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Abstract. The dual face algorithm uses Cholesky factorization, as would be not

very suitable for sparse computations. The purpose of this paper is to present a

dual face algorithm using Gauss-Jordan elimination for solving bounded-variable LP
problems.

1. Introduction

The simplex method ([1]–[3]) starts from an initial feasible basis, and goes from basis
to basis, until reaching an optimal basis. Some variants of the simplex method are more
flexible, not confining to feasible bases. For example, criss-cross algorithms [19, 16, 17,
18, 4], switch between primal and dual simplex steps. Other approaches [5]–[8] even no
longer produce standard bases.

Reflects further efforts along this line, the deficient basis ([9]-[14]) is defined as a
submatrix from the coefficient matrix, whose range space includes the right hand side of
the system (in the standard problem). Seeming to be a “fly in the ointment”, however,
such a concept does not accommodate the case when the condition is not satisfied, even
if related computational results are very favorable against the simplex method.

Independently developed, the concept of dual face [15](pp.595) turns out to be a good
answer in this respect. The dual face algorithm may be regarded as an extension of
the dual simplex method, allowing itself to start from scratch by selecting columns, one
by one, from the coefficient matrix. Initiated from any feasible point, it proceeds from
dual face to dual face until reaching an optimal dual face, together with an optimal dual
solution on it. In computational experiments with a set of 26 small Netlib standard
problems, the dual face algorithm outperformed the simplex algorithm with overall time
ratio as high as 10.04 — an incredible outcome indeed! This should not be surprising,
as most systems handled in its solution process are far smaller than conventional ones;
and the former solves only a single triangular system in each iteration, compared with
the latter solving four such systems.

Nevertheless, the dual face algorithm uses Cholesky factorization, as would be not very
suitable for sparse computations, compared with Gauss elimination. From a practicable
point of view, in addition, there is a need for generalizing the dual face algorithm to
handle the bounded-variable LP problem below:

(1.1)
min cTx
s.t. Ax = b, l ≤ x ≤ u,
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where A ∈ Rm×n, m < n, Ax = b is consistent, and l and u are finite lower and
upper bound vectors. Note that A is not necessarily of full row rank, in contrast to the
conventional assumption in simplex contexts.

The purpose of this paper is to present a generalized dual face algorithm. For simplicity
of exposition, the algorithm is described using Gauss-Jordan elimination. It is organized
as follows. Firstly, section 2 derives the search direction via local duality. Section 3
addresses updating of dual feasible solution, and the associated pivot operations. Section
4 highlights the optimality test and associated pivot operations when failing with the test.
Section 5 gives the the generalized algorithm in tableau form, and Section 6 converts it
to a practicable revised version.

2. Search Direction

For succinctness, we put (1.1) in the following tableau

(2.1)

xT f RHS
A b
cT -1

For any integer 1 ≤ k ≤ m, let

B = {j1, · · · , jk} and N = {1, · · · , n}\B.

be a partition to the index set. Without confusion, such notations for index sets will also
be used to denote matrices consisting of corresponding columns. Partition the row index
set to

R = {i1, · · · , ik}, and R′ = {1, · · · ,m}\R.
Denote by BR ∈ Rk×k the submatrix indexed by R and B, and do similarly with others.
Assume that BR is nonsingular. Then tableau (2.1) can be put into the following form:

xTB xTN f RHS
BR NR bR
BR′ NR′ bR′

cTB cTN -1

Assume that Gauss elimination transforms the preceding tableau to

(2.2)

xT
B xT

N f b̄
U N̄R b̄R

N̄R′ b̄R′

z̄TN −1 µ

where U ∈ Rk×k is a nonsingular upper triangular matrix.
The dual program of the preceding tableau (program) is

(2.3)
max b̄TRyR + b̄TR′yR′ + lT v + uTw

s.t.
yR +vB +wB = 0

N̄T
RyR +N̄T

R′yR′ +vN +wN = z̄N
v ≥ 0, w ≤ 0.

Let (Γ,Π) be a partition to N such that

(2.4) Γ = { j ∈ N | z̄j ≥ 0}, Π = { j ∈ N | z̄j < 0}.
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Consider dual solution (ȳ, v̄, w̄) such that

(2.5)
ȳR = 0, v̄B , w̄B = 0,
v̄Γ = z̄Γ − Γ̄T

R′ ȳR′ ≥ 0, w̄Γ = 0,
w̄Π = z̄Π − Π̄T

R′ ȳR′ ≤ 0, v̄Π = 0.

