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Abstract

In this paper we present a rate of convergence analysis of an inexact proximal point
algorithm to solve minimization problems for quasiconvex objective functions on Hadamard
manifolds. We prove that under natural assumptions the sequence generated by the algo-
rithm converges linearly or superlinearly to a critical point of the problem.
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1 Introduction

The initial work on the proximal point minimization algorithm is due to Martinet [11]. Then
that method was extended for finding a zero of an arbitrary maximal monotone operator, in
Hilbert spaces, by Rockafellar [16]. In that paper, the convergence of the method was establised
under several criteria with conditions amenable to implementation. Moreover, convergence rate
is shown to be linear ou superlinear (depending of the positive proximal parameters) when-
ever the inverse of the operator is Lipschitz continuous at 0. It turns out to be very natural
in applications to convex programming. After that, for minimization problems it was shown
in Güler[9], that the sequence of the objective function values converges to the optimal value
of the minimization problem with a complexity of O(1/k) under minimal assumptions on the
regularized parameter.

Since the introduction of the proximal point algorithm by Martinet[11], there have been a
geat interest of the optimization community to study the proximal point algorithm in different
spaces because it can be viewed as a powerful tool for the regularization of ill-posed convex



optimization problems, as a standard tool for solving nonsmooth problems of large-scale, sepa-
rable optimization problems and its role in multiplier methods based on duality.

Moreover, it must be admitted the importance of the generalization of this algorithm from
linear spaces to differentiable manifolds. In particular, on Riemannian manifolds. This impor-
tance is based on the fact that, for instance, some nonconvex constrained optimization problems
can be solved after being written as convex optimization problems on Hadamard manifolds, see
for example da Cruz Neto et al.[5], Ferreira et al.[8], Rapcsák[17] and Udriste[21]. Indeed,
the proximal point algorithm, in the setting of Riemannian manifold, has been introduced by
Ferreira and Oliveira[7] for solving convex minimization problems on Hadamard manifolds. Re-
cently, some authors focus on studying proximal methods on Riemannian/Hadamard manifolds,
see [1, 4, 7, 14, 19] an the references therein.

In the riemannian context there are few results on the rate of convegence. Recently, Tang
and Huang[20] estimated the convergence rate of the proximal point algorithm, under a growth
condition which is an extension of ones given by Luque[10], for the singularity of maximal
monotone vector fields on Hadamard manifolds.

On the other hand, in Baygorrea et al.[3] has been shown two inexact proximal point algo-
rithms for solving quasiconvex minimization problems on Hadamard manifolds. Observe that
quasiconvex minimization problems is a larger class than convex minimization problems and
has been studied recently motivated by some applications in location theory, economic theory
and fractional optimization, see [12, 13, 14, 15].

In this paper, we analyze the convergence rate of an inexact proximal point algorithm on
Hadamard manifolds introduced by Baygorrea et al.[3]. The main contribution of this paper is
the extension of the linear/superlinear rate of convergence of the proximal point algorithm on
Hadamard manifolds from the convex case to the quasiconvex ones. This result is new even in
the Euclidean space.

The remainder of the paper is organized as follows: Section 2, we recall some definitions
and results about Riemannian geometry, quasiconvex analysis and abstract subdifferential. In
Section 3, we present the optimization problem and an inexact algorithm for solving quasiconvex
minimization problems. In Section 4, we explore the convergence rate of the proposed algorithm
for solving in quasiconvex minimization problems.

2 Preliminaries

In this section we recall some fundamental properties and notation on Riemannian mani-
folds. Those basic facts can be seen, for example, in do Carmo [6], Sakai [18], Udriste [21] and
Rapcsák [17].
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Let M be a n-differential manifold with finite dimension n. We denote by TxM the tangent

space of M at x and TM =
⋃
x∈M TxM . TxM is a linear space and has the same dimension of

M . Because we restrict ourselves to real manifolds, TxM is isomorphic to IRn. If M is endowed
with a Riemannian metric g, then M is a Riemannian manifold and we denote it by (M,G)
or only by M when no confusion can arise, where G denotes the matrix representation of the
metric g. The inner product of two vectors u, v ∈ TxM is written as 〈u, v〉x := gx(u, v), where

gx is the metrics at point x. The norm of a vector v ∈ TxM is set by ‖v‖x := 〈v, v〉1/2x . If there
is no confusion we denote 〈, 〉 = 〈, 〉x and ||.|| = ||.||x. The metrics can be used to define the
length of a piecewise smooth curve ψ : [t0, t1] → M joining ψ(t0) = p′ to ψ(t1) = p through
L(ψ) =

