
Computational investigation of simple
memetic approaches for continuous global

optimization

Federico Cabassi

Dipartimento di Ingegneria dell’Informazione, Università di Parma
Via G.P. Usberti, 181/A, 43124 Parma, Italy

e-mail: federico.cabassi@studenti.unipr.it

Marco Locatelli

Dipartimento di Ingegneria dell’Informazione, Università di Parma
Via G.P. Usberti, 181/A, 43124 Parma, Italy

e-mail: marco.locatelli@unipr.it

Abstract

Keywords: Global optimization, memetic approaches, funnel landscapes

1 Introduction

The task of globally minimizing a multimodal objective function f over some compact
domain X ⊂ Rn is a very difficult one. Different approaches exist based on the dimension
of the search space and on the objective function and feasible domain’s properties. The
approaches range from exact (usually branch-and-bound) ones, suitable for highly struc-
tured problems (e.g., with a quadratic objective function and a polyhedral feasible domain)
when the dimension n is not too large (say, few hundreds of variables), to heuristic ones
where only few function evaluations are performed, suitable for problems where a single
function evaluation is a rather costly operation. While we refer to [9] for a thorough dis-
cussion about all possible different approaches, here we focus our attention on approaches
which are suitable for problems where local searches are a relatively cheap task but at the
same time the huge number of local minimizers rules out the simplest approach based on
multiple local searches, namely Multistart, where local searches are performed from differ-
ent points randomly generated within the feasible region. In the algorithms we are going
to discuss the points observed at each iteration are always local minimizers. To be more
precise, the observed points are always the output of local search procedures, which are
usually guaranteed to be stationary points but, in fact, are typically also local minimizers.
In what follows we will always refer to these points as local minimizers, keeping in mind
the clarification we have just made. Of course, observing local minimizers has a cost, since
for each observation we need to perform a local search, which requires some function (and

1

gradient) evaluations. However, this cost is often largely compensated. Indeed, when the
landscape of the objective function is rough with high barriers between local minimizers,
even points very close to the global minimizer may have large function values. If, as it is
often the case, the function value is employed to evaluate the quality of a point and to
decide whether to keep or to discard it, such points, though close to the global minimizer,
will be discarded from further consideration. Local searches, by driving a point towards a
local minimizer, remove the negative effect of high barriers between local minimizers.

The paper is structured as follows. In Section 2 we introduce a general scheme of a
global optimization approach based on local searches, and we briefly discuss two existing
approaches proposed in the literature together with their strengths and weaknesses. In
Section 3 we propose three simple variants of one of the two approaches. In Section 4 we
present the set of test problems on which we compare the different variants, and we discuss
the results of the computational experiments. We also perform an experimental analysis
of the proposed approaches in order to better understand their behavior.

2 Global optimization based on local searches

A general scheme for a global optimization approach based on local searches is displayed
in Algorithm 1. In this scheme:

Algorithm 1: Generic model for a global optimization algorithm based on local
searches.
Data: objective function f : Rn → R; feasible domain X; local solver L(f,X,x)

where x ∈ X; parameter vector v.
P← GenerateStartingPoints(f,X,L,v);
while TerminationCriteria(P, f,X,v) = false do

for i ∈ {1, . . . , k} do
Qi ← Generation(f,X,L,P,v, i);
P← Selection(P,Qi,v, i);
v← UpdateParameters(f,X,P,v);

end

end

• P ∈ Rn×k = {p1, . . . ,pk} is the population matrix containing the k population
members as column vectors;

• Qi ∈ Rn×h = {q1, . . . ,qh} is the candidate matrix containing the h candidate points
generated by the i-th member of the current population;

• GenerateStartingPoints(f,X,L,v) is the procedure returning the initial population;

2

• TerminationCriteria(P, f,X,v) checks the termination criteria of the algorithm;

• Generation(f,X,L,P,v, i) is the procedure that generates the set of candidate points
Qi;

• Selection(P,Qi,v, i) is the procedure that performs a selection between the candidate
points and the current population;

• UpdateParameters(f,X,P,v) is a procedure to update the parameter vector.

Algorithm 1 encompasses many different approaches. These can be classified into two broad
categories, depending on the cardinality k of the population. If k = 1, then the algorithm
is called a single-track one, while if k > 1 the algorithm is a population-based one. In what
follows we will fix the two procedures GenerateStartingPoints and TerminationCriteria.
Both are defined in a rather standard way. The former is described in Algorithm 2 and
simply returns k local minimizers obtained by running local searches from k points ran-
domly generated over X (U(X) is a uniform generator over the set X). The latter is

Algorithm 2: The procedure to generate the initial population

Data: f,X and L.
Result: The matrix P = {p1, . . . ,pk} containing randomly generated local

minimizers of f over X.
foreach i ∈ {1, . . . , k} do

pi ← L(f,X,U(X));
end

described in Algorithm 3. Different termination criteria come into play. The first ter-
mination condition is NoImp ≥ MaxNoImprove, i.e., we stop if for MaxNoImprove
iterations we are unable to improve the best local minimizer. The second termination con-
dition is (fvar ' 0 ∧ k > 1), i.e., for population-based approaches (k > 1) we stop when we
have no variability in the function values of the population members, which, in particular,
occurs when the population collapses into a single point. The last termination condition
f(pmin) ≤ BestV alue stops the algorithm when the global minimum value BestV alue is
reached. Such criterion is, of course, not suitable for real optimization problems where
the global minimum value is not known in advance, but is added here to evaluate for each
analyzed approach its ability of reaching the global minimizer (which is known for the test
problems we employed). With respect to the general scheme, we will also fix h = 1, i.e.,
each population member pi will generate a single candidate point qi.

In what follows we will briefly revise some approaches which can be seen as special cases
of the general Algorithm 1, recalling that we fix the procedures GenerateStartingPoints
and TerminationCriteria as described above, and we set h = 1. A very simple single-track
approach is Multistart, where:

3

Algorithm 3: The procedure which checks the termination criteria

Data: f,X; the current population P; fold the minimum value of f over the
previous population.

Result: v ∈ {true, false} that specifies if the termination conditions are fulfilled or
not.

pmin ← p∗ : f(p∗) ≤ f(p), ∀p ∈ P;
if fold ≤ f(pmin) then

NoImp← NoImp+ 1;
else

fold ← f(pmin);
NoImp← 0;

end

fvar ←
∑k

i,j=1 |f(pi)− f(pj)| ;

if NoImp ≥MaxNoImprove ∨ (fvar ' 0 ∧ k > 1) ∨ f(pmin) ≤ BestValue then
v = true;

else
v = false;

end

• k = 1;

• Generation is the uniform random generation over X;

• Selection selects the new candidate only if its function value is the best one observed
during the execution of the algorithm;

• UpdateParameters does nothing (in fact, Multistart has no parameter).

