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Abstract

We propose to approximate two-stage distributionally robust programs with binary recourse

decisions by their associated K-adaptability problems, which pre-select K candidate second-

stage policies here-and-now and implement the best of these policies once the uncertain pa-

rameters have been observed. We analyze the approximation quality and the computational

complexity of the K-adaptability problem, and we derive explicit mixed-integer linear program-

ming reformulations. We also provide efficient procedures for bounding the probabilities with

which each of the K second-stage policies is selected.

1 Introduction

We study two-stage distributionally robust programs of the form

minimize sup
P∈P

P-OCEU

[
ξ̃>C x+ min

y∈Y

{
ξ̃>Qy : Tx+Wy ≤Hξ̃

}]
subject to x ∈ X ,

(DP)

where

P-OCEU

[
φ(ξ̃)

]
= inf

θ∈R
θ + EP

[
U(φ(ξ̃)− θ)

]
denotes the optimized certainty equivalent of a disutility function U under the probability distribu-

tion P. Here, X ⊆ RN and Y ⊆ {0, 1}M are bounded mixed-integer linear sets, while C ∈ RQ×N ,

1



Q ∈ RQ×M , T ∈ RL×N , W ∈ RL×M and H ∈ RL×Q. The first-stage or here-and-now decisions x

are selected prior to the observation of the uncertain parameters ξ̃ ∈ RQ, and the second-stage or

wait-and-see decisions y are chosen after ξ̃ has been revealed. We assume that all components of

y are binary, while x may have continuous as well as binary components. Problem DP minimizes

the worst-case optimized certainty equivalent over all distributions P from an ambiguity set P.

Problems of the type DP have many applications, for example in facility location, vehicle routing,

unit commitment, layout planning, project scheduling, portfolio selection and game theory.

Despite the broad applicability of problem DP, its numerical solution is extremely challenging.

Instead of solving DP exactly, we propose to solve its associated K-adaptability problem

minimize sup
P∈P

P-OCEU

[
ξ̃>C x+ min

k∈K

{
ξ̃>Qyk : Tx+Wyk ≤Hξ̃

}]
subject to x ∈ X , yk ∈ Y, k ∈ K,

(DPK)

where K = {1, . . . ,K}. Thus, we pre-select exactly K of the |Y| . 2M possible second-stage

decisions in the first stage. After the realization ξ of the random parameters ξ̃ has been observed,

we implement the best of these K pre-selected candidate decisions. More precisely, among all

candidate decisions that are feasible for ξ, we implement the one that achieves the lowest second-

stage cost in scenario ξ. If all K candidate decisions are infeasible for a given ξ, then the innermost

minimum in DPK is interpreted as an infimum that evaluates to +∞. By construction, the K-

adaptability problem may provide a strict upper bound on the optimal value of problem DP unless

K = |Y|, but the hope is that the corresponding optimality gap is small already for some K � |Y|.

The K-adaptability problem has been studied in [3, 6] in the context of robust two-stage integer

programming, where the objective is to minimize the worst-case cost over all uncertainty realizations

ξ ∈ Ξ. We refer to [6] for a review of the literature on robust two-stage integer programming.

The rest of the paper develops as follows. We provide a detailed formulation of the K-

adaptability problem DPK in Section 2. Section 3 studies the approximation quality as well as an

explicit MILP reformulation of the distributionally robust K-adaptability problem with objective

uncertainty, that is, for instances of DPK where ξ̃ impacts only the objective function. We close

with numerical results in Section 4. The Appendix contains a treatment of generic instances of

DPK where both the objective function and the constraints are affected by uncertainty, as well as

most of the proofs.
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Notation Variables with tilde signs represent random objects. We denote by e the vector of ones

and by ei the vector whose i-th entry is 1 while all other entries are 0. The indicator function I[E ]

of a logical expression E is defined through I[E ] = 1 if E is true; = 0 otherwise. To avoid tedious

case distinctions, we define the minimum (maximum) of an empty set as +∞ (−∞).

2 Problem Formulation

Problem DP accounts for both ambiguity aversion (through the ambiguity set) and risk aversion

(through the optimized certainty equivalent). We discuss both of these components in turn.

Ambiguity Set By construction, the ambiguity set P contains all probability distributions that

share certain known properties of the unknown true distribution P0 of ξ̃. Hedging against the

worst probability distribution within the ambiguity set P reflects an aversion against distributional

ambiguity, which enjoys strong justification from decision theory [4, 5].

We henceforth assume that the ambiguity set P is of the form

P =
{
P ∈M+(RQ) : P

[
ξ̃ ∈ Ξ

]
= 1, EP

[
g(ξ̃)

]
≤ c
}
, (1)

whereM+(RQ) denotes the cone of nonnegative Borel measures supported on RQ. The support set

Ξ is defined as the smallest set that is known to satisfy ξ̃ ∈ Ξ w.p. 1, and it constitutes a nonempty

bounded polytope of the form Ξ =
{
ξ ∈ RQ : Aξ ≤ b

}
with A ∈ RR×Q and b ∈ RR. We assume

that c ∈ RS and that g : RQ → RS has convex piecewise linear component functions of the form

gs(ξ) = max
t∈T

g>stξ ∀s ∈ S = {1, . . . , S} .

Without loss of generality, the index t of the linear pieces ranges over the same index set T =

{1, . . . , T} for each component gs. To ensure the applicability of strong semi-infinite duality results,

we finally assume that the ambiguity set P contains a Slater point in the sense that there is a

distribution P ∈ P such that EP[gs(ξ̃)] < c for all s ∈ S for which gs(ξ) is nonlinear.

Ambiguity sets of the form (1) are flexible enough to encode bounds on the expected value and

the mean absolute deviation of the unknown true distribution P0, and they can also be used to

approximate nonlinear dispersion measures such as the variance or the standard deviation [11].
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Optimized Certainty Equivalent Intuitively, the optimized certainty equivalent P-OCEU [φ(ξ̃)]

represents the expected present value of an optimized payment schedule that splits an uncertainty-

affected future liability φ(ξ̃) into a fixed installment θ that is paid today and a remainder φ(ξ̃)− θ

that is paid after the realization of ξ̃ has been observed [2].

The decision maker’s attitude towards risk is controlled by the choice of the disutility function

U . We consider increasing, convex and piecewise affine disutility functions of the form

U(x) = max
i∈I
{six+ ti} , where I = {1, . . . , I} and s ≥ 0, s 6= 0. (2)

The choice I = 1, s = 1 and t = 0 corresponds to the worst-case expected value, whereas I = 2,

s = ((1−β)−1, 0)> and t = (0, 0)> recovers the worst-case conditional value-at-risk at level β, that

is, the worst-case expected value of the (1− β) · 100% largest outcomes.

3 The K-Adaptability Problem with Objective Uncertainty

In this section, we assume that the random parameters ξ̃ only enter the objective function of the

two-stage robust binary program DP:

minimize sup
P∈P

P-OCEU

[
ξ̃>C x+ min

y∈Y

{
ξ̃>Qy : Tx+Wy ≤ h

}]
subject to x ∈ X ,

(DPO)

where h ∈ RL. Problem DPO arises naturally in a number of application domains, such as

traveling salesman and vehicle routing problems with uncertain travel times, network expansion

problems with uncertain costs, facility location problems with uncertain customer demands and

layout planning problems with uncertain production quantities. A discussion of generic instances

ofDP, where both the objective function and the constraints are affected by uncertainty, is relegated

to the Appendix.