∫ t1
t0
‖ψ′(t)‖ψ(t)dt. Minimizing this length functional over the set of all curves we obtain

a Riemannian distance d(p′, p) which induces the original topology on M .
Given two vector fields V and W in M , the covariant derivative of W in the direction V is

denoted by ∇VW . In this paper ∇ is the Levi-Civita connection associated to (M,G). This
connection defines an unique covariant derivative D/dt, where, for each vector field V , along
a smooth curve ψ : [t0, t1] → M , another vector field is obtained, denoted by DV/dt. The
parallel transport along ψ from ψ(t0) to ψ(t1), denoted by Pψ,t0,t1 , is an application Pψ,t0,t1 :
Tψ(t0)M → Tψ(t1)M defined by Pψ,t0,t1(v) = V (t1) where V is the unique vector field along ψ
so that DV/dt = 0 and V (t0) = v. Since ∇ is a Riemannian connection, Pψ,t0,t1 is a linear
isometry, furthermore P−1

ψ,t0,t1
= Pψ,t1,t0 and Pψ,t0,t1 = Pψ,t,t1Pψ,t0,t, for all t ∈ [t0, t1]. A curve

ψ : I →M is called a geodesic if Dψ′/dt = 0.
A Riemannian manifold is complete if its geodesics are defined for any value of t ∈ IR. Let

x ∈M , the exponential map expx : TxM →M is defined expx(v) = γ(1, x, v), for each x ∈M .
If M is complete, then expx is defined for all v ∈ TxM. Besides, there is a minimal geodesic (its
length is equal to the distance between the extremes).

Complete simply-connected Riemannian manifolds with nonpositive curvature are called
Hadamard manifolds. Throughout the remainder of this paper, we always assume that M is an
n− dimensional Hadamard manifold. Some examples of Hadamard manifolds may be found in
Section 4 of Papa Quiroz and Oliveira [14].

Given an extended real valued function f : M → IR ∪ {+∞} we denote its domain by
domf := {x ∈ M : f(x) < +∞}. f is said to be proper if domf 6= ∅ and ∀x ∈ domf we have
f(x) > −∞ and its epigraph by epi(f) := {(x, β) ∈M × IR | f(x) ≤ β}. Moreover f is a lower
semicontinuous function if epi(f) is a closed subset of M × IR.

Let f : M → IR ∪ {+∞} be a proper function f , it is called quasiconvex if for all x, y ∈M ,
t ∈ [0, 1], it holds that

f(γ(t)) ≤ max{f(x), f(y)},

for the geodesic γ : [0, 1]→ IR such that γ(0) = x and γ(1) = y.

Definition 2.1 Let {zk} ⊂ M such that {zk} converges to a point z̄ ∈ M . Then, the conver-
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gence is said to be:

i. linear iff there exist a constant θ < 1 and a positive N ∈ IN such that

d(zk, z̄) ≤ θd(zk−1, z̄); ∀ k > N.

ii. superlinear iff there exist a sequence {αk} converging to zero and a positive N̄ ∈ IN such
that

d(zk, z̄) ≤ αkd(zk−1, z̄). ∀ k > N̄.

Definition 2.2 We call abstract subdifferential, denoted by ∂, any operator which associates
a subset ∂f(x) of TxM to any lower semicontinuous function f : M → IR ∪ {+∞} and any
x ∈M , satisfying the following properties:

a. If f is convex, then ∂f(x) = {g ∈ TxM | 〈g, exp−1
x z〉+ f(x) ≤ f(z), ∀ z ∈M};

b. 0 ∈ ∂f(x), if x ∈M is a local minimum of f ;

c. ∂(f + g)(x) ⊂ ∂f(x) + ∂g(x), whenever g : M → IR ∪ {+∞} is a convex continuous
function which is ∂-differentiable at x ∈M.

Here, g is ∂-differentiable at x means that both ∂g(x) and ∂(−g)(x) are nonempty. We say that
a function f is ∂-subdifferentiable at x when ∂f(x) is nonempty.

