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Abstract. An earlier paper proved the convergence of a variable stepsize Bregman operator
splitting algorithm (BOSVS) for minimizing ¢(Bu) + H(u) where H and ¢ are convex functions,
and ¢ is possibly nonsmooth. The algorithm was shown to be relatively efficient when applied to
partially parallel magnetic resonance image reconstruction problems. In this paper, the convergence
rate of BOSVS is analyzed. When H(u) = ||Au — f||? where A is a matrix, it is shown that for an
ergodic approximation uj obtained by averaging k BOSVS iterates, the error in the objective value
¢(Buy) + H(uy) is O(1/k). When the optimization problem has a unique solution u*, we obtain the
estimate ||juy — u*|| = O(1/VkE). The theoretical analysis is compared to observed convergence rates
for partially parallel magnetic resonance image reconstruction problems where A is a large dense ill
conditioned matrix.
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1. Introduction. In this paper, we develop a convergence rate analysis for the
variable stepsize Bregman operator splitting algorithm (BOSVS) to solve

(1.1) min ¢(Bu) + H(u),

ueCN

where ¢(-) and H(-) are convex real-valued functions, ¢ : C! — R is possibly non-
smooth, H : CV — R is continuously differentiable, and B is an [ x N matrix. In
our target application, magnetic resonance image reconstruction, u € CV denotes an
image containing N pixels. Problems with the structure of (1.1) have received much
attention during the last decade; references include [4, 8, 11, 13, 14, 18, 20, 21, 26,
33, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52].

Our analysis is based on the following split reformulation of (1.1):

(1.2) min D (u,w) := ¢(w) + H(u) subject to Bu = w.
ueCN, weCl

The paper will focus on the following form for H which arises in image reconstruction
problems:

(13) H() = gl Au— 7|7,

where A € CM*N describes the imaging device, f € CM is the measured data, and
I fII* = (f, f) where (-,-) is the Euclidean inner product. By Lemma 3.1 in [19], if
¢(w) tends to infinity as ||w| tends to infinity and (1.3) holds, then there exists a
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solution to (1.1). Moreover, if ¢ is strictly convex and the null spaces of A and B
only intersect at the origin, then the solution of (1.1) is unique. In partially parallel
imaging [9], A is large, dense and ill-conditioned. For efficiency, the evaluation of the
product Au must be kept to a minimum when solving (1.1).

The alternating direction method of multipliers (ADMM) [16, 17, 22] is a com-
mon approach for split formulations such as (1.2). In this approach, the augmented
Lagrangian is successively minimized over one variable, then the other, followed by
an update of the multiplier. More precisely, when H has the form (1.3) arising in
imaging, the iteration is

1
uFT! = arg min {2||Au - fI7+ gHwk —Bu+p '0F|?rue (CN} ;

w**! = arg min {gb(w) + gHw — BuFtt 4 p7 R 2w e Cl} ,
bk-‘rl _ bk: o p<Buk+1 o wk—&-l).

The convergence rate of ADMM is O(1/k) [22, 28]. Notice that in each iteration
when u**1 is computed, we need to solve a linear system with matrix (ATA + BTB)
where T denotes conjugate transpose. In applications such as partially parallel imag-
ing, this matrix is large and dense, and the algorithm is intractable computationally.
In order to deal with the high cost of an ADMM iteration in this context, a lineariza-
tion technique, the Bregman operator splitting scheme (BOS) was developed [49, 50],
where the quadratic term || Au||? was replaced by a linear approximation. BOS can be
viewed as a special case of the alternating direction proximal method of multipliers.
In this proximal perspective, the BOS update for u**1 is

.1 - 1
u’”l:arg min {2||Au—f||2+g||wk—3u+p 1bk||2+2|u_“k||2Q:“€(CN}’

where [Jullg = (u,Qu) and Q = 61 — AT A with § > 0 a positive scalar. For this choice
of @, the ATA term in ||Au — f||* is canceled by the ATA term in [ju — u¥||3, and
the intractable term in ADMM is eliminated. The convergence analysis for BOS ulti-
mately requires that J is greater than the spectral radius of AT A (see Theorem 4.2 in
[50] or Theorem 5.6 in [36]). When this holds, BOS has the same O(1/k) convergence
rate as ADMM, but for ergodic iterates associated with the original iterates [36]. In
the imaging context, BOS is much faster than ADMM, even though the convergence
rate is the same, since it is no longer necessary to solve a large dense linear system.

In the variable stepsize Bregman operator splitting algorithm (BOSVS), intro-
duced in [9], the scalar ¢ in BOS is replaced a parameter ) which is evaluated in
each iteration through a line search process. Our line search process is loosely related
to the SpaRSA algorithm [1, 3, 5, 40] where the objective is linearized and a prox-
imal parameter is adjusted in each iteration to satisfy a line search condition. The
objective in the BOS update for u**! is not linear due to the ||Bu||? term, but it is
partially linearized through the removal of the ||Au||? term. Initially, §; in BOSVS is
given by the Barzilai-Borwein [2] formula

[A(* — w2
5k = ;
o T2

which emerges when AT A is approximated by a multiple of the identity matrix. If
the line search condition is not satisfied, then dy, is increased. By carefully controlling



the growth of d;, we are able to guarantee convergence while achieving much better
performance in partially parallel image reconstruction problems when compared to
the performance for a fixed § greater than the spectral radius of AT A.