In the following, we study the K-adaptability problem associated with DPO:

minimize sup
P∈P

P-OCEU

[
ξ̃>C x+ min

k∈K

{
ξ̃>Qyk : Tx+Wyk ≤ h

}]
subject to x ∈ X , yk ∈ Y, k ∈ K

(3)
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We note that the K-adaptability problem (3) is equivalent to the problem

minimize sup
P∈P

P-OCEU

[
ξ̃>C x+ min

k∈K
ξ̃>Qyk

]
subject to x ∈ X , yk ∈ Y, k ∈ K

Tx+Wyk ≤ h ∀k ∈ K,

(DPOK)

where we have shifted the second-stage constraints to the first stage, see [6, Observation 1].

We now show that the problem DPOK has an equivalent reformulation as a MILP. To this

end, we interpret the objective function in DPOK as a moment problem. The dual of this moment

problem constitutes a semi-infinite program which we can simplify using a standard LP dualization.

Theorem 1. For the ambiguity set P defined in (1) and the disutility function U defined in (2),

problem DPOK is equivalent to the following MILP.

minimize α+ c>β + θ

subject to x ∈ X , yk ∈ Y, k ∈ K, α ∈ R, β ∈ RS+
γi ∈ RR+, δi ∈ RK+ , Λi ∈ RS×T+ , i ∈ I

zi,k ∈ RM+ , i ∈ I and k ∈ K, θ ∈ R

Tx+Wyk ≤ h ∀k ∈ K

b>γi + ti ≤ α+ siθ, e>δi = 1, Λie = β

A>γi +
∑
s∈S

∑
t∈T

Λistgst = siCx+
∑
k∈K

siQz
i,k

zi,k ≤ yk, zi,k ≤ δike

zi,k ≥ (δik − 1)e + yk

 ∀k ∈ K


∀i ∈ I.

(4)

By construction, the optimal value of problem DPOK constitutes an upper bound on the

optimal value of problem DPO as we restrict our flexibility in the second stage. For classical

two-stage robust binary programs, it has been shown that the approximation provided by the K-

adaptability formulation is tight whenever K exceeds the affine dimension of either the uncertainty

set or the second-stage feasible region, see [6, Theorem 1]. We now show that this favorable

approximation behavior generalizes to distributionally robust two-stage binary programs.

Theorem 2. Problem DPOK has the same optimal value as problem DPO if we choose K ≥

I ·min {dimY, rkQ}+ I policies.
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We note that dimY ≤ M and rkQ ≤ Q by construction. Without loss of generality, we can

further assume that rkQ ≤ dim Ξ+1. Indeed, if this is not the case, then there is a matrix Q′ such

that rkQ′ ≤ dim Ξ + 1 and the optimal value and the optimal solutions to DPOK do not change

if we replace Q with Q′, see also [6, Remark 3].

3.1 Persistence

We now study the contribution of each second-stage policy yk to the objective value in prob-

lem DPOK . This analysis can provide important insights for practical decision-making. Amongst

others, it can help to determine how much adaptability is needed (i.e., it can inform the choice of

K), and it can elucidate the relative ‘criticality’ of each second-stage policy.

We develop two alternative measures for the importance of a second-stage policy. We first

determine the probability with which a particular policy yk is chosen under a worst-case distribution

in problem DPOK . This approach is reminiscent of the persistency analysis in [8], and it is justified

by the assumption that the decision maker optimizes in view of the worst distribution from within

P. Afterwards, we determine the minimum and maximum probability that a policy yk is chosen if

the unknown true probability distribution P0 can be any distribution within the ambiguity set P.

These probability bounds characterize the ambiguity of the persistence inherited by the ambiguity

of P0 that governs ξ̃.

We now study the probability that a particular second-stage policy yk is chosen under a worst-

case distribution for DPOK .

Theorem 3. For a feasible decision (x, {yk}k) in problem DPOK with the ambiguity set (1) and

the disutility function (2), and let (φ, {χi}i,ψ, {ωi}i) be an optimal solution to the LP

maximize
∑
i∈I

tiφi + si(Cx)>χi + ψi

subject to φi ∈ R+, χ
i ∈ RQ, ψi ∈ R, ωi ∈ RS

Aχi ≤ bφi

ψi ≤ si(Qyk)>χi ∀k ∈ K

g>stχ
i ≤ ωis ∀s ∈ S, ∀t ∈ T


∀i ∈ I

e>φ = 1, s>φ = 1,
∑
i∈I

ωi ≤ c.

(5)
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Then, a worst-case distribution P? for (x, {yk}k) in problem DPOK is defined through

P?
[
ξ̃ =

χi

φi

]
= φi, i ∈ I : φi > 0,

and the probability with which a policy yk, k ∈ K, is chosen under P? is

P?
[
ξ̃>Qyk ≤ ξ̃>Qyk′ ∀k′ ∈ K

]
=
∑
i∈I

φi · I
[
(χi)>Qyk ≤ (χi)>Qyk

′ ∀k′ ∈ K
]
.

We now evaluate the maximum probability with which a second-stage policy yk is chosen under

any distribution P ∈ P.

Proposition 1. Let (x, {yk}k) be a feasible decision in problem DPOK with the ambiguity set (1)

and the disutility function (2). The maximum probability with which policy yk, k ∈ K, is chosen

under any probability distribution P ∈ P is given by the optimal value of the LP

minimize α+ c>β

subject to α ∈ R, β ∈ RS+, γ ∈ RR+, δ ∈ RK+ , κ ∈ RR+
Λ ∈ RS×T+ , Φ ∈ RS×T+

α ≥ b>γ + 1, α ≥ b>κ, Λe = β, Φe = β

A>γ +
∑
s∈S

∑
t∈T

Λstgst =
∑
k′∈K

Q(yk
′ − yk)δk′

A>κ+
∑
s∈S

∑
t∈T

Φstgst = 0.

Proof. The maximum probability with which policy yk is chosen under any probability distribution

P ∈ P is given by the optimal value of the following moment problem.

maximize

∫
Ξ
I
[
ξ>Qyk ≤ ξ>Qyk′ ∀k′ ∈ K

]
dµ(ξ)

subject to µ ∈M+(RQ)∫
Ξ

dµ(ξ) = 1∫
Ξ
g(ξ) dµ(ξ) ≤ c

Strong duality is guaranteed by Proposition 3.4 in [10], which is applicable since the ambiguity set
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P contains a Slater point. Thus, the dual problem

minimize α+ c>β

subject to α ∈ R, β ∈ RS+
α+ g(ξ)>β ≥ I

[
ξ>Qyk ≤ ξ>Qyk′ ∀k′ ∈ K

]
∀ξ ∈ Ξ

attains the same optimal value. We can replace the semi-infinite constraint in this problem with

the two constraints

α+ g(ξ)>β ≥ 1 ∀ξ ∈ Ξ : ξ>Qyk ≤ ξ>Qyk′ ∀k′ ∈ K

α+ g(ξ)>β ≥ 0 ∀ξ ∈ Ξ.
(6)

In the following, we focus on the reformulation of the first constraint; the second constraint can be

dealt with analogously. The first constraint is satisfied if and only if the optimal value of

minimize α+ β>g(ξ)

subject to ξ ∈ RQ

Aξ ≤ b

ξ>Qyk ≤ ξ>Qyk′ ∀k′ ∈ K

is greater than or equal to 1. By employing an epigraph reformulation, we can replace g with its

definition to obtain the following equivalent problem:

minimize α+ β>η

subject to ξ ∈ RQ, η ∈ RS

Aξ ≤ b

ξ>Qyk ≤ ξ>Qyk′ ∀k′ ∈ K

ηs ≥ g>stξ ∀s ∈ S, ∀t ∈ T

This reformulation exploits the fact that β ≥ 0. The dual problem

maximize α− b>γ

subject to γ ∈ RR+, δ ∈ RK+ , Λ ∈ RS×T+

A>γ +
∑
s∈S

∑
t∈T

Λstgst =
∑
k′∈K

Q(yk
′ − yk)δk′

Λe = β

(7)
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is feasible, which implies that strong duality holds. We conclude that the first constraint in (6)

is satisfied if and only if there exists (γ, δ,Λ) feasible in (7) for which α − b>γ ≥ 1. A similar

reformulation can be derived for the second constraint in (6), which concludes the proof.