Multistart is doomed to failure for highly multimodal problems. The main reason for its
bad behavior is that each new candidate point is generated by ignoring the history of the
algorithm, i.e., the outcome of previous local searches. A slight, but quite effective, variant
of the Multistart scheme is Monotonic Basin Hopping, MBH in what follows (see [7, 17]).
MBH is also a single-track approach (in fact, a population-based version of MBH, called
PBH, see [5], has been proposed and we will use its selection mechanism in one of the
approaches discussed in the next section). The only difference with respect to Multistart
lies in the Generation procedure. Indeed, this procedure returns a point generated over a
neighborhood N of the current one p1. The neighborhood should be small with respect
to the feasible region X, otherwise MBH becomes equivalent to Multistart. In the basic
MBH approach the neighborhood is defined as follows: generate a uniform random point z
(perturbed point) over a box, centered at p1 and with edge length δ, and set q1 = L(f,X, z).
In spite of its simplicity, MBH turned out to be very efficient, especially for some hard
global optimization problems, such as molecular conformation ones with Lennard-Jones and
Morse potentials, see [7, 17], and packing problems [2]. However, in [11] many weaknesses of

4

this approach have been outlined and are briefly recalled here. One weakness is intrinsic in
the approach, no matter how we choose the neighborhood N . Since MBH always explores
the neighborhood of the current local minimizer, it performs a local search over the graph
of local minimizers defined by the neighborhood itself. Local minimizers of the objective
function over this graph are called funnel bottoms and always include the global minimizer
of f over X. MBH usually performs very well when the number of funnel bottoms is low.
In particular, it is suitable for single-funnel function landscapes, where the local minimizers
define monotone sequences of local minimizers all converging to the unique funnel bottom,
which is also the global minimizer. The performance of MBH degrades as the number of
funnel bottoms increases. But some difficulties for MBH may arise even over single-funnel
landscapes. In particular, the definition of the box over which the perturbed point z is
generated (i.e., the definition of the neighborhood N) may not be a trivial task. In the
original MBH approach for molecular conformation problems, a fixed size of the box was
identified. However, in other global optimization problems the following difficulties may
arise:

• a suitable value δ for the edge length may depend on the subregion of the feasible
domain where the current point lies: thus, a fixed value is not the best option but
some adaptive rule should be employed;

• the behavior of the objective function may be different with respect to different
variables, so that one should use different edge lengths δi, i = 1, . . . , n.

In other words, the procedure UpdateParameters, which plays no role in the basic MBH
approach, should be employed to adaptively update the values δi, which are the main
parameters of the MBH approach. However, the definition of this procedure is not a
trivial task. Thus, some mechanism to overcome these difficulties is needed. A step in this
direction has been done with the Memetic Differential Evolution (MDE in what follows)
approach (see [10]). This approach is a rather simple Differential Evolution approach (see,
e.g., [13, 15]), where a local search is applied to each newly generated point. In MDE
the procedure UpdateParameters does nothing (MDE has some parameters but these are
all fixed in advance). Procedure Generation for MDE is reported in Algorithm 4. A new
point yi is generated with the DE approach, where the parameter CR express the crossover
probability, and the parameter F is an amplification coefficient. In fact, we fixed the CR
value to 1 (no crossover is performed), and the value of F to 0.5. After the generation
of the new point yi, a local descent is started from it through the local solver L, thus
delivering the new candidate qi. The Selection procedure (Algorithm 5) is the same as
in DE: the candidate local minimizer qi is compared with the current population member
pi and if its function value is better, pi is replaced by qi. Although this is a simple
approach, it proved to be very efficient both over test problems and over packing problems
(see [10]). In that paper it is observed that MDE is able to overcome, at least partially,
the weaknesses of MBH. Indeed, the generation mechanism can be seen as a perturbation
of the population member pd1 along a search direction which is not randomly generated
but is defined by two other members of the population, namely pd2 and pd3 . This way, the

5

Algorithm 4: The generation procedure for MDE.

Data: P, the population matrix; i, the index of the evaluated point; F ∈ (0, 2), a
real constant; CR ∈ (0, 1), a probability threshold.

Result: qi, the candidate vector.
Randomly choose d1, d2, d3 ∈ {1, . . . , k}\{i} all different;
foreach j ∈ {1, . . . , n} do

if U(0, 1) ≤ CR then y
(j)
i ← p

(j)
d1

+ F (p
(j)
d2
− p

(j)
d3

) ;

else y
(j)
i ← p

(j)
i ;

end
qi ← L(f,X,yi);

Algorithm 5: The selection procedure for MDE.

Data: P, the population matrix; i, the index of the evaluated point; qi, the
candidate vector.

Result: P as the new population matrix.
if f(qi) < f(pi) then

pi ← qi;
end

previously discussed difficulty of defining a proper way to adaptively update the values δi,
i = 1, . . . , n, is overcome in MDE by the collaboration between members of the population.
Besides that, MDE performs better than MBH over multi-funnel landscapes. We refer to
[10] for a more thorough discussion about MDE. In the next section we will propose some
simple variants of MDE, which will allow us to improve the performance.

3 Some variants of MDE

In this section we discuss three simple variants of MDE, namely the greedy variant (G-
MDE), the distance variant (D-MDE), and the hybrid variant (H-MDE). We emphasize
that we choose not to investigate any sophisticated variant of the basic MDE scheme. Our
aim in this paper is to show that even simple and easy to implement approaches are able
to return very good results.

3.1 Greedy MDE

As commented in Section 2, in the classical MBH approach the perturbed point is randomly
generated within a box centered at the current local minimizer. In G-MDE we build a
discrete distribution function for the perturbed point by exploiting the knowledge of the
whole current population and through a mechanism which resembles the MDE generation
procedure. Thus, G-MDE can be seen as a variant both of MDE and of MBH. In particular,

6

the discrete distribution is built as follows. In order to generate a perturbation for the
population member pi, we randomly select another element of the population pj. Next,
we try to predict the function value of the perturbed point by computing the difference
between the objective functions at pi and pj:

D(pi,pj) = f(pi)− f(pj).