It is verified that the preceding is a feasible solution to the dual problem (2.3).
The so-called “local dual program” (Pan, 2014) associated with (2.5) is

max b̄TRyR + b̄TR′yR′ + lTΓ vΓ + uTΠwΠ

s.t.
yR = 0,

Γ̄T
R′yR′ +vΓ = z̄Γ,

Π̄T
R′yR′ +wΠ = z̄Π,

vΓ ≥ 0, wΠ ≤ 0.

Variables yR and vΓ, wΠ in the objective function can be eliminated via the constraints.
Introduce notation

zΓ = vΓ, zΠ = wΠ.

Dropping yR = 0 aside, we thereby transform the local dual program to the following
compact form:

(2.6) max (b̄R′ − Γ̄R′ lΓ − Π̄R′uΠ)T yR′
4
= b̃TR′yR′

s.t. NT
R′yR′ + zN = z̄N , zΓ ≥ 0, zΠ ≤ 0.

It is clear that (ȳR′ = 0, z̄N ) is a feasible solution to the preceding program.
Define

(2.7) x̄Γ = lΓ, x̄Π = uΠ.

We adapt tableau (2.2) by replacing the right-hand side b̄ by b̃
4
= b̄ − Γ̄x̄Γ − Π̄x̄Π and

dropping the f column (as will not be changed in the sequel), i.e.,

(2.8)

xT
B xT

N b̃

U N̄R b̃R
N̄R′ b̃R′

z̄TN µ̃

where µ̃ = µ − z̄TΓ x̄Γ − z̄TΠx̄Π. The preceding, referred to as (dual) face tableau (for the
reason which will be clear later), corresponds to dual feasible solution (z̄B = 0, z̄N ) (with

ȳ = 0). The latter exhibits complementarity slackness with x̄ (with x̄B = U−1b̃R ), even

if x̄ is not a primal solution in strict sense when b̃R′ 6= 0.
Taking the objective gradient b̃R′ as search direction in yR′ space, we have the following

set of search vectors:

(2.9) ∆yR′ = b̃R′ , ∆zN = −N̄T
R′ b̃R′ .

It is seen that ∆yR′ vanishes if b̃R′ = 0 or R′ = ∅ (k = m). On the other hand, ∆yR′ 6= 0

if k < m and b̃R′ 6= 0, since Ax = b is consistent. In addition, ∆yR′ is readily available
as b̃R′ can be read directly from the right-hand side of face tableau (2.8). Even ∆zN can

be calculated easily. In fact, ∆zTN = −b̃TR′N̄R′ is the negative linear combination of rows

of N̄R′ (with b̃R′ as combination coefficients).
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3. Updating Dual Solution

Assume now that b̃R′ 6= 0, and (∆yR′ ,∆zN ) has been calculated by (2.9). Then, a
solution results from the the following line search scheme:

ŷR′ = ȳR′ + β∆yR′ ,(3.1)

ẑN = z̄N + β∆zN ,(3.2)

It is clear that the preceding fulfils the equality constraint of (2.6) for any β ≥ 0. Further,
satisfying the other constraints (zΓ ≥ 0 and zΠ ≤ 0) gives the largest possible stepsize β
and the according index q, i.e.,

(3.3) β = −z̄q/∆zq = min

{
−z̄j/∆zj

∣∣∣∣ ∆zj < 0, j ∈ Γ
∆zj > 0. j ∈ Π

}
Therefore, formulas (3.1) and (3.2) give a new dual feasible solution to (2.6). That is

to say, ẑN can be used to update the bottom line of the face tableau (2.8)(see Proposition
4.7.1 in Pan, 2014).

Note that the stepsize β would vanish, yielding a solution just the same as the old, if
there is some component of z̄N being equal to zero, a case said to be dual degenerate.

We have the following Lemma.

Lemma 3.1. Assume that ∆yR′ 6= 0.
(i) If ∆zΓ ≥ 0 and ∆zΠ ≤ 0, problem (1.1) is upper unbounded; else,
(ii) (ŷR′ , ẑN ) is a boundary point of the feasible region, with the dual objective value
not decreasing, or even strictly increasing if z̄N is nondegenerate.

