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Abstract The types of constraints encountered in black-box simulation-based
optimization problems differ significantly from those addressed in nonlinear
programming. We introduce a characterization of constraints to address this
situation. We provide formal definitions for several constraint classes and
present illustrative examples in the context of the resulting taxonomy. This
taxonomy, denoted KARQ, is useful for modeling and problem formulation, as
well as optimization software development and deployment. It can also be used
as the basis for a dialog with practitioners in moving problems to increasingly
solvable branches of optimization.

Keywords Taxonomy of constraints · Black-box optimization · Simulation-
based optimization.

1 Introduction

This paper focuses on specifications of the feasible set Ω ⊂ Rn for the general
optimization problem

min
x∈Ω

f(x), (1)

where f : Rn → R∪{∞} denotes an extended-value objective function. Tradi-
tional classifications of constraints in optimization have focused on distinguish-
ing between inequality-, equality-, and set-based constraints, further subdivid-
ing these constraints into categories such as linear, conic, convex, and discrete.
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There is an added layer of complexity in specifying constraints in the fields of
black-box optimization (BBO) [10] and simulation-based optimization (SBO).
In (BBO) SBO, the objective function f and/or some constraints defining an
instance of Ω depend on the outputs of one or more (black-box) simulations.

The particular way in which a specified constraint set depends on simula-
tion output, along with the nature of the simulation itself, is the focus of this
paper. We address issues associated with this dependence, propose a taxonomy
of constraints, and unite language in the hope that the taxonomy will provide
a bridge between algorithmic research and practitioners. Our taxonomy ad-
dresses a specific instance (or “specification”) of Ω. This instance, rather than
the mathematical problem (1), will be passed to an optimization solver (which
may do some preprocessing of its own and then tackle a different instance).

Identifying the specific simulation dependence in a problem is crucial be-
cause, in typical scenarios, evaluating the simulation(s) becomes a bottleneck
for optimization algorithms. The time needed to evaluate algebraic terms
linked with other constraints or the objective can be insignificant compared
to the time required for evaluating the simulation components. Furthermore,
simulations may sometimes fail to return a value, even for points inside Ω.

To illustrate the distinction between a problem and an instance, we consider
the two-dimensional linear problem

min
x∈R2

{x1 + x2 : x1 ≥ 0, x2 ≥ 0} . (2)

In fact, many instances of the feasible set Ω share a solution set with (2). For
example, a different specification can result in the same feasible set, either by
chance,

Ω1 = {x ∈ R2 : x1 ≥ 0, x1x2 ≥ 0},

or as a result of some redundancy,

Ω2 = {x ∈ R2 : x1 ≥ 0, x2 ≥ 0, 2x1 + x2 ≥ 0}.

Alternatively, the feasible sets may differ from one instance to another, but
the minimizers of f over these sets remain the same. This is illustrated with

Ω3 = {x ∈ R2 : x1 ≥ 0, x1 + 2x2 ≥ 0, x1 + x2 ≤ 1}.

In situations similar to these examples, one would generally anticipate that
modern solvers, modeling languages, or even classical techniques like Fourier-
Motzkin elimination would undertake preprocessing. This preprocessing aims
to rectify redundancies, inefficiencies, and similar issues before deploying the
solver’s most intricate mechanisms. When the problem involves some black-box
or simulation component, however, the situation, and hence such preprocess-
ing, can be considerably more difficult.

The classification proposed in Section 2 is not absolute: it depends on
the entire set of constraints specified in the instance and on the information
provided by the problem/simulation designer. For example, a simple bound
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constraint on a decision variable may be included as an output of a black-
box simulation rather than expressed algebraically, leading to two different
classes in the taxonomy. Other examples of different constraints changing class
are described in Section 3, along with examples from the literature of each
constraint type.

Formally, we assume that a finite-dimensional instance Ω is defined by a
finite collection of equalities, inequalities, and sets:

Ω = {x ∈ Rn : ci(x) = 0,∀i ∈ I; cj(x) ≤ 0,∀j ∈ J ; ck(x) ∈ A,∀k ∈ K} ,
(3)

where I,J ,K are finite and possibly empty sets, A ⊆ Rn, and ci, cj , ck :
Rn → R∪ {∞} for all i ∈ I, j ∈ J , and k ∈ K. Semi-infinite problems can be
treated by such a taxonomy but are not specifically addressed in this paper.
Similarly, multi-objective optimization problems are easily encapsulated in our
taxonomy but are not discussed specifically. Note that the form of Ω in (3)
is general enough to include cases when a variable changes the total number
of decision variables (such as when determining the number of groundwater
wells to build as well as their locations; see, e.g., [47]).