If D(pi,pj) > 0, then we may assume that a step along the direction pj − pi will lead to
a function value better than f(pi). Otherwise, we reverse the direction. Therefore, the
perturbed point yi is uniformly randomly generated over the discrete set

{pi + φjF (pj − pi)} where ∀j φj = sgn(D(pi,pj)). (1)

This generation procedure, which is summarized in Algorithm 6, is called greedy because
it favors directions which are (presumably) descent ones (once again, we fixed F = 0.5
and CR = 1). In the G-MDE generation procedure the perturbations are applied to

Algorithm 6: The generation procedure for G-MDE.

Data: P is the population matrix; i, the index of the evaluated point; F ∈ (0, 2), a
real constant; CR ∈ (0, 1), a probability threshold.

Result: qi, the candidate vector.
Randomly choose r ∈ {1, . . . , k}\{i};
if f(pi) > f(pr) then φ = 1 ;
else φ = −1 ;
foreach j ∈ {1, . . . , n} do

if U(0, 1) ≤ CR then

y
(j)
i ← p

(j)
i + φF (p

(j)
r − p

(j)
i);

else

y
(j)
i ← p

(j)
i ;

end

end
qi ← L(f,X,yi);

each population member pi and the result of the perturbation is compared with pi itself as
in MBH. However, the shape of the neighborhood and the step sizes are defined as in MDE.

Whereas such greedy procedure can be very effective for single-funnel functions, it may
be less effective for multi-funnel functions, where a too fast convergence to a funnel bot-
tom may be a negative feature. For this reason, in the next subsection we introduce a
mechanism which counterbalances the greedy moves in G-MDE.

3.2 The Distance MDE

In the field of molecular conformation problems it has been observed that keeping some
diversity within the population may be very beneficial (see, e.g., [6, 8, 12]). In [5] a

7

population-based version of MBH, called PBH, has been introduced. PBH counterbalances
the greedy nature of MBH and prevents too fast convergence through a cooperation between
the population members when selection is performed. The cooperation aims at maintaining
some diversity between the members of the population. The PBH mechanism can be
extended to G-MDE. The generation procedure is still Algorithm 6, but the selection
procedure is the one described in Algorithm 7. The procedure includes a distance measure
between local minimizers. The distance measure d(·, ·) we have employed is based on

Algorithm 7: The selection procedure for D-MDE.

Data: P is the population matrix; i, the index of the evaluated point; qi is the
candidate point.

Result: The new population matrix P.
pnear ← p∗ ∈ P : d(qi,p

∗) ≤ d(qi,p), ∀p ∈ P;
if f(qi) < f(pnear) then

pnear ← qi;
end

function values, i.e.,
d(s,u) = |f(s)− f(u)|.

However, other distance measures can be defined, including some problem-specific ones
(different examples for molecular conformation problems are reported and analyzed in [3]).

Differently from G-MDE, the selection mechanism is not applied any more between
the current population element pi and the corresponding generated candidate qi, but
between the member of the population nearest to the newly generated candidate qi and
the candidate itself, i.e., qi is compared with

p∗ ∈ P : d(qi,p
∗) ≤ d(qi,p), ∀p ∈ P.

Thus, the population members not only cooperate for the generation of candidate points
as in G-MDE, but also in the selection phase. With this selection procedure it is possible
to have a population more spread around the feasible region, since, e.g., there cannot be
different copies of the same point within the population. Moreover, candidate points with
a worse function value with respect to the population members from which they have been
generated may enter the population, and population members which generate candidate
points with a better function value may survive within the population. Both these events
can not occur in G-MDE, and they may reduce the greediness of the approach, thus causing
on the one hand a slower convergence of the algorithm but on the other hand an increase
of the search area explored by the algorithm.

3.3 Hybrid MDE

In the two previous subsections we have presented two different mechanisms which appear
to be effective in different situations. G-MDE converges fast and appears to be suitable

8

for single-funnel functions, while D-DME converges more slowly but appears to be more
effective for multi-funnel functions. The difference between the two approaches only lies in
the selection mechanism. If we have no idea about the properties of the function we want
to optimize, rather than choosing one of the two previous approaches, it is quite natural
to employ a hybrid approach, which mixes the greedy and distance selection procedures.
This way we may expect to have reasonably good results (though maybe not the best ones)
over all functions, without making use of any prior knowledge about them. Following the
principle of using only simple variants of the proposed approaches, we ended up with the
hybrid approach described in Algorithm 8. The generation of the candidate point is always
the greedy one. If D(pi,pj) > 0, i.e., φ = 1, we also use the G-MDE selection mechanism,
thus forcing the greedy behavior. But if D(pi,pj) < 0, i.e., φ = −1, the D-MDE selection
mechanism is employed. This way pi may survive within the new population even if a
better candidate point is generated, since during the selection phase the candidate is not
compared with pi but with some other member of the population. This should avoid
too fast convergence of the population towards regions which do not contain the global
minimizer. Of course, other rules to decide whether to employ the greedy or the distance
selection procedure could be explored, but the proposed one already delivers satisfying
results.

Algorithm 8: Generation and Selection in the Hybrid MDE approach.

Data: f,X; local solver L; current population P.
qi, φ← GMDEGeneration(f,L,P, i);
if φ = −1 then

P← DMDESelection(P,qi, i);
else

P← MDESelection(P,qi, i);
end

4 Computational experiments

In this section we make a detailed comparison of the three variants of MDE with MDE
itself. We recall that MDE, in spite of its simplicity, already proved to be quite effective (see
[10]), outperforming or, at least, being competitive with MBH. We will first introduce the
set of test problems over which the comparison will be performed. These are modifications
of some well known highly multimodal global optimization test problems (Subsection 4.1).
Next, we will present and discuss the tables with all the results (Subsection 4.2) . Finally,
we will present some experiments which aim at a better understanding of the algorithms’
behavior (Subsection 4.3).

9

4.1 Test problems

For the computational experiments we used three classical highly multimodal test functions
and some of their variants. The functions are (see [1, 14, 16]):

• Rastrigin function:

f1(x) = 10n+
n∑

i=1

(x2i − 10 cos(2πxi)), x ∈ [−5.12, 5.12]n,

whose global minimizer is x∗ = 0 and the global minimum value is 0.

• Ackley function:

f2(x) = 20 + e− 20 exp
(
−0.2

√
1
n

∑n
i=1 x

2
i

)
−

− exp
(
1
n

∑n
i=1 cos(2πxi)

)
, x ∈ [−32.768, 32.768]n,

whose global minimizer is x∗ = 0 and the global minimum value is 0.

• Schwefel function:

f3(x) =
n∑

i=1

−xi sin
(√
|xi|
)
, x ∈ [−500, 500]n,

whose global minimizer is x∗ = (420.9687, . . . , 420.9687) and the global minimum
value is −418.9829n.