We close the section with the following result about the minimum probability with which a

second-stage policy yk is chosen under any distribution P ∈ P.

Proposition 2. Let (x, {yk}k) be a feasible decision in problem DPOK with the ambiguity set (1)

and the disutility function (2). For k ∈ K, let K(k) be the subset of indices k′ ∈ K for which there

is a parameter realization ξ ∈ Ξ such that ξ>Q (yk−yk′) > 0. Then, the minimum probability with

which policy yk, k ∈ K, is chosen under any probability distribution P ∈ P is given by the optimal

value of the LP

maximize α− c>β

subject to α ∈ R, β ∈ RS+, γ ∈ RR+, Λ ∈ RS×T+

κk
′ ∈ RR+, πk′ ∈ R+, Φk′ ∈ RS×T+

b>γ + α ≤ 1, b>κk
′
+ α ≤ 0, Λe = β, Φk′e = β

A>κk
′
+
∑
s∈S

∑
t∈T

Φk′
stgst = Q(yk − yk′)πk′

 ∀k′ ∈ K(k)

A>γ +
∑
s∈S

∑
t∈T

Λstgst = 0.

Proof. The minimum probability with which policy yk is chosen under any probability distribution

P ∈ P is given by the optimal value of the following moment problem.

minimize

∫
Ξ
I
[
ξ>Qyk ≤ ξ>Qyk′ ∀k′ ∈ K

]
dµ(ξ)

subject to µ ∈M+(RQ)∫
Ξ

dµ(ξ) = 1∫
Ξ
g(ξ) dµ(ξ) ≤ c

Strong duality is guaranteed by Proposition 3.4 in [10], which is applicable since the ambiguity set

P contains a Slater point. Thus, the dual problem

maximize α− c>β

subject to α ∈ R, β ∈ RS+
α− g(ξ)>β ≤ I

[
ξ>Qyk ≤ ξ>Qyk′ ∀k′ ∈ K

]
∀ξ ∈ Ξ
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attains the same optimal value. We can replace the semi-infinite constraint in this problem with

the two constraints

α− g(ξ)>β ≤ 1 ∀ξ ∈ Ξ

α− g(ξ)>β ≤ 0 ∀ξ ∈ Ξ \ Ξk,
(8)

where Ξk = {ξ ∈ Ξ : ξ>Qyk ≤ ξ>Qyk′ ∀k′ ∈ K}. Note that

Ξ \ Ξk =
⋃
k′∈K

{
ξ ∈ Ξ : ξ>Q (yk − yk′) > 0

}
.

Since the constraints in (8) are continuous in ξ, we can replace the set Ξ \ Ξk in (8) with

cl (Ξ \ Ξk) = cl
⋃
k′∈K

{
ξ ∈ Ξ : ξ>Q (yk − yk′) > 0

}
=

⋃
k′∈K

cl
{
ξ ∈ Ξ : ξ>Q (yk − yk′) > 0

}
=

⋃
k′∈K(k)

{
ξ ∈ Ξ : ξ>Q (yk − yk′) ≥ 0

}
.

Here, the second identity holds because K is finite, which implies that the union and the closure

operators commute. The last identity follows from the fact that the k′-th set in the union is non-

empty if and only if k′ ∈ K(k). Hence, the semi-infinite constraints in (8) are satisfied if and only

if the constraints

α− g(ξ)>β ≤ 1 ∀ξ ∈ Ξ

α− g(ξ)>β ≤ 0 ∀k′ ∈ K(k), ∀ξ ∈ Ξ : ξ>Qyk ≥ ξ>Qyk′

are satisfied. The result now follows if we apply similar reformulations to these semi-infinite con-

straints as in the proof of Proposition 1.

4 Numerical Experiments

We apply the K-adaptability approximation to a stylized two-stage version of the vertex packing

problem. The optimization problems in this section are solved using the YALMIP modeling lan-

guage [9] and Gurobi Optimizer 5.6 [7] with the default settings and a time limit of 7,200 seconds.

Consider an undirected, node-weighted graph G = (V,E, ξ) with nodes V = {1, . . . , N}, edges

E ⊆ {{i, j} : i, j ∈ V } and weights ξi ∈ R+, i ∈ V . The vertex packing problem asks for a packing

P , that is, a subset of nodes P ⊆ V such that no pair of nodes in P is connected by an edge,
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that maximizes the sum of node weights
∑

i∈P ξi. We consider a two-stage distributionally robust

variant of the problem where the node weights are modeled as a random vector ξ̃ that is governed

by an unknown probability distribution. The goal is to pre-commit to a subset of nodes P1 before

observing ξ̃ and to complete P1 to a packing P2 after observing ξ̃ so that |P1 \ P2|+ |P2 \ P1| ≤ B,

where B denotes the budget of change, and the packing P2 maximizes the sum of node weights.

Using the worst-case conditional value-at-risk as a risk measure, the problem can be formulated

as a distributionally robust two-stage binary program with objective uncertainty:

maximize inf
P∈P

P-CVaRβ

[
max

y∈{0,1}N

{
ξ̃>y : ‖x− y‖1 ≤ B, yi + yj ≤ 1 ∀ {i, j} ∈ E

}]
subject to x ∈ {0, 1}N

In this formulation, the decisions x and y represent indicator functions for the sets P1 and P2,

respectively, that is, we have xi = I[i ∈ P1] and yi = I[i ∈ P2], i ∈ V , and P-CVaRβ denotes the

conditional value-at-risk at level β under the distribution P ∈ P.

For our numerical experiments, we generate random graphs with N ∈ {10, . . . , 50} nodes and

|E| = 5 |V | edges. Note that the number of edges scales linearly with the number of nodes, which

implies that the expected size of a maximum cardinality packing (i.e., the maximum packing for

unit node weights) grows proportionally with N . This ensures that the optimal packings do not

degenerate to a trivial solution (i.e., none or almost all nodes) as N increases. We choose the

following ambiguity set for the node weights.

P =
{
P ∈M+(RN ) : EP

[
ξ̃
]

= µ, EP

[∣∣∣ξ̃ − µ∣∣∣] ≤ 0.15µ, EP

[∣∣∣e>(ξ̃ − µ)
∣∣∣] ≤ 0.15N−1/2e>µ

}
Here, the average node weights µ are chosen uniformly at random from the interval [0, 10]N . The

second condition in P imposes upper bounds on the mean absolute deviations of the individual

node weights. The third condition is inspired by the central limit theorem, and it imposes an upper

bound on the cumulative deviation of the node weights from their expected values [1, §2].

