A MAX-CUT FORMULATION OF 0/1 PROGRAMS

JEAN B. LASSERRE

Abstract. We consider the linear or quadratic 0/1 program

$$\mathbf{P}: \quad f^* = \min\{\mathbf{c}^T \mathbf{x} + \mathbf{x}^T \mathbf{F} \mathbf{x} : \mathbf{A} \mathbf{x} = \mathbf{b}; \mathbf{x} \in \{0, 1\}^n\},\$$

for some vectors $\mathbf{c} \in \mathbb{R}^n$, $\mathbf{b} \in \mathbb{Z}^m$, some matrix $\mathbf{A} \in \mathbb{Z}^{m \times n}$ and some real symmetric matrix $\mathbf{F} \in \mathbb{R}^{n \times n}$. We show that \mathbf{P} can be formulated as a MAX-CUT problem whose quadratic form criterion is explicit from the data of \mathbf{P} . In particular, to \mathbf{P} one may associate a graph whose connectivity is related to the connectivity of the matrix \mathbf{F} and $\mathbf{A}^T\mathbf{A}$, and \mathbf{P} reduces to finding a maximum (weighted) cut in such a graph. Hence the whole arsenal of approximation techniques for MAX-CUT can be applied. On a sample of 0/1 knapsack problems, we compare the lower bound on f^* of the associated standard (Shor) SDP-relaxation with the standard linear relaxation where $\{0,1\}^n$ is replaced with $[0,1]^n$ (resulting in an LP when $\mathbf{F}=0$ and a quadratic program when \mathbf{F} is positive definite). We also compare our lower bound with that of the first SDP-relaxation associated with the copositive formulation of \mathbf{P} .

1. Introduction

Consider the linear or quadratic 0/1 program **P** defined by:

(1.1)
$$\mathbf{P}: \qquad f^* = \min_{\mathbf{x}} \left\{ \mathbf{c}^T \mathbf{x} + \mathbf{x}^T \mathbf{F} \mathbf{x} : \mathbf{A} \mathbf{x} = \mathbf{b}; \quad \mathbf{x} \in \{0, 1\}^n \right\}$$

for some cost vector $\mathbf{c} \in \mathbb{R}^n$, some matrix $\mathbf{A} \in \mathbb{Z}^{m \times n}$, some vector $\mathbf{b} \in \mathbb{Z}^m$, and some real symmetric matrix $\mathbf{F} \in \mathbb{R}^{n \times n}$. If $\mathbf{F} = 0$ then \mathbf{P} is a 0/1 linear program and a quadratic 0/1 program otherwise. Obtaining good quality lower bounds on f^* is highly desirable since the efficiency of Branch & Bound algorithms to solve large scale problems \mathbf{P} heavily depends on the quality of bounds of this form computed at nodes of the search tree.

To obtain lower bounds for 0/1 programs (1.1) one may solve a relaxation of \mathbf{P} where the integrality constraints $\mathbf{x} \in \{0,1\}^n$ are replaced with the box constraints $\mathbf{x} \in [0,1]^n$. If $\mathbf{F} = 0$ the resulting relaxation is linear whereas if \mathbf{F} is positive definite it is a (convex) quadratic program. If \mathbf{F} is not positive semidefinite then one may also solve a convex quadratic program but now with with an appropriate convex quadratic underestimator $\mathbf{x}^T \mathbf{\tilde{F}} \mathbf{x}$ of $\mathbf{x}^T \mathbf{F} \mathbf{x}$ on $[0,1]^n$. An alternative is to consider an equivalent formulation of \mathbf{P} as a copositive conic program as advocated by Burer [3] and compute

Date: May 23, 2015.

Research partially supported by a grant from the MONGE program of the $F\'{e}deration$ $Math\'{e}matique$ Jacques Hadamard (FMJH, Paris).

a sequence of lower bounds by solving an appropriate hierarchy of LP- or SDP-relaxations associated with the copositive cone (or its dual). For more details on the latter approach the interested reader is referred to e.g. De Klerk and Pasechnik [4], Dürr [5], Bomze [1], and Bomze and de Klerk [2].

Contribution. The purpose of this note is to show that solving \mathbf{P} is equivalent to minimizing a quadratic form in n+1 variables on the hypercube $\{-1,1\}^{n+1}$ (and the quadratic form is explicit from the data of \mathbf{P}). In other words \mathbf{P} can be viewed as an explicit instance of the MAX-CUT problem. Hence the MAX-CUT problem which at first glance seems to be a very specific combinatorial optimization problem, in fact can be considered as a canonical model of linear and quadratic 0/1 programs. In particular, to each linear or quadratic 0/1 program (1.1) one may associate a graph G = (V, E) with n+1 nodes and $(i,j) \in E$ whenever a product $x_i x_j$ has a nonzero coefficient in some quadratic form built upon the data $\mathbf{c}, \mathbf{b}, \mathbf{F}$ and \mathbf{A} of (1.1). (Among other things, the sparsity of G is related to the sparsity of the matrices \mathbf{F} and $\mathbf{A}^T \mathbf{A}$.) Then solving (1.1) reduces to finding a maximum (weighted) cut of G.