Two more test functions (the Levy and Sinusoidal one) have been discarded because they
turned out to be not challenging enough (as already observed in [10]). The Rastrigin func-
tion has a huge number (10n) of local minimizers, but the function is a single-funnel one
and the local minimizers are uniformly distributed within the feasible set. In particular, the
distance between nearest local minimizers is always approximately equal to one. The Ack-
ley function is also highly multimodal and single-funnel. While the barriers between local
minimizers are lower with respect to the Rastrigin function, the nearest distance between
local minimizers is not constant throughout the feasible set, being large far from the global
minimizer and lower close to the global minimizer. The Schwefel function is multimodal
but, for the same dimension n, it has a lower number of local minimizers with respect to the
Rastrigin and Ackley functions. However, the Schwefel function is usually much more chal-
lenging with respect to the other two functions in view of its highly multi-funnel landscape.

While widely used in the global optimization literature, these functions have some prop-
erties which may simplify the detection of the global minimizers. The first simplifying
property is separability. Both the Rastrigin and the Schwefel function are separable. This
fact can be sometimes exploited by global optimization approaches. E.g., all approaches
where a single or few variables are perturbed at some iteration or where the value of some

10

variables is fixed (like, e.g., in the crossover operation) are clearly favored when applied
to separable functions. Another simplifying feature is the fact that the global minimizer
lies at the center of the feasible set, which is the case both for the Rastrigin and for the
Ackley function. Next, a simplifying feature is the fact that the behavior with respect to all
variables is the same (any permutation of the variables leads to a solution with the same
function value). Finally, the Rastrigin and Ackley function are symmetric with respect
to the origin. In the literature, variants of the basic functions are proposed where high
multi-modality is maintained, the funnel properties are also maintained (i.e., single-funnel
functions are still single-funnel, and the same for multi-funnel ones), but the simplifying
features are removed. The variants we considered are the following:

fi(DW(x− x̄)), i = 1, . . . , 3,

where

• D is a diagonal matrix of order n with positive diagonal elements;

• W is an orthonormal matrix of order n;

• x̄ is a n-dimensional shift vector.

The basic versions of the functions are obtained when

D = W = I, x̄ = 0,

where I is the identity matrix of order n. The orthonormal transformation eliminates
separability, and is applied to all three functions. The diagonal transformation removes
the symmetry of the problem with respect to permutation of the variables. This is only
applied to the Rastrigin function. The shift vector moves the global minimizer far away
from the center of the feasible set. It is not applied to the Schwefel function since the
global minimizer of this function is not at the center of the feasible set. For what concerns
the Rastrigin function we have also applied the following nonlinear transformation (see [4])
to each component of the argument vector z = DW(x− x̄)

g(zi) =

 zi if zi ≤ 0

z
(1+0.2 i−1

n−1

√
zi)

i otherwise.

This allows to eliminate the symmetry with respect to the global minimizer. Note that
when we apply the orthonormal transformation, also the search space is rotated, i.e., the
feasible region becomes the polytope

X = {x : lj ≤Wx ≤ uj}, j = 1, . . . , 3,

where lj,uj denote the lower and upper bounds for the box constraints of the basic function
fj, j = 1, . . . , 3. The shift vector x̄ ∈ X is generated by first randomly drawing a vector
z ∈ [lj,uj], and then by setting x̄ = WTz.

11

4.2 Results

In this subsection we present all the results we collected. But before describing the ex-
periments we performed and commenting the results we obtained, we make some remarks
about the parameters appearing in MDE and all its variants. Most of them have been fixed
to a value (the same for all the tests we performed). The MaxNoImprove parameter is
used in the termination criterion and throughout the experiments has been fixed to 100.
The DE parameters F and CR, as already mentioned before, have been fixed to 0.5 and 1,
respectively. The only parameter which has not been fixed is the size k of the population.
As typical for population-based approaches, the size of the population is a key parameter.
Too small a population may cause a too fast convergence of the algorithm, while too large
a population may cause a too large computational effort per iteration. Unfortunately, the
best size of the population is strictly problem dependent. In our experiments we observed
that for the Ackley function a small population size is enough, for the Rastrigin function
a larger size is needed, while the Schwefel function requires the largest size. The detailed
values of these sizes will be given later on. Here we only remark that an issue which is
worthwhile to investigate in future works is the identification of some adaptive rule for
the definition of the population size, allowing both for the removal and for the addition of
population members.
While we have now commented all the numerical parameters of MDE and its variants,
there is another non-numerical parameter which may have an impact on the performance
of the different approaches. Indeed, one can use different local solvers L. The results with
different solvers may considerably differ from each other, although often (but not always)
the relative performance of the different approaches is similar with the different solvers.
For this reason we tested different solvers.

We are now ready to describe the experiments. We used three different local solvers:
SNOPT, MINOS, and the fmincon solver through Matlab. We performed tests with dimen-
sions n = 10 and n = 50 with SNOPT, MINOS, while, due to the very large computing times
in Matlab, we tested dimensions n = 10 and n = 30 with fmincon. For the Rastrigin func-
tion we tested all possible versions (separable, rotated, rotated and shifted, rotated and
shifted and scaled). With SNOPT we also tested the non symmetric version. For the Ackley
function we tested the separable, the rotated, and the rotated and shifted versions. For the
Schwefel function we tested the separable and rotated version. As previously commented,
we used different population sizes not only for different dimensions but also for different
functions. For the Rastrigin function, we set k = 10 for n = 10, and k = 40 for n = 50
(k = 20 for n = 30 in the tests with fmincon). For the Ackley function we set k = 10 for
n = 10 and k = 20 for n = 50 (k = 20 also for n = 30 in the tests with fmincon). For
the Schwefel function we set k = 40 for n = 10 and k = 100 for n = 50 (k = 100 also for
n = 30 in the tests with fmincon).

The following columns appear in each table:

• SN : the number of successes over N trials;

12

• LS: the average number of local searches;

• D: the average distance over the instances where a failure occurs, computed as
|f(x∗)− f(x†)|, between the global minimum value attained at the global minimizer
x∗, and the best function value reached by the algorithm, attained at some point x†

(D = 0 if no failure occurs).

We will make a separate comment for each function.

4.2.1 Ackley

Tables 1-3 report the results with the different versions of the 10-dimensional Ackley func-
tion with the SNOPT, MINOS and fmincon local solver, respectively. Tables 4-5 report the
results with the different versions of the 50-dimensional Ackley function with the SNOPT

and MINOS solvers. Finally, Table 6 reports the results with the different versions of the
30-dimensional Ackley function with the fmincon solver.