As studied in previous works, see for example Aussel[2] and Baygorrea et al.[3], this abstract
subdifferential recover a broad range of classical subdifferential. Among them, particulary, we
have the Clarke subdifferential defined at the point a ∈M as the set

∂◦f(x) = {s ∈ TxM | 〈s, v〉 ≤ f◦(x, v), ∀ v ∈ TxM},

where

f◦(x, v) = lim sup
u→x
t↘0

f(exput(Dexpx)exp−1
x uv)− f(u)

t
.

In this paper we also use the following (limiting) subdifferential concept of f at x ∈ M ,
which is defined by

∂Limf(x) := {s ∈ TxM | ∃xk → x, f(xk)→ f(x),∃ sk ∈ ∂f(xk) : Pγk,0,1s
k → s},

Remark 2.1 Note that it is an immediate consequence that

∂f(x) ⊆ ∂Limf(x). ∀ x ∈M (2.1)

Let g ∈ ∂f(x). By taking {xk} = {x} and {gk} = {g} with gk ∈ ∂f(xk), it follows that gk

converges to g. Thus, g ∈ ∂Limf(x).
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3 Definition of the problem and the Algorithm.

Let M be a Hadamard manifold. We are interested in solving the problem:

min
x∈M

f(x) (3.2)

where f : M → IR ∪ {+∞} is an extended real-valued function which satisfies the following
assumption:

(H1) f is a proper, bounded from below and lower semicontinuous quasiconvex function.

Furthermore, for solving the problem (3.2), we consider a follows assumptions:

(H2) (∂ ⊂ ∂D
+

) or (∂ ⊂ ∂CR and f is continuous in M). See Section 3 of Baygorrea et
al.[3] for a definition of ∂D

+
and ∂CR respectively.

HMIP2 Algorithm.

Initialization: Take x0 ∈M . Set k = 0.

Iterative step: Given xk−1 ∈M , find xk ∈M and εk ∈ TxkM such that

εk ∈ λk∂f(xk)− exp−1
xk
xk−1, (3.3)

where
d(expxkε

k, xk−1) ≤ max
{
||εk||, d(xk, xk−1)

}
, (3.4)

‖εk‖ ≤ ηkd(xk, xk−1), (3.5)

+∞∑
k=1

η2
k < +∞. (3.6)

Stopping rule: If xk−1 = xk or 0 ∈ ∂f(xk). Otherwise, k − 1← k and go to Iterative step.

Remark 3.1 Throughout this paper, we analyse the assymptotic case of the algorithm, that is,
we consider xk−1 6= xk for all k ∈ IN and 0 /∈ ∂f(xk), for all k ∈ IN .

Remark 3.2 From (3.3), there exists gk ∈ ∂f(xk) such that

λkg
k = exp−1

xk
xk−1 + εk. (3.7)
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4 Convergence rate of the HMIP2 algorithm

We denote the set
U := {x ∈M | f(x) ≤ inf

k
f(xk)},

which contains the optimal solutions set, whenever it exists.

Remark 4.1 Through this paper, we will consider U to be a nonempty set. If U = ∅, as was
seen in Baygorrea et al.[3], the sequence {xk} generated by the algorithm will be an unbounded
sequence and the sequence of the objective function values {f(xk)} converges to the infimum of
f on M.

The following lemmas and theorems are taken from Baygorrea et al[3]. They will be used
often later to discuss the estimation of convergence rate concerned with the proposed algorithm.

Lemma 4.1 (Baygorrea et al.[3], Lemma 5.2) Let {xk} and {εk} be two sequences generated
by the HMIP2 algorithm. If all the assumptions of the problem: (H1) and (H2) are satisfied,
then there exists an integer k0 ∈ IN such that for all k ≥ k0 we have

d2(xk, x) ≤
(

1 +
2η2
k

1− 2η2
k

)
d2(xk−1, x)− 1

2
d2(xk, xk−1), ∀x ∈ U. (4.8)

Furthermore, {xk} is a bounded sequence and limk→+∞ d(xk, xk−1) = 0.

Theorem 4.1 (Baygorrea et al.[3], Theorem 5.4) Let {xk} and {εk} be sequences generated
by HMIP2 algorithm. If all the assumptions of the problem: (H1) and (H2) are satisfied with
λ̃ > 0 such that λ̃ < λk and f be a continuous function, then {xk} converges to some x̄ ∈ U
with 0 ∈ ∂Limf(x̄).