As noted earlier, the convergence analysis of BOS hinged on the positive definite-
ness of the proximal term, which required that § is greater than the spectral radius
of ATA. In contrast, in BOSVS 6, is typically less than the spectral radius of ATA
and the proximal term is indefinite, which requires a completely new analysis. Our
earlier work [9] established the convergence of BOSVS. In this paper, we establish an
O(1/k) convergence rate for the ergodic iterate

k
> vt
=1

obtained by averaging k BOSVS iterates. If (1.1) has a solution u*, then we prove
that

Uy =

T =

¢(Buy) + H(uy) — [¢(Bu”) + H(u")] = O(1/k).

This is the same convergence rate which holds for the BOS ergodic iterates (see [36,
Thm. 6.2]), however, we observe better performance in practice through the use of an
indefinite proximal term. If the null spaces of A and B only intersect at the origin
and ¢ satisfies a strong convexity condition so that the solution of (1.1) is unique,
then we also show that

. 1
[ug — u|] 0(\/%)
The numerical experiments reveal that the error in the BOSVS iterates is highly
oscillatory, while the error in the ergodic iterates decays nearly monotonically.

The use of an ergodic mean in the analysis of gradient-type and/or proximal
point-based methods for convex minimization and monotone variational inequalities
dates back to at least the mid-seventies [6]. Applications of ergodic convergence
theory include the convergence rate of the Douglas-Rachford alternating direction
method [17] established in [22], the complexity result [27] of Monteiro and Svaiter
for the hybrid proximal extragradient algorithm, and the O(1/k) convergence result
[30] of Nemirovski for a prox-method. Also, in [24] Lan and Monteiro give an O(1/k)
convergence result for an augmented Lagrangian type algorithm employing Nesterov’s
optimal method [31]. The analysis assumes that the objective function has a Lipschitz
continuous gradient, while we consider a nonsmooth objective in this paper.

Also, we point out the recent work of Chen, Lan, and Ouyang [10] on an accel-
erated primal-dual method for solving a class of deterministic and stochastic saddle
point problems. Their method achieves the same O(1/k) convergence rate as that of
Nesterov’s smoothing technique [32]. The error is measured relative to a perturbation-
based termination criterion of Monteiro and Svaiter [27]. The algorithm in [10] differs
from the BOSVS algorithm in the treatment of the constraint w = Bu. BOSVS
treats the constraint using an augmented Lagrangian approach (both a penalty and a
Lagrange multiplier), while in Algorithm 2 of [10], the constraint is handled through
a conjugate function. The algorithm in [10] involves a number of parameters that
need to be chosen in a careful, conservative way to obtain the convergence results.
Since BOSVS employs a line search, potentially larger and more aggressive steps can
be taken, especially in the early iterations. Note that the analogue of the u* update
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in [10] requires the evaluation of VH at an auxiliary point, which is not an iterate.
Hence, it would seem that if a line search was developed for the u* update in [10],
then the gradient would need to be evaluated at two points in each iteration. The
algorithm in [10] seems promising, but the comparison with BOSVS in performance
for partially parallel imaging, where ¢ corresponds to total variation regularization,
is not clear.

The paper is organized as follows. Section 2 examines some general variational in-
equality formulations of nonsmooth minimization problems which provide the frame-
work for our analysis, while Section 3 states the BOSVS algorithm and the prior
convergence analysis. In Section 4 we derive new properties for BOSVS that enter
into the ergodic convergence analysis. The main convergence theory is developed in
Section 5, while Section 6 gives a numerical study of the convergence rate of the
BOSVS iterates and the ergodic means in partially parallel magnetic resonance image
reconstruction.

Notation. A superscript | denotes conjugate transpose and (-, -) is the Euclidean
inner product. If z and y € CV, then (z,y) = 2Ty. We let || - || denote the Euclidean
norm given by ||z|| = \/{z,z). If Q € CN*¥ is a Hermitian matrix, then we define

213 = (z, Q).
If @ is also positive definite, then || - || is a norm. However, in this paper, we also
use || - ||o in cases where @ is indefinite. The smallest (most negative) eigenvalue of

Q is denoted Apin(Q). N(A) denotes the null space of the matrix A. Throughout
the paper, we let ¢ denote a generic constant which has different values in different
equations. This constant is always independent of the iteration number k.

Throughout the paper, we work in CV. For each z € CV, a real-valued convex
function F has a nonempty subdifferential set OF (x) with the property that for each
s € OF(x) and for each y € CV,

(1.4) F(y) > F(x) + Re (s,y — x).

Here Re stands for “real part.” If F is differentiable, then we also let VF(x) denote the
gradient at x. The real part must be included in (1.4) since the associated support
hyperplane inequality should be formulated in R?*V, while we are working in the
complex space CV.

2. Some variational inequalities. Our analysis centers around some varia-
tional inequalities which we now develop. The following result follows from the anal-
ysis on page 102 of Nemirovski’s lecture notes [29].

PROPOSITION 2.1. If F: CN — R and K C CV are both convez, then we have
(2.1) Re (y,z —x*) >0 forall x € K and y € 0F(x)
if and only if

(2.2) F(z*) < F(z) forall x € K.

Let us consider the Lagrangian £ : CV x C! x C! — R associated with (1.2):

(2.3) L(u,w,b) = ¢(w) + H(u) — Re (b, Bu — w),
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where b € C! is the Lagrange multiplier. Since £ is convex with respect to u and w,
it follows that if u* and w* are optimal in (1.2), then there exists b* € C! such that

(2.4) L(u*,w*,b*) = min{L(u,w,b*) : u € CV,w e C'}.

And conversely, if there exists u* € CV, w* € C!, and bv* € C! such that w* = Bu*
and (2.4) holds, then u* and w* are optimal in (1.2). By Proposition 2.1, (2.4) is
equivalent to the inequality

(2.5) Re (VH(u) — B™0*,u — u*) + Re (s + b*,w — w*) > 0

for allu € CV, w € C!, and s € d¢(w). Hence, if u* and w* are optimal in (1.2), then
there exists b* € CV such that (2.5) holds. And conversely, if there exists u* € CV,
w* € C!, and b* € C! such that w* = Bu* and (2.5) holds, then (2.4) holds and u*
and w* are optimal in (1.2).