The K-adaptability formulation (4) corresponding to the vertex packing problem has O(KN)

binary variables. Table 1 shows that most of the problem instances can be solved to optimality

within the set time limit. The table also shows that problems with a smaller budget of change B are

harder to solve. An investigation of the reports generated by Gurobi reveals that for small values of

B, the solver requires a long time to determine good feasible solutions. Finally, the table presents
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Number of nodes N

K 10 20 30 40 50
B

=
0
.2
N 2 100%/<1s/0% 100%/<1s/0% 100%/1s/0% 100%/17s/0% 100%/4m:12s/0%

3 100%/<1s/0% 100%/<1s/0% 100%/12s/0% 100%/3m:14s/0% 74%/44m:39s/22.35%

4 100%/<1s/0% 100%/2s/0% 100%/2m:11s/0% 65%/54m:27s/13.52% 0%/-/22.38%

B
=

0
.4
N 2 100%/<1s/0% 100%/<1s/0% 100%/1s/0% 100%/9s/0% 100%/1m:13s/0%

3 100%/<1s/0% 100%/<1s/0% 100%/3s/0% 100%/49s/0% 100%/12m:24s/0%

4 100%/<1s/0% 100%/1s/0% 100%/36s/0% 100%/17m:33s/0% 10%/29m:05s/21.68%

Table 1. Summary of the results for the vertex packing problem. Each entry in the table

documents the percentage of instances solved within the time limit, the average solution

time for the instances solved within the time limit and the average optimality gap for

the instances not solved to optimality. All results are averaged over 100 instances.

estimates for the optimality gaps of those instances that could not be solved to optimality. These

estimates are derived from a progressive (upper) bound on the optimal value of problem DPO that

results from disregarding the integrality requirement for the second-stage decisions y, applying the

classical min-max theorem to exchange the order of the maximization problem over P ∈ P and the

minimization problem over y ∈ Y and subsequently dualizing the maximization problem.

Figure 1 shows the improvement of the 2-, 3- and 4-adaptable solutions over the static solutions

that take all decisions here-and-now. The figure reveals that the improvement increases with the

number of nodes N , but it saturates as N increases. Indeed, one can show that for the considered

problem class, the outperformance of the fully adaptable solutions to problem DPO over the static

solutions is bounded by a constant. The figure also shows that the improvement of the adaptable

solutions increases with the budget of change B. This is intuitive as higher values of B give more

flexibility to modify the vertex packing in the second stage when the node weights are known.

Table 2 shows the minimum and maximum probabilities with which the policies yk, k ∈ K, are

chosen. Note that in all instances, one policy has a maximum probability of 1 while all other policies

have a minimum probability of 0. This is due to the fact that the ambiguity set P contains the

Dirac distribution that places all probability mass on the expected value µ. For this distribution,

there is always an optimal solution which selects a single policy with probability 1.
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Figure 1. Improvement of the best 2-, 3- and 4-adaptable solutions determined within

the set time limit over the static solutions for the vertex packing problem with B = 0.2N

(left) and B = 0.4N (right). The figures show the improvements for problems with

N = 10, 20, . . . , 50 nodes as averages over 100 instances.

Number of nodes N

K 10 30 50

2 [0 0.32], [0.62 1] [0 0.65], [0.32 1] [0 0.92], [0.07 1]

3 [0 0.36], [0 0.66], [0.21 1] [0 0.60], [0 0.88], [0.05 1] [0 0.75], [0 0.91], [0.02 1]

4 [0 0.27], [0 0.46], [0 0.74], [0.11 1] [0 0.34], [0 0.62], [0 0.86], [0.04 1] [0 0.35], [0 0.75], [0 0.91], [0.02 1]

Table 2. Minimum and maximum probabilities with which the policies yk, k ∈ K, are

chosen in the vertex packing problem. The probabilities are averaged over 100 instances,

and the policies are ordered according to increasing maximum probabilities.
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A The K-Adaptability Problem with Constraint Uncertainty

We study the generic K-adaptability problem DPK introduced in Section 1 of the main text.

Compared to the K-adaptability problem with objective uncertainty, the objective function in DPK

can be discontinuous, and the optimal value of the problem may not be attained. Moreover,

evaluating the objective function in DPK is strongly NP-hard even if g(ξ) = 0, c = 0, and

U(φ) = φ [6, Theorem 3], and the problem may attain a strictly higher optimal value than the

two-stage robust binary program DP for any non-trivial number of policies K < |Y| [6, Theorem 4].

We first derive a MILP reformulation for problem DPK . Since the optimal value of DPK may

not be achieved, our MILP formulation constitutes an approximation whose quality is controlled

by an approximation parameter ε. In the remainder of the section, we use the notation L =

{0, . . . , L}K , ∂L = {` ∈ L : ` 6> 0} and L+ = {` ∈ L : ` > 0}, where L is the number of

second-stage constraints in problem DP. Furthermore, we let hk be the k-th row of the right-hand

side matrix H, expressed as a column vector.

Theorem 4. The following mixed-integer bilinear program provides a lower bound to problem DPK :
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minimize α+ c>β + θ

subject to x ∈ X , yk ∈ Y, k ∈ K, α ∈ R, β ∈ RS+, θ ∈ R

λ(i, `) ∈ ∆K(`), γ(i, `) ∈ RR+, Λ(i, `) ∈ RS×T+

χk(i, `) ∈ RL+, k ∈ K, ψ(i, `) ∈ RK+
b>γ(i, `)−

∑
k∈K:
`k=0

(Tx+Wyk)>χk(i, `)

+
∑
k∈K:
`k 6=0

(
[Tx+Wyk]`k − ε

)
ψk(i, `) + ti ≤ α+ siθ

A>γ(i, `) +
∑
s∈S

∑
t∈T

Λst(i, `)gst −
∑
k∈K:
`k=0

H>χk(i, `)

+
∑
k∈K:
`k 6=0

h`kψk(i, `) = siCx+
∑
k∈K

siλk(i, `)Qy
k

Λ(i, `)e = β



∀i ∈ I,

∀` ∈ ∂L

φ(`) ∈ RR+, ρ(`) ∈ RK+
b>φ(`) +

∑
k∈K

(
[Tx+Wyk]`k − ε

)
ρk(`) ≤ −1

A>φ(`) +
∑
k∈K

h`kρk(`) = 0


∀` ∈ L+,

(9)

where ∆K(`) = {λ ∈ RK+ : e>λ = 1, λk = 0 ∀k ∈ K : `k 6= 0} and ε > 0 is a parameter

that controls the approximation quality. If X ⊆ {0, 1}N , then the problem can be reformulated as a

MILP using standard Big-M techniques.

We remark that the size of the MILP reformulation (9) scales with |L| = (L + 1)K , that is,

the problem grows exponentially with the number of policies K. This is not surprising as the

evaluation of the objective function in problem DPK , which amounts to fixing the values of all

binary variables in (9) and solving the resulting LP, is already strongly NP-hard. We now show

that the MILP reformulation (9) converges to the K-adaptability problem DPK .

Proposition 3. Let dom (9) and dom (DPK) denote the effective domains of the objective functions

of problems (9) and DPK , respectively, that is, the sets of decisions (x, {yk}k) for which the

objective functions in the respective problems are finite (i.e., do not evaluate to +∞). Then,

(i) dom (9) = dom (DPK) if ε is sufficiently small, and
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(ii) over their effective domains, the objective function in (9) converges uniformly from below to

the objective function in DPK as ε approaches 0.