In fields such as derivative-free optimization (DFO), simulation optimiza-
tion, and PDE-constrained optimization, a disconnect often exists between
what algorithm designers assume about a simulation and what problem/simu-
lation designers provide. In these communities, many different terms coexist
for the same concepts, and unification is needed. Section 4 puts the taxon-
omy in perspective with the existing literature; placing the literature review
toward the end of the paper is deliberate and eases the presentation. The pro-
posed taxonomy of constraints consolidates many previous terms such as soft,
virtual, hard, hidden, difficult, easy, open, closed, and implicit. Its purpose is
to introduce a common language in order to facilitate dialog between algo-
rithm developers, optimization theoreticians, software users, and application
scientists specifying problems.

2 Classes of constraints

This section introduces the KARQ taxonomy, which we present graphically
through the tree in Figure 1. An alternative and equivalent representation of
the taxonomy using the same notations is provided by the Venn diagram in
Figure 2.

Each leaf of the tree in Figure 1 is identified with a sequence of four letters,
where each entry can take one of two possible values. The acronym of a leaf
reads from the bottom to the root of the tree. As we discuss later, not all 16
possible combinations of these letters are present in the taxonomy, because
hidden constraints take a special form. The nine possible constraint classes in
the taxonomy are summarized in Table 1.

The letters used to define the acronyms of the taxonomy correspond to
four types of left branches in the tree: Q is for Quantifiable, R is for Relaxable,



4 Sébastien Le Digabel, Stefan M. Wild

                   Relaxable or Unrelaxable?

                               Quantifiable or Nonquantifiable?

               Known or Hidden?

                         A priori or Simulation?
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Fig. 1 Tree-based view of the KARQ taxonomy of constraints. Each leaf corresponds to a
class of constraints. The leaves read from the bottom of the tree to the top of the tree.

A is for A priori, and K is for Known. The corresponding right branches are
identified as N for Nonquantifiable, U for Unrelaxable, S for Simulation, and
H for Hidden. We define each of these terms after an initial discussion of the
structure of the taxonomy.

The two top levels of the tree are specific to SBO while the lower two are
more general. In addition, most of constraints found in traditional nonlinear
optimization (NLO) exist in the leftmost leaf. In fact, general difficulty grows
from left to right, so that there is a preference for practitioners to specify
constraints such that the constraints appear in the leftmost part of the tree
possible. Further subdivisions (e.g., convexity, nonlinearity) are also important
but more focused on the NLO case and hence not discussed here. Importantly,
the taxonomy does not aim to capture whether the simulation output is a
smooth function of the decision variables, nor does it imply the availability or
non-availability of derivatives of the simulation output.

Each constraint in an SBO problem instance is assigned to one leaf of the
tree. However, a constraint type from a classification scheme different from
KARQ (e.g., bound constraint, nonlinear equality constraint) can correspond
to several KARQ leaves at once. In this case, we use the generic wildcard
notation “*.” For example, simulation-based constraints can be written as
**S*.
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Fig. 2 Venn diagram of the taxonomy of constraints. Each region corresponds to a leaf in
the tree of Figure 1.

Table 1 The taxonomy as a table where each row corresponds to a leaf in the tree of
Figure 1 and to an intersection of regions in Figure 2.

Leaf Number Name in the
in Figure 1 Taxonomy

1 QRAK
2 NRAK
3 QUAK
4 NUAK
5 QRSK
6 NRSK
7 QUSK
8 NUSK
9 NUSH (hidden)

These issues will appear natural as we proceed with examples and formal
definitions of each level of the tree, starting from the bottom and moving to
the top. In the next section, we provide examples from the literature for each
leaf of the tree.