Now, let us consider the closely related variational inequality

(2.6) Re (VH(u) — B"0*,u — u*) + Re (s + b*,w — w*)
+ Re (Bu* —w*,b—0") >0

forall b € C', u € CN, w € C!, and s € d¢p(w). If (2.6) holds for some u* € C¥V,
w* € C!, and b* € C, then from the last term in (2.6), we deduce that Bu* = w*.
Hence, the last term in (2.6) vanishes and (2.5) holds. Consequently, v* and w* are
solutions of (1.2). Conversely, if v* and w* are solutions of (1.2), then (2.5) holds,
which implies that (2.6) holds since u* and w* are feasible in (1.2) and the last term
in (2.6) vanishes. Hence, (2.6) is equivalent to the existence of a solution (u*,w*) to
(1.2).

Finally, let us now consider another related variational inequality: Find u* € CV,
w* € C!, and b* € C! such that

(2.7) Re (VH(u) — B"b,u — u*) 4+ Re (s 4+ b,w — w*)
+Re (Bu—w,b—0") >0

forall b € C!, u e CN, w € C!, and s € dp(w). If (2.7) holds, then we can replace b
by b—b* 4+ b* in the first two terms and rearrange to obtain (2.6). Conversely, if (2.6)
holds, then we can replace b* by b* — b+ b and rearrange to obtain (2.7). Hence, (2.6)
and (2.7) are equivalent. We summarize these observations as follows:

PROPOSITION 2.2. There exists u* € CN, w* € C!, and b* € C! satisfying (2.7)
if and only if u* and w* are optimal in (1.2).

Note that the variational inequality (2.7) can also be expressed as
(2.8) Re (y,z —2*) >0

for all x = (u,w,b) € CN x C! x C! and y € F(x) where

VH(u)— BTb
(2.9) F(z) = F(u,w,b) := 0o(w) +b
Bu —w

We will show that * in (2.8) can be replaced by the ergodic iterate at iteration k
if the right side of (2.8) is replaced by —c/k. Hence, the ergodic iterates satisfy a



perturbed variational inequality. This perturbed variational formulation becomes the
basis for our error analysis.

In contrast to (2.8), He and Yuan in [22] write (2.4) in the form of a variational
inequality which in our setting amounts to finding z* = (u*,w*,b*) € CV x C! x C!
such that

(2.10) ®(u,w) — ¢(u*,w*) + Re (z — 2*, F(z*)) >0
for all x = (u,w,b) € CN x C! x C!, where

) —B"b

F(u,w,b) = b

Bu —w

Since (z — 2%, F(z) — F(x*)) = 0, the inequality (2.10) is equivalent to finding z* =
(u*,w*,b*) € CNV x C! x C! such that

(2.11) (u,w) — ®(u*,w*) + Re (x — z*, F(x)) >0

for all z = (u,w,b) € CY x C! x C. In [22] that authors show that the ergodic iterates
satisfy a perturbed version of the inequality (2.11).

3. BOSVS. Algorithm 3.1 is the BOSVS algorithm of [9]. In BOSVS, the

BREGMAN OPERATOR SPLITTING WITH VARIABLE STEPSIZE (BOSVS)

Parameters: 7, n>1, 5, C>0, p, 0min >0, {,0€(0,1), 0o =1.
Starting guess: w'! e C!, u!' e CV, bl €Cl'. Set Q1 =0 and A; = Spmin -
For k=1,2,...
Step 1. op =1 if k=1; otherwise, 0 is given by (3.1).
Step 2. Set Jj :njsk where j >0 is the smallest integer such that
Qri1 > — 5 where Qpy1 = &,Qp + Q) with
e o= o (Okl[utt —uf |2 + p| BuF Tt — w)?) — APt —u*)|?, and
ubtl = argmuin{ckﬂu —uf + 6, P AT(AUF — )2 + pl|lw® — Bu+ pflkaZ} ,
0 < & <min{¢, (1 - k71)?}.
Step 3. If 0 <max{dr_1,Ar}, then Ax 1 = Ay; otherwise Api1 = 7Ag.
Step 4. whtl = argnhi)n{qb(w) + gHw — BuFtt 4 p R 4 gHw — wk||2}.
Step 5. bl =1pF — p(BukJrl —whtl),
Step 6. If a stopping criterion is satisfied, terminate the algorithm.

End For

ALG. 3.1. The BOSVS algorithm.
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variable b” is the approximation to a multiplier associated with the constraint Bu = w
in the split formulation (1.2), the parameter p is the penalty for constraint violation
in the augmented Lagrangian associated with (1.2), and Step 5 represents a first-order
multiplier update. § in Step 4 is a proximal regularization parameter connected with
the variable w. Step 3 allows some growth in the lower bounded Ay for §; when
0 > O0r_1. In this paper, 5p of Step 2 is given by a safe-guarded version of the
Barzilai-Borwein [2] formula

(31) Sk :max{Ak, HA(uk _uk_l)”2}

=T

for k > 1. For k = 1, & can be chosen arbitrarily; we take &, = 1. In [9] we
proved a uniform bound on & when 4y, is chosen in this way. Typically, we start by
taking Omin small, in which case ) = [|A(uF — u*=1)||2/||u* — w*~1||? for small k,
which is less than the largest eigenvalue of AT A except in the very special case where
u? —uF~1 is aligned with a vector associated with the largest eigenvalue of ATA. As
a result, the associated proximal term in the alternating direction proximal method
of multipliers is typically indefinite. Step 2 amounts to a line search which permits
potential growth in d;. This line search is sufficient to guarantee convergence as shown
in [9], but typically §; remains smaller than the largest eigenvalue of AT A. There is
a minor change in the initialization of the BOSVS parameter C of Algorithm 3.1
compared to the initializations in [9]. In [9] we indicated C' > 1 since we thought that
larger values of C' would cause the line search to terminate more quickly and provide
better performance. However, for the convergence theory, we only need C' > 0. For
the ergodic convergence results, we need to bound & away from 1 in Step 2, while
this constraint was not needed for the global convergence of BOSVS. The iterates
(uF, w* b*) of the BOSVS algorithm converge to both a solution and a multiplier
associated with the constraint in (1.2) as shown in [9].