Therefore the whole specialized arsenal of approximation techniques for MAX-CUT can be applied. In particular one may obtain a lower bound f_1^* on f^* by solving the standard (Shor) SDP-relaxation associated with the resulting MAX-CUT problem while solving higher levels of the associated Lasserre-SOS hierarchy [6, 7] would provide a monotone nondecreasing sequence of improved lower bounds $f_1^* \leq f_d^* \leq f^*$, $d = 2, \ldots$, but of course at a higher computational cost. Alternatively one may also apply the Handelman hierarchy of LP-relaxations as described and analyzed in Laurent and Sun [10]. For more details on recent developments on computational approaches to MAX-CUT the interested reader is referred to Wigele and Rendl [13]. If $\mathbf{F} = 0$ (i.e. when \mathbf{P} is a linear 0/1 program) the lower bound f_1^* can be better than the standard LP-relaxation which consists in replacing the integrality constraints $\mathbf{x} \in \{0,1\}^n$ with the box $[0,1]^n$, as shown on a (limited) sample of 0/1-knapsack-type examples. On such examples f_1^* also dominates the one obtained from the first relaxation of the copositive formulation (where the dual cone \mathcal{C}^* of completely positive matrices is replaced with $S^+ \cap \mathcal{N} \supset \mathcal{C}^*$) in about 55% of cases and the maximum relative difference is bounded by 0.55% in all cases.

In addition one may also obtain performance guarantees à la Nesterov [12] in the form

$$f_1^* \le f^* \le \frac{2}{\pi} f_1^* + (1 - \frac{2}{\pi}) h_1^*,$$

(where h_1^* is the optimal value of a similar SDP but with a max-criterion instead of a min-criterion) or their improvements by Marshall [11].

In fact, and still on the same sample of linear and quadratic 0/1 knap-sack examples, one also observes that the resulting lower bound f_1^* is almost always better than the lower bound obtained by solving the first SDP-relaxation of the Lasserre-SOS hierarchy applied to the initial formulation

(1.1) of the problem (which is also an SDP of same size). This is good news since typically the SOS-hierarchy is known to produce good lower bounds for general polynomial optimization problems (discrete or not) even at the first level of the hierarchy. Even more, the first level SDP-relaxation has the celebrated Goemans & Williamson performance guarantee ($\approx 87\%$) when the matrix \mathbf{Q} (associated with the quadratic form) has nonnegative entries and a performance guarantee $\approx 64\%$ when $\mathbf{Q} \succeq 0$. (However note that the matrix \mathbf{Q} associated with our MAX-CUT problem equivalent to the initial 0/1 program (1.1) does not have all its entries nonnegative.) This explains why in the linear 0/1 knapsack examples the lower bound f_1^* is almost always better than the one obtained with the standard LP-relaxation and why for quadratic 0/1 knapsack problems (1.1), f_1^* is also likely to be better than the lower bound obtained by relaxing $\{0,1\}^n$ to $[0,1]^n$, replacing \mathbf{F} with a convex quadratic underestimator of \mathbf{F} on $[0,1]^n$, and solving the resulting convex quadratic program.

Finally, the same methodology also works for general 0/1 optimization problems with feasible set as in (1.1) and polynomial criterion $f \in \mathbb{R}[\mathbf{x}]$ of degree d > 2, except that now the problem reduces to minimizing a new criterion $\tilde{f}(\mathbf{x})$ on the hypercube $\{-1,1\}^n$.

2. Main result

Denote by \mathbb{Z} the set of integer numbers and $\mathbb{N} \subset \mathbb{Z}$ the set of natural numbers. Let \mathbf{P} be the 0/1 program defined in (1.1) with $\mathbf{F}^T = \mathbf{F} \in \mathbb{R}^{n \times n}$, $\mathbf{A} \in \mathbb{Z}^{m \times n}$, $\mathbf{c} \in \mathbb{R}^n$ and $\mathbf{b} \in \mathbb{Z}^m$. Let $|\mathbf{c}| := (|c_i|) \in \mathbb{R}^n_+$. With $\mathbf{e} \in \mathbb{Z}^n$ being the vector of all ones, notice first that \mathbf{P} has an equivalent formulation on the hypercube $\{-1,1\}^n$, by the change of variables $\tilde{\mathbf{x}} := 2\mathbf{x} - \mathbf{e}$. Indeed, \mathbf{A} , \mathbf{b} , \mathbf{c} and \mathbf{F} now become $\mathbf{A}/2$, $\mathbf{b} - \mathbf{A}\mathbf{e}/2$, $(\mathbf{c} + \mathbf{e}^T\mathbf{F})/2$ and $\mathbf{F}/4$ respectively. Therefore from now on we consider the discrete program:

(2.1)
$$\mathbf{P}: \qquad f^* = \min_{\mathbf{x} \in \{-1,1\}^n} \{ \mathbf{c}^T \mathbf{x} + \mathbf{x}^T \mathbf{F} \mathbf{x} : \mathbf{A} \mathbf{x} = \mathbf{b} \},$$

on the hypercube $\{-1,1\}^n$, with $\mathbf{A} \in \mathbb{Z}^{m \times n}$, $\mathbf{c} \in \mathbb{R}^n$, $\mathbf{b} \in \mathbb{Z}^m$, and $\mathbf{F}^T = \mathbf{F} \in \mathbb{R}^{n \times n}$. With \mathbf{c} and \mathbf{F} , let us associate the scalars:

$$r_{\mathbf{c},\mathbf{F}}^{1} = \min \left\{ \mathbf{c}^{T} \mathbf{x} + \langle \mathbf{X}, \mathbf{F} \rangle : \begin{bmatrix} 1 & \mathbf{x}^{T} \\ \mathbf{x} & \mathbf{X} \end{bmatrix} \succeq 0; \ X_{ii} = 1, \ i = 1, \dots, n \right\}$$

$$r_{\mathbf{c},\mathbf{F}}^{2} = \max \left\{ \mathbf{c}^{T} \mathbf{x} + \langle \mathbf{X}, \mathbf{F} \rangle : \begin{bmatrix} 1 & \mathbf{x}^{T} \\ \mathbf{x} & \mathbf{X} \end{bmatrix} \succeq 0; \ X_{ii} = 1, \ i = 1, \dots, n \right\}$$

