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Abstract

The alternating direction method of multipliers (ADMM) is widely used in solving structured
convex optimization problems due to its superior practical performance. On the theoretical side
however, a counterexample was shown in [7] indicating that the multi-block ADMM for minimizing
the sum of N (N > 3) convex functions with N block variables linked by linear constraints may
diverge. It is therefore of great interest to investigate further sufficient conditions on the input side
which can guarantee convergence for the multi-block ADMM. The existing results typically require
the strong convexity on parts of the objective. In this paper, we present convergence and convergence
rate results for the multi-block ADMM applied to solve certain N-block (N > 3) convex minimization
problems without requiring strong convexity. Specifically, we prove the following two results: (1) the
multi-block ADMM returns an e-optimal solution within O(1/€2) iterations by solving an associated
perturbation to the original problem; (2) the multi-block ADMM returns an e-optimal solution within
O(1/e) iterations when it is applied to solve a certain sharing problem, under the condition that the
augmented Lagrangian function satisfies the Kurdyka-Lojasiewicz property, which essentially covers
most convex optimization models except for some pathological cases.

Keywords: Alternating Direction Method of Multipliers (ADMM), Convergence Rate, Regularization,
Kurdyka-Lojasiewicz property, Convex Optimization

1 Introduction

We consider the following multi-block convex minimization problem:

min  f1(21) + fa(w2) + - + fy(2N)
s.t.  Ayxy+ Asxo+ -+ Ayaxy = b (1.1)
e dX,i1=1,...,N,

where A; € RP*™_ b € RP, X; C R™ are closed convex sets, and f; : R™ — R are closed convex
functions. One effective way to solve (1.1), whenever applicable, is the so-called Alternating Direc-
tion Method of Multipliers (ADMM). The ADMM is closely related to the Douglas-Rachford [11] and
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Peaceman-Rachford [32] operator splitting methods that date back to 1950s. These operator splitting
methods were further studied later in [30, 15, 17, 12]. The ADMM has been revisited recently due to its
success in solving problems with special structures arising from compressed sensing, machine learning,
image processing, and so on; see the recent survey papers [5, 13| for more information.

The ADMM is constructed under an augmented Lagrangian framework, where the augmented La-
grangian function for (1.1) is defined as

2

N N N
Z Z v Z
,Cv(l’l,...,CEN;/\) = P fj(xj) — <)\,j_1 Aj.lij —b> +§ P Aj:cj —-b N

where A is the Lagrange multiplier and v > 0 is a penalty parameter. In a typical iteration of the
ADMM for solving (1.1), the following updating procedure is implemented:

x'f"'l = argming cy, Ly (21, xé, A xﬁ“\,; AF)
bt = argming ey, L2V a0, 2k, 2k AP
(1.2)
it = argmin,  c y,; Lo (it ab ™ e AF)
Nt e Xy (D Ajak ).

Note that the ADMM (1.2) minimizes in each iteration the augmented Lagrangian function with re-
spect to x1,...,x N alternatingly in a Gauss-Seidel manner. The ADMM (1.2) for solving two-block
convex minimization problems (i.e., N = 2) has been studied extensively in the literature. The global
convergence of ADMM (1.2) when N = 2 has been shown in [16, 14]. There are also some recent works
that study the convergence rate properties of ADMM when N = 2 (see, e.g., [23, 31, 10, 2, 22]).

However, the convergence of multi-block ADMM (1.2) (we call (1.2) multi-block ADMM when N > 3)
has remained unclear for a long time. Recently, Chen et al. [7] constructed a counterexample to show
the failure of ADMM (1.2) when N > 3. Notwithstanding its theoretical convergence assurance, the
multi-block ADMM (1.2) has been applied very successfully to solve problems with N (N > 3) block
variables; for example, see [35, 33]. It is thus of great interest to further study sufficient conditions that
can guarantee the convergence of multi-block ADMM. Some recent works on studying the sufficient
conditions guaranteeing the convergence of multi-block ADMM are described briefly as follows. Han
and Yuan [18] showed that the multi-ADMM (1.2) converges if all the functions f1,..., fx are strongly
convex and 7 is restricted to certain region. This condition is relaxed in [8, 28] to allow only N — 1
functions to be strongly convex and < is restricted to certain region. KEspecially, Lin, Ma and Zhang
[28] proved the sublinear convergence rate under such conditions. Closely related to [8, 28], Cai, Han
and Yuan [6] and Li, Sun and Toh [27] proved that for N = 3, convergence of multi-block ADMM
can be guaranteed under the assumption that only one function among fi, fo and f3 is required to be
strongly convex, and < is restricted in certain region. In addition to strong convexity of fa,..., fn,
by assuming further conditions on the smoothness of the functions and some rank conditions on the
matrices in the linear constraints, Lin, Ma and Zhang [29] proved the globally linear convergence of
multi-block ADMM. Note that the above mentioned works all require that (parts of) the objective
function is strongly convex. Without assuming strong convexity, Hong and Luo [25] studied a variant



of ADMM (1.2) with small stepsize in updating the Lagrangian multiplier. Specifically, [25] proposes
to replace the last equation in (1.2) to

N
NeAL— Ay Z ij;Hl —-b,
j=1

where o > 0 is a small step size. Linear convergence of this variant is proven under the assumption that
the objective function satisfies certain error bound conditions. However, it is noted that the selection
of « is in fact bounded by some parameters associated with the error bound conditions to guarantee
the convergence. Therefore, it might be difficult to choose « in practice. There are also studies on the
convergence and convergence rate of some other variants of ADMM (1.2), and we refer the interested
readers to [20, 21, 19, 9, 34, 24, 36| for the details of these variants. However, it is observed by many
researchers that modified versions of ADMM though with convergence guarantee, often perform slower
than the multi-block ADMM with no convergent guarantee (see [34]). Therefore, in this paper, we focus
on studying the sufficient conditions that guarantee the convergence of the direct extension of ADMM,
i.e., the multi-block ADMM (1.2) and studying its convergence rate.