2.1 Quantifiable (Q) versus nonquantifiable (N)
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In the case of a nonquantifiable constraint, one has only a binary indicator
indicating whether the constraint has been satisfied or violated. Consequently,
an alternative term for such constraint is a binary or 0-1 constraint, but this
does not have a natural complementary term. Similarly, we avoid the terms
measurable/nonmeasurable to prevent confusion with the term measurable in
analysis.

Definition 1 A quantifiable constraint (Q) is a constraint for which the de-
gree of feasibility and/or violation can be quantified. A nonquantifiable con-
straint (N) is a constraint for which the degrees of satisfaction or violation are
both inaccessible.

The definition of a quantifiable constraint does not guarantee that mea-
sures of both feasibility and violation are available. In particular, both of the
following examples fall under the category of quantifiable constraints.

Quantifiable feasibility: The time required for the underlying simulation code
to complete should be less than 10 seconds.
Here, we have access to the time that it took for the code to complete (and
hence we know how close we are to the 10-second limit), but the execution
is interrupted if it fails to complete within 10 seconds (and hence we will
never know the degree to which the constraint was violated).

Quantifiable violation: A time-stepping simulation should run to completion
(time T ).
If the simulation stops at time t̂ < T , then T − t̂ quantifies the proximity
to satisfying the constraint.

A constraint for which both the degrees of feasibility and of violation are
available can be referred to as fully quantifiable.

From the perspective of a method or solver, the distinction between Q and
N clearly is important. For example, if one wants to build a model of the
constraint, Q might imply interpolation, while N might imply classification.

2.2 Relaxable (R) versus unrelaxable (U)

The next concept addressed by the taxonomy is that of relaxability.

Definition 2 A relaxable constraint (R) is a constraint that does not need to
be satisfied in order to obtain meaningful outputs from the simulation for the
computation of the objective and the constraints. An unrelaxable constraint
(U) is one that must be satisfied to obtain meaningful outputs.

In this definition, meaningful simulation output(s) means that the values
can be trusted as valid by an optimization algorithm and rightly interpreted
when observed in a solution.

Typically, relaxable constraints are not part of a physical model but in-
stead represent some customer specifications or some desired restrictions on
the outputs of the simulation, such as a budget or a weight limit.
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Within an optimization method, the consequence of this R versus U prop-
erty is that all the iterates must satisfy unrelaxable constraints, whereas re-
laxable constraints are required to be satisfied only at the proposed solution.
To put it differently, infeasible points may be considered as intermediary (ap-
proximate) solutions.

Alternative terms include soft versus hard, open versus closed, and violable
versus unviolable; but these terms are often overloaded, as we note in Section 4.

2.3 A priori (A) versus simulation-based (S)

A simulation constraint is specific to BBO/SBO. The essence of a simulation
constraint is such that it necessitates the initiation of a potentially resource-
intensive computer or physical simulation to assess the constraint. We note,
however, that this constraint evaluation may not ultimately prove to be costly.
For instance, the simulation could encompass a constraint that is relatively
inexpensive to evaluate and can serve as a flag to circumvent additional com-
putations; even in this scenario, our taxonomy classifies such a constraint as
an S constraint (more precisely, a *USK constraint).

Definition 3 An a priori constraint (A) is a constraint for which feasibility
can be confirmed without running a simulation. A simulation-based constraint
(S) (or simulation constraint) requires running a simulation to determine fea-
sibility.

Basic examples of a priori constraints include one-sided bounds and linear
equalities. Nevertheless, a priori constraints can encompass notably broader
and specialized formulations, including semidefinite programming constraints,
constraint programming constraints (e.g., all different, ordered), or constraints
relative to the nature of variables, such as real, integer, binary, or categorical.

An alternative to “simulation” is a posteriori [8]; alternative terms for “a
priori” include algebraic or algebraically available, analytic, closed-form, ex-
pressible, and input-constraint. An algebraic function is typically defined as a
function that satisfies an equation that can be expressed as a polynomial of
finite degree with rational coefficients. However, it is important to note that
this definition excludes transcendental functions (e.g., ex). Some modeling lan-
guages, such as GAMS [15], already use this terminology (GAMS is “generalized
algebraic” to include available transcendentals). Formally, an analytic function
is usually one that locally has a convergent power series; this rules out simple
nonsmooth functions. The concept behind the term input-constraint lies in the
fact that A constraints can be perceived as directly linked to the input vari-
ables x, whereas S constraints are formulated as a function of the simulation
outputs.