(with $\mathbf{X}^T = \mathbf{X}$) and let

(2.2)
$$\rho(\mathbf{c}, \mathbf{F}) := \max_{i=1,2} |r_{\mathbf{c}, \mathbf{F}}^i|.$$

It is straightforward to verify that

$$\rho(\mathbf{c}, \mathbf{F}) \ge \max \{ |\mathbf{c}^T \mathbf{x} + \mathbf{x}^T \mathbf{F} \mathbf{x}| : \mathbf{x} \in \{-1, 1\}^n \},$$

and $\rho(\mathbf{c}, \mathbf{F}) = |\mathbf{c}|$ if $\mathbf{F} = 0$. Moreover each scalar $r_{\mathbf{c}, \mathbf{F}}^i$ can be computed by solving an SDP which is the Shor relaxation (or first level of the Lasserre-SOS hierarchy [6, 7]) associated with the problems min (max) $\{\mathbf{c}^T\mathbf{x} + \mathbf{x}^T\mathbf{F}\mathbf{x} : \mathbf{x} \in \{-1, 1\}^n\}$.

2.1. A MAX-CUT formulation of P.

Lemma 2.1. Let **P** be as (2.1) and let $\rho(\mathbf{c}, \mathbf{F})$ be as in (2.2). Then f^* is the optimal value of the quadratic minimization problem:

(2.3)
$$\min_{\mathbf{x} \in \{-1,1\}^n} \mathbf{c}^T \mathbf{x} + \mathbf{x}^T \mathbf{F} \mathbf{x} + (2 \rho(\mathbf{c}, \mathbf{F}) + 1) \cdot ||\mathbf{A} \mathbf{x} - \mathbf{b}||^2.$$

Proof. Let $\Delta := \{ \mathbf{x} \in \{-1, 1\}^n : \mathbf{A}\mathbf{x} = \mathbf{b} \}$ be the feasible set of **P** defined in (1.1), and let $f : \mathbb{R}^n \to \mathbb{R}$ be the function

(2.4)
$$x \mapsto f(\mathbf{x}) := \mathbf{c}^T \mathbf{x} + \mathbf{x}^T \mathbf{F} \mathbf{x} + (2\rho(\mathbf{c}, \mathbf{F}) + 1) \cdot ||\mathbf{A}\mathbf{x} - \mathbf{b}||^2.$$

On $\{-1,1\}^n$ one has $\max\{\mathbf{c}^T\mathbf{x} + \mathbf{x}^T\mathbf{F}\mathbf{x} : \mathbf{x} \in \{-1,1\}^n\} \le \rho(\mathbf{c},\mathbf{F})$, and

$$\|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2 \ge 1, \quad \forall \, \mathbf{x} \in \{-1, 1\}^n \setminus \Delta,$$

because $\mathbf{A} \in \mathbb{Z}^{m \times n}$ and $\mathbf{b} \in \mathbb{Z}^m$. Therefore,

$$f(\mathbf{x}) \left\{ \begin{array}{l} = \mathbf{c}^T \mathbf{x} + \mathbf{x}^T \mathbf{F} \mathbf{x} \text{ on } \Delta \\ \geq \mathbf{c}^T \mathbf{x} + \mathbf{x}^T \mathbf{F} \mathbf{x} + 2 \rho(\mathbf{c}, \mathbf{F}) + 1 > \rho(\mathbf{c}, \mathbf{F}) \text{ on } \{-1, 1\}^n \setminus \Delta. \end{array} \right.$$

From this and $\mathbf{c}^T \mathbf{x} + \mathbf{x}^T \mathbf{F} \mathbf{x} < \rho(\mathbf{c}, \mathbf{F})$ on Δ , the result follows.

Next, let $Q: \mathbb{R}^{n+1} \to \mathbb{R}$ be the homogenization of the quadratic polynomial f, i.e., the quadratic form $Q(\mathbf{x}, x_0) := x_0^2 f(\frac{\mathbf{x}}{x_0})$, or in explicitly form:

(2.5)
$$Q(\mathbf{x}, x_0) = x_0 \mathbf{c}^T \mathbf{x} + \mathbf{x}^T \mathbf{F} \mathbf{x} + (2 \rho(\mathbf{c}, \mathbf{F}) + 1) \cdot ||\mathbf{A}\mathbf{x} - x_0 \mathbf{b}||^2$$
.
Observe that $Q(\mathbf{x}, 1) = f(\mathbf{x})$.

Theorem 2.2. Let $f^* = \min\{\mathbf{c}^T\mathbf{x} + \mathbf{x}^T\mathbf{F}\mathbf{x} : \mathbf{A}\mathbf{x} = \mathbf{b}; \mathbf{x} \in \{-1, 1\}^n\}$ and let Q be the quadratic form in (2.5). Then

(2.6)
$$f^* = \min_{(\mathbf{x}, x_0) \in \{-1, 1\}^{n+1}} Q(\mathbf{x}, x_0),$$

that is, f^* is the optimal value of the MAX-CUT problem associated with the quadratic form Q.

Proof. Let f be as in (2.4). By definition of Q,

(2.7)
$$\min_{\mathbf{x} \in \{-1,1\}^n} f(\mathbf{x}) = \min_{(\mathbf{x},x_0) \in \{-1,1\}^{n+1}} \{ Q(\mathbf{x},x_0) : x_0 = 1 \}.$$

On the other hand, let $(\mathbf{x}^*, x_0^*) \in \{-1, 1\}^{n+1}$ be a global minimizer of $\min\{Q(\mathbf{x}, x_0) : (\mathbf{x}, x_0) \in \{-1, 1\}^{n+1}\}$. Then by homogeneity of Q, $(-\mathbf{x}^*, -x_0)$ is also a global minimizer and so one may decide arbitrarily to fix $x_0 = 1$. That is,

$$\min_{(\mathbf{x},x_0)\in\{-1,1\}^{n+1}}\,Q(\mathbf{x},x_0)\,=\,\min_{(\mathbf{x},x_0)\in\{-1,1\}^{n+1}}\,\{\,Q(\mathbf{x},x_0):\,x_0=1\,\},$$

which combined with (2.7) yields the desired result.