Our contribution. The main contribution in this paper lies in the following. First, we show that the
ADMM (1.2) when N > 3 returns an e-optimal solution within O(1/€?) iterations, with the condition
that v depends on e. Here we do not assume strong convexity of any objective function f;. It should
be pointed out that our result does not contradict the counterexample proposed in [7] since we apply
the ADMM (1.2) to an associated perturbed problem of (1.1) rather than (1.1) itself. Secondly, we
show that the ADMM (1.2) when N > 3 returns an e-optimal solution within O(1/e€) iterations under
the condition that the augmented Lagrangian £, is a Kurdyka-Lojasiewicz (KL) function [3, 4], V f is
Lipschitz continuous, Ay = I, and ~ is sufficiently large. To the best of our knowledge, the convergence
rate results given in this paper are the first sublinear convergence rate results for the unmodified multi-
block ADMM without assuming any strong convexity of the objective function (note that although
without assuming strong convexity, [25] studies a variant of the multi-block ADMM). In this sense, the
results presented in this paper complement with the existing results in the literature.

Organization. The rest of this paper is organized as follows. In Section 2 we provide some preliminaries
for our convergence rate analysis. In Section 3, we prove the O(1/¢?) iteration complexity of ADMM (1.2)
by introducing an associated problem of (1.1). In Section 4, we prove the O(1/¢) iteration complexity
of ADMM (1.2) with Kurdyka-Lojasiewicz (KL) property.

2 Preliminaries

We denote Q2 = X} x ... x Xy x RP and the optimal set of (1.1) as ©*, and the following assumption
is made throughout this paper.

Assumption 2.1 The optimal set Q* for problem (1.1) is non-empty.

According to the first-order optimality conditions for (1.1), solving (1.1) is equivalent to finding
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such that the following holds:

T (g () — AT \* ; ;
{(l‘z xy) (gi(@]) — A A") =0, Va; € &, (2.1)

Az} + -+ Anay — b =0,
fori=1,2,...,N.

In this paper, we analyze the iteration complexity of ADMM (1.2) under two scenarios. The conditions
of the two scenarios are listed in Table 1. The following assumption is only used in Scenario 2.

Assumption 2.2 We assume that Xy = R™. We also assume that f; has a finite lower bound, i.e.,
infy,cx, fi(zi) > fF > —oo fori =1,2,...,N. Moreover, it is assumed that f; + 1x, is a coercive
function fori=1,2,...,N — 1, where 1y, denotes the indicator function of X, i.e.,

0, Zf T, € X;
400, otherwise.

1x,(7;) = {

Furthermore, we assume that L is a KL function (will be defined later).

Scenario ‘ Lipschitz Continuous ‘ Matrices ‘ Additional Assumption ‘ Iteration Complexity
1 — — S§<v<e O(1/€?)
2 VIn Ax =1 |~ >+/2L and Assumption 2.2 O(1/e)

Table 1: Two Scenarios Leading to Sublinear Convergence

Remark 2.3 Some remarks are in order here regarding the conditions in Scenario 2. Note that it
s not very restrictive to require f; + 1x, to be a coercive function. In fact, many functions used as
reqularization terms including ¢1-norm, €ao-norm, £e-norm for vectors and nuclear norm for matrices
are all coercive functions; assuming the compactness of X; also leads to the coerciveness of f; + 1x;.
Moreover, the assumptions Ay = I and V fn is Lipschitz continuous actually cover many interesting
applications in practice. For example, many problems arising from machine learning, statistics, image
processing and so on always have the following structure:

min fi(z1)+ -+ fvo1(@n—1) + fn(b—Ajxy — - — Anv_1zn—1), (2.2)

where fn denotes a loss function on data fitting, which is usually a smooth function, and fi,..., fn—1
are reqularization terms to promote certain structures of the solution. This problem is usually referred
as sharing problem (see, e.g., [5, 26]). (2.2) can be reformulated as

min  fi(z1)+ -+ fyvoi(@v-1) + fy(zn)

st. Az +---+Ayv1zn—1 +an =), 23)

which is in the form of (1.1) and can be solved by ADMM (see [5, 26]). Note that Ax = I in (2.3) and
it is very natural to assume that V fy is Lipschitz continuous. Thus the conditions in Scenario 2 are
satisfied.



Notations. For simplicity, we use the following notation to denote the stacked vectors or tuples:

k *
u = . uk = . u* = . w = u wk = u w* = u
. ) k ) . ) )\ ) Ak ) )\* .
TN Ty Ty

We denote by f(u) = fi(z1) +---+ fn(xn) the objective function of problem (1.1); 1y is the indicator
function of X'; Vf is the gradient of f; ||z|| denotes the Euclidean norm of x.

In our analysis, the following two well-known identities are used frequently,

1 1

(wi —w2) (w3 —wy) = 5 (llwr — wal? = Jwy — ws]?) + 3 (llws — wal? = [Jwg — wa|[?), (2.4)
1

(w1 —wp) " (wz —wi) = 5 (lws = w3]|* = [Jwr — wa* = lwr —ws?) . (25)

3 Iteration Complexity of ADMM: Associated Perturbation

In this section, we prove the O(1/€?) iteration complexity of ADMM (1.2) under the conditions in
Scenario 1 of Table 1. Indeed, given € > 0 sufficiently small and initial point u°, we introduce an
associated perturbed problem of (1.1), i.e.,

min fl(x1)+f2(a:2)+-"+fN(xN)
s.t. Ajxi+Asxo+---+AnTn =0 (3.1)
rieX,t=1,...,N,

where fi(z;) = fi(z;) + LA —Aix?H2 for i = 2,...,N, and u = ¢(N — 2)(N + 1). Note f; are
not necessarily strongly convex. We prove that the ADMM (1.2) for associated perturbed problem
(3.1) returns an e-optimal solution of the original problem (1.1), in terms of both objective value and
constraint violation, within O(1/€?) iterations.

The ADMM for solving (3.1) can be summarized as (note that some constant terms in the subproblems
are discarded):

2

N
1
:L”f+1 := argmin fi(z1) + J Az + ZAJ-:E? By —— (3.2)
r1E€X1 2 j=2 ’7
~ i—1 N 1 2
x,’f“ = argmin f;(x;) + % ZAjm;?H + Az + Z ijf —b—2Nf|| ,i=2,...,N, (3.3)
T, EX; i—1 i—g v
J Jj=t+1
ML= Ny (Alxlerl + Agzh 4 4 AlefVJrl — b) . (3.4)



The first-order optimality conditions for (3.2)-(3.3) are given respectively by xf“ € X and

N
(z1 — VT | gr (2T — AT N g yA] | ApahTt 4 Z ijg? —-b|| >0, (3.5)
j=2

i N
(zi — 2T | gi(a™™) + pA] A (xf“ - x?) — ATDF yA] Zij;‘?H + Z Ajw;? -b]| =0,
j=1 j=it+1
(3.6)

hold for any x; € X; and g; € 9f;, a subgradient of f;, for i =1,2,..., N. Moreover, by combining with
(3.4), (3.5)-(3.6) can be rewritten as

N

(21— )T g t) — ATNF AT (ST Ay -5 | | 20, (3.7)
j=2

N
(2 = T |l )+ pA] A (2! = al) = AT Al [0 Ayl -k )| 20 (38)
j=i+1

Lemma 3.1 Let (zF+! 25+ xlfvﬂ, MDY € Q be generated by the ADMM (1.2) from given (25, ..., 2%, \F).