Results for the BOSVS algorithm established in [9] are summarized in the follow-
ing theorem. In this section and in the remainder of the paper, we assume that H
has the special form (1.3) which arises in imaging.

THEOREM 3.1. The BOSVS algorithm has the following properties:
1. If there exists a solution of (1.2), then the sequence x* = (uF w* b*) gen-
erated by BOSVS approaches a limit x* = (u*, w*,b*) where the first-order
optimality conditions for (1.2) are satisfied. That is,

VH(u*) - B™b* =0, —b* € dp(w*), w*= Bu*.

Moreover, (u*,w*) is a solution of (1.2) with b* a corresponding Lagrange
multiplier.

2. In Step 2 of BOSVS, the integer j is bounded uniformly in k and 0 <
nll Al o

3. In Step 3 of BOSVS, Agi1 = Ay except for at most log, (||A||?/(06min))
iterations. Hence, 6 < 0p_1 except in a finite number of iterations.

4. If the sequence x* = (uF,w* b*) generated by BOSVS approaches a limit
x* = (u*,w*, b*), then we have

oo
Z Huk—i-l _ ukHZ + Hwk—i—l _ wkHQ + ||Buk+1 _ wkHQ < 0.
k=1



4. Additional properties of BOSVS. We now establish a few additional prop-
erties of the BOSVS algorithm:

LEMMA 4.1. If 6k is chosen according to Step 2 of the BOSVS algorithm and the
matriz Gy, is defined by

Gp =0, — AT A,
where I is the N x N identity matrix, then
[+t — b, > =+ 0 — o2,

where § = (1 — 0)min and

C
(4.1) Tk = 15 + 6@k + op| But T —wt|?.

Proof. In Step 2 of BOSVS, §j is accepted if

(4.2) Qrt1 > *k%
where Qi1 = &.Qr + ., & € [0, (1 — k~1)2], and Q is defined by
Q= o (Flluh T = a2 4+ pl| BuF T = wh|?) — AR — ).
Hence, the inequality (4.2) can be written as
6@+ o (Bl P pl B — ) — AR — ) 2 0.
We rearrange this to obtain

C
5+ Qi (Bullu = | — AT —ub)2) + opl Butt — w2

> (1= 0)a [t — | > (1 0) 5l — P2,

since 6y > min for all k. In terms of Gj, = 6,1 — AT A, this inequality can be expressed

C
72 T E&@n + [uf* = u® &, +opl Bt = wF[* > (1 = 0)fminllut T — u¥|J*.

Hence, the lemma holds with 8 = (1 — 0)dmin. O

Numerically, we observe that the error in the iterates generated by BOSVS is
highly oscillatory. In the paper, we analyze the convergence rate of an ergodic sequence
associated with the BOSVS iterates. Let 2% = (u*,w* b¥) be the BOSVS iterates,
and define a modified sequence ¥ = (a*, w*, b*) where

(4.3) b =uftt @ =Wkt BF = bk — p(BuFt — wh).

The associated ergodic mean xj, is given by

(44) X = (U.k;,Wk,bk) =

x| =

k
Y .
j=1



The next lemma establishes a variational identity for the modified sequence (4.3).

LEMMA 4.2. The BOSVS sequence ¥ = (uF,w* b*) and the modified sequence
z* given in (4.3) satisfy

(4.5) Wi (a® — zF) = g

for some y* € F(z*), where

Gy, 0 0
Wie=1 0 (B+pI 0
0 I pl

Here I is the | x | identity matriz.
Proof. The u-subproblem in Step 2 of BOSVS is equivalent to

(4.6) ubtl = argmin{2H(u) + pl|Bu — w® — p7 %)% + |lu — uk||%;k},

where H(u) = 1||Au — f||>. These problems are equivalent since the objective func-
tions only differ by terms independent of u. Setting the derivative to 0 at u**! in
(4.6), we get

VH (W) 4+ pBT(BuF ! —w* — p~10F) + G (v —uF) = 0.
Since @* = uF*! and b* = b* — p(BukFT! — w"), this expression can be written as
(4.7) VH(u*) — BT0" + Gy (a" — u") = 0.
The first-order optimality condition for Step 4 of BOSVS is
sFHL bk — p(BuFTt — M) 4 Bttt —wh) =0

for some s¥*1 € dp(wFt1). We define 5% := s¥*1 and rewrite this in terms of b* and
k= wkt! to obtain

wY = w
(4.8) 0+ (B + p)(w0F —w*) =0.
The definition of b* = b* — p(Bu*+! —w") can be rearranged into the following form:
1 -
(4.9) (Bu* — o*) + (0" — w") + ;(b’“ —bF) =0,
where again w* = w**! and a* = «**!. Combine (4.7)-(4.9) to obtain
VH(u*) — BTV — Gy (uF — )
S+ 5 — (B + p)(w* — ) ~0,
(Bt — *) — (wh — @*) — p=L (5 — B)
which is the same as (4.5). O