Next, write $Q(\mathbf{x}, x_0) = (\mathbf{x}, x_0) \mathbf{Q}(\mathbf{x}, x_0)^T$ for an appropriate real symmetric matrix $\mathbf{Q} \in \mathbb{R}^{(n+1)\times (n+1)}$, and introduce the semidefinite programs

(2.8)
$$\min_{\mathbf{X}} \{ \langle \mathbf{Q}, \mathbf{X} \rangle : \mathbf{X} \succeq 0; \ X_{ii} = 1, \quad i = 1, \dots, n+1 \}$$

with optimal value denoted by min \mathbf{Q}_{+} , and

(2.9)
$$\max_{\mathbf{X}} \{ \langle \mathbf{Q}, \mathbf{X} \rangle : \mathbf{X} \succeq 0; \ X_{ii} = 1, \quad i = 1, \dots, n+1 \}$$

with optimal value denoted by $\max \mathbf{Q}^+$.

Proposition 2.3. Let P be the problem defined in (2.1) with optimal value f^* . Then

(2.10)
$$\min \mathbf{Q}_{+} \leq f^{*} \leq \frac{2}{\pi} \min \mathbf{Q}_{+} + (1 - \frac{2}{\pi}) \max \mathbf{Q}^{+}$$

where \mathbf{Q} is the real symmetric matrix associated with the quadratic form (2.5) and min \mathbf{Q}_+ (resp. max \mathbf{Q}^+) is the optimal value of the semidefinite program (2.8) (resp. (2.9)).

Proof. The bounds in (2.10) are from Nesterov [12]. In addition, one may also use the bounds provided in Marshall [11] which sometimes improve those in (2.10).

The quality of the upper bound in (2.10) depends strongly on the magnitude of the "penalty coefficient" $2\rho(\mathbf{c}, \mathbf{F}) + 1$ in the definition of the function f in (2.4). However for a practical use of relaxations what matters most is the quality of the *lower* bound min \mathbf{Q}_+ which in principle is very good for MAX-CUT problems (even if $\mathbf{Q} \not\geq 0$ or $\mathbf{Q} \not\geq 0$). For instance in a Branch & Bound algorithm the lower bound min \mathbf{Q}_+ has an important impact in the pruning of nodes in the search tree.

Sparsity. Hence to each 0/1 program (1.1) one may associate a graph G = (V, E) with n+1 nodes and an arc $(i, j) \in E$ connects the nodes $i, j \in V$ if and only if the coefficient \mathbf{Q}_{ij} of the quadratic form $Q(\mathbf{x}, x_0)$ does not vanish. Sparsity properties of G are of primary interest, e.g. for computational reasons. From the definition of the matrix \mathbf{Q} , this sparsity is in turn related to sparsity of the matrix $\mathbf{F} + (2\rho_{\mathbf{c},\mathbf{F}} + 1) \cdot \mathbf{A}^T \mathbf{A}$, hence of sparsity of \mathbf{F} and $\mathbf{A}^T \mathbf{A}$. In particular two nodes i, j are not connected if $\mathbf{F}_{ij} = 0$ and $\mathbf{A}_{ki} \mathbf{A}_{kj} = 0$ for all $k = 1, \ldots, m$.

Example 2.4. To evaluate the quality of the lower bound obtained with the MAX-CUT formulation consider the following simple linear knapsack-type examples:

(2.11)
$$\min \{ \mathbf{c}^T \mathbf{x} : \mathbf{a}^T \mathbf{x} = b; \mathbf{x} \in \{-1, 1\}^n \},$$

on $\{-1,1\}^n$, with 4 and 10 variables. For n=4, $\mathbf{c}=(13,11,7,3)$ and $\mathbf{a}=(3,7,11,13)$, while for n=10, $\mathbf{c}=(37,31,29,23,19,17,13,11,7,3)$, and $\mathbf{a}=(3,7,11,13,17,19,23,29,31,37)$.

The right-hand-side b is taken into $[-|\mathbf{a}|, |\mathbf{a}|] \cap \mathbb{Z}$. Figure 1 displays the difference $\min \mathbf{Q}_+ - \min \mathrm{LP}$ where the lower bound $\min \mathrm{LP}$ is obtained by relaxing the integrality constraints $\mathbf{x} \in \{-1,1\}^n$ to the box constraint $\mathbf{x} \in [-1,1]^n$ and solving the resulting LP. As expected the lower bound $\min \mathbf{Q}_+$ is much better than $\min \mathrm{LP}$. In fact the cases where the LP-bound is slightly better is for right-hand-side b such that the relaxation provides the optimal value f^* .

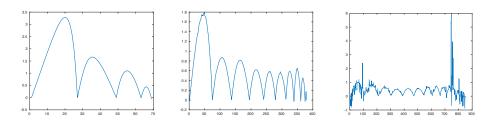


FIGURE 1. Difference min \mathbf{Q}_{+} - min LP with n=(4,10,15)

Moreover Figure 2 displays the difference min \mathbf{Q}_{+} -min $\mathbf{\hat{Q}}_{+}$ where min $\mathbf{\hat{Q}}_{+}$ is the optimal value of the first SDP-relaxation of the Lasserre-SOS hierarchy applied to the initial formulation (2.11) of the knapsack problem where one has even included the redundant constraints x_{i} ($\mathbf{a}^{T}\mathbf{x} - b$) = 0, i = 1, ..., n. One observes that in most cases the lower bound min \mathbf{Q}_{+} is slightly better than min $\mathbf{\hat{Q}}_{+}$.