For any u* (:L'l,ZL'Q, o ay) € QF and X € RP, it holds true under conditions in Scenario 1 that
oy — bt i — A NFHT
:CS . 1.129-&-1 _AQT)\kJrl
Flu*) = f*h) + : :
x?\f o xljc\f+1 _AT )\k—l-l
A — AkH1 SV Akt —p
N
1 2 N —-2)(N+1
e (HA e )+ W=D S et — 0t
Y i=2
y N-1 i 2
k+1
+5 . ZAx+ZAx—b ZA:,;+ZA9;
=1 = Jj=i+1 Jj=i+1
> 0 (3.9)
Proof. Note that combining (3.7)-(3.8) yields
T
L1 — 33]f+1 g1 (xlfﬂ) - AlT/\kJrl ko . ok _ gkl
wy — ap*! ga(a5th) — AF AR pAs (Aswy ™ — Agaf) S
+ : +H
: : ok k]
TN — x/]fv-i-l gN( k—l—l) AT \k+1 ,UJAT (A J}k+1 AN'r?V) N TN



where H € R(ZZ1 )% (X2 m) is defined as follow:

yA] Ay ~NAT A3 - yA] An

0 ’}/A;rAg "}/A;AN
H:= : :
0 0 0

The key step in our proof is to bound the following terms

N
(z; — i tHT AT Z Aj(a:?—m?H) ,i=1,2,...

j=it1

Fori=1,2,..., N — 1, we have,

N
(i — 2T TAT | D Ay(af — i)

j=i+1
i—1 T N N
= ZA Tj —-b| — ZAjH?j—i-Aia?f—’—l —b — Z ijéﬁ—l — | — Z ijg?
Jj=1 J=i+1 j=i+1
2 2
1 k+1
= 3 ZAx]+ZAxb ZAJEJ+ZA$+
Jj=i+1 Jj=i+1
i—1 N 2
+§ Zijj—l—ZAja:?“ ZA xj—i—Aka—i— Z Ax —-b
j=1 j=i j=i+1
2 2
1 k+1
SE1{)3XEED SRR [ R IOED SPILE
Jj=i+1 Jj=i+1
1 i—1 N 2
k+1
+§ Zlijj—l—ZA]a:]Jr bl ,
J= J=i

where in the second equality we applied the identity (2.4).



Therefore, we have

2y — zF T [ yA[ Ay YA A3 - A Ay
ll€+1 0 yAg Az oo yAJ Ay zk — xg"'l
T2 — Ty : . , : :
k4 0 0 o YAY AN - Ilzf\;r1
IN TN 0 0 .. 0
N-1 i N 2 N 2
i k k+1
< I3 ([Same Ao <[ Sme 3 Ao
i=1 \||j=1 j=it+1 j=i+1
2
N—
1 2
] A +%Z ZA wZA o= (3.11)
1=2

Combining (3.4), (3.10) and (3.11), it holds for any A € R? that

T
=\ T gt - AL
Ty — x12q+1 gg(:cgﬂ) _ A;r)\kﬂ .
: + 1 ()\ _ )\k-i-l) <)\k+1 _ )\k)
Y
TN — 33?\/4_1 gN(xécV—&-l) AT pLan
A — )\k—f—l 22:1 A erl —b
1 9 ’YN 1 2
—|—,uz <xl - a:kH) Al A; (:Uf“ - x?) + > HAkH - )\kH + B Z ZA xj + ZA ka
=2 1=2
~ N-1 A N 2
k
+§Z Zijj+.Z Ax—b ZAxJ—l—ZAx‘H
i=1 j=1 j=i+1 J=i+l
> 0. (3.12)

Using (2.5), we have

1 T 1 2 1 2 2
(k1 AL R L H/\kJrl _ )\kH _ L H/\ _ /\kH _ H)\ _ )\k+1H
(=) o )+ o 2 ,

and
1 (95Z - ka) A;Aj (azf“ — x?)

= B HArTz — AZ.CL‘?Hz — Ai$’»€+1 — AZCC?
9 %

2 2
— HAzxz — A1I5+1H )
2 2

Letting u = v* in (3.12), and invoking the convexity of f; that

fi@}) = fi(@f ™) > (af —2f T Tgi(af ), i=1,2,... N



and

N-1 |[i-1 N 2 N-1|| N 2
% ZAJI? + Zij?+1 —b = % ZA] E+1 *)
=2 |[|j=1 j=t =2 || j=1
< ’Y(N+1 N -2) ZHA R+l _ ’
we obtain,
ot — gkt T — AT AR
3 — ok —af e
Fu) = fu*h) + : :
x}k\f o méﬂ\f-&-l —AL)\I{JA
A — AkF Sy At — b
1 k k1) H Y * 0|2 * k1 ||?
T2 (H* W r ) + 52 <HAw:Z- — Ad||* — || A — A )
N-1 i 2
+3 ZAx+ZA:z:—b ZAa:+ZAa;k+1
=1 \|]7=1 j=it+l1 j=i+1
N4+ 1)(N -2 2
+W( i 2)( ) Z HAM? - Aia:fHH
i=2
> 0.

This together with the facts that u = (N — 2)(N + 1) and v < € implies that

N N
7(N+1)(N_2) * k+1 2 H * k+1 2
DS a3 s <o
— =
which further implies the desired inequality (3.9). O

Now we are ready to prove the O(1/¢?) iteration complexity of the ADMM for (1.1) in an ergodic case.

