

1 +
√

1 + 8λ(t)
β

2
≤ γ(t) ≤ 1 + α(t) for every t ∈ [0,+∞) (29)

and (20).
Let u0, v0 ∈ H and x : [0,+∞) → H be the unique strong global solution of the

dynamical system (26).
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Then γ(t) ≥ γ :=
1+

√
1+8 α

β2ρ2

2 > 2 and there exists M > 0 such that for every t ∈
[0,+∞)

0 ≤ ρ

2
‖x(t)− x∗‖2 ≤ g(x(t))− g(x∗) ≤ (g(u0)− g(x∗)) exp(−(γ − 1)t) +

M

γ − 2
exp(−t)

≤
(
g(u0)− g(x∗) +

M

γ − 2

)
exp(−t)≤

(
1

2β
‖u0 − x∗‖2 +

M

γ − 2

)
exp(−t).

Proof. One has for almost every t ∈ [0,+∞)

d

dt
g(x(t)) = 〈ẋ(t),∇g(x(t))〉

and (see Remark 1(b))

d2

dt2
g(x(t)) = 〈ẍ(t),∇g(x(t))〉+

〈
ẋ(t),

d

dt
∇g(x(t))

〉
≤ 〈ẍ(t),∇g(x(t))〉+

1

β
‖ẋ(t)‖2.

Further, by using (14), (15) and the first equation in (26), we derive for almost every
t ∈ [0,+∞)

d2

dt2
(
g(x(t))− g(x∗)

)
+ γ(t)

d

dt

(
g(x(t))− g(x∗)

)
+ α(t)

(
g(x(t))− g(x∗)

)
≤ − λ(t)‖∇g(x(t))‖2 +

α(t)

2βρ2
‖∇g(x(t))‖2 +

1

β
‖ẋ(t)‖2

= − 1

2λ(t)
‖ẍ(t) + γ(t)ẋ(t)‖2 − λ(t)

2
‖∇g(x(t))‖2 +

α(t)

2βρ2
‖∇g(x(t))‖2 +

1

β
‖ẋ(t)‖2.

Taking into account (22) we obtain for almost every t ∈ [0,+∞)

d2

dt2
(
g(x(t))− g(x∗)

)
+ γ(t)

d

dt

(
g(x(t))− g(x∗)

)
+ α(t)

(
g(x(t))− g(x∗)

)
+

γ(t)

2λ(t)

d

dt
(‖ẋ(t)‖2) +

(
γ2(t)

2λ(t)
− 1

β

)
‖ẋ(t)‖2

+
1

2λ(t)
‖ẍ(t)‖2 +

(
λ(t)

2
− α(t)

2βρ2

)
‖∇g(x(t))‖2 ≤ 0.

According to the choice of the parameters involved, we have

λ(t)

2
− α(t)

2βρ2
≥ 0,

thus, for almost every t ∈ [0,+∞),

d2

dt2
(
g(x(t))− g(x∗)

)
+ γ(t)

d

dt

(
g(x(t))− g(x∗)

)
+ α(t)

(
g(x(t))− g(x∗)

)
+

γ(t)

2λ(t)

d

dt
(‖ẋ(t)‖2) +

(
γ2(t)

2λ(t)
− 1

β

)
‖ẋ(t)‖2 ≤ 0.

This shows that (18) in Lemma 5 for u := ‖ẋ(·)‖2,

b1(t) := α(t),
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b2(t) :=
γ(t)

2λ(t)

and

b3(t) :=
γ2(t)

2λ(t)
− 1

β

is fulfilled. By combining (29) and the first condition in (20) one obtains (16), while, by
combining (29) and the second condition in (20) one obtains (17).

Furthermore, by taking into account the Lipschitz property of ∇g and the strong
convexity of g, it yields

ρβ ≤ 1.

From (28), (27) and α > 1 we obtain

λ(t)

β
≥ α 1

β2ρ2
> 1 for every t ∈ [0,+∞),

which combined with (29) leads to γ > 2.
The conclusion follows from Lemma 5(ii), the strong convexity of g and (14). �

Remark 10 In Theorem 9 one can obviously chose α(t) = α, where α = 2
β2ρ2

− 1, if

βρ < 1, or α = 1 + ε, with ε > 0, otherwise, λ(t) = λ and γ(t) = γ for every t ∈ [0,+∞),
where

α

βρ2
≤ λ ≤ β

2

(
α+ α2

)
and

1 +
√

1 + 8λβ

2
≤ γ ≤ 1 + α.

References

[1] B. Abbas, H. Attouch, Dynamical systems and forward-backward algorithms associ-
ated with the sum of a convex subdifferential and a monotone cocoercive operator,
Optimization, DOI: 10.1080/02331934.2014.971412, 2014

[2] B. Abbas, H. Attouch, B.F. Svaiter, Newton-like dynamics and forward-backward
methods for structured monotone inclusions in Hilbert spaces, Journal of Optimization
Theory and its Applications 161(2), 331–360, 2014

[3] F. Alvarez, On the minimizing property of a second order dissipative system in Hilbert
spaces, SIAM Journal on Control and Optimization 38(4), 1102–1119, 2000

[4] F. Alvarez, Weak convergence of a relaxed and inertial hybrid projection-proximal
point algorithm for maximal monotone operators in Hilbert space, SIAM Journal on
Optimization 14(3), 773–782, 2004

[5] F. Alvarez, H. Attouch, An inertial proximal method for maximal monotone operators
via discretization of a nonlinear oscillator with damping, Set-Valued Analysis 9(1-2),
311, 2001

16



[6] F. Alvarez, H. Attouch, J. Bolte, P. Redont, A second-order gradient-like dissipa-
tive dynamical system with Hessian-driven damping. Application to optimization and
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