The results for the Ackley function are quite consistent through the different dimensions
and solvers. As expected in view of the single-funnel nature of the function, G-MDE per-
forms quite well with a very high percentage of successes and a low average number of
local searches. H-DME performs very similarly to G-MDE, thus showing that in this case
the hybrid mechanism is able to preserve the good performance of the greedy approach.
Both G-MDE and H-MDE outperform the original MDE approach. D-MDE is a robust
approach (no failure occurs) but with the largest number of local searches. That was
expected: D-MDE converges more slowly than the other approaches.

Ackley10 - SNOPT
Alg. Separable Rot. Rot + Shift
- S100 LS D S100 LS D S100 LS D
MDE 96 196.2 1.6469 100 85.20 0 99 100.4 1.1556
G-MDE 99 147.8 2.0142 100 58.1 0 100 76.5 0
D-MDE 100 459.7 0 100 218.4 0 100 279.4 0
H-MDE 100 149.7 0 100 60.7 0 100 75.7 0

Table 1: Tests with SNOPT and a population of 10 points.

13

Ackley10 - MINOS
Alg. Separable Rot. Rot + Shift
- S100 LS D S100 LS D S100 LS D
MDE 99 176.1 12.9061 100 74.3 0 92 83.3 3.4259
G-MDE 95 101.7 5.3551 100 35.8 0 100 46.0 0
D-MDE 100 314.0 0 100 79.3 0 100 135.2 0
H-MDE 95 106.1 6.6433 100 35.3 0 100 46.0 0

Table 2: Tests with MINOS and a population of 10 points.

Ackley10 - fmincon
Alg. Separable Rot. Rot + Shift
- S50 LS D S50 LS D S50 LS D
MDE 50 59.8 0 50 54.4 0 50 70.36 0
G-MDE 50 36.8 0 50 34.9 0 50 52.32 0
D-MDE 50 114.6 0 50 82 0 50 121.56 0
H-MDE 50 36.0 0 50 33.8 0 50 50.84 0

Table 3: Tests with fmincon and a population of 10 points.

Ackley50 - SNOPT
Alg. Separable Rot. Rot + Shift
- S50 LS D S50 LS D S50 LS D
MDE 46 1374.4 19.2857 50 503.6 0 50 587.2 0
G-MDE 50 164.8 0 50 86.0 0 50 124.0 0
D-MDE 50 1040.0 0 50 460.1 0 50 706.8 0
H-MDE 50 158.0 0 50 86.4 0 50 126.8 0

Table 4: Tests with SNOPT and a population of 20 points.

14

Ackley50 - MINOS
Alg. Separable Rot. Rot + Shift
- S50 LS D S50 LS D S50 LS D
MDE 50 723.2 0 50 213.2 0 50 244.4 0
G-MDE 50 202.0 0 50 82.0 0 50 109.6 0
D-MDE 50 1381.6 0 50 299.2 0 50 425.6 0
H-MDE 50 194.8 0 50 77.6 0 50 110.4 0

Table 5: Tests with MINOS and a population of 20 points.

Ackley30 - fmincon
Alg. Separable Rot. Rot + Shift
- S10 LS D S10 LS D S10 LS D
MDE 10 189.6 0 10 157.4 0 10 219.2 0
G-MDE 10 81.6 0 10 76.7 0 10 161.7 0
D-MDE 10 396.2 0 10 282.6 0 10 604.1 0
H-MDE 10 75.0 0 10 71.4 0 10 127.5 0

Table 6: Tests with fmincon and a population of 20 points.

4.2.2 Rastrigin

Tables 7-10 report the results with the different versions of the 10-dimensional Rastrigin
function with the SNOPT, MINOS and fmincon local solver, respectively (only SNOPT for
the non-symmetric version). Tables 11-13 report the results with the different versions
of the 50-dimensional Rastrigin function with the SNOPT and MINOS solvers (once again,
only SNOPT for the non-symmetric version). Finally, Table 14 reports the results with the
different versions of the 30-dimensional Rastrigin function with the fmincon solver.

The Rastrigin function is single-funnel. Thus, we expected a behavior similar to the Ackley
function. In particular, we expected a good performance of G-MDE with respect to the
other variants, the usual robustness (i.e., ability to reach the global minimizer) for D-MDE,
although at the cost of a larger number of local searches, and a behavior of H-MDE close
to that of G-MDE. With SNOPT this is almost always the case, although the performance
over the Rotated+Shifted version and the Rotated+Shifted+Scaled version is not the best
one for G-MDE and H-MDE. With MINOS G-MDE has not the best performance with the
Rotated version (this is true in particular with n = 10) but the D value reveals that, when
not reaching the global minimizer, G-MDE almost always stops (in fact, always for n = 10)
at the second best local minimizer, whose function value is 0.9959. With fmincon G-MDE
usually performs very well, the only execption being the Rotated+Shifted+Scaled version,
where, however, G-MDE outperforms MDE. It is remarkable that in this case H-MDE

15

represents a very good mix of the two strategies. Its performance is always very close to
(and sometimes better than) the best of the other approaches.

Rastrigin10 - SNOPT
Alg. Separable Rot.
- S100 LS D S100 LS D
MDE 87 80.4 2.2983 73 94.4 2.2501
G-MDE 100 48.5 0 99 62.1 0.9959
D-MDE 100 182.1 0 100 203.4 0
H-MDE 99 60 0.9959 98 73.3 0.9959

Alg. Rot. + Shift Rot. + Shift + Scaled
- S100 LS D S100 LS D
MDE 59 133.8 4.1781 49 233.7 1.8552
G-MDE 80 307.2 1.5935 84 406.2 1.7429
D-MDE 100 369.2 0 95 784.7 0.9959
H-MDE 66 451.1 2.5777 78 422.6 1.3128

Table 7: Tests with SNOPT and a population of 10 points.

RastriginNonSym10 - SNOPT
Alg. Separable Rot. Rot + Shift
- S100 LS D S100 LS D S100 LS D
MDE 80 173.6 1.4939 82 199.7 2.4345 61 216.9 2.929
G-MDE 98 86.2 0.9959 100 77.9 0 96 136.8 0.9959
D-MDE 95 399.4 0.9959 96 423.6 0.9959 89 641.6 0.9963
H-MDE 100 115.0 0 99 87.5 0.9959 95 141.9 1.1951

Table 8: Tests with SNOPT and a population of 10 points.