LEMMA 4.3.  The component 2F = (w b*) of the BOSVS sequence and the
modified sequence z* := (w* b*) defined in (4.3) satisfy
1 _
(4.10)  [l2F = 28D — |25 = 2D = Bllw® — @ (P + ~|lp* ¥ > 0,
P
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where D is a positive definite matriz defined by

B+pI 0
0 p

Proof. After substituting for D, the left side of (4.10) reduces to

(B4 p)(|lw* — @[ — ot — ¥ [%) + p7 (6" = BF|1P — [ — 0¥ )*) =
(4.11) (B + p)llw" — w2 4 p 768 = || — (b5 — BF %),

since w* = w**!. By the definition of b* and by the formula for b**' in Step 5 of
BOSVS, it follows that

(4.12) PR bR = p(wh Tt — wh).
With this substitution in (4.11), we obtain (4.10). O
LEMMA 4.4. For all x = (u,w,b), we have
2Re <x —zk Wy (z* — a’vk)> + Ju— uk||%;k +1lz = 2*|1% + 7%
> [lu = uPTHIE, + [z = 2FFHD 4+ Oflut T — )2,

where 1y, is defined in (4.1).
Proof. By the definition of Wy, we have

(4.13) (z— 2" Wi(ah — %)) =
(u—a",Gp(uf —a¥)) + (z = 2, (D + E) (" — 2F))

o]

(4.14) Re {(a—b),Glc—d)) =
1
2

for all x = (u, z) where z = (w,b) and

0
B

For any matrix G, we have

(lla = iz = lla = eli% + lle = bll% = lld = bll%)-
Applying this to the first term on the right side of (4.13) gives
_ _ 1 1
Re (u— ", Ge(u* — ) = 5 (Il =TI, = fu— g, ) + 5le* — a2,
since uF = uF*!'. By Lemma 4.1, it follows that

B B 1
Re <u7uk,Gk(uk fuk)> > §(||U*Uk+1H%;k - ||U*ukHQGk)

1
(4.15) +5 (9||uk+1 — k|2 — Tk).
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By (4.12), it follows that
(D + E)(z" — zF) = D(z* — 7).

With this substitution, the last term in (4.13) becomes (z — 28, D(z% — 2FT1)). We
apply (4.14) to obtain

1
Re (2= 2, D(F = 241)) = 2 (Il = 4% — |2 - =¥
Lok k2 k+1 _ sk|2
5 (115 = 241 = 125 = 251
By Lemma 4.3, we have ||z* — 2¥||2, — ||2**! — 2*||% > 0; hence
D D
1
(4.16) Re <z — 2%, D(2* — Z’““)> > (Hz e R R Z’“H%)

We combine (4.13), (4.15), and (4.16) to complete the proof. O
LEMMA 4.5. In BOSVS, 74 given in (4.1) satisfies 1, > 0 for each k and

(4'17) ZTk < 00.
k=1

Proof. Since the BOSVS parameter C' is nonnegative and @)1 = 0, we have
71 = C + op||Bu® — w'||* > 0.

For k > 2, Step 2 of BOSVS ensures that Q > —C/(k — 1)2. Since &, < (1 —k~1)2,
we have

Cé C  C(1—k1)?

[ R S A

C C
TkZﬁ‘i‘kakZﬁ—

Now, consider the series in (4.17):

(o) o C oo o0
D= Zh > opllBuF T —wF P+ 6Qu
k=1 k=1 k=1 k=1

The first sum on the right is clearly convergent while the second sum is convergent
by Theorem 3.1 part 4. To complete the proof, we need to show that the last sum is
bound from above. Recall that Q41 := £ Qr + Q. and

Q= o (@ fu* = u* + pl But T — wF||?) — || A(u" T — )%

By the uniform bound on §; in part 2 of Theorem 3.1, we conclude that for some
constant ¢, we have

O, < c(Huk'|r1 — ukH2 + HBu]H'1 — wk||2) = 0.
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Working backwards,
Qr = &r-1Qk—1 + Q1

< &o1Qp—1 + Q1

< &p—1 (£k72Qk72 + Qk72) +Qr1

k-1 k-1
< (Hfj)ﬁlJr (Hfj)Q2+---+Qk—l-
j=2 j=3
Since 0 < &, < € and Qy, > 0, it follows that

EeQr < ETI + 20 + L+ Q.

Hence,

Since § < 1, the geometric series in £ is convergent, and by Theorem 3.1, part 4, the
series in )y is convergent. This completes the proof of (4.17). O

5. Ergodic convergence analysis of BOSVS. Let B, and B,, denote the unit
balls centered at u* and w*, and let B; be the ball with center b* and radius

(5.1) r* =14 max {||s+b*| : s € dp(w™)}.

By [34, Thm. 23.4], 0¢(w*) is a bounded set so r* is finite. Define B = By, X By, X By.
Note that u* € B,, w* € By, b* € By, and z* € B. We now show that the ergodic
means xj, defined in (4.4) obey a perturbed minimax property and satisfy a perturbed
version of the variational inequality (2.8).