Proposition 3 implies that the optimal value of the problem (9) converges to the optimal value

of problem DPK as ε approaches 0.

A.1 Persistence

In analogy to Section 3.1 of the main text, we now study the contribution of each second-stage

policy yk, k ∈ K, to the objective value in problem DPK . We first determine the probability with

which a particular second-stage decision yk is chosen under a worst-case distribution for DPK .

Theorem 5. Fix a feasible solution (x, {yk}k) to problem (9) and let (φ,χ, ψ,ω) be an optimal

solution to the LP

maximize
∑
i∈I

∑
`∈∂L

tiφ(i, `) + si(Cx)>χ(i, `) + ψ(i, `)

subject to φ(i, `) ∈ R+, χ(i, `) ∈ RQ, ψ(i, `) ∈ R, ω(i, `) ∈ RS

Aχ(i, `) ≤ bφ(i, `)

ψ(i, `) ≤ si(Qyk)>χ(i, `) ∀k ∈ K : `k = 0

g>stχ(i, `) ≤ ωs(i, `) ∀s ∈ S, ∀t ∈ T

(Tx+Wyk)φ(i, `) ≤Hχ(i, `) ∀k ∈ K : `k = 0(
[Tx+Wyk]`k

)
φ(i, `) ≥ h>`kχ(i, `) ∀k ∈ K : `k 6= 0



∀i ∈ I,

∀` ∈ ∂L

∑
i∈I

∑
`∈∂L

φ(i, `) = 1,
∑
i∈I

∑
`∈∂L

siφ(i, `) = 1,
∑
i∈I

∑
`∈∂L

ω(i, `) ≤ c.

(10)

Then, a worst-case distribution P? for (x, {yk}k) in problem DPK is defined through

P?
[
ξ̃ =

χ(i, `)

φ(i, `)

]
= φ(i, `), i ∈ I, ` ∈ ∂L : φ(i, `) > 0,

and the probability with which a policy yk, k ∈ K, is chosen under P? is

P?
 Tx+Wyk ≤Hξ̃,

ξ̃>Qyk ≤ ξ̃>Qyk′ ∀k′ ∈ K : Tx+Wyk
′ ≤Hξ̃


=
∑
i∈I

∑
`∈∂L:
`k=0

φ(i, `) · I
[
χ(i, `)>Qyk ≤ χ(i, `)>Qyk

′ ∀k′ ∈ K : `k′ = 0
]
.
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We now study the maximum probability with which a second-stage decision yk is chosen under

any distribution P ∈ P.

Proposition 4. For a feasible solution (x, {yk}k) to problem (9), the maximum probability with

which policy yk, k ∈ K, is chosen under any probability distribution P ∈ P is given by the optimal

value of the LP

minimize α+ c>β

subject to α ∈ R, β ∈ RS+, κ ∈ RR+, Φ ∈ RS×T+

γ(`) ∈ RR+, δ(`) ∈ RK+ , Λ(`) ∈ RS×T+

χ(k′, `) ∈ RL+, k′ ∈ K, ψ(`) ∈ RK+
α ≥ b>γ(`)−

∑
k′∈K:
`k′=0

(Tx+Wyk
′
)>χ(k′, `)

+
∑
k′∈K:
`k′ 6=0

(
[Tx+Wyk

′
]`k′

)
ψk′(`) + 1

A>γ(`) +
∑
s∈S

∑
t∈T

Λst(`)gst −
∑
k′∈K:
`k′=0

H>χ(k′, `)

+
∑
k′∈K:
`k′ 6=0

h>`k′ψk
′(`) =

∑
k′∈K:
`k′=0

Q(yk
′ − yk)δk′(`)

Λ(`)e = β



∀` ∈ ∂L, `k = 0

α ≥ b>κ, A>κ+
∑
s∈S

∑
t∈T

Φstgst = 0, Φe = β.

We close the section with a result about the minimum probability with which a second-stage

decision yk is chosen under any distribution P ∈ P.

Proposition 5. For a feasible solution (x, {yk}k) to problem (9), the minimum probability with

which policy yk, k ∈ K, is chosen under any probability distribution P ∈ P is given by the optimal
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value of the LP

maximize α− c>β

subject to α ∈ R, β ∈ RS+, δ ∈ RR+, Γ ∈ RS×T+

α+ b>δ ≤ 1, A>δ +
∑
s∈S

∑
t∈T

Γstgst = 0, Γe = β

γ(`) ∈ RR+, Λ(`) ∈ RS×T+ , χ(k′, `) ∈ RL+, k′ ∈ K, ψ(`) ∈ RK+
α+ b>γ(`)−

∑
k′∈K:
`k′=0

(Tx+Wyk
′
)>χ(k′, `)

+
∑
k′∈K:
`k′ 6=0

(
[Tx+Wyk

′
]`k′

)
ψk′(`) ≤ 0

A>γ(`) +
∑
s∈S

∑
t∈T

Λst(`)gst −
∑
k′∈K:
`k′=0

H>χ(k′, `) +
∑
k′∈K:
`k′ 6=0

h`k′ψk′(`) = 0

Λ(`)e = β



∀` ∈ ∂L : `k 6= 0

κ(k′, `) ∈ RR+, π(k′, `) ∈ R+, Φ(k′, `) ∈ RS×T+

φ(k′, k′′, `) ∈ RL+, k′′ ∈ K, ω(k′, `) ∈ RK+
α+ b>κ(k′, `)−

∑
k′′∈K:
`k′′=0

(Tx+Wyk
′′
)>φ(k′, k′′, `)

+
∑
k′′∈K:
`k′′ 6=0

(
[Tx+Wyk

′′
]`k′′

)
ωk′′(k

′, `) ≤ 0

A>κ(k′, `) +
∑
s∈S

∑
t∈T

Φst(k
′, `)gst −

∑
k′′∈K:
`k′′=0

H>φ(k′, k′′, `)

+
∑
k′′∈K:
`k′′ 6=0

h>`k′′ωk
′′(k′, `) = Q(yk − yk′)π(k′, `)

Φ(k′, `)e = β



∀` ∈ ∂L : `k = 0,

∀k′ ∈ K(k, `),

where the index set K(k, `) is defined as

K(k, `) =

k
′ ∈ K : `k′ = 0, ∃ξ ∈ Ξ such that


Tx+Wyk ≤Hξ ∀k ∈ K : `k = 0

[Tx+Wyk]`k > [Hξ]`k ∀k ∈ K : `k 6= 0

ξ>Q (yk − yk′) > 0


 .

We emphasize that the sizes of the LPs in Theorem 5 and Propositions 4 and 5 scale with

|L| = (L + 1)K , that is, all three problems grow exponentially with the number of policies K but

polynomially in the problem description for any fixed K.
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B Omitted Proofs

Proof of Theorem 1. Replacing P-OCEU [·] with its definition, the objective function in DPOK

evaluates to

sup
P∈P

inf
θ∈R

θ + EP

[
U

(
ξ̃>C x+ min

k∈K
ξ̃>Qyk − θ

)]
.

Since the expectation is linear in P and convex in θ, we can use Sion’s min-max theorem to

reformulate DPOK as

minimize sup
P∈P

θ + EP

[
U

(
ξ̃>C x+ min

k∈K
ξ̃>Qyk − θ

)]
subject to x ∈ X , yk ∈ Y, k ∈ K, θ ∈ R

Tx+Wyk ≤ h ∀k ∈ K.