16

Rastrigin10 - MINOS
Alg. Separable Rot.
- S100 LS D S100 LS D
MDE 98 66.5 0.9959 22 206.4 1.035
G-MDE 100 38.9 0 25 920.0 0.9959
D-MDE 100 133.6 0 89 573.8 0.9959
H-MDE 100 40.9 0 48 442.9 0.9959

Alg. Rot. + Shift Rot. + Shift + Scaled
- S100 LS D S100 LS D
MDE 62 171.6 5.6481 60 190.5 6.5259
G-MDE 100 85.8 0 97 160.6 0.9959
D-MDE 92 520.2 6.7127 97 593.8 9.8023
H-MDE 97 123.2 3.1918 91 210.4 0.9959

Table 9: Tests with MINOS and a population of 10 points.

Rastrigin10 - fmincon
Alg. Separable Rot.
- S50 LS D S50 LS D
MDE 45 141 4.9747 37 184 4.1328
G-MDE 50 100.2 0 50 104.5 0
D-MDE 50 361 0 50 409 0
H-MDE 50 94.0 0 50 105.68 0

Alg. Rot. + Shift Rot. + Shift + Scaled
- S50 LS D S50 LS D
MDE 27 183.5 5.3304 2 322.28 4.8437
G-MDE 39 296.46 5.9318 17 1041.8 1.7484
D-MDE 45 606.58 3.978 22 1503.6 1.2071
H-MDE 41 309.6 5.0288 23 873.8 1.4370

Table 10: Tests with fmincon and a population of 10 points.

17

Rastrigin50 - SNOPT
Alg. Separable Rot.
- S50 LS D S50 LS D
MDE 50 584.0 0 50 796.0 0
G-MDE 50 229.6 0 50 233.6 0
D-MDE 50 2265.6 0 50 2555.2 0
H-MDE 50 224.0 0 50 231.2 0

Alg. Rot. + Shift Rot. + Shift + Scaled
- S50 LS D S50 LS D
MDE 50 1243.2 0 50 2241.6 0
G-MDE 43 1340.0 2.2757 45 1871.2 3.186
D-MDE 50 2601.6 0 50 7931.2 0
H-MDE 39 1805.6 2.8067 46 1993.6 0.9957

Table 11: Tests with SNOPT and a population of 40 points.

RastriginNonSym50 - SNOPT
Alg. Separable Rot. Rot + Shift
- S50 LS D S50 LS D S50 LS D
MDE 50 1570.4 0 50 1075.2 0 46 1462.4 0.995
G-MDE 50 412.0 0 50 275.2 0 32 2251.2 1.2172
D-MDE 50 5054.4 0 50 3490.4 0 50 5554.4 0
H-MDE 50 417.6 0 50 276.0 0 40 1428.0 1.294

Table 12: Tests with SNOPT and a population of 40 points.

18

Rastrigin50 - MINOS
Alg. Separable Rot.
- S50 LS D S50 LS D
MDE 50 469.6 0 12 2551.2 1.127
G-MDE 50 190.4 0 27 4761.6 1.0391
D-MDE 50 1676.8 0 48 5986.4 1.9915
H-MDE 50 196.8 0 49 1876.0 0.995

Alg. Rot. + Shift Rot. + Shift + Scaled
- S50 LS D S50 LS D
MDE 50 1420.8 0 48 3267.2 6.6675
G-MDE 50 418.4 0 50 933.6 0
D-MDE 47 5308.0 2.3239 43 9740.0 18.665
H-MDE 50 424.0 0 50 893.6 0

Table 13: Tests with MINOS and a population of 40 points.

Rastrigin30 - fmincon
Alg. Separable Rot.
- S10 LS D S10 LS D
MDE 10 485.5 0 9 933.5 18.9042
G-MDE 10 382.8 0 10 357.8 0
D-MDE 10 2226.8 0 9 2626.5 12.934
H-MDE 10 396.7 0 10 385.5 0

Alg. Rot. + Shift Rot. + Shift + Scaled
- S10 LS D S10 LS D
MDE 8 779.2 2.62 0 1643.0 8.85
G-MDE 9 709.1 1.95 2 3655.7 1.737
D-MDE 6 3168.8 7.31 9 4995.5 0.994
H-MDE 10 362.1 0 9 1528.7 0.994

Table 14: Tests with fmincon and a population of 20 points.

4.2.3 Schwefel

Tables 15-17 report the results with the different versions of the 10-dimensional Schwefel
function with the SNOPT, MINOS and fmincon local solver, respectively. Tables 18-20 report
the results with the different versions of the 50-dimensional Schwefel function with the
SNOPT and MINOS solvers (note that with MINOS we reported the results also with a popu-
lation of 200 members). Finally, Table 21 reports the results with the different versions of
the 30-dimensional Schwefel function with the fmincon solver.

19

The results with the Schwefel function display some variability with respect to the local
solver employed. What we expected was a very good performance of the D-MDE approach,
which converges more slowly but explores a larger portion of the feasible region, a positive
feature when dealing with the multi-funnel landscape of the Schwefel function. The exper-
iments confirm the expectations: D-MDE is quite robust, with a very high percentage of
successes. We also expected a bad performance of G-MDE, in view of its fast (too fast,
in this case) convergence. That was the case with the solvers MINOS and fmincon. But
with the solver SNOPT we had an unexpected very good behavior of G-MDE. A possible
explanation is the following. The behavior of any local solver is not necessarily ”local”
in the sense that the local minimizer reached from a starting point is the closest one to
this point. It may happen (and, as we will see in the next subsection, it often happens)
that the final local minimizer is far away from the starting point. Thus, any local solver
does explore a large portion of the feasible region and the region of attraction of the global
minimizer may contain points quite far from it. This seems to be the case for the global
minimizer of the Schwefel function when SNOPT is used, thus making the convergence to
the global minimizer easier for G-MDE. The performance of H-DME lies, as expected, be-
tween the one of G-MDE and the one of D-MDE, and is very close to G-MDE with SNOPT.
Note that with MINOS, where we had a small number of successes with the population size
k = 100, we also tested the population size k = 200 (see Table 20). The larger population
size allows for a larger number of successes, in particular with D-MDE, although also the
average number of local searches increases.

Schwefel10 - SNOPT
Alg. Separable Rot.
- S100 LS D S100 LS D
MDE 34 850.4 198.1560 49 479.2 226.5803
G-MDE 99 930.0 117.609 100 442.4 0
D-MDE 100 949.2 0 100 982.4 0
H-MDE 97 752.8 157.089 100 563.2 0

Table 15: Tests with SNOPT and a population of 40 points.