THEOREM 5.1. Suppose BOSVS converges to a solution (u*,w*) of (1.2) and
an associated multiplier b* for the constraint. If xi is the sequence of ergodic means
defined in (4.4), then there exists a constant ¢ independent of k such that

(5.2) Re (y,z — xp) > f% for all x € B and y € F(z),
where F is defined in (2.9). Moreover, we have

(5.3)  max{L(ug, wk,b) : b€ By} — min{L(u,w,by) :u € By,w € B,} <

Enl oY

Proof. Since BOSVS converges to x*, it follows that the sequence Z* also converges
to x*, which implies that the ergodic sequence x; converges to z*. By Lemmas 4.2
and 4.4, there exists g7 € F(z7) such that

2Re (7w —77) = (Ju—vw "G, — llu—v|Ig,)

0l = |P + (lz = 2D — e = 2 ND) -7
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for all . Sum this from j =1 to k to obtain
2Re Y¥_, (7,0 —29) = 5y (Il — w2, — fu— o],

k i i k
03y W =2+ (2 = 2P = 2 = 2HD) - X5 7

We drop the positive terms [|u/*! — u7||? and ||z — z¥*1[|% and rearrange to obtain

k
Zy xj—:c <

1 . .
(5.4) 5 |12 =213 5> (7 + Il = w1, = llu— w112, )

Jj=1

We now establish a uniform bound for the right side of (5.4); more precisely, it is
shown that there exists a constant ¢, independent of k and x € B such that

k
(5.5) Z 7,5 —x) <ec

For all x € B, ||z — 2|3 is bounded uniformly. By Lemma 4.5, the 7; sum in (5.4) is
bounded above, uniformly in k. Now consider the terms in (5.4) subscripted by G;.
Since G; = 6;1 — AT A, it follows that

lu = [1&; = llu—w* G, = 05(llu—u/ | = [lu—u* %)
— [ ACu = w?)|? + [|A(w — w2,

Hence, we have

k
(5:6) 3 (lu—wlE, — lu— ) = Slu =l = Gl — w2

j=1

k
+ (6 = 8i-1)lu— @ [* — | Alu—uh) | + [ ACu — u* 2

j=2

To establish (5.5), we need an upper bound for (5.6). Consequently, the negative
terms on the right side can be neglected. Since u’ converges to u* and |lu —u*|| < 1,
| A(u — u**+1)||2 is bounded uniformly in k. Finally, consider the (§; —d,_1)||u — u?||?
term. By part 2 of Theorem 3.1, §; > 0 is uniformly bounded, and by part 3 of
Theorem 3.1, §; < 6;—1 except in a finite number of iterations. The terms with
§; < &j_1 are negative and can be neglected. Since u/ converges to u* and ||u—u*|| <1,
the positive terms are bounded uniformly in j, and since there are a finite number
of positive terms with 6; > J,_1, (5.6) is bounded uniformly in %, which establishes
(5.5).
For any y € F(z), we have

(y,@ —x) = (VH(u) — B"b,a — u) + (s + b, — w) + (Bu — w,b — b),
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where s is any element of d¢(w). Since both H and ¢ are convex, they satisfy the
monotonicity conditions

and
Re (VH(u),u —u,) <Re (VH(u),u — u)
for all § € 0¢p(w) and s € d¢p(w). Utilizing these monotonicity conditions, we obtain
Re (y,Z —2) < Re (VH(a) — B"b,u — u)
+Re (5 +b,w — w) + Re (Bu —w,b—b).

We replace b by (b — b) + b in the first two terms on the right side of the inequality
and rearrange to deduce that

(5.7) Re (y, 7 — z) < Re (§,T — x)

for all y € F(x) and § € F(Z).
We combine the monotonicity relation (5.7) with (5.5) to obtain

k k
Re Z(y,ﬁcj —1z) <Re Z@j,;ﬁj —xy<ec
j=1

j=1
for all x € B and y € F(z). By the definition of the ergodic mean in (4.4), we have

k

Re (y,x —x) = (;) Re i(y,g‘sﬂ' —xz) < (}1) Re S (5,2 —a) < %

j=1 j=1
for all # € B and y € F(x). This yields (5.2).

Next, let us consider the minimax property (5.3). Since L(u,w,b) is convex in
(u, w) and concave (linear) in b, it follows that

e

L(wp, Wi, b) — L(u,w, by) = (

??'M—‘
P?'M—‘
w\»—‘

> wt) = £ 30)

(5.8) < [c(aj,mﬂ',b) - E(u,w,l;j)].

'Mw

x| =

1

J

By the definition of £ in (2.3), we have
L@, w?,b) — L(u,w,b) =
(5.9)  H(@w)— H(u) + ¢p(w?) — p(w) — Re (b, Bu?! — w’) + Re (b, Bu — w).
The convexity of H and ¢ implies that
(5.10) H(w) — H(u) <Re (VH(@),w’ — u),
and

(5.11) o(w?) — p(w) < Re (37, w0/ — w)
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for every 5 € d¢(w’). In the trailing terms of (5.9), we replace b by b — b’ + b/ and
we rearrange to obtain

(t/, Bu — w) — (b, Bw —w!) =
(5.12) — (B, @ —u) + (0, @) —w) + (B — @, 0 —b).

Combine (5.9)—(5.12) to obtain
L@, @7 ,b) — L(u,w,b) <Re (7,7 — ).

Hence, (5.5) and (5.8) imply that

L(uk,wk,b) E(u w bk S

)

k
Zy ) —az)| <

T =
Enl ey

which yields (5.3). O
Next, we analyze the error in the objective function and the error in the constraint.

THEOREM 5.2. Suppose BOSVS converges to a solution (u*,w*) of (1.2) and
an associated multiplier b* for the constraint. If x5 is the sequence of ergodic means
defined in (4.4), then there exists a constant ¢ independent of k such that

(5.13) Iwi — Bugl| < %

(5.14) H(ug) + d(wi) — H(u™) — p(w) < ﬁ
and

(5.15) H(w) + 6(Buy) — H(u") = 6(w’) < 7.