One can easily appreciate that a solver should ideally evaluate *UA* (un-
relaxable, a priori) constraints first, avoiding a simulation execution if the
candidate is infeasible–especially when it is expensive to obtain the simulation
output. For *RA* (relaxable, a priori) constraints, it is not as clear whether an
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algorithm would benefit from a similar ordering of constraint evaluations. For
example, in the case of noninteger input values, should these be transmitted
to a simulator, which might subsequently round them to the nearest integer
during simulation? The answer hinges on the specific context.

2.4 Known (K) versus hidden (H)

The final distinction within the taxonomy applies specifically to BBO/SBO.

Definition 4 A known constraint (K) is a constraint that is explicitly given
in the problem formulation. A hidden constraint (H) is not explicitly known
to the solver.

Most constraints encountered when solving SBO problems, particularly
when an optimizer is involved in the early stages of modeling and problem
formulation, are known to the optimizer. A hidden constraint typically (but
not necessarily) arises when the simulation fails to converge or crashes, for
various reasons such as incorrect usage conditions or simulator bugs.

For such constraints, we can detect only violations, typically when some
error flag or exception is raised. However, a violation may go unnoticed. Al-
ternative terms include Unknown, Unspecified, and Forgotten.

For example, consider the problem min{f(log x) : x ∈ R} with f being a
simulation-based function from R to R. If the constraint x > 0 is stated in the
problem specification, then it is an a priori constraint. Otherwise, it is hidden
and can only be observed for negative or null values of x. This constraint might
have been explicitly stated within the simulator to prevent crashes and trigger
specific flags; however, if this information is not communicated to the solver,
the constraint remains categorized as H.

As depicted in Figure 1, the H branch of the tree uniquely leads to a termi-
nal leaf. By definition, a hidden constraint cannot be a priori and quantifiable
(as we lack the necessary information for quantification). Furthermore, it can-
not be relaxable because the violation/satisfaction cannot be detected if the
outputs are always meaningful.

Note that the demarcation between a hidden (NUSH) constraint and a
NUSK constraint is subtle. In the NUSK case, however, the constraint is ex-
plicitly given, and its satisfaction can be checked. These subtle differences are
emphasized in the presence of several different hidden constraints: When the
simulation crashes, one has no way of knowing exactly what went wrong, a sit-
uation that would have been different if these constraints had been expressed
with flags by the modeler.

3 Short case studies

The previous examples were related to the four levels of decision in the taxon-
omy. We now highlight that each of the nine leaves of the tree in Figure 1 is
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nonempty by providing constraint specifications, including examples from the
literature, that belong to each leaf.

We note that many SBO problem specifications in the literature are com-
posed of constraints of different types. The community groundwater prob-
lem [27] has QRSK constraints as well as bound and linear constraints (**AK),
while the LOCKWOOD problem [47] has a linear objective and simulation
constraints (**S*); different simulation-based instances of the LOCKWOOD
constraints are considered in [36] alongside solution methodologies for the
resulting formulations. The STYRENE problem from [6] has 11 simulation
constraints corresponding to Leaves 5 and 8 of the tree of Figure 1: 7 quantifi-
able and relaxable constraints (QRSK), and 4 unrelaxable binary constraints
(NUSK).

3.1 QRAK: Quantifiable Relaxable A priori Known

This constraint class captures the most common types of constraints encoun-
tered in classical nonlinear optimization.

Ex.- location1 /∈ forest
The GMON problem described in [4] involves placing gamma monitoring
devices in a region represented by the image of a map. There are several
locations on the map (corresponding to forests, lakes, etc.) that are consid-
ered unallowable for placement. However, the simulation, which analyzes
the effects of placing devices at particular locations, is independent of the
surface topology and thus can still evaluate such unallowable placements.
The constraints associated with these unallowable locations are also quan-
tifiable, since one can compute distances to the nearest (in)feasible location
on the map.