Theorem 3.2 Let (o™ ab™ o a2kt /\kH) € Q be generated by ADMM (3.2)-(3.4) from given
(x5, .. :CN, YY), For any integer t > 0, let ' = (z4, 7, ... ,Zh) and \' be defined as

t
1 . 1
—t k+1 N t k+1
. = . :]_’2,...7 9 >\ - )\ .
i t+1le ! t+1k2:0



For any (u*,\*) € QF, by defining p := |\*|| + 1, it holds in Scenario 1 that,

0 < f@@)—f(u")+p

2

p°+ 1A H Z e(N-2)(N+1) * 0|2
7(t + 1) i=1 ||j=i+1 2 =2
This also implies that when t = O(1/€*), at = (z4,7h,...,ZY) is an e-optimal solution to the original

problem (1.1), i.e., both the error of the objective function value and the residual of the equality constraint
satisfy that

= O(e). (3.13)

Proof. Because (u¥, \F) € €, it holds that (@, \) € Q for all + > 0. By Lemma 3.1 and invoking the
convexity of function f(-), we have

N
Flut) = f@) + AT (Z A b)

=1
xi -7t i —AlTE\t
xh — 7h —AJ N\
G R COR B
iy — Tl — AN
A=A SN AEt—b
[ xy — it ’ —A] N |
o x5 — gkt A AR
> mz fu®) = f( k+1)+ :
k=0 oty — 2kt - AT AR
A — \FH SOV Akt g
t
1 1 e(N —2)(N +1)
> L(p-xe - - AkH At — At
- t+1kZ:(] 2fy<H 2 ZH Z; xH
N-1 i N
—i—% Zijj—F ZAJ:U?H ZA&: + ZAQZ —b
i=1 =1 j=it+1 j=i+1
1 N1 i
> ————— A=A ZAx—irZA:v—b
2y(t +1) i=1 j=i+1
(N —2)(N+1) & 2
B * 0
_ : ; |Aizy — Asad||” (3.14)

10



Note that this inequality holds for all A € RP. From the optimality condition (2.1) we obtain

N
0> f(u) = fla) + ()T (Z Azl - b) .
=1

Moreover, since p := ||\*|| + 1, by applying Cauchy-Schwarz inequality, we obtain

N
=1

By setting A = —p (Zf\il Azt — b) / sz]\il Azt — bH in (3.14), and noting that ||A|| = p, we obtain

0< f(a") = f(u*) +p (3.15)

N
Fah) = fu) +p||D_ Azl —b (3.16)
i=1
N-1|| N 2 N
2 02 -
P+ A7) gl 0_ e(N -2)(N +1) " 0|2
Az — x* Ajxl — A;x; .
VE+1) (1) - 2 Aag—a| + 2 2 [[Aswy = Awl|
i=1 ||j=i+1 =2
When t = O(1/€?), and together with the condition that § <7 <€, we have
2
2 on2 N—-1 N N
p~+ A7 gl 0_ €N -2)(N+1) . 0|2
Az — o Al — Ay ||” = O(€).(3.17
y(t+1) +2(t+1); j;rl ey )| 2 ;H i | (€)(3.17)

We now define the function

N
v(§) :min{f(u)]ZAia:i—bzg,g;i eX;,i=1,2,...,N}
i=1

It is easy to verify that v is convex, v(0) = f(u*), and \* € Jv(0). Therefore, from the convexity of v,
it holds that
v(&) = v(0) + (A", &) = f(u®) — [IA*[[<]l- (3.18)

N
Let £ = > Azt — b, we have f(u') > v(€). Therefore, combining (3.15), (3.17) and (3.18), we get
i=1

2

—[INEN < f@') — f(u®)
1

2 01|12 N-— N N
pwt ’+A1)H + 2(t1 1) ; j:ZZ;lAJ’(JU? 3| + ik 2;(N - ; | 4ia; — Al || = pll€]
< Ce—pll€ll,
which, by using p = ||\*|| + 1, yields,
N
1Y Azl — bl = ||€]| < Ce. (3.19)
=1

11



Moreover, by combining (3.15) and (3.19), one obtains that

—pCe < —pliéll < f(@") = f(u) < (1 - p)Ce. (3.20)

Finally, we note that (3.19), (3.20) imply (3.13). O

4 Iteration Complexity of ADMM: Kurdyka-Lojasiewicz Property

In this section, we prove an O(1/e) iteration complexity of ADMM (1.2) under the conditions in Sce-
nario 2 of Table 1. Indeed, we prove that the ADMM for the original problem (1.1) returns an e-optimal
solution within O(1/e) iterations in Scenario 2.

Under the conditions in Scenario 2, the multi-block ADMM (1.2) for solving (1.1) can be rewritten as:

2
N-1
. 1
A = argmin fi(z1) + Il Ay + Z Aj:cf + a2k —b— =Nk, (4.1)
r1E€X) 2 j:2 ry
. 2
i—1 N-1 1
= argmin filw) + 4 ||Y At + A+ Y Agaf ok —b— 2N
T, €X; 2 i1 .. v
J= Jj=i+1
i=2,.. . N—1,  (42)
N-1 1 2
ol = argmin fy(zn) + 2 Z ijéﬁl +ay —b—=A\F|| | (4.3)
2 = ¥
Nt = NPy (Alxlfﬂ + Agngrl + -+ AN_la:?\f_ll + :U’fVH — b) . (4.4)

The first-order optimality conditions for (4.1)-(4.3) are given respectively by xf“ eX,i=1,...,N—1,
and

N-1
gr (@Y — AT AT | Aphtt 4 Z ij? +a2k —b] =0, (4.5)
j=2
i N-1
gi(xF Ty — AN 4y A Z ijg?ﬂ + Z ijf +ak —b ] =0, (4.6)
j=1 j=it1
N-1
Vin (@i — 2P 4y Z Aﬂ:?“ +ak —b ] =0, (4.7)
j=1

where g; € 0 (fi + 1x,) is a subgradient of f; +1x, for i =1,2,..., N — 1. Moreover, by combining with

12



(4.4), (4.5)-(4.7) can be rewritten as

N-1

gi(@y ) — AT 4y A Aj(af =i + @y — a2 | =0, (4.8)
=2
N-1

gi(@y ) = ATNT AT [ Y0 Ay — 2T + (2 -2 | =0, (4.9)
j=i+1

Vin (@) — A = 0. (4.10)

Note that in Scenario 2 we require that £, is a Kurdyka-Lojasiewicz (KL) function. Let us first
introduce the notion of the KL function and the KL property, which can be found, e.g., in [3, 4]. We
denote dist(x,S) := inf{|ly — z|| : y € S} as the distance from x to S. Let n € (0,+0c]. We further
denote ®,, to be the class of all concave and continuous functions ¢ : [0,7) — R satisfying the following
conditions:

L. ¢(0) = 0;
2. ¢ is C! on (0,7) and continuous at 0;
3. for all s € (0,n) : ¢'(s) > 0.

Definition 4.1 Let f: Q — (—o0,400| be proper and lower semicontinuous.