Proof. By the Cauchy-Schwarz and triangle inequalities, we have

2 2
Wi — Bug|* = 12’“: — Bw)|| = 1 %(w” — Bu?)
k k2 |4
j=1 Jj=2
k+1
< Z lw? — Bu|?)
k+1
:quwﬂ Bu||
1 k+1
=E[lew“ Bu/ + (w/ —w! ™)
k+1 k+1

(5.16)

I /\

lewj B+ Y e -

=2



16

By Theorem 3.1, part 4, the sums in (5.16) are bounded, uniformly in k. This estab-
lishes (5.13).

To establish (5.14), we make the choice u = u*, w = w*, and b = b* in (5.3) to
obtain

¢(wr) + H(ur) — Re (b*, Buy, — wy) — ¢(w*) — H(u") <

> o

Combine this with (5.13) to obtain (5.14).
Finally, let us consider (5.15). Since

— lim Buy = lim wy = w",
k—oo

k—o00

it follows from [34, Cor. 24.5.1] that for k sufficiently large, there exists —v, €
O¢(Buy) such that the distance from —vy to dp(w*) is less than 1. Choose k suffi-
ciently large and s € d¢(w™*) such that ||vr + si|| < 1. Consequently, we have

[log = 0% < |lvg + skll + sk + 07| < 1+ ||sp + 07| <r*

by (5.1). Hence, v, € By. We apply (5.3) with b = vg, u = u*, and w = w* = Bu* to
obtain

(5.17) d(wy) + H(ux) — Re (vg, Bup — wy) — ¢(Bu*) — H(u") <

Enl ey

Since —vy, € dp(Buy) and ¢ is convex, it follows that
(5.18) p(wi) — Re(vg, Bug — wyi) > ¢(Buy).

Combine (5.17) and (5.18) to obtain (5.15). O
When a strong convexity assumption holds, there is a convergence result for
ergodic means (ug, wg):

THEOREM 5.3. Suppose BOSVS converges to a solution (u*,w*) of (1.2) and
an associated multiplier b* for the constraint. If N(A) NN (B) = {0}, and ¢(w) is
strongly convezr at w* in the sense that there exists v > 0 such that

(5.19) d(w) — p(w*) + Re (b*,w — w*) > 7||lw —w*||? for all w € By,

then (u*,w*) is the unique solution of (1.2) and there exists a constant ¢, independent
of k, such that the sequence of ergodic means xy, defined in (4.4) satisfy

(5.20) Iwi —w']| < ——  and |jup —u*| < —=

Vk vk

Proof. Tf (u*,w*) is the unique solution of (1.2) in B, x B, then due to the
convexity of the objective function and constraint, (u*,w*) is the unique global mini-
mum. On the other hand, suppose that there exists a second solution (@, w) of (1.2).
Since Bu — @ = 0 and Bu* = w*, the objective function ® of (1.2) satisfies

®(a, @) — O(u*,w*) = H(@) — H(u")

(5.21) —Re (0", B(@i — u")) + (%) — d(w*) + Re (b*, % — w”),
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where H is defined in (1.3). Expanding H in a Taylor series around u* and taking
into account the fact that BTb* = —V H (u*) by the first-order optimality conditions,
we obtain

1

(5.22) H(a) — Hw") —Re (b*,B(a —u")) = §||A(ﬂ —u®)|?.
Combining (5.19), (5.21), and (5.22) yields

1
(5.23) (@, @) = (u,w) = S A — )| + o - w
Since ®(u, w) = ®(u*, w*), we conclude that @ = w* and t—u* € N(A). Since Bu* =
w*, Bu = w and w = w*, it follows that @ — u* € N(B). Since N(A) NN (B) = 0,
we conclude that @ = u*. Hence, (u*,w*) is the unique solution of (1.2) and u* is the
unique solution of (1.1).

Substituting x = (u*, w*, b*) in (5.3) gives

(5.24) L(ag, wg,b*) — L(u*,w*, by) <

oY

The left side of (5.24) is

(5.25)  é(wi) — ¢(w*) + H(uy) — H(u*) — Re <b*, Bluy —u*) — (wy, — w*)>

since w* = Bu*. Similar to (5.22), we expand H in a Taylor series around u*, we

drop the linear term by the first-order optimality conditions, and we utilize (5.19) to
obtain

L(up, wy, b%) — L(u", w", by) = %HA(uk —u")|* + ylwi — w1
Therefore, by (5.24), we have
(5.26) SAGe — ) 4w~ P < 7
This implies that

C
5.27 wp — w2 < —.
(5.27) Wi — w”|| =k

Since N (A)NN(B) = {0}, the smallest eigenvalue of ATA+ BT B, denoted Apip,
is positive. Hence, we have

Aminflwr — u*|* < [Jug — w37 44575

= [|A(ug — w)[]* + | B(ap, — u)|]?

= | A(uy —u)|]* + || Buy, — wi + wy, — w*[|?

< [ A(ug = u)|? + 2| Buy, — wi || + 2[|wy — w*||%.