Ex.- 0.15 ≤ x1 ≤ 0.17
In [39], a nonlinear-least-squares problem is solved for parameter values
that calibrate a nuclear energy density functional to experimental data.
Each residual involves running a simulation associated with self-consistency
of the underlying system. Bounds are set in [39] on half of the parame-
ters (those associated with nuclear matter properties) because the uncon-
strained solution yields values that are not transferable to other nuclear
structure calculations. Because the simulation still yields meaningful out-
put when these bounds are violated (as evidenced by the unconstrained
problem being solved), these a priori and quantifiable constraints are also
relaxable.

Ex.- x1 ∈ {0, 1}
A violation measure is quantified by, for example, min

{
|xi|, |1− xi|

}
and

thus this constraint is QRAK provided the binary variable x1 is relaxable.
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3.2 NRAK: Nonquantifiable Relaxable A priori Known

A good example of an NRAK constraint is a categorical (e.g., nonordinal) vari-
able constrained to a subset of its possible values. Such cases arise frequently
in multifidelity optimization.

Ex.- simulator = Cart3D
For the purpose of designing a supersonic airfoil, [44] considers different
available analysis simulators – such as a linearized panel method (“panel”)
and an Euler CFD solver (“Cart3D”) – with varying fidelity levels. The
final design must be evaluated by the more costly and accurate Cart3D
simulator, but an optimization algorithm can use the less expensive, inac-
curate panel simulator at intermediate points. The constraint “simulator
= Cart3D” is relaxable because another option for the simulator exists.

Ex.- x2 = O2 if x1 = gcc
Consider a simulator that drives a C++ compilation, based on two categor-
ical variables, each specified to take on two allowable values, x1 ∈ {gcc, icc}
and x2 ∈ {O2,O3}. We want the final solution to have x2 = O2 if x1 = gcc,
and this constraint is of type NRAK.
We note that the two set constraints, x1 ∈ {gcc, icc} and x2 ∈ {O2,O3},
may be NUAK; see below.

3.3 QUAK: Quantifiable Unrelaxable A priori Known

The occurrence of QUAK constraints in SBO is commonly related to algebraic
constraints that play a (possibly secondary) role of ensuring that the input to
a simulation satisfies the expectations of the simulator.

Ex.- ri ≥ 0, i = 1, . . . 6
For the groundwater bioremediation problem considered in [36], pumping
rates r need to be determined for six extraction wells. The simulator’s
design only permits extraction (not injection) at these specific sites, making
these constraints unrelaxable. Furthermore, the quantity max{0, ri} offers
a quantifiable measure of feasibility.

3.4 NUAK: Nonquantifiable Unrelaxable A priori Known

The allowable domain of a categorical variable is a typical example of a NUAK
constraint.

Ex.- compiler ∈ {gcc, icc}
Categorical decision variables are often necessary when optimizing code
performance. For instance, the optimization of linear algebra kernels in [14]
involves categorical variables like loop order (e.g., permuting groups of
nested for loops) and compiler type.
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3.5 QRSK: Quantifiable Relaxable Simulation Known

Any quantifiable and relaxable constraint that depends on a simulation output
is a QRSK constraint.

Ex.- Minimal purity level of produced styrene of 0.99.
In the chemical engineering application for the production of styrene con-
sidered in [6], called STYRENE, one of the simulation outputs is the purity
of the styrene produced. The problem requires a minimum purity level,
but intermediate designs might not meet this requirement. In such cases, a
quantifiable measure of violation represents how much the obtained purity
level falls below 0.99.

Ex.- Percentage of test problems solved must be at least 90%.
In [7], the algorithmic parameters of an optimization solver are tuned in
order to minimize the CPU time needed to solve a set of test problems.
Here, the “simulator” is a call of the solver being tuned on a particular test
problem. The authors consider constraints on correctness of the output, in
particular that at least 90% of the runs satisfy a prescribed convergence
criterion.

Ex.- A budget based on economical criteria, S(x) ≤ b.

3.6 NRSK: Nonquantifiable Relaxable Simulation Known

A relaxable constraint that relies on binary or nonordinal output from a sim-
ulation is a NRSK constraint.

Ex.- no compiler warnings
A common objective in code performance optimization is to minimize the
run time of a generated code. Changes to the code may result in code that
still compiles and runs, but for which undesirable warnings are produced
during compilation. In [31], the run times of decision variable values that re-
sulted in problems (errors or warnings) during compilation were discarded
from the analysis. The constraint that there are no warnings requires one
to generate, compile, and check the compilation output of the associated
code is thus “simulation-based;” The study in [31] only considers the bi-
nary measures of this constraint, which is relaxable since run times can
still be obtained (assuming that no compile errors were seen).