1. The function f has Kurdyka-Lojasiewicz (KL) property at wy € {w € Q : df(w) # 0} if there
ezists n € (0, +00], a neighbourhood Wy of wo and a function ¢ € ®, such that for all

wop € WN{w e Q: f(w) < flwy) < f(w) +n},
the following inequality holds,
¢'(f(wo) — f(wo))dist(0, 0f (wo)) > 1. (4.11)
2. The function f is a KL function if f satisfies the KL property at each point of QN {df(w) # 0}.
Remark 4.1 It is important to remark that most convex functions from practical applications satisfy the
KL property; see Section 5.1 of [4]. In fact, convex functions that do not satisfy the KL property exist (see
[3] for a counterexample) but they are rare and difficult to construct. Indeed, L, will be a KL function

if each f; satisfies growth condition, or uniform convexity, or they are general convex semialgebraic or
real analytic functions. We refer the interested readers to [1] and [4] for more information.

The following result, which is called uniformized KL property, is from Lemma 6 of [4].

Lemma 4.2 [Lemma 6 [4]] Let 2 be a compact set and f : R" — (—o0,00] be a proper and lower
semi-continuous function. Assume that f is constant on ) and satisfies the KL property at each point
of Q. Then, there exists e >0, n > 0 and ¢ € P, such that for all i in ) and all u in the intersection:

{u e R": dist(u,Q) <e}N{ueR": f(a) < f(u) < f(a)+n},
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the following inequality holds,
@' (f(u) = f(u))dist (0,0f (u)) > 1.

We now give a formal definition of the limit point set. Let the sequence w* = (m’f, . ,x’fv, )\k) be a
sequence generated by the multi-ADMM (1.2) from a starting point w® = (x(l), ey x[])\,, )\0). The set of
all limit points is denoted by Q(w'), i.e.,

Q(wo) = {U_J e R™ x--- x R"™ x RP : 3 an infinite sequence {k;};=;, .. such that wht — @ as | — oo} )

In the following we present the main results in this section. Specifically, Theorem 4.3 gives the conver-
gence of the multi-ADMM (1.2), and we include its proof in the Appendix. Theorem 4.5 shows that
the whole sequence generated by the multi-ADMM (1.2) converges.

Theorem 4.3 Under the conditions in Scenario 2 of Table 1, then:

1. Qu°) is a non-empty set, and any point in Q(w®) is a stationary point of Ly(x1,..., 2N, N);
2. Q(wO) is a compact and connected set;

3. The function L(z1,...,2N,)\) is finite and constant on Q(w°).

Remark 4.4 In Theorem 4.3, we do not require L to be a KL function, which is only required in
Theorem 4.5 (see next).

Theorem 4.5 Suppose that L(z1,...,zN,A) is a KL function. Let the sequence wk = (aclf, . ,xf;v, )\k)

be generated by the multi-block ADMM (1.2). Let w* = (z%,...,2%, \*) € Qw?), the sequence wk =
(w'f, - ,xf\,, )\k) has a finite length, i.e.,

(e’ N—-1
> (Z A — A | + [l — 27| + IAF — Wlu) <a, (4.12)
k=0 =1

where the constant G is given by

N-1
2M~(1 + L?) .
G =2 (Z Al — Al + o — akll + A0 - A1||> F g (G — £y (w))
i=1
and
N—1 1 N—1
Mzm&x(fyz HAlT ,—+1+Z HAZT > > 0,
i=1 v i=1
and the whole sequence (Ala:]f, Aozl ... 7AN—1x§€\7,1, xﬂ“\,, /\k) converges to (Alaf{, G ANTN T )\*).
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Proof. The proof of this theorem is almost identical to the proof of Theorem 1 in [4], by utilizing the
uniformized KL property (Lemma 4.2), and the facts that Q(w?) is compact, £, (w) is constant (proved
in Theorem 4.3), with function ¥ replaced by £, and some other minor changes. We thus omit the
proof for succinctness. O

Based on Theorem 4.5, we prove a key lemma for analyzing the iteration complexity for the ADMM.

Lemma 4.6 Let (zft 25T 2k A1) € O be generated by the multi-ADMM (4.1)-(4.4) (or
equivalently, (1.2)) from given (xf, ... 2k NK). For any u* = (z},23,...,2%) € Q* and X € R?, it
holds in Scenario 2 that
x] — x]fH T —AI)\]""H
ol — aht! —AJ N1
Fl) = fuh) + : :
:L‘*N 7x1]€V+1 _)\k’+1
Yo )\ s akn ke
N-1 2 N-1 2
—1—% Ajx] + Z Aia:f + a:ﬂ“v —b Arx] + Z A,;xf“ + xﬁvﬂ —b
=2 1=2
1 ) ) N-1
5 (H)\ - )\kH - H/\ - /\k“H > +yD(N-2) [ 3 HAixf - AifoH + H:r - x?V“H
i=1
> 0, (4.13)
where D s a constant.
Proof. Note that combining (4.9)-(4.10) yields
r T T ... T 7
=\ T/ (et — AT v Az A T —
:cz—xISH ga(xhTh) — AJ AR+ 0 T2 Ay T2 T
+ : .. KR : :
’ 0 0 c AL zh — mk'H
k+1 k1 N-1
TN — xN—i- _ VfN( + ) )\k-i-l 0 0 0 N N

> 0,
where z; € X; and ¢; € O(f; + 1x,) is a subgradient of f; + 1y, fori =1,2,...,N — 1.