This is encouraging since the Lasserre-SOS hierarchy [6, 7] is known to produce good lower bounds in general, and especially at the first level of the hierarchy for MAX-CUT problems whose matrix \mathbf{Q} of the associated quadratic form has certain properties, e.g., $Q_{ij} \geq 0$ for all i, j or $\mathbf{Q} \succeq 0$ (in the maximizing case); see e.g. Marshall [11].

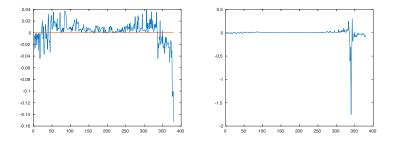


FIGURE 2. Difference $\min \mathbf{Q}_{+} - \min \hat{\mathbf{Q}}_{+}$ (n=10) (left) and relative difference $100 * (\min \mathbf{Q}_{+} - \min \hat{\mathbf{Q}}_{+}) / \min \hat{\mathbf{Q}}_{+}$

Example 2.5. In a second sample of linear knapsack problems (2.11) with n = 10, 15, we have chosen the same vector **a** as in Example 2.4 but now with

a cost criterion of the form $c(i) = a(i) + s \eta$, i = 1, ..., n, where η is a random variable uniformly distributed on [0,1], and s = 20, 10, 1 is a weighting factor. The reason is that knapsack problems with ratii $c(i)/a(i) \approx 1$ for all i, can be difficult to solve. As before the right-hand-side b is taken into $[-|\mathbf{a}|, |\mathbf{a}|] \cap \mathbb{Z}$. Figure 3 displays the results obtained for s = 20, and n = 10, 15. Figure 4 displays the same example for another sample with

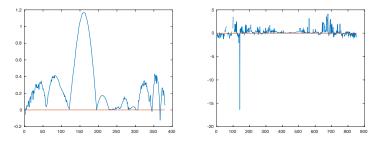


FIGURE 3. Difference min \mathbf{Q}_+ – min LP, $\mathbf{c} = \mathbf{a} + 20 * \eta \; (\mathrm{n} = 10,15)$

 $cost \mathbf{c}$ and s = 10.

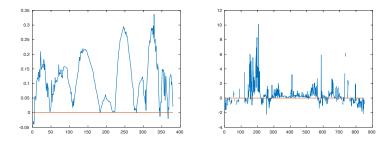
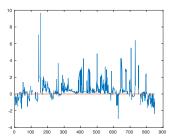


FIGURE 4. Difference min \mathbf{Q}_+ – min LP, $\mathbf{c} = \mathbf{a} + 10 * \eta \; (\mathrm{n} = 10,15)$

Finally, as for Example 2.4, Figure 5 displays the difference min \mathbf{Q}_+ min $\hat{\mathbf{Q}}_+$ (where min $\hat{\mathbf{Q}}_+$ is the optimal value of the first SDP-relaxation of the Lasserre-SOS hierarchy applied to the initial formulation (2.11) of the knapsack problem where one has even included the redundant constraints $x_i(\mathbf{a}^T\mathbf{x} - b) = 0, i = 1, ..., n$). Again one observes that in most cases the lower bound min \mathbf{Q}_+ is slightly better than min $\hat{\mathbf{Q}}_+$.

Example 2.6. We next consider the same knapsack problems (2.11) as in Example 2.5 but now with quadratic criterion $\mathbf{c}^T\mathbf{x} + \mathbf{x}^T\mathbf{F}\mathbf{x}$, again with a cost criterion of the form $c(i) = a(i) + s \eta$, $i = 1, \ldots, n$, where η is a random variable uniformly distributed in [0, 1] and s is some weighting factor. The real symmetric matrix \mathbf{F} is also randomly generated and is not positive definite in general. Again in Figures 6 and 7 one observes that the lower



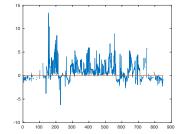
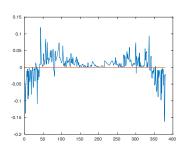


FIGURE 5. Example 2.5: Difference min \mathbf{Q}_{+} - min $\hat{\mathbf{Q}}_{+}$, (n=15) $\mathbf{c} = \mathbf{a} + 20\eta$ (left) and $\mathbf{c} = \mathbf{a} + 10\eta$

bound min \mathbf{Q}_{+} is almost always better than the optimal value min $\hat{\mathbf{Q}}_{+}$ of the first level of the Lasserre-SOS hierarchy applied to the original formulation (2.11) of the problem.



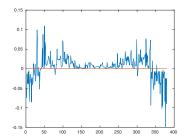


FIGURE 6. Example 2.6: Difference $\min \mathbf{Q}_{+} - \min \hat{\mathbf{Q}}_{+}$, $(n=10) \mathbf{c} = \mathbf{a} + 20\eta$ (left) and $\mathbf{c} = \mathbf{a} + 10\eta$

2.2. Extension to inequalities. Let $f(\mathbf{x}) := \mathbf{c}^T \mathbf{x} + \mathbf{x}^T \mathbf{F} \mathbf{x}$ for some $\mathbf{c} \in \mathbb{R}^n$ and some $\mathbf{F}^T = \mathbf{F} \in \mathbb{R}^{n \times n}$, and consider the problem:

(2.12)
$$\mathbf{P}: \quad f^* = \min_{\mathbf{x}} \{ f(\mathbf{x}) : \mathbf{A} \mathbf{x} \le \mathbf{b}; \quad \mathbf{x} \in \{0, 1\}^n \},$$

for some cost vector $\mathbf{c} \in \mathbb{Z}^n$, some matrix $\mathbf{A} \in \mathbb{Z}^{m \times n}$, and some vector $\mathbf{b} \in \mathbb{Z}^m$. We may and will replace (2.12) with the equivalent pure integer program:

$$\mathbf{P}': \qquad f^* = \min_{\mathbf{x}, \mathbf{y}} \left\{ f(\mathbf{x}) : \mathbf{A} \mathbf{x} + \mathbf{y} = \mathbf{b}; \quad \mathbf{x} \in \{0, 1\}^n; \, \mathbf{y} \in \mathbb{N}^m \right\}.$$

Next, as $\mathbf{x} \in \{0,1\}^n$ we can bound each integer variable y_j by $M_j := b_j - \min\{\mathbf{A}_j \mathbf{x} : \mathbf{x} \in \{0,1\}^n\}, j = 1,\ldots,m$, where \mathbf{A}_j denotes the j-th row vector of the matrix \mathbf{A} ; and in fact $M_j = b_j - \sum_i \min[0, \mathbf{A}_{ji}], j = 1,\ldots,m$. Then we may use the standard decomposition of y_j into a weighted sum of boolean

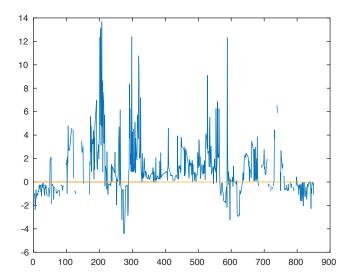


FIGURE 7. Example 2.6: Difference min \mathbf{Q}_{+} - min $\hat{\mathbf{Q}}_{+}$, (n=15) $\mathbf{c} = \mathbf{a} + 20\eta$ (left) and $\mathbf{c} = \mathbf{a} + 10\eta$

variables:

$$y_j = \sum_{k=0}^{s_j} 2^k z_{jk}, \qquad z_{jk} \in \{0, 1\}^n, \quad j = 1, \dots, m,$$

(where $s_j := \lceil \log(M_j) \rceil$) and replace (2.12) with the equivalent 0/1 program:

$$f^* = \min_{\mathbf{x}, \mathbf{z}} \{ f(\mathbf{x}) : \mathbf{A}_j^T \mathbf{x} + \sum_{k=0}^{s_j} 2^k z_{jk} = b_j, j \le m; (\mathbf{x}, \mathbf{z}) \in \{0, 1\}^{n+s} \},$$

(where $s := \sum_{j} (1 + s_j)$) which is of the form (1.1).

2.3. Extension to polynomial programs. Let $f \in \mathbb{R}[\mathbf{x}]$ be a polynomial of even degree d > 2 and consider the polynomial program:

(2.13)
$$f^* = \min \{ f(\mathbf{x}) : \mathbf{A}\mathbf{x} = \mathbf{b}; \quad \mathbf{x} \in \{-1, 1\}^n \},$$

on the hyper cube $\{-1,1\}^n$. Let $d' := \lceil d/2 \rceil$, $\mathbf{x} \mapsto g_j(\mathbf{x}) := 1 - x_j^2$, $j = 1, \ldots, n$, and with f let us associate the scalars:

$$r_f^1 = \min \{ L_{\mathbf{y}}(f) : \mathbf{M}_{d'}(\mathbf{y}) \succeq 0; \mathbf{M}_{d'-1}(g_j \mathbf{y}) = 0, \ j = 1, \dots, n \}$$

$$r_f^1 = \max\{L_{\mathbf{y}}(f) : \mathbf{M}_{d'}(\mathbf{y}) \succeq 0; \ \mathbf{M}_{d'-1}(g_j \mathbf{y}) = 0, \ j = 1, \dots, n\}$$

where $\mathbf{M}_{d'}(\mathbf{y})$ (resp. $\mathbf{M}_{d'-1}(g_j \mathbf{y})$) is the moment matrix (resp. localizing matrix) of order d' associated with the real sequence $\mathbf{y} = (y_{\alpha}), \alpha \in \mathbb{N}^n$, (resp. with the sequence \mathbf{y} and the polynomial g_j). It turns out that r_f^1 (resp. r_f^2) is the optimal value of the first SDP-relaxation of the Lasserre-SOS hierarchy associated with the optimization problem min (resp. max) $\{f(\mathbf{x}) : \mathbf{x} \in$

 $\{-1,1\}^n\}$ and so $r_f^1 \leq \min\{f(\mathbf{x}) : \mathbf{x} \in \{-1,1\}^n\}$ whereas $r_f^2 \geq \max\{f(\mathbf{x}) : \mathbf{x} \in \{-1,1\}^n\}$. For more details, see e.g. [8, 9]. Next, if we define

(2.14)
$$\rho_f := \max_{i=1,2} |r_f^i|,$$

then it is straightforward to verify that $\rho_f \ge \max\{|f(\mathbf{x})| : \mathbf{x} \in \{-1,1\}^n\}$. Then we have the following analogue of Lemma 2.1:

Lemma 2.7. Let f^* be as (2.13) and let ρ_f be as in (2.14). Then f^* is the optimal value of the polynomial minimization problem:

(2.15)
$$\min_{\mathbf{x} \in \{-1,1\}^n} f(\mathbf{x}) + (2\rho_f + 1) \cdot ||\mathbf{A}\mathbf{x} - \mathbf{b}||^2.$$

The proof being almost a verbatim copy of that of Lemma 2.1, is omitted. As for the quadratic case and with same arguments, one may also show that if d is even, the polynomial optimization problem (2.15) is equivalent to minimizing the homogeneous polynomial \tilde{f} of degree d on the hypercube $\{-1,1\}^{n+1}$, where

$$(\mathbf{x}, x_0) \mapsto \tilde{f}(\mathbf{x}) := x_0^d f(\mathbf{x}/x_0) + (2r_f + 1) x_0^{d-2} \cdot ||\mathbf{A} \mathbf{x} - x_0 \mathbf{b}||^2.$$

But since it is not a MAX-CUT problem, to obtain a lower bound on f^* one may just as well consider solving the first level of the Lasserre-SOS hierarchy associated with (2.15) or even directly with (2.13). The advantage of using the formulation (2.15) is that one always minimizes on the hypercube $\{-1,1\}^n$ instead of minimizing on the subset $\{-1,1\}^n \cap \{\mathbf{x} : \mathbf{A} \mathbf{x} = \mathbf{b}\}$ of the hypercube which is problem dependent.