Ex.- toxicity value exceeded
A simulator displays a flag indicating whether a toxicity level has been
reached during the simulation. However, neither the timing of this event
nor the extent of the toxicity is known.

3.7 QUSK: Quantifiable Unrelaxable Simulation Known

Constraints that are both quantifiable and unrelaxable arise, for example, in
multidisciplinary optimization (MDO), where one has a compatibility con-
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straint between the simulations of two or more disciplines. Violating such a
constraint can lead to unmeaningful output with respect to one of the disci-
plines.

Ex.- y1 ≥ 0
Compatibility constraints in MDO often arise when the output(s) of one
discipline become inputs for another. Bounds on these quantities are typical
QUSK constraints, such as the problem presented in [46, Section 5.1]. In
this example, the first discipline output (y1) appears with a squared root
in the equation of the other discipline. The bound constraint y1 ≥ 3.16
is specified in [46] and is a QRSK constraint because it can be relaxed
(albeit not arbitrarily so) and still result in meaningful output from the
second discipline. The constraint y1 ≥ 0, however, is unrelaxable and thus
a QUSK constraint (despite seeming to be redundant in the presence of the
relaxable constraint y1 ≥ 3.16).

Ex.- cS(x) ≥ 0
One of the outputs cS(x) of a simulation is a concentration level; if it is
below zero, the simulation stops and displays NaN for all the outputs except
cS . Consequently, this constraint is both unrelaxable and quantifiable since
there exists a measure indicating the proximity to violation.

3.8 NUSK: Nonquantifiable Unrelaxable Simulation Known

Constraints based on binary- and nonordinal-valued simulation outputs that
must be satisfied are typical NUSK constraints.

Ex.- SEP-STY is structurally acceptable for subsequent simulations.
In the STYRENE problem of [6], four of the eleven simulation-based con-
straints correspond to binary flags related to the success of the convergence
of internal numerical methods. In the case of the SEP-STY flag denoting
failure, some of the other flags may still denote success; hence, one has
richer information about the source of failure than one does for a hidden
constraint.

Ex.- exitflag = 0
When a simulation generates an exit flag indicating success (“0”) or multi-
ple error code values accompanied by relevant documentation, it becomes
possible to discern why the simulation did not succeed.

Each of these examples is not a hidden constraint since the reason for the
violation can be identified. In contrast, a single binary flag indicating that the
simulation failed qualifies as a hidden constraint. Similarly, an error message
that cannot be interpreted is equivalent to such a flag and hence should be
interpreted as hidden.
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3.9 NUSH: Hidden

As defined in Section 2.4, hidden constraints provide no information about the
cause for failure of a simulation.

Ex.- When sampled uniformly from a specified hyperrectangle, the STYRENE
black-box of [6] terminates prematurely 60% of the time, resulting in a
failure. These failures are not related to the four binary flags described in
the NUSK examples and thus one has no means of targeting the cause of
the failure.

Ex.- The simulation failed to complete and nothing is displayed, or a simple
flag is raised or an undocumented error number indicated.

Ex.- The SOLAR simulator [42], available at https://github.com/bbopt/

solar, is a realistic black-box in which, in some situations, some of the
outputs are not computed. These situations reveal the presence of hidden
constraints.

4 Literature review

In this section, we review the existing literature and gather terminology from
the BBO, DFO, and SBO communities. Our goal is to unify and relate our tax-
onomy to past terms and formulations and to highlight inconsistencies among
previous conventions. This context also underpins the naming conventions used
in KARQ and the more formal definitions on which the taxonomy is built. We
also survey early uses of various terms and illustrate the use of the taxonomy
in the context of SBO software packages.

Before proceeding, we note that the proposed classification is not related
to the field of constraint programming [51], where constraints are expressed as
logical prepositions treated by specialized algorithms within a specific context.