The key step in our proof is to bound the following terms

.
<xi—x§+1> AT ZA o ah 4k -kt | i= 12, N - L
Jj=t+1
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For the first term, we have (similar to Lemma 3.1)

N—
(21 —2¥™)TA Z :1: — 1:’““) + (xhy — i
j=2
1 N-1 2 N-1 2
Lk ko . k+1 k+1 E+1 k2
< 3 A1x1+;ijj+xN b Alxl—i—JZ;Ax kil —p 272||)\ AR,

Fori=2,3,..., N — 1, we have,

N-1
k+1NT 2T ko kt1 k k+1
(2 — 27 th) A, Z Aj(z; _%Jr ) + (2 —ap)
j=it1

[ N-1
o k1 .k ekt k+1
[ iz - aiat | ZHAJ%—AJ% | + [l - o]

[ iz - et Z 52} = asa |+ ok - 7|
Therefore,
Ty — l‘k—H T ’YAIAQ ’yAirAg tee ’)/AI .
_ 11€+1 0 YAy Az - yA] x5 — $2+
2 $2 . . . .
LRl 0 0 e AN o — xﬁvﬂ
IN — TN 0 0 0
N-1 2 N-1 2 1 N
< % Ay + > A 2k —b Ay + ) Al = |+ HA’““ - A’fH
=2 =2 v
N-1 N—1
(3 s - st ] ) |55 ot - st o8] (419
i=2 i=1
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Combining (4.4), (4.14) and (4.15), it holds for any A € R? that

-
T — xllerl gl(xl£+1) _ Ail')\k:—‘rl
Ty — l,l2€+1 92(x2+1) _ A;')\k-‘rl .
. + 1 (A_ )\k+1) ()\k;+1 _ Ak)
: : ~
TN — $§€V+1 va(x?\f+1) _ )\k—f—l
A — AkH S At 4 b
- N-1 2 N-1 2 1 )
k k k k k k
—1—5 A1:B1+ZAixi+wN—b - A1x1+ZA7;xi+1+xN+l—b +£H)\ T H
=2 1=2
N-1 N-1
(3 st ) [ et -t s
i=2 i=1
> 0. (4.16)

Using (2.5), we have

1 T 1 2 1 2 2
Z (= Ak‘-i-l )\k-i-l o Ak - HAk-i-l o )\kH _ HA o AkH o H)\ . )\k-‘rlH )
S (=) )+ 35 >

Letting u = u* in (4.16), and invoking the convexity of f;, we obtain

ot — gkt T — AT AR+
h — x12c+1 —AJ N+ 1 ) )
- | e
' k+1 2y
‘/L‘}(V _ I{]CVJrl —\Ft
N — >\k+1 ZN—I A‘$k+1 + xk,‘-{-l —b
i=1 L N
N-1 2 N-1 2
+% Aizy+ 3 Aab ok —b| — A+ 3D At bk b
=2 1=2
N-1 N-1
(3 s -t ) [ et - ] o - |
i=2 i—
> 0.
From Theorem 4.5 we know that the whole sequence (Alzc'f, Agzh ... ,AN—lfL"]fv,l, :B’fv, )\k) converges to
(Ala:*f, e LANTN TN )\*). Therefore, there exists a constant D > 0 such that
HAixf . AifoH <D, (4.17)
for any k > 0 and any i = 2,3,..., N — 1. This implies (4.13). O

Now, we are ready to prove the O(1/e¢) iteration complexity of the multi-block ADMM for (1.1).
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Theorem 4.7 Let (:z:lfﬂ,:cgﬂ,...,:z:lfvﬂ,/\kﬂ) € Q be generated by ADMM (4.1)-(4.4) from given
(x5, ... 2% N). For any integer t > 0, let u' = (24, 25,...,2%) and \! be defined as

t
1 - 1
=t __ k+1 . _ t__ k+1
:Bi_t—i—lg ;7 1=1,2,...,N, /\—t+1k§_0)\ .
For any (u*,\*) € Q*, by defining p := |\*|| + 1, it holds in Scenario 2 that,

N
Z Al.ff —b
=1

0 < f@)—fu)+p

2
2 012 N-1
p~+ A gl 0 0 s 1DG
Ai(x} — - -
S+ 20+ ; @i —zj) + ey — o)) + 47
Note this also implies that when t = O(1/e), ' = (z},z,...,ZY%) is an e-optimal solution to the

original problem (1.1), i.e., both the error of the objective function value and the residual of the equality
constraint satisfy that

|f(@") — f(u*)] = O(e), and = O(e). (4.18)

N
=1

Proof. Because (u*, \F) € €, it holds that (@, \!) € Q for all t > 0. By Lemma 4.6 and invoking the
convexity of function f(-), we have

=1

vp—a) \ ' —A[X

rh— 7 —Ag N
—f(u) - 1) + ;

Ty~ Ty =

A= SVt AE T — b
[ x} — xlfﬂ T —AlT)\kH 1
L xh — wéﬂ'l —AJ AR
Zmz f(u®) f(uk+1)+ :
k=0 Tt — xk+1 _)\k+1
A= AL S ATl -

t N-1
E—— 1 k1 )? k|2 k k+1 k k+1
ot 35 [ (e - ) oot (3 -t

k=0
y N—1 2 N—-1 2
—1—5 Ajx] + Z Aia:fﬂ + avﬁ,+1 —bl| — |[A1x] + Z Aixf + xé“v —b
i=2 i=2
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N-1

1 ) " o
SRSy e Arz Ajx; —b
D(N —2) < (V=L
TR (S bt - aet o

k=0 i=1

: 2 . 3 2 vDG(N - 2)

> ———— |IN =X - Azt A0 20 _p| - APEN =2)

- 2y(t+1) H H 200t + 1) 121 + ; xy + 2 i 7

where the last inequality holds due to Theorem 4.5. Note that this inequality holds for all A € RP?.
From the optimal condition (2.1) we obtain

N-1
0> f(u*) = f(a') + (A" (Z Al + 2y — b) :
i=1
Moreover, since p := | A\*]| + 1, [|A — Xo||? < 2(p? + ||A°]|?) for all ||A|| < p, and Zf\gl Aixf+ a3y =0b, we
obtain
N-1
Z Azi’f + f}\/ —b

=1

0 < f@)—fu)+p

2 012 N-1
ol D TS A - af) + (@ - 3 YDG(N —2)
W+ D) 2D i—2 A =) oy =) (4.19)
When t = O(1/¢), we have
PP+ 1A = DGV —2)
> Ayl —xf) + (2 — a3 R ) 4.2
,Y(t + 1) Q(t 4 1) P (xz xz) + (xN xN) t+1 O(G) ( O)

By the same argument as in the proof for Theorem 3.2, (4.18) follows from (4.20).
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A Proof of Theorem 4.3

We first prove a key lemma in the proof of Theorem 4.3.
Lemma A.1 The following holds in Scenario 2,

1. The iterative gap of dual variable can be bounded by that of primal variable, i.e.,
Vin(ahtty = AL (A1)

and

2
H)\’““ - Ak’H <12 Hx’;V“ — ok (A.2)

where L satisfies that
IVin(@) = Vinw) < Liz—yl.