We can express the objective function of this problem as the optimal value of the moment problem

maximize θ +

∫
Ξ
U

(
ξ>C x+ min

k∈K
ξ>Qyk − θ

)
dµ(ξ)

subject to µ ∈M+(RQ)∫
Ξ

dµ(ξ) = 1∫
Ξ
g(ξ) dµ(ξ) ≤ c.

Strong duality is guaranteed by Proposition 3.4 in [10], which is applicable since the ambiguity set

P contains a Slater point. Thus, the dual problem

minimize α+ c>β + θ

subject to α ∈ R, β ∈ RS+

α+ g(ξ)>β ≥ U
(
ξ>C x+ min

k∈K
ξ>Qyk − θ

)
∀ξ ∈ Ξ

attains the same optimal value. Replacing U with its definition, we see that the semi-infinite

constraint in this problem is equivalent to

max
ξ∈Ξ

{
max
i∈I

(
si · ξ>C x+ min

k∈K
si · ξ>Qyk − siθ + ti

)
− β>g(ξ)

}
≤ α.

We can exchange the order of the maximum operators to obtain

max
ξ∈Ξ

{
si · ξ>C x+ min

k∈K
si · ξ>Qyk − siθ + ti − β>g(ξ)

}
≤ α ∀i ∈ I. (11)
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Replacing g with its definition and employing an epigraph formulation, we can express the max-

imization embedded in the i-th constraint as the optimal value of the following linear program.

maximize si · ξ>C x+ ζ − siθ + ti + β>η

subject to ξ ∈ RQ, ζ ∈ R, η ∈ RS

Aξ ≤ b

ζ ≤ si · ξ>Qyk ∀k ∈ K

ηs ≤ −g>stξ ∀s ∈ S, ∀t ∈ T

(12)

This reformulation exploits the fact that β ≥ 0. Strong linear programming duality, which applies

since problem (12) is feasible, implies that (12) has the same optimal value as its dual problem,

minimize b>γ − siθ + ti

subject to γ ∈ RR+, δ ∈ RK+ , Λ ∈ RS×T+

A>γ +
∑
s∈S

∑
t∈T

Λstgst = siCx+
∑
k∈K

siδkQy
k

e>δ = 1, Λe = β.

The result now follows if we replace the bilinear terms δky
k with auxiliary variables zk ∈ RM+ ,

k ∈ K, subject to the constraints that

zk = δky
k ⇐⇒ zk ≤ yk, zk ≤ δke, zk ≥ (δk − 1)e + yk.

This reformulation exploits the fact that 0 ≤ δ, yk ≤ e and that yk is binary.

Proof of Theorem 2. Consider the K-adaptability problem with K = |Y|, which by construction

has the same optimal value as problem DP. By Theorem 1, this problem can be formulated as

minimize α+ c>β + θ

subject to x ∈ X , yk ∈ Y, k ∈ K, α ∈ R, β ∈ RS+
γi ∈ RR+, δi ∈ RK+ , Λi ∈ RS×T+ , i ∈ I, θ ∈ R

Tx+Wyk ≤ h ∀k ∈ K

b>γi + ti ≤ α+ siθ, e>δi = 1, Λie = β

A>γi +
∑
s∈S

∑
t∈T

Λistgst = siCx+
∑
k∈K

siδ
i
kQy

k

 ∀i ∈ I,

(13)
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where K = {1, . . . ,K} and where we have replaced the auxiliary variables zi,k in problem (4)

with δiky
k. Fix any optimal solution (x, {yk}k, α,β, {γi}i, {δi}i, {Λi}i, θ) to this problem. Since

e>δi = 1, the expression
∑

k∈K siδ
i
kQy

k in the last constraint of (13) can be viewed either as a

convex combination of the terms siQy
1, . . . , siQy

K ∈ RQ or as a convex combination of the terms

siy
1, . . . , siy

K ∈ RM , multiplied from the left with the matrix Q. Since δi does not participate in

any other equations, Carathéodory’s Theorem allows us to assume that at most min {dimY, rkQ}+

1 components of δi are nonzero. If we further relax problem (13) by removing those constraints

Tx+Wyk ≤ h, k ∈ K

for which δik = 0 for all i ∈ I, then we recover the K-adaptability problem with

K ≤ I · (min {dimY, rkQ}+ 1).

By construction, this problem still attains the same optimal value as the problem DP.

The proof of Theorem 3 requires the following auxiliary result, which we prove first.

Lemma 1. If a feasible solution (φ, {χi}i,ψ, {ωi}i) to problem (5) satisfies φi = 0 for some i ∈ I,

then it also satisfies χi = 0.

Proof. Assume to the contrary that there is a feasible solution (φ, {χi}i,ψ, {ωi}i) to problem (5)

such that φi = 0 and χi 6= 0 for some i ∈ I. From the constraints in (5) we then conclude that

Aχi ≤ 0. Choose any ξ ∈ Ξ, which exists since Ξ is nonempty. We have A(ξ + λχi) ≤ b, that is,

ξ + λχi ∈ Ξ, for all λ ∈ R+. This contradicts the fact that Ξ is bounded, and we thus conclude

that our assumption is wrong, that is, the assertion of the lemma indeed holds true.

Proof of Theorem 3. We first show that P? is an element of the ambiguity set P. To this end,

we note that χi/φi ∈ Ξ for all i ∈ I that satisfy φi > 0 since the constraints in (5) imply that

Aχi ≤ bφi ⇐⇒ A
χi

φi
≤ b ∀i ∈ I : φi > 0.

We furthermore observe that for all s ∈ S,

EP?

[
max
t∈T

g>stξ̃

]
=
∑
i∈I:
φi>0

φi max
t∈T

g>stχ
i

φi
=
∑
i∈I

max
t∈T

g>stχ
i ≤

∑
i∈I

ωis ≤ cs.
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Here, the first identity follows from the definition of P?, the second one from Lemma 1, and the

last two inequalities are due to the constraints in (5). Hence, we have P? ∈ P.

To show that P? is in fact a worst-case distribution for (x, {yk}k) in problem DPOK , we first

show that the optimized certainty equivalent of (x, {yk}k) under P? is bounded below by the optimal

value of problem (5). Afterwards, we prove that the optimal value of problem (5) is identical to

the worst-case (maximum) optimized certainty equivalent of (x, {yk}k) in DPOK .

In view of the first step, we observe that

P?-OCEU

[
ξ̃>C x+ min

k∈K
ξ̃>Qyk

]
= inf

θ∈R
θ + EP?

[
max
i′∈I

{
si′ ξ̃

>C x+ min
k∈K

si′ ξ̃
>Qyk − si′θ + ti′

}]
= inf

θ∈R
θ +

∑
i∈I:
φi>0

φi max
i′∈I

{
si′(χ

i)>C x

φi
+ min

k∈K

si′(χ
i)>Qyk

φi
− si′θ + ti′

}

≥ inf
θ∈R

θ +
∑
i∈I:
φi>0

φi
si(χ

i)>C x

φi
+ min

k∈K
φi
si(χ

i)>Qyk

φi
− siφiθ + φiti

= inf
θ∈R

θ +
∑
i∈I

si(χ
i)>C x+ min

k∈K
si(χ

i)>Qyk − siφiθ + φiti

≥ inf
θ∈R

θ +
∑
i∈I

si(χ
i)>C x+ ψi + φiti − θ =

∑
i∈I

si(χ
i)>C x+ ψi + φiti,

where the first identity holds because of the definition of the optimized certainty equivalent and

the disutility function U , the second one is due to the definition of P?, the third one follows from

Lemma 1, and the last inequality is implied by the constraints in (5). By definition of φ, χi, ψ

and ωi, the last expression is the optimal value of problem (5), which proves the first statement.