20

Schwefel10 - MINOS
Alg. Separable Rot.
- S100 LS D S100 LS D
MDE 22 893.2 207.2756 12 932.8 233.3909
G-MDE 3 5681.6 277.9061 58 3045.2 154.2690
D-MDE 93 2963.6 134.5292 91 2985.2 331.6888
H-MDE 19 4689.2 228.8111 32 3984.8 192.5073

Table 16: Tests with MINOS and a population of 40 points.

Schwefel10 - fmincon
Alg. Separable Rot.
- S50 LS D S50 LS D
MDE 13 957.0 230.7617 16 1051.5 187.6588
G-MDE 5 7002.0 232.0848 5 5868.2 242.6464
D-MDE 40 1633.0 177.8098 49 2132.2 118,4
H-MDE 33 1529.4 160.4189 21 4468.24 179.8034

Table 17: Tests with fmincon and a population of 40 points.

Schwefel50 - SNOPT
Alg. Separable Rot.
- S10 LS D S10 LS D
MDE 0 14090.0 5588.28 7 5290.0 193.2530
G-MDE 10 3740.0 0 10 3610.0 0
D-MDE 10 32570.0 0 10 8360.0 0
H-MDE 10 3730.0 0 10 4620.0 0

Table 18: Tests with SNOPT and a population of 100 points.

21

Schwefel50 (100) - MINOS
Alg. Separable Rot.
- S10 LS D S10 LS D
MDE 0 6920.0 979.956 0 9300.0 1085.49
G-MDE 0 14290.0 2771.41 0 30710.0 651.216
D-MDE 5 37590.0 280.108 1 47960.0 245.8922
H-MDE 1 18870.0 1513.6222 0 17570.0 1097.33

Table 19: Tests with MINOS and a population of 100 points.

Schwefel50 (200) - MINOS
Alg. Separable Rot.
- S10 LS D S10 LS D
MDE 2 15960.0 291.9512 0 27220.0 635.423
G-MDE 0 27440.0 2795.86 1 50940.0 1062.1422
D-MDE 9 76380.0 1180.24 8 64080.0 589.565
H-MDE 0 40400.0 1670.39 2 35520.0 691.6812

Table 20: Tests with MINOS and a population of 200 points.

Schwefel30 - fmincon
Alg. Separable Rot.
- S10 LS D S10 LS D
MDE 2 5198.0 237.635 2 5941.5.0 207.6375
G-MDE 0 17603.0 1226.526 0 17610.0 1095.39
D-MDE 10 12306.8 0 10 16046.7 0
H-MDE 7 18865.4 476.7886 4 23623.1 417.05

Table 21: Tests with fmincon and a population of 100 points.

4.3 Some insight into the results

In this section we present a few experiments which have been made to gain some insight
about the proposed approaches.

In [10] it was observed that MDE is able to identify the directions along which to move,
and to self-adjust the step size along different directions. To confirm this fact, we analyzed

22

the covariance matrix of the population, defined as follows

C =
1

k

k∑
i=1

(pi − σ)(pi − σ)T ,

where σ is the average of the population, i.e.,

σ =
k∑

i=1

pi

k
.

Since the covariance matrix C is a positive definite matrix we can decompose it as follows

C = SHST , (2)

where S is an orthonormal matrix and H is a diagonal matrix with positive diagonal entries.
We can use the covariance matrix to define an hyper-ellipsoid with equation xTCx = 1.
Thus in the decomposition in (2) the diagonal entries of matrix H are the squared length of
the principal axes of the hyper-ellipsoid, while the columns of matrix S are the directions
of the axes of the hyper-ellipsoid. MDE and its variants will have the tendency to generate
steps along the directions of the axes, with a step length along these directions related to
the diagonal entries of H. Figure 1 shows the curves of the (ordered) diagonal entries of
H over an instance with the Rastrigin function. It is worthwhile to remark two facts. The
first one is that during the first iterations the diagonal entries may considerably differ from
each other, thus allowing for different step sizes along different directions. The second fact
is that as the iteration counter increases, the step-size along each direction is decreasing
(the algorithm is approaching the unique funnel bottom of the function). With the Schwe-
fel function the situation is different. The curves are not decreasing ones. They sometimes
decrease and some other times increase. That happens because the global minimizer and
the other low-level local minimizers are not close to each other as in the Rastrigin case.
Figure 2a displays a case where the global minimizer could finally be reached, while Figure
2b displays a case where the global minimizer was not reached: after some iterations, the
population was frozen and the covariance matrix did not change any more, thus causing
the curves to become constant ones. This irregular behavior is a good feature with respect
to the Schwefel function. We need to avoid too fast convergence and we need to be able
to perform large steps.

The second experiment we performed with the greedy generation procedure is the fol-
lowing. At each iteration we computed the quantity (we refer to Algorithm 6 for the
notation)

1

k

k∑
i=1

‖pi − yi‖.

This is the average distance between the population members and the corresponding per-
turbations (before a local search is applied to them). The corresponding curve is quite

23

1 2 3 4 5 6 7
−2

0

2

4

6

8

10

12

14

16
A

x
is

 l
e
n
g
th

Iteration

Figure 1: The curves represent the evolution of the ordered diagonal entries of matrix H over a

test with the Rastrigin function.

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

A
x
is

 l
e
n
g
th

Iteration

(a)

0 20 40 60 80 100 120 140
−1

0

1

2

3

4

5

6

7

8
x 10

5

A
x
is

 l
e
n
g
th

Iteration

(b)

Figure 2: The curves represent the evolution of the ordered diagonal entries of matrix H
over a test with the Schwefel function in a case where the global minimizer is reached (a)
and in a case where a failure occurs (b).

24

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

A
v
g

 d
is

ta
n

c
e

Iteration

Figure 3: The curve of the average distance between population members and the corresponding

perturbed points in the greedy generation procedure with the Rastrigin function with scaling

matrix D = 4I.

25

0 10 20 30 40 50 60 70 80 90
500

550

600

650

700

750

800

850

A
v
g
 d

is
ta

n
c
e

Iteration

Figure 4: The curve of the average distance between population members and the corresponding

perturbed points in the greedy generation procedure with the Schwefel function.

26

regular and decreasing for the Rastrigin function (see Figure 3) with the convergence to-
wards the distance between the global minimizer and the second best local minimizer.
The curve associated to the Schwefel function (see Figure 4) is, once again, much more
irregular, which reflects the multi-funnel nature of the function.