2. The augmented Lagrangian L. has a sufficient decrease in each iteration, i.e.,

£, gkt A

k k k
Lo(xy, ..., 2%, A7) — e TN

) ) N-1
v* —2L H k k+1H2 H k k+1H2 H k k+1H2
D —— E Axt — A xh — AP — A . A3
= 2’7(1+L2)<i1 SO I R -

3. The augmented Lagrangian C,Y(wk) is uniformly lower bounded, and it holds true that

o0 N-1
k+1 k
Z HAZ{L'ZJ'_ — All'z

2 2 2 2~(1 + L2
Y P ) < 20D (0 ) - 1)

=" 2 _972
k=0 \i=1 vF 2L
(A.4)
where L* is the uniformly lower bound of E«,(wk), and hence
(= k k1|2 ko k+tl])? ko k1]
o e S
Moreover, {(:U’f,a:g, ces ,:B’f\,, )\k) :k=0,1,.. } 1s a bounded sequence.
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4. There exists a upper bound for a subgradient of augmented Lagrangian L~ in each iteration. Indeed,

we define

N—1 N-1
R R Il PR RS

i=1 j=i+1
and
N-1 N-1
k+1 _ k+1 k41 k+1 _ k+1 k41
Ry =~ E A7+ —b|, Ry =b- E AT —ay
i=1 =1

for each positive integer k, and i = 1,2,...,N. Then (leﬂ,...,R;“V'H,RiH) € 8£7(wk+1).
Moreover, it holds that

k k+1 k
H(R1+1,...,RN+ ,RA“)H

N
< X fre e m
=1
N-1
< M (Z HAiazf _Ail’?""lH + ’ zk —xfﬂH + H)\’f _ )\k+1H> , Vk >0, (A.6)
=1

where M is a constant defined as

N-1
M = max (7 Z HA;I—
i=1

,1+1+N21HA,T>>0. (A7)
v i=1

Proof of Lemma A.1.

1. (A.1) follows from (4.10) directly. Then we consider the inequality (A.2). It follows from (A.1)
and the fact that V f is Lipschitz continuous with L that

2 2 2
R R C

2. Multiply both sides of (4.5) by a2} — :U’f“, and invoking the convexity of fi, we have
T N-1
0= (xlf - xf“) g (@ — AT yA] | Aph T 4 Z ij§ + a2k —b
j=2
k k1 k k1) |k
<flah) — flz77) - (Alxl — Ayay ) A

N—-1
-
+ (Alx’f — Alxlf'H) Alxlf'H + Z Aj:c? + xﬁv —b
j=2
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2
N—-1
2
= f(a:’f)—Alxlf+% Zijf—l—a;?V—b _%HAlm’f_Alxif—&-IH
j=1

2

N-1
— | bty — Apahtt 4 % Aphtt 4 Z Ajm? +ak —b
j=2
2
=L (k. ak B — o (R ek ek k) — HAlfL’l AlkaH (A.8)

where the second equality holds due to (2.5).
For i =2,3,..., N, we can derive from (4.6) and (4.7) that

L, <xlf+1, e ,xf+11, i, )\k) L, (xlfﬂ, e ,xf“, Ii-:_h e )\k)
gHAiwf —Aiwf“H . (A.9)
Summing (A.8) and (A.9) over i = 2,..., N, we have
c, (x’f, . ,xﬁfv,A’f) . (x’f“, Lk Ak>
N-1 )
2> || Aset — Ak + 3 ||k - fV“H . (A.10)
i=1
On the other hand, it follows from (A.1) that
c, <:L,’1€+17 Lok )\k) c, (xlchrl’ 2k )\k+1>
2
H)\k A’““H = H - oK1 (A.11)

Combining (A.10) and (A.11) yields

c, (a:’fx’fVAk) N (a;’f“,..., ok Ak“)
N-1
2 2_912 2
> 5> [t = AT 2 o - o
i=1
¥ = Ak Akt 2 P2l gy, w2 PP =20%) ) k+1
) ; AN N T ) HxN_xN H L Gy o) H N T EN H
N-1 2
Y Lk kL 2 ’Y —2L k+1 k k1]
2 15 st a2 (o s -]
v —21? (= 2
- E (% PN
gs i=1
where the last inequality holds due to the fact that
v, -2’
2 = 2y(1+ L2)
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3. Note that

L, (xlfﬂ, e ,x’]‘:\,ﬂ, /\k“)
N— N-1 y N-1 2
k+1 k+1 k+1 k+1 k+1 k+1 k+1
Z )+ (el — <)\ Z;AZE + oy b>+2 Z;Ai:ci +ay b
=1 7 1=

It follows from (A.1) and the fact that V fx is Lipschitz continuous with constant L that,

N-1

fN (b — Z Aixf+1>
=1

2

N—1 I N—1
< fN(IEﬁ;H) I < k+1 (b Azxkﬂ 1>> n = b Z Ai:rfﬂ _ x?vﬂ
i=1 i=1
N—1 N—1 2
= fn(afth) - < e, D Al b> L > At ol —b
=1 =1

2

N-1
L
k+1 k 2: k+1 k+1
fN(:BN+)—<)\+1 1A£L‘++x+ b>+2

N-1
ZA k+1+x§fv+1 b
i=1

This implies that there exists L* > —oo, such that

Lo (ah T gkt Ak
N-1 N-—1 2
> Z fl(xf’-i-l) + N <b— Z Aixi-ﬁ_l) k:-i-l +xk+1 b
i=1 =1
> L7, (A.13)

where the last inequality holds since v > L and infy, f; > fF fori=1,2,..., N.
Therefore, it directly follows from (A.3) and v > v/2L that,

N2 _ 92 K /N-1
T+ 1) 2 (Z |4t = Agal |2 + ot — 2kl 4+ N Akn?) < Ly(w”) — L.
k=0 )

Letting K — oo, we have

N-1
ﬂi Z ||All‘k+1 _ Azl'kH2 + HZL‘k—H _ m?\[HQ + H)\kJrl _ >‘k||2 <[ (’UJO) _L*

27(1+L2) pard - 7 2 N —= =~ ’
which implies (A.4) and (A.5).