Proof. (i) Since (ȳR′ , z̄N ) is dual feasible, the new point (ŷ, ẑN ) is a well-defined dual
feasible solution for all β ≥ 0. Noting ∆yR = 0, we obtain from the first formula of (2.9)
that

b̃T ∆y = b̃TR′ b̃R′ ≥ 0,

which together with ∆yR′ 6= 0 gives

b̃T ∆y > 0.

Therefore, it holds that

(3.4) b̃T ŷ = b̃T ȳ + βb̃T ∆y ≥ b̃T ȳ,

which implies that the objective value tends to +∞, as so does β.
(ii) It is seen from (3.4) that the associated objective value does not decrease, and

strictly increases in case of nondegeneracy (β > 0). It is also clear that ẑq = 0, indicating
that the new iterate is on the boundary. �

Since ẑq = 0 blocks any further increase of the stepsize, index q should be entered to
B. To determine leaving index jp, we select row index p such that

(3.5) p ∈ arg max
i∈R′

|āi q|,

where āi q, i ∈ R′ are entries of the q-index column of N̄R′ in tableau (2.8).
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4. Optimality Test

If b̃R′ = 0, the associated search direction vectors are meaningless. Nevertheless, this
offers a chance to test for optimality.

Now, x̄ defined by (2.7) together with x̄B = U−1b̃R is a primal solution. Moreover,
the solution is feasible if it holds that

(4.1) lB ≤ x̄B ≤ uB .
Since the preceding exhibits complementarity slackness with (z̄B = 0, z̄N ), in fact, these
are a pair of primal and dual optimal solutions.

For more precise, introduce the following quantities:

(4.2) ρi =

 lji − x̄ji , if x̄ji < lji ,
uji − x̄ji , if x̄ji > uji ,
0, if lji ≤ x̄ji ≤ uji ,

i = 1, · · · , k.

Determine an index js such that

(4.3) s ∈ arg max{|ρi| | i = 1, · · · , k}.
If ρs = 0, implying (4.1), the optimality is achieved, and we are done. Assume that
ρs 6= 0. The according index js is dropped from B.

Then, B is updated by

(4.4) B̂ = B\{js}.
If ρs > 0, implying that x̄p violates the lower bound, js is moved to Γ with Π remaining
unchanged, while if ρs < 0, js is moved to Π with Γ unchanged.

Accordingly, the leaving component of x̄ is updated by

x̄js = x̄js + ρs,

which is on the lower or upper bound

5. The Tableau Algorithm

It is seen that the face tableau of form (2.8) includes all information needed to carry
out operations. It can be updated iteration by iteration There are two types of iterations:

(i) Rank-increasing: b̃R′ 6= 0. The bottom line of the tableau is updated. A column
index and a row index are respectively added to B and R, and Therefore, the column
rank of the face matrix increases by one.

(ii) Rank-decreasing: b̃R′ = 0. If lR ≤ b̃R ≤ uR, optimality has been achieved.
Otherwise, a column index and a row index are respectively taken off from B and R. the
column rank of the face matrix decreases by one.

In each iteration, the tableau is updated by elementary transformations, as sets
B,Γ,Π, R,R′ change. In addition, the right-hand side b̃ must be adapted according-
ly.

The overall steps may be summarized in tableau form as follows.

Algorithm 1.(Generalized dual face algorithm using Gauss-Jordan elimination: tableau

form ) Initial face tableau of form (2.8) with 1 ≤ k ≤ m; B,Π,Γ, R,R′ and b̃; dual
feasible solution (ȳ, z̄) associated with x̄N ; This algorithm solves the bounded-variable
problem (1.1).

1. Go to step 10 if R′ = ∅ or b̃R′ = 0.
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2. Compute ∆zN = −N̄(R′)T b̃R′ , ∆zB = 0.
3. Stop if ∆zΓ ≥ 0 and ∆zΠ ≤ 0.
4. Determine index q and stepsize β by (3.3).
5. If β 6= 0, add β times of ∆z to the bottom line.
6. Determine p = arg max{|āi q| | i ∈ R′}.
7. Convert āp q to 1, and eliminate the other nonzeros in the column.