Theorem 4.2 (Baygorrea et al.[3], Theorem 5.5) Let {xk} and {εk} be sequences generated
by the HMIP2 algorithm. If the assumptions (H1) and (H2) are satisfied with λ̃ > 0 such
that λ̃ < λk and f is a locally Lipschitz function, then {xk} converges to some x̄ ∈ U with
0 ∈ ∂of(x̄).

Now we denote the following set

Z := U ∩ {x ∈M | 0 ∈ ∂Limf(x)}.

To study the convergence rate of the HMIP2 algorithm, we consider the following assumption:

(H3) For x̄ ∈ Z such that limxk = x̄, there exist δ := δ(x̄) > 0 and τ := τ(x̄) > 0 such
that for all w ∈ B(0, δ) ⊂ Tx̄M and all x such that Pψ,1,0(w) ∈ ∂Limf(x) with geodesics ψk
joinning ψ(0) = x and ψ(1) = x̄, there holds

d(x, x̄) ≤ τ‖w‖Tx̄M .
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Remark 4.2 The assumptions (H3) may be called a growth condition at the point of conver-
gence x̄ on Hadamard manifolds. Note that this one is a different condition than one given
by Tang and Huang[20] which was given for solving problems of singularity of maximal mono-
tone vector fields on Hadamard manifold (particularly for convex minimization problems on
Hadamard manifolds).

Lemma 4.2 Let {xk} and {εk} be the sequences generated by the HMIP2 algorithm. Suppose
that assumptions (H1), (H2) and (H3) hold. Then,

(i) there exists k̄ ∈ IN such that
‖gk‖T

xk
M < δ, (4.9)

for all k ≥ k̄, where gk is given by (3.7);

(ii) for all k ≥ k̄, it holds that

d(xk, x̄) ≤ τ (ηk + 1)

λk
d(xk, xk−1). (4.10)

Proof. (i) Let x̄ = limk→∞ x
k and gk ∈ ∂f(xk) given by (3.7). It follows from (3.5) and since

λ̃ < λk that

‖gk‖T
xk
M =

1

λk
‖exp−1

xk
xk−1 + εk‖T

xk
M

≤ 1

λk

(
‖exp−1

xk
xk−1‖T

xk
M + ‖εk‖T

xk
M

)
≤

(
ηk + 1

λk

)
d(xk, xk−1), (4.11)

≤
(
ηk + 1

λ̃

)
d(xk, xk−1), k ≥ 1. (4.12)

Since ηk → 0, d(xk, xk−1)→ 0 (see Lemma 4.1) and taking ε = δ then, there exists k̄ ∈ IN such
that ‖gk‖T

xk
M < δ for all k ≥ k̄.

Now we prove item (ii). Taking w = Pψk,0,1g
k in assumption (H3) and due to the isometry of

parallel transport Pψk,0,1, for all k ≥ k̄, we have

d(xk, x̄) ≤ τ‖w‖Tx̄M
= τ‖Pψk,0,1g

k‖Tx̄M
= τ‖gk‖T

xk
M

Therefore, the relation (4.10) follows from the last inequality combined with (4.11).

We now give a rate of convergence theorem, for the HMIP2 algorithm, which completes
the convergence result given by Theorem 4.1.
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Theorem 4.3 Let {xk} and {ek} be the sequences generated by the HMIP2 algorithm. Suposse
that assumptions (H1), (H2) and (H3) such that λk ∈ [λ̃,+∞) with λ̃ > 0 are satisfied and
assume f be a continuous function. Then {xk} converges linearly to x̄ ∈ Z. Moreover, if
λk ↗ +∞, then this convergence is superlinear.

Proof. Let x̄ ∈ Z be the limit point of the sequence {xk} and gk ∈ ∂f(xk) given by (3.7).
Define

wk := Pψk,0,1g
k,

where ψk is the geodesic joining xk to x̄. Due to the isometric property of the parallel transport
Pψk,0,1 and the relation (4.9), we have that

‖wk‖Tx̄M = ‖Pψk,0,1g
k‖Tx̄M = ‖gk‖T

xk
M < δ,

for k ≥ k̄. That is, wk ∈ B(0, δ) ⊂ Tx̄M, for k ≥ k̄.

Furthermore,
Pψk,1,0w

k = Pψk,1,0(Pψk,0,1g
k) = gk ∈ ∂f(xk).