To prove that the optimal value of problem (5) is identical to the worst-case expected disutility

of (x, {yk}k) in DPOK , we consider the dual of (5):

minimize α+ c>β + θ

subject to α ∈ R, β ∈ RS+, θ ∈ R

γi ∈ RR+, δi ∈ RK+ , Λi ∈ RS×T+

b>γi + ti ≤ α+ siθ, e>δi = 1, Λie = β

A>γi +
∑
s∈S

∑
t∈T

Λistgst = siCx+
∑
k∈K

siQδ
i
ky

k

 ∀i ∈ I

(14)
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Strong linear programming duality, which applies since problem (14) is feasible, implies that the

optimal value of this problem is identical to the optimal value of (5). An inspection of the proof

of Theorem 1 reveals, however, that the optimal value of problem (14) is the value of the objective

function of problem DPOK at (x, {yk}k).

To compute the probability that policy yk, k ∈ K, is chosen under P?, we observe that

P?
[
ξ̃>Qyk ≤ ξ̃>Qyk′ ∀k′ ∈ K

]
=

∑
i∈I:
φi>0

φi · I

[
(χi)>Qyk

φi
≤ (χi)>Qyk

′

φi
∀k′ ∈ K

]

=
∑
i∈I

φi · I
[
(χi)>Qyk ≤ (χi)>Qyk

′ ∀k′ ∈ K
]
.

This completes the proof.

For the proofs of the statements in Section A of this Appendix, we introduce the sets

Ξ(`) =

ξ ∈ Ξ :
Tx+Wyk ≤Hξ ∀k ∈ K : `k = 0

[Tx+Wyk]`k > [Hξ]`k ∀k ∈ K : `k 6= 0

 for ` ∈ L,

as well as their parameterized closed inner approximations

Ξε(`) =

ξ ∈ Ξ :
Tx+Wyk ≤Hξ ∀k ∈ K : `k = 0

[Tx+Wyk]`k ≥ [Hξ]`k + ε ∀k ∈ K : `k 6= 0

 for ` ∈ L, ε > 0.

Proof of Theorem 4. By construction, for fixed (x, {y}k) the objective value of DPK is finite if

and only if Ξ(`) = ∅ for all ` ∈ L+. In that case, we can proceed as in the proof of Theorem 1 to

conclude that the objective function of DPK equals the optimal value of the problem

minimize α+ c>β + θ

subject to α ∈ R, β ∈ RS+

α+ g(ξ)>β ≥ U
(
ξ>C x+ min

k∈K

{
ξ>Qyk : Tx+Wyk ≤Hξ

}
− θ
)

∀ξ ∈ Ξ.

(15)
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The semi-infinite constraint in this problem can be reformulated as follows:

max
ξ∈Ξ

{
U

(
ξ>C x+ min

k∈K

{
ξ>Qyk : Tx+Wyk ≤Hξ

}
− θ
)
− g(ξ)>β

}
≤ α

⇐⇒ max
`∈∂L

max
ξ∈Ξ(`)

{
U

(
ξ>C x+ min

k∈K

{
ξ>Qyk : Tx+Wyk ≤Hξ

}
− θ
)
− g(ξ)>β

}
≤ α

⇐⇒ max
`∈∂L

max
ξ∈Ξ(`)

max
i∈I

{
si · ξ>C x+ si ·min

k∈K

{
ξ>Qyk : Tx+Wyk ≤Hξ

}
− siθ + ti − g(ξ)>β

}
≤ α

⇐⇒ max
`∈∂L

max
ξ∈Ξ(`)

max
i∈I

{
si · ξ>C x+ si · min

k∈K:`k=0
ξ>Qyk − siθ + ti − g(ξ)>β

}
≤ α (16)

⇐⇒ max
`∈∂L

max
ξ∈Ξ(`)

max
i∈I

{
si · ξ>C x+ si · min

λ∈∆K(`)

∑
k∈K

λk · ξ>Qyk − siθ + ti − g(ξ)>β

}
≤ α (17)

Here, the first equivalence follows from the fact that Ξ =
⋃
`∈L Ξ(`) and the assumption that

Ξ(`) = ∅ for all ` ∈ L+, the second one is due to the definition of the disutility function U and the

last one follows from the definition of Ξ(`) and ∆K(`). The expression on the right-hand side of

the last equivalence, however, is satisfied if and only if there exist λ(`) ∈ ∆K(`), ` ∈ ∂L, such that

si · ξ>C x+ si
∑
k∈K

λk(`) · ξ>Qyk − siθ + ti ≤ α+ g(ξ)>β ∀i ∈ I, ∀` ∈ ∂L, ∀ξ ∈ Ξ(`).

Our previous derivations thus imply that the problem DPK is equivalent to

minimize α+ c>β + θ

subject to x ∈ X , yk ∈ Y, k ∈ K, α ∈ R, β ∈ RS+
si · ξ>C x+ si

∑
k∈K

λk(`) · ξ>Qyk − siθ + ti ≤ α+ g(ξ)>β ∀i ∈ I, ∀` ∈ ∂L, ∀ξ ∈ Ξ(`)

Ξ(`) = ∅ ∀` ∈ L+.

The assertion now follows if we replace the sets Ξ(`) with their inner approximations Ξε(`), ` ∈ L,

and reformulate the constraints as in [6, Theorem 5].

Proof of Proposition 3. As for assertion (i), it follows from [6, Lemma 1] that for small ε > 0,

the inner approximations Ξε(`), ` ∈ L, are nonempty if and only if the exact uncertainty sets Ξ(`)

are. Thus, the proof of Theorem 4 implies that dom (9) = dom (DPK) for sufficiently small ε > 0.

As for assertion (ii), fix any (x, {yk}k) ∈ dom (DPK) and ε > 0 such that dom (9) = dom (DPK).

It then follows from (15) and (17) in the proof of Theorem 4 that the objective function value of
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(x, {yk}k) in problem DPK is representable as

ϕ = minimize c>β + θ + max
`∈L

max
ξ∈Ξ(`)

max
i∈I
−g(ξ)>β + si · ξ>C x+ si min

k∈K:
`k=0

ξ>Qyk − siθ + ti

subject to β ∈ RS+, θ ∈ R.
(18)

Likewise, Theorem 4 implies that the objective value of (x, {yk}k) in the ε-approximation (9) can

be expressed as

ϕε = minimize c>β + θ + max
`∈L

max
ξ∈Ξε(`)

max
i∈I
−g(ξ)>β + si · ξ>C x+ si min

k∈K:
`k=0

ξ>Qyk − siθ + ti

subject to β ∈ RS+, θ ∈ R.
(18ε)

Let (βε, θε) be a minimizer of (18ε). Similar derivations as in [6, Proposition 2] imply that

0 ≤ ϕ− ϕε ≤ max
i∈I

max
`∈L

max
ξ∈Ξ(`)

min
ξ′∈Ξ(`)

max
k∈K:
`k=0

{∑
s∈S

βεs max
t∈T

g>st(ξ
′ − ξ) + si(ξ − ξ′)>(C x+Qyk)

}

≤
(

max
`∈L

max
ξ∈Ξ(`)

min
ξ′∈Ξ(`)

‖ξ′ − ξ‖
)
·

max
i∈I

max
k∈K:
`k=0

{∑
s∈S

βεs max
t∈T
‖gst‖+ si‖C x+Qyk‖

} ,

where the last inequality invokes weak duality and the Cauchy-Schwarz inequality. It follows

from [6, Lemma 1] that the first of the two factors in the last expression can be made arbitrarily

small by choosing ε > 0 appropriately. The second product term, on the other hand, is bounded

over (x, {yk}k) ∈ dom (DPK) since X and Y are bounded, while the set of optimal solutions

(βε, θε) to problem (18ε) can without loss of generality be bounded uniformly over (x, {yk}k) ∈

dom (DPK). For sufficiently small ε > 0, we can thus upper bound the difference ϕ−ϕε uniformly

over (x, {yk}k) ∈ dom (DPK) by an arbitrarily small constant, which concludes the proof.