It also follows from (A.13), (A.3) and y > V2L that £, (w®) — f& > SN7! fi(a®1). This
implies that {(ac]f, :c]g, ey mﬂ‘/’v_l) k=0,1,.. } is a bounded sequence by using the coerciveness
of fi+1x,i=1,2,..., N —1. The boundedness of (a:fv, )\k) can be obtained by using (4.4), (A.2)
and (A.5).
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4. From the definition of £, it is clear that for ¢ =1, ...

7N_]-7

N-1
gz( k+1) AT)\k+1 —|—’}/AT (Z A karl _‘_l‘kJrl - b) e aw
=1
and
N—-1
vf(xljf\;rl) )\k—i-l 4+ (Z A karl + karl b
=1
and

N-1
Lkl k1
b— g Aiz; Ty
=1

where g; € 0 (fi +1u,) fori =1,2, ...

= v/\‘C’Y(wk+1)’

N—1

g — AJ A = —yA] Z Aj(af =25 + (@l — 2™

=2

N—1

gi(af ™) — ATNT = AT | Y0 Aj(af — 2 + (2l - 2R
Jj=i+1

Vfn(a k+1) Pl 0,

we have

N-1

N-1
REV = A] (Z Akt pght b> — A/ Z Aj(xf — x?“) + (k-
j

i=1 =141

Rk—H =~ <Z A xk+1 —I-LL'k—H

=1

b> = Vo Loy ("),

N-1
RETL = — Z At = g = vy L (wh ),
i=1
fori=1,2,...,N — 1. This implies that (le+1, .

i£7(wk+1)>

) - VINLV(wkH)v

, N — 1. Since (4.8), (4.9), and (4.10) imply that

: (A.14)

)|, (A.15)

(A.16)

k—l—l)

Ty € ﬁwiﬁv(wkﬂ),

,R’;V“,R‘;“) € OL, (W),

We now need to estimate the norms of Rf“, 1<¢<N—-1and Rﬂ“\, and R'f\. It holds true that,

[rest] = T Z |45 = g + o -
Jj=i+
N-1
< AT | X (el - s+ ok -
j=1
and

HRkHH <~ Z A; :ckH + ka
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k+1” . HAT

k+1H I HAT

Z A xk-’rl +xk}+1 b

‘)\k )\k+1H

{ -




and

N-1
1
HR];HH Z Al gkl _pll = = H)\k . )\k+1H '
i=1 v
Therefore, we arrive at (A.6) where M is defined in (A.7).
O
Proof of Theorem 4.3.

1. It has been proven in Lemma A.1 that {(:c'f, xé, e ,a:’fv, )\k) :k=0,1,.. } is a bounded sequence.

Therefore, we conclude that Q(w”) is non-empty by the Bolzano-Weierstrass Theorem. Let w* =
(z%,...,2%,\*) € Q(w°) be a limit point of {wh = (x’f, xN,)\k) :k=0,1,...}. Then there

exists a subsequence {wk‘l = (mlfq, e ,x’f\‘,’,)\kQ) :q=0,1,.. } such that wks — w* as ¢ — oo.
Since f;,i=1,...,N — 1, are lower semi-continuous, we obtain that
liminf f(2*) > fi(x}), i=1,2,...,N. (A.17)
q—00

From the iterative step (4.1)-(4.4), we have for any integer k and any i =1,..., N — 1,

k‘+1 k+1 k+1 k k .k
=argmin L (x7" ..., 2,0 T, T g, TN AY).

r, €EX;
Letting x; = x in the above, we get

k+1 k+1 _k k .k k+1 k+1 %k k .k
Lo(xi o wi g,y AY) S Ly ()T g, T AT,

i.e.,

fi(xf—o—l) <)\k: A, k+1> ZAkaJr Z A:c ok —b
Jj=i+1
2

N—-1
< fi(:zz‘)—<>\k,Aix;?‘> ZA A A+ Y Ajek ol — b
j=i+l

Choosing k = k4 — 1 in the above inequality and letting ¢ go to +o0, we obtain

. k . v k «||?
limsup f;(x;*) < limsup B HAixiq — Ajz}|| —

q——+o00 q——+00

<)\k,Aixf‘1 - Aixf>> T fizd),  (A18)

for i = 1,2,...,N — 1. Here we have used the facts that both the sequence {w* : k = 0,1,...}
is bounded, and « is finite, and that the distance between two successive iterates tends to zero
(A.5), and the fact that

N-1
1
ZA ka + Z A; a: + a2k —b= Z (Aj:r? — ijfﬂ) + (xé’“v xﬁ,H) + ;(Ak — \FHD),
j=i+1 J=i+1
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From (A.5) we also have a:fq_l — x} as ¢ — 00, hence (A.18) reduces to

lim sup fl(qu) < fi(z7).

q—0o0

Therefore, combining with (A.17), fz(qu) tends to fi(z]) as ¢ = oco. Therefore, we can conclude
that

2
T £,k = lim im%- <Akq,J§Aix§q+x%_ >+; NZA+N L
a * * - * * v — * * i
= ;f2($1)_</\ ,;Aixi +wN—b>+2 ;Ale +xzy—b
- L),
On the other hand, it follows from (A.5) and (A.6) that
(REFL..RETLRET) e oL, (wtth) (A.19)
(R’f“, N .,Rﬁ“v“,R’;“) = (0,...,0), k— oo (A.20)

It implies that (0,...,0) € 9L, (z7},..., 2}, ") due to the closeness of OL,. Therefore, w* =
(xF,..., x5, A") is a critical point of Ly (z1,...,2N, ).

. The proof for this assertion directly follows from Lemma 5 and Remark 5 of [4]. We omit the
proof here for succinctness.

. We define that L* is the finite limit of £ (z},..., 2%, A\*) as k goes to infinity, i.e.,

L* = lim L. (zf, ... 2k, \F).
k—ro0

Take w* € Q(w®). There exists a subsequence w*s converging to w* as ¢ goes to infinity. Since
we have proven that

lim £, (w") = L. (w*),

q—00

and L. (w") is a non-increasing sequence, we conclude that £, (w*) = L*, hence the restriction of
L (x1,...,2n,A) to Q(w®) equals L*.
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