Applying this relation to (2.1), we have gk ∈ ∂Limf(xk). Thus, Pψk,1,0w
k ∈ ∂Limf(xk), ∀ k ≥ k̄.

Moreover, applying (4.10) to relation (4.8), for all k ≥ max{k0, k̄}, it follows that

d2(xk, x̄) ≤
(

1 +
2η2
k

1− 2η2
k

)
d2(xk−1, x̄)− 1

2

(
λk

τ(ηk + 1)

)2

d2(xk, x̄).

and so (
1 +

λ2
k

2τ2(ηk + 1)2

)
d2(xk, x̄) ≤ 1

1− 2η2
k

d2(xk−1, x̄).

This implies that
d2(xk, x̄) ≤ α2

kd
2(xk−1, x̄), k ≥ max{k0, k̄} (4.13)

where

α2
k =

1

1− 2η2
k

(
2τ2(ηk + 1)2

2τ2(ηk + 1)2 + λ2
k

)
. (4.14)

Since 0 < λ̃ < λk, for all k ∈ IN , we show that

αk ≤ rk, (4.15)

where

rk =
1

1− 2η2
k

(
2τ2(ηk + 1)2

2τ2(ηk + 1)2 + λ̃2

)
.

Taking into account that {ηk} converges to zero, we have

rk →
2τ2

2τ2 + λ̃2
.
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Thus, there exists a positive number k1 ∈ IN with k ≥ k1 such that

rk <
1

2

(
1 +

2τ2

2τ2 + λ̃2

)
, ∀ k ≥ k1 (4.16)

Combining (4.15) and (4.16), we get

α2
k <

1

2

(
1 +

2τ2

2τ2 + λ̃2

)
:= θ < 1, ∀ k ≥ k1 (4.17)

It follows from (4.13) and (4.17) that

d(xk, x̄) ≤ θ1/2d(xk−1, x̄),

for all k ≥ max{k̄, k0, k1}. Thus, the sequence {xk} converges linearly to x̄.
To obtain the superlinear convergence of the sequence generated by the HMIP2 algorithm,
consider λk ↗ +∞ and since ηk → 0, it follows from relation (4.14) that αk → 0. This com-
pletes the proof.

Now, the following theorem shows the convergence rate of the convergence results of Theo-
rem 4.2

Theorem 4.4 Let {xk} and {ek} be the sequences generated by the HMIP2 algorithm. Suposse
that assumptions (H1), (H2) and (H3) such that λk ∈ [λ̃,+∞) with λ̃ > 0 are satisfied and
assume f be a locally Lipschitz function. Then {xk} converges linearly to x̄ ∈ Z. Moreover, if
λk ↗ +∞, then this convergence is superlinear.

Proof. Note that locally Lipschitz condition implies continuity of f . Taking ∂ = ∂◦ and
from relation (2.1), it follows that ∂◦f(x̄) ⊆ ∂Limf(x̄). Therefore, rate of convergence results
of Theorem 4.2 is a particular case of Theorem 4.3 .

5 Conclusions.

• Motivated by the work of Tang and Huang[20], we extend the linear/superlinear rate of
convergence of the proximal point method for quasiconvex functions on Hadamard ma-
nifolds introducing the condition (H3). This condition is different to the weak growth
condition worked by Tang and Huang[20]. It allows us to obtain an authentic linear and
superlinear rate of convergence of the algorithm to the point of convergence. Note that
this result is new even for the case of Euclidean spaces and it improves the convergence
studed by Tang and Huang[20] for convex minimization.
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• In the rate of convergence analysis of the proposed algorithm, we define the set
Z = U ∩ {x ∈ M | 0 ∈ ∂Limf(x)}, which is a nonempty set whenever U is nonempty. If
Z is a convex set, then assuming the weaker growth condition (H2) given by Tang and
Huang[20] and following the same ideas of that paper, it is possible to obtain the same
rate of convergence of the proposed algorithm. In this sense, we would generalize the
convergence of Tang and Huang[20] for quasiconvex minimization problems on Hadamard
manifolds.

• Finally, it is need to make a comparison between the rate of convegence results obtained
by Tang and Huang([20]) and our paper. Indeed, they obtained the linear/superlinear
convergence of the sequence generate by the proximal point algorithm with respect to the
solution set of the poblem. In this paper, we obtain the linear/superlinear convergence
of the sequence generated by the proposed algorithm to a critical point of the problem
(optimal solution in the convex case) under the assumption (H3).
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