2.4. Comparing with the copositive formulation. As already mentioned in the introduction, the 0/1 program (1.1) also has a copositive formulation. Namely, let $e_i = (\delta_{i=j}) \in \mathbb{R}^n$, $i = 1, \ldots, n$, and $\mathbf{e} = (1, \ldots, 1) \in \mathbb{R}^n$. Following Burer [3, p. 481–482], introduce n additional variables $\mathbf{z} = (z_1, \ldots, z_n)$ and the n additional equality constraints $x_i + z_i = 1$, $i = 1, \ldots, n$, with $\mathbf{z} \geq 0$ (which are necessary to obtain an equivalent formulation). So let $\tilde{\mathbf{x}}^T = (\mathbf{x}^T, \mathbf{z}^T) \in \mathbb{R}^{2n}$ and with $\mathbf{I} \in \mathbb{R}^{n \times n}$ being the identity matrix, introduce the real matrices

$$\tilde{\mathbf{F}} := \left[\begin{array}{cc} \mathbf{F} & 0 \\ 0 & 0 \end{array} \right], \quad \mathbf{S} := \left[\begin{array}{cc} \mathbf{A} & 0 \\ \mathbf{I} & \mathbf{I} \end{array} \right]$$

and the real vectors $\tilde{\mathbf{c}}^T := (\mathbf{c}^T, 0) \in \mathbb{R}^{2n}$ and $\tilde{\mathbf{b}}^T = (\mathbf{b}^T, \mathbf{e}^T) \in \mathbb{R}^{m+n}$. Let \mathbf{S}_i denote the *i*-th row vector of \mathbf{S} , $i = 1, \dots, 2n$. Then the copositive

formulation of (1.1) reads:

(2.16)
$$f^* = \min \quad \tilde{\mathbf{c}}^T \tilde{\mathbf{x}} + \langle \tilde{\mathbf{F}}, \mathbf{X} \rangle \\ \text{s.t.} \quad \mathbf{S}_i \tilde{\mathbf{x}} = \tilde{\mathbf{b}}_i, \quad i = 1, \dots, m+n \\ \mathbf{S}_i \mathbf{X} \mathbf{S}_i^T = \tilde{\mathbf{b}}_i^2, \quad i = 1, \dots, m+n \\ \mathbf{X}_{ii} = \tilde{\mathbf{x}}_i, \quad i = 1, \dots, 2n \\ \begin{bmatrix} 1 & \tilde{\mathbf{x}}^T \\ \tilde{\mathbf{x}} & \mathbf{X} \end{bmatrix} \in \mathcal{C}_{2n+1}^*,$$

where C_{2n+1} is the convex cone of $(2n+1) \times (2n+1)$ copositive matrices and C_{2n+1}^* is its dual, i.e., the convex cone of *completely positive matrices*.

The hard constraint being membership in C_{2n+1}^* , a strategy is to use hierarchies of tractable approximations (of increasing size) of C_{2n+1}^* , as described in e.g. Dürr [5]. In particular a possible choice for the first relaxation in such hierarchies is to replace (2.16) with the semidefinite program:

$$f_{copo}^{*} = \min \quad \tilde{\mathbf{c}}^{T}\tilde{\mathbf{x}} + \langle \tilde{\mathbf{F}}, \mathbf{X} \rangle$$
s.t.
$$\mathbf{S}_{i}\tilde{\mathbf{x}} = \tilde{\mathbf{b}}_{i}, \quad i = 1, \dots, m + n$$

$$\mathbf{S}_{i}\mathbf{X}\mathbf{S}_{i}^{T} = \tilde{\mathbf{b}}_{i}^{2}, \quad i = 1, \dots, m + n$$

$$\mathbf{X}_{ii} = \tilde{\mathbf{x}}_{i}, \quad i = 1, \dots, 2n$$

$$\begin{bmatrix} 1 & \tilde{\mathbf{x}}^{T} \\ \tilde{\mathbf{x}} & \mathbf{X} \end{bmatrix} \in \mathcal{S}_{2n+1}^{+} \cap \mathcal{N}_{2n+1},$$

where \mathcal{S}_{2n+1}^+ (resp. \mathcal{N}_{2n+1}) is the convex cone of real symmetric positive semidefinite (resp. entrywise nonnegative) matrices. Then (2.17) is a semidefinite relaxation of (2.16) because $\mathcal{C}_{2n+1}^* \subset \mathcal{S}_{2n+1}^+ \cap \mathcal{N}_{2n+1}$, and so $f_{copo}^* \leq f^*$. In fact if one considers the problem

(2.18)
$$\min_{\mathbf{x} \in \{0,1\}^n} \{ \mathbf{c}^T + \mathbf{x}^T \mathbf{F} \mathbf{x} : \mathbf{A} \mathbf{x} = \mathbf{b}; (\mathbf{A}_i^T \mathbf{x})^2 = b_i^2, i = 1, \dots, m \},$$

which is clearly equivalent to (1.1), then the first SDP-relaxation of the Lasserre-SOS hierarchy associated with (2.18) reads:

(2.19)
$$\min_{\mathbf{c}^{T}\mathbf{x} + \langle \mathbf{F}, \mathbf{X} \rangle \\
\text{s.t.} \quad \mathbf{A}\mathbf{x} = \mathbf{b} \\
\mathbf{A}_{i}\mathbf{X}\mathbf{A}_{i}^{T} = \mathbf{b}_{i}^{2}, \quad i = 1, \dots, n \\
\mathbf{X}_{ii} = x_{i}, \quad i = 1, \dots, n \\
\begin{bmatrix} 1 & \mathbf{x}^{T} \\ \mathbf{x} & \mathbf{X} \end{bmatrix} \succeq 0,$$

which is of the same flavor as the semidefinite program (2.17) but with dimension twice as less than (2.17).

Example 2.8. We have compared the first SDP-relaxation of the MAX-CUT formulation with the first SDP-relaxation (2.17) of the copositive formulation for the linear 0/1 knapsack problems (1.1) with $\mathbf{F} = 0$, n = 10, 15 and vector \mathbf{a} as in Example 2.5.

We have kept the formulation on the hypercube $\{0,1\}^n$ rather than on the hypercube $\{-1,1\}^n$ and so in fact the first SDP relaxation is for problem

(2.3) with a quadratic cost function (and not a quadratic form as in the MAX-CUT formulation on $\{-1,1\}^n$).

In each case n = 10 (resp. n = 15), we have chosen 19 (resp. 18) values of the right-hand-side b = 10 s, s = 1, ..., 19 (resp. b = 20 s, s = 1, ..., 18), and for each problem we have run a sample of 10 problems with cost vector $\mathbf{c} = \mathbf{a} + 10 \eta$ where η is a random variable uniformly distributed in [0, 1].

For n=10, the lower bound f^*_{maxcut} from the MAX-CUT formulation dominates the lower bound f^*_{copo} in (2.17), in 111 out of 190 problems ($\approx 58\%$) and the relative difference $100 \cdot |f^*_{maxcut} - f^*_{copo}|/\max[f^*_{maxcut}, f^*_{copo}]$ never exceeds 0.05% over all 190 problems!

For n=15, $f_{maxcut}^* > f_{copo}^*$ in 94 out of 180 problems ($\approx 52\%$) and $100 \cdot |f_{maxcut}^* - f_{copo}^*| / \max[f_{maxcut}^*, f_{copo}^*]$ never exceeds 0.55% in all 180 problems!

3. Conclusion

In this paper we have shown that a linear or quadratic 0/1 program has an equivalent MAX-CUT formulation and so the whole arsenal of approximation techniques for the latter can be applied. In particular, and as suggested by some preliminary tests on a (limited sample) of 0/1 knapsack examples, it is expected that the lower bound obtained from the Shor relaxation of MAX-CUT will be in general better than the one obtained from the standard LP-relaxation (for linear 0/1 programs) of the original problem. The situation might be even better for quadratic 0/1 programs since to obtain a lower bound there is no need to first compute a convex quadratic underestimator of the criterion before applying a convex quadratic relaxation.

References

- [1] I.M. Bomze. Copositive optimization recent developments and applications, European J. Oper. Res. **216** (2012), 509–520.
- [2] I.M. Bomze, E. de Klerk. Solving standard quadratic optimization problems via linear, semidenite and copositive programming, J. Global Optim. 24 (2002), 163–185.
- [3] S. Burer. Copositive programming, in Handbook of Semidefinite, Conic and Polynomial Optimization, M. Anjos and J.B. Lasserre, Eds., Springer, New York, 2012, pp. 201–218.
- [4] E. de Klerk, D.V. Pasechnik. Approximation of the stability number of a graph via copositive programming, SIAM J. Optim. 12 (2002), 875–892.
- [5] M. Dür. Copositive Programming a survey, In Recent Advances in Optimization and its Applications in Engineering, M. Diehl, F. Glineur, E. Jarlebring and W. Michiels Eds., Springer, New York, 2010, pp. 3 – 20.
- [6] J.B. Lasserre. Optimisation globale et théorie des moments, C. R. Acad. Sci. Paris 331 (2000), Série 1, pp. 929–934.
- [7] J.B. Lasserre. Global optimization with polynomials and the problem of moments, SIAM J. Optim. 11 (2001), pp. 796–817.
- [8] J.B. Lasserre. Moments, Positive Polynomials and Their Applications, Imperial College Press, Iondon, 2010.
- [9] J.B. Lasserre. An Introduction to Polynomial and Semi-Algebraic Optimization, Cambridge University Press, Cambridge, 2015.

- [10] M. Laurent, Zhao Sun. Handelman's hierarchy for the maximum stable set problem, *J. Global Optim.* **60** (2014), pp. 393–423.
- [11] M. Marshall. Error estimates in the optimization of degree two polynomials on a discrete hypercube, SIAM J. Optim. 16 (2005), 297–309.
- [12] Y. Nesterov. Semidefinite relaxation and nonconvex quadratic optimization, *Optim. Methods Softw.* **9** (1998), 141–160.
- [13] A. Wigele, F. Rendl. Computational approaches to Max-Cut, in *Handbook of Semidefinite, Conic and Polynomial Optimization*, M. Anjos and J.B. Lasserre, Eds., Springer, New York, 2012, pp. 821–848.

LAAS-CNRS AND INSTITUTE OF MATHEMATICS, LAAS, 7 AVENUE DU COLONEL ROCHE, BP $54200,\ 31031$ Toulouse Cédex 4, France.

 $E ext{-}mail\ address: lasserre@laas.fr}$