Proof of Theorem 5. The proof is analogous to the proof of Theorem 3. Indeed, using the same

reasoning as in that proof, we can show that P? is an element of the ambiguity set P.

To prove that P? is a worst-case distribution for (x, {yk}k) in problem DPK , we first show that

the optimized certainty equivalent of (x, {yk}k) under P? is bounded below by the optimal value

of problem (10). Indeed, a similar argument as in the proof of Theorem 3 shows that

P?-OCEU

[
ξ̃>C x+ min

k∈K

{
ξ̃>Qyk : Tx+Wyk ≤Hξ̃

}]
≥

∑
i∈I, `∈∂L

tiφ(i, `)+si(C x)>χ(i, `)+ψ(i, `),
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and the last expression is the optimal value of problem (10) by definition of φ, χ and ψ.

We now prove that the optimal value of problem (10) is identical to the worst-case (maximum)

optimized certainty equivalent of (x, {yk}k) in DPK . To this end, we consider the dual of (10):

minimize α+ c>β + θ

subject to α ∈ R, β ∈ RS+, θ ∈ R

λ(i, `) ∈ ∆K(`), γ(i, `) ∈ RR+, Λ(i, `) ∈ RS×T+

χk(i, `) ∈ RL+, k ∈ K, ψ(i, `) ∈ RK+
b>γ(i, `)−

∑
k∈K:
`k=0

(Tx+Wyk)>χk(i, `)

+
∑
k∈K:
`k 6=0

(
[Tx+Wyk]`k

)
ψk(i, `) + ti ≤ α+ siθ

A>γ(i, `) +
∑
s∈S

∑
t∈T

Λst(i, `)gst −
∑
k∈K:
`k=0

H>χk(i, `)

+
∑
k∈K:
`k 6=0

h`kψk(i, `) = siCx+
∑
k∈K

siλk(i, `)Qy
k

Λ(i, `)e = β



∀i ∈ I,

∀` ∈ ∂L.

(19)

Strong linear programming duality, which holds since problem (19) can be shown to be feasible,

implies that the optimal value of this problem is identical to the optimal value of (10). An inspection

of the proof of Theorem 4 reveals, however, that the optimal value of problem (19) is the value of

the objective function of problem DPK at (x, {yk}k).

Finally, we can compute the probability with which policy yk, k ∈ K, is chosen under P? in the

same way as in the proof of Theorem 3. This concludes the proof.

Proof of Proposition 4. The maximum probability with which policy yk is chosen under any

probability distribution P ∈ P is given by the optimal value of the following moment problem.

maximize

∫
Ξ
I

 Tx+Wyk ≤Hξ̃,

ξ̃>Qyk ≤ ξ̃>Qyk′ ∀k′ ∈ K : Tx+Wyk
′ ≤Hξ̃

dµ(ξ)

subject to µ ∈M+(RQ)∫
Ξ

dµ(ξ) = 1∫
Ξ
g(ξ) dµ(ξ) ≤ c
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Strong duality is guaranteed by Proposition 3.4 in [10], which is applicable since the ambiguity set

P contains a Slater point. Thus, the dual problem

minimize α+ c>β

subject to α ∈ R, β ∈ RS+

α+ g(ξ)>β ≥ I

 Tx+Wyk ≤Hξ̃,

ξ̃>Qyk ≤ ξ̃>Qyk′ ∀k′ ∈ K : Tx+Wyk
′ ≤Hξ̃

 ∀ξ ∈ Ξ

attains the same optimal value. We can replace the semi-infinite constraint in this problem with

the two constraints

α+ g(ξ)>β ≥ 1 ∀ξ ∈ Ξ : Tx+Wyk ≤Hξ, ξ>Qyk ≤ ξ>Qyk′ ∀k′ ∈ K : Tx+Wyk
′ ≤Hξ

α+ g(ξ)>β ≥ 0 ∀ξ ∈ Ξ.

(20)

In the following, we focus on the reformulation of the first constraint; the second constraint can be

dealt with analogously. The first constraint is equivalent to the system of semi-infinite constraints

α+ g(ξ)>β ≥ 1 ∀` ∈ ∂L : `k = 0, ∀ξ ∈ Ξ(`) : ξ>Qyk ≤ ξ>Qyk′ ∀k′ ∈ K : `k′ = 0. (21)

By dualizing the resulting semi-infinite constraints as in the proof of Proposition 1, we arrive at

the linear program in the statement of the proposition.

Proof of Proposition 5. The minimum probability with which policy yk is chosen under any

probability distribution P ∈ P is given by the optimal value of the following moment problem.

minimize

∫
Ξ
I

 Tx+Wyk ≤Hξ̃,

ξ̃>Qyk ≤ ξ̃>Qyk′ ∀k′ ∈ K : Tx+Wyk
′ ≤Hξ̃

dµ(ξ)

subject to µ ∈M+(RQ)∫
Ξ

dµ(ξ) = 1∫
Ξ
g(ξ) dµ(ξ) ≤ c

Strong duality is guaranteed by Proposition 3.4 in [10], which is applicable since the ambiguity set
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P contains a Slater point. Thus, the dual problem

maximize α− c>β

subject to α ∈ R, β ∈ RS+

α− g(ξ)>β ≤ I

 Tx+Wyk ≤Hξ̃,

ξ̃>Qyk ≤ ξ̃>Qyk′ ∀k′ ∈ K : Tx+Wyk
′ ≤Hξ̃

 ∀ξ ∈ Ξ

attains the same optimal value. We can replace the semi-infinite constraint in this problem with

the three constraints

α− g(ξ)>β ≤ 1 ∀ξ ∈ Ξ

α− g(ξ)>β ≤ 0 ∀` ∈ L : `k 6= 0, ∀ξ ∈ Ξ(`)

α− g(ξ)>β ≤ 0 ∀` ∈ L : `k = 0,∀k′ ∈ K \ k : `′k = 0, ∀ξ ∈ Ξ(`) : ξ>Qyk > ξ>Qyk
′
.

Since the function α− g(ξ)>β is continuous in ξ, we can replace the strict inequality in the third

constraint with a weak one whenever the set {ξ ∈ Ξ(`) : ξ>Qyk > ξ>Qyk
′} is non-empty. The

result now follows if we apply similar reformulations to the resulting semi-infinite constraints as in

the proof of Proposition 2.
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