We combine this with (5.13), (5.26), and (5.27) to complete the proof of (5.20). O
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6. Numerical Results. In this section, we numerically explore the convergence
speed of the BOSVS algorithm and the sequence of ergodic means using image recon-
struction problems that arise in partially parallel imaging (PPI). We compare three
algorithms: BOS, BOSVS, and the ergodic version of BOSVS analyzed in this paper.
The algorithms were implemented in MATLAB. The PPI reconstruction problems
are described in detail in [9]. The regularization term ¢ is total variation regu-
larization (TV), which was first introduced by Rudin, Osher, and Fetami in [35].
Subsequent work on accelerated algorithms for TV regularized problems includes
[7, 12, 23, 25, 37, 38]. Total variation regularization is defined by

N

(6.1) ¢(Bu) = allullry = a Y [[(Vu)ll,

i=1

where Bu = Vu and (Vu); is the vector of finite differences in the image along the
coordinate directions at the i-th pixel in the image. The data sets used in our numeri-
cal experiments, denoted data 1, data 2, and data 3, correspond to the reconstruction
of the PPI images shown in Figure 6.1, panels (a), (b), and (¢). The PPI system

(d) (e)

F1G. 6.1. (a) Reference image for data 1. (b) Reference image for data 2. (¢) Reference image
for data 3. (d) Poisson random mask used for data 1 and data 2 with 25% undersampling ratio.
(e) Radial mask used for data 3 with 34% undersampling ratio.

used in our experiments had 8 coils. For data 1 and data 2, we use a random Poisson
mask shown in Figure 6.1 panel (d), while for data 3 we use a radial mask shown in
panel (e). In these figures, the illuminated pixels correspond to the components of
the Fourier transform that are recorded by the imaging device. The Poisson mask

samples 25% of the Fourier coefficients, while the radial mash samples 34% of the
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Fourier coefficients. In our experiments, we used the following parameters:

o =0.00001, p=0.0001, 7=101, n=3 B=0 Jmn=0.001,
C =100, o=099, &=08.

The parameter «, the weight for the total variation regularization term (6.1), is chosen
to achieve the best reconstructed image for the solution of (1.1) and the three images
in this test set. The penalty parameter p is taken relatively small since this value leads
to faster convergence of the algorithms. The remaining parameters arise specifically
in BOSVS. Their values were based on our personal preferences; for example, o and
& should be slightly less than 1 and 7 should be slightly greater than 1. The proximal
term in w does not seem to provide significant benefit so we set g = 0.

Our evaluation of performance is based on the following estimates for the optimal
objective values obtained by running BOSVS for 100,000 iterations:

D(u*, w*) 0.266540 for data 1,
D(u*, w*) 1.0525 for data 2,
O(u*,w) = 1.047221 for data 3.

Figure 6.2 plots the error in the objective function versus the number of multiplications
by either A or AT to achieve that error. Since A is large dense matrix, the number
of multiplications by A or by AT should be proportional to running time of the
algorithm if it were coded in a compiled language such as C or Fortran. In computing
the ergodic iterates, we skipped the first 10 of the 1000 iterates and the averaging
starts at iteration 11.

In Figure 6.2, we see that after about 100 matrix multiplications, the most accu-
rate BOSVS iterates are about an order of magnitude more accurate than the BOS
iterates. Thus the indefinite proximal term associated with BOSVS provides a signif-
icant improvement in the accuracy of the objective. On the other hand, the BOSVS
iterates possess significant oscillation, and the objective error can increase or decrease
by an order of magnitude in a few iterations. The ergodic iterates, which possess
a guaranteed O(1/k) convergence rate, eliminate the oscillations. The ergodic iter-
ates are about half and an order of magnitude more accurate than BOS iterates, and
significantly less accurate than the most accurate BOSVS iterates.

In Figure 6.3 we plot the logarithm of the error for the ergodic BOSVS iterates
as a function of the logarithm of the iteration number. In a log/log plot, a function
of the form y = ck™P would appear as a line with slope —p. The least square fit
to p for the plots shown in Figure 6.3 is 1.6, 1.2, and 0.9 for data 1, data 2, and
data 3 respectively. Since our analysis gives an upper bound for the error of ck™1,
the observed error roughly follows our established upper bound.

7. Conclusion. The convergence rate of the variable stepsize Bregman opera-
tor splitting algorithm (BOSVS) was studied. This algorithm was motivated by the
alternating direction method of multipliers [15], the Barzilai-Borwein approximation
[2] to a Hessian in the objective function, and a regularization idea loosely related to
what is used in the SpaRSA algorithm [1, 3, 5, 40]. The algorithm is equivalent to
the alternating direction proximal method of multipliers with an indefinite proximal
term which is chosen by a line search technique. The analysis utilized the equiva-
lence between the nonsmooth convex optimization problem and a related variational
inequality. It was proved that the ergodic mean associated with k iterations of the
BOSVS algorithm has an objective error of O(1/k). Moreover, when the objective



20

2 : : : : : : s
——-BOS : ~ X ' ' ' =
PR “_ERe ] 1t N —ERG |
X — —-BOSVS
s 05 .
5 -
5 ° 5 ol
w
g o
2 2 05
e 11 ! 5
= S a4l
e <)
S2r 1 S-15 |
8 g
2
3t ,
25 b
= . . . . . . 3 .
0 0.5 1 1.5 2 2.5 3 35 0 0.5
(a log ,, (Matrix Mults) (b) log ,, (Matrix Mults)
7/
0.5 ! , : : : :
I
SO ----BOS
ofr N —ERG |
SO ——-BOSVy
205 | RN =B

-15

-25

log 10 (Objective Error)
N

-35

45 L L L
0 05 1 15 2 25 3 35

(C) log ,, (Matrix Mults)

FIG. 6.2. Plots of the objective error as a function of the number of multiplications by A or AT
to achieve the error for data 1, data 2, and data 3 respectively.
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Fic. 6.3. Plots of the objective error for the ergodic BOSVS iterates as a function of the
iteration number.

function satisfies a strong convexity condition, then the solution error is O(1/V/k).
In numerical experiments using image reconstruction problems arising in partially
parallel imaging (PPI) with total variation regularization, it was observed that the
objective error of the most accurate BOSVS iterates could be an order of magnitude
more accurate than the objective error of the BOS iterates where the proximal term is
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positive semidefinite. While the error in the BOSVS iterates can oscillate, the error in
the ergodic BOSVS iterates decreases nearly monotonically with an guaranteed error
bound of O(1/k).
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