8. Update b̃p = b̃p + x̄q; move p from R′ to R, q from N to B;
9. Set k = k + 1, and go to step 1 if k < m.
10. Set x̄B = b̃R.
11. Determine row index s by (4.3), where ρi is computed by (4.2).
12. Stop if ρs = 0.
13. Update x̄is = x̄is + ρs.

14. Update b̃is = −ρs; move is from R to R′;
if ρs < 0, move js from B to Γ, else to Π.

15. Compute ∆zN = −sign(b̃is)N̄(is)
T , ∆zB = 0.

16. Set k = k − 1, and go to step 4.

Theorem 5.1. Under the nondegeneracy assumption, Algorithm 1 terminates either at
(i) step 3, detecting lower unboundedness of the problem; or at
(ii)step 12, generating a pair of primal and dual optimal solutions.

6. The Revised Algorithm

To be practicable tableau Algorithm 1 is revised in this section.
Assume that B−1

R is available. Then tableau (2.8) can be put to the revised form
equivalently, i.e.,

(6.1)

xT
B xT

N b̃

I B−1
R NR b̃R

NR′ −BR′B−1
R NR b̃R′

z̄TN µ̃

,

where b̃, z̄TN and µ̃ are updated in each iteration. From the preceding, the search direction
in zN space comes, i.e.,

∆zN = NT
Rv −NT

R′ b̃R′ , BT
Rv = BT

R′ b̃R′ .

(i) Rank-increasing iteration: R′ 6= ∅ and b̃R′ 6= 0. Then ∆zN 6= 0. Assume that pivot
column index q and row index p ∈ R′ were determined by (3.3) and (3.5), respectively.

The effect of the elementary transformations in step 7 of Algorithm 1 amounts to
premultiplying the matrix of form

Ep =



1 −ā1, q/āp, q
. . .

...
−āp−1, q/āp, q

1/āp, q
−āp+1, q/āp, q

...
. . .

−ām, q/āp, q 1


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Therefore, the right-hand side should be updated by

(6.2) b̂ = Epb̃,

On the other hand, the matrix BR is updated by

B̂R̂ =

(
BR aR, q

eT
pB ap q

)
k
1

(6.3)

k 1

where eT
pB dentes the pth row of B, ap q denotes the pth component of aq, and aR, q

corresponds to face components of aq. It is easy to verify that the inverse is of the
following form

B̂−1

R̂
=

(
U v
dT τ

)
k
1

(6.4)

k 1

where

hT = eT
pB,

τ = 1/(ap q − hTāR, q),

v = −τ āR, q,

dT = −τhTB−1
R ,

U = (I − vhT)B−1
R .

(ii) Rank-remaining iterationR′ = ∅ or b̃R′ = 0.
Assume that s was determined by (4.3). Then B−1

R is updated simply by dropping its
sth row and column.

Algorithm 2.(Generalized dual face algorithm using Gauss-Jordan elimination ) Initial:

1 ≤ k ≤ m; B,Π,Γ, R,R′, B−1
R and b̃; dual feasible solution (ȳ, z̄) associated with x̄N ;

This algorithm solves the bounded-variable problem (1.1).

1. Go to step 11 if R′ = ∅ or b̃R′ = 0.
2. Compute ∆zN = NT

Rv −NT
R′ b̃R′ , where BT

Rv = BT
R′ b̃R′ .

3. Stop if ∆zΓ ≥ 0 and ∆zΠ ≤ 0 (unbounded problem).
4. Determine index q and stepsize β by (3.3).
5. If β 6= 0, updated z̄N by (3.2).
6. Compute āR′ q = aR′ q −BR′w, where w = B−1

R aRq.
7. Determine p = arg max{|āi q| | i ∈ R′}, is = p.

8. Update b̃ by (6.2) and b̃p = b̃p + x̄q;.
9. Move p from R′ to R, q from N to B;
10. Set k = k + 1, and go to step 1 if k < m.
11. Set x̄B = b̃R.
12. Determine row index s by (4.3), where ρi is computed by (4.2).
13. Stop if ρs = 0 (optimality achieved).
14. Update x̄is = x̄is + ρs.

15. Update b̃is = −ρs; move is from R to R′;
if ρs < 0, move js from B to Γ, else to Π.

16. Compute ∆zN = −sign(b̃is)N̄(is)
T .

17. Set k = k − 1, and go to step 4.
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