In our third experiment we aimed at analyzing the behavior of the hybrid selection proce-
dure. For each population member at each iteration we kept track of the policy (greedy or
distance) applied during the selection phase. We did this both with the Rastrigin function
and with the Schwefel function. The results are shown in Figures 5a and 5b, respectively.
In these figures the colored dots show, for each population member, which policy has been
applied: the blue ones are those for which the greedy policy was applied, while the red
color represents the distance policy. The filled dots show if the selection mechanism led
to a new individual with a best function value. The piecewise linear curve represents the
function values of the individual that first reaches the global minimizer. It is clearly seen
from the figures that the population members with a low function value have the blue
color with the Rastrigin function, and the red color with the Schwefel function. This was
the expected behavior: the best approach is the greedy one for the single-funnel Rastrigin
function, and the distance one for the Schwefel function.

Our final experiment aimed at exploring the global aspects of local solvers. We previ-
ously commented that local searches often lead to local minimizers which are quite far
away from the starting points. Thus, we performed the following experiment. We con-
sidered the Rastrigin function, for which, in the n-dimensional case, the minimal distance
between a point and its closest local minimizer is (approximately) bounded from above by√

n
2

. Then, we measured the average Euclidean distance between the starting points of the
local searches (points yi in the greedy generation procedure Algorithm 6) and the local
minimizer reached by the local searches (performed with fmincon), i.e., we measured

1

k

k∑
i=1

‖qi − yi‖.

In Figure 6 we tested the case n = 10 (for which the upper bound on the minimal distance
is ≈ 1.58). It is possible to see that the distance is always greater than the upper bound
with very large distances during the first iterations. This shows that, in particular during
the first iterations, the local solver itself is performing some sort of global search.

5 Conclusions

In this paper we have computationally investigated some simple variants of MDE, a
memetic approach for continuous global optimization, which has been proved to be quite
efficient in [10]. The analysis revealed that the best of such variants often outperforms the
performance of MDE, but at the same time that the best variant is not always the same

27

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

F
u

n
c
ti
o

n
 v

a
lu

e

Iteration

(a) Rastrigin

0 5 10 15 20 25 30 35
0

500

1000

1500

2000

2500

3000

F
u

n
c
ti
o

n
 v

a
lu

e

Iteration

(b) Schwefel

Figure 5: Function values of the population members to which the greedy policy has been
applied (blue) and those to which the distance policy was applied (red). The piecewise
linear curve represents the function values of the individual which first reaches the global
minimizer.

28

1 2 3 4 5 6 7
5

10

15

20

25

30

35

40

A
v
g

 d
is

ta
n

c
e

Iteration

Figure 6: Average distance between the starting points of the local searches and the local

minimizers reached. Test performed with the 10-dimensional separable Rastrigin function and

the fmincon solver.

29

and is strictly problem dependent. In particular, the quickly convergent greedy variant
is the best one for single-funnel functions, while the slowly convergent distance variant is
usually the best one with multi-funnel functions. An hybrid approach has also been intro-
duced in order to have a reasonably good (though not necessarily the best) performance
over all functions. The computational analysis also reveals that the procedure employed
for the local searches may have a considerable impact on the performance of each of the
approaches we tested. We point out here that we have deliberately chosen to investigate
only very simple variants of the (already simple) MDE approach. Indeed, in this study it
was our intention to avoid any complication in order to show that even some basic strate-
gies, applied in a proper way, may lead to very good results. More sophisticated strategies
could probably allow for further improvements and could be an interesting topic for future
research.

References

[1] D.H. Ackley. A connectionist machine for genetic hillclimbing. Kluwer Academic
Publishers, Boston, 1987.

[2] Bernardetta Addis, Marco Locatelli, and Fabio Schoen. Disk packing in a square: A
new global optimization approach. INFORMS J. on Computing, 20(4):516–524, 2008.

[3] Andrea Cassioli, Marco Locatelli, and Fabio Schoen. Dissimilarity measures for
population-based global optimization algorithms. Computational Optimization and
Applications, 45(2):257–281, 2010.

[4] S. Finck, N. Hansen, R. Rosz, and A. Auger. Real-parameter black-box optimiza-
tion benchmarking 2010: Noiseless functions definitions. Technical Report RR6829,
INRIA, 2011.

[5] Andrea Grosso, Marco Locatelli, and Fabio Schoen. A population based approach
for hard global optimization problems based on dissimilarity measures. Mathematical
Programming, 110(2):373–404, 2007.

[6] Bernd Hartke. Global cluster geometry optimization by a phenotype algorithm with
niches: Location of elusive minima, and low-order scaling with cluster size. Journal
of Computayional Chemistry, 20:1752–1759, 1999.

[7] Robert H. Leary. Global optimization on funneling landscapes. Journal of Global
Optimization, 18:367–383, 2000.

[8] Julian Lee, In-Ho Lee, and Jooyoung Lee. Unbiased global optimization of Lennard-
Jones clusters for N ≤ 201 by conformational space annealing method. Physical
Review Letters, 91(8):1–4, 2003.

30

[9] Marco Locateli and Fabio Schoen. Global Optimization: Theory, Algorithms, and
Applications. MOS SIAM Series on Optimization. SIAM, 2013.

[10] M. Locatelli, M. Maischberger, and F. Schoen. Differential evolution methods based
on local searches. Computers and Operations Research, 43:169–180, 2014.

[11] M. Locatelli and F. Schoen. Global optimization based on local searches. 4OR-
Quarterly Journal Operations Research, 11:301–321, 2013.

[12] Jorge M. C. Marques, A. A. C. C. Pais, and P. E. Abreu. Generation and characteriza-
tion of low-energy structures in atomic clusters. Journal of Computational Chemistry,
31(7):1495–1503, 2010.

[13] K. Price, R.M. Storn, and J.A. Lampinen. Differential Evolution: A Practical Ap-
proach to Global Optimization. Springer, 2005.

[14] H.P. Schwefel. Numerical Optimization of Computer Models. John Wiley & Sons,
1981.

[15] Rainer Storn and Kenneth Price. Differential evolution. A simple and efficient heuris-
tic for global optimization over continuous spaces. Journal of Global Optimization,
11(4):341–359, 1997.

[16] A. Törn and A. Zilinskas. Global Optimization. Springer-Verlag, Berlin, 1989.

[17] David J. Wales and Jonathan P. K. Doye. Global optimization by Basin-Hopping and
the lowest energy structures of Lennard–Jones clusters containing up to 110 atoms.
Journal of Physical Chemistry A, 101(28):5111–5116, 1997.

31