4.1 Hidden constraints

The term hidden constraint corresponds to the NUSH leaf in the tree of Fig-
ure 1. This term is increasingly prevalent in DFO. In the modern literature,
it is typically attributed to Choi and Kelley [19], who say that a hidden con-
straint is “the requirement that the objective be defined.” This definition is
used in Kelley’s implicit filtering software [37] and has been used to solve
several examples (see, e.g., [16,18]) whereby a hidden constraint is said to be
violated whenever flow conditions are found that prevent a simulation solution
from existing.

In fact, the term had been previously used in the context of optimization.
The earliest published instance that we are aware of is from 1967 [12] and
involved optimizing the design of a condenser. In this case, after a design was
numerically evaluated, one needed to verify that the Reynolds number ob-
tained was large enough to justify the use of the equations in the calculations.

https://github.com/bbopt/solar
https://github.com/bbopt/solar
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In our taxonomy, such a constraint is not labeled as hidden because one knows
why the design “failed.”

The term is also used by the authors of the SNOBFIT package [35] to
capture when “a requested function value may turn out not to be obtainable.”
To handle such constraints, SNOBFIT assigns an artificial value, based on the
values of nearby points, to the points where such a constraint was violated.
Similarly, the authors of [22] define hidden constraints as those that

“are not part of the problem specification/formulation, and their man-
ifestation comes in the form of some indication that the objective func-
tion could not be evaluated.”

The authors of [22] state that hidden constraints have historically been treated
only by heuristic approaches or by the extreme-barrier approach, which uses
extended-value functions in an attempt to establish feasibility.

A selection of recent works involving hidden constraints includes [2,13,48,
52].

4.2 Unrelaxable and relaxable constraints

The terms unrelaxable and relaxable are widely used in the literature. For
example, the book [22] states that unrelaxable constraints “have to be satisfied
at all iterations” of an algorithm while “relaxable constraints need only be
satisfied approximately or asymptotically.” The related notions of hard and
soft constraints appear with varying meanings. Here, we follow the convention
of [34]:

“To resolve this, the requirements are usually broken up into “hard”
constraints for which any violation is prohibited, and “soft” constraints
for which violations are allowed. Typically hard constraints are included
in the formulation as explicit constraints, whereas soft constraints are
incorporated into the objective function via some penalty that is im-
posed for their violation.”

That is, we view soft constraints as being handled by either additional objec-
tives or additional objective terms. A nice pre-1969 history of ways to move
constraints into the objective can be found in [25]. Another example comes
from SNOBFIT [35], where soft constraints are “constraints which need not be
satisfied accurately.” Other uses of “hard/soft constraints” can be found, for
example, in [33]. There, the authors refer to soft constraints as those “that
need not be satisfied at every iteration,” a definition that is directly related to
our term unrelaxable. A similar notion is used in [32]: “Relaxable constraints
need only be satisfied approximately or asymptotically.” But our definition
requires that a solution satisfy relaxable constraints, and hence the degree of
“approximate” satisfaction must be specified in the problem instance. In [45],
constraints are divided into relaxable and unrelaxable constraints, where un-
relaxable constraints
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“cannot be violated by any considered solution because they guaran-
tee either the successful evaluation of the black-box function . . . or the
physical/structural feasibility of the solution”

and relaxable constraints “may instead be violated as the objective function
evaluation is still successful.”

The authors of [24] employ a specific instance of our definition, and use both
“nonrelaxable” and “unrelaxable” to describe constraints whose satisfaction
is necessary for the successful evaluation of an objective function.

4.3 Other related work

Previous classifications have also been proposed, as for example the mixed-
integer programming classification in [49] for linear inequalities, linear equa-
tions, continuous parameters, and discrete parameters.

The closest related work toward a more complete characterization of con-
straints is that of Alexandrov and Lewis [5], who examined different formu-
lations for general problems arising in MDO. These authors considered con-
straint sets partitioned along three axes: open (closed) disciplinary analysis,
open (closed) design constraints, and open (closed) interdisciplinary consis-
tency constraints. They showed that out of the eight possible combinations,
only four were possible in practice. They referred to closed constraints as those

“assumed to be satisfied at every iteration of the optimization. If the
formulation does not necessarily assume that a set of constraints is
satisfied, we will say that that formulation is open with respect to the
set of constraints.”

This convention has subsequently been used by others in the MDO community
(see, e.g., [53]).

The notion of unknown constraints appears in [30] but it differs from its use
in our taxonomy; rather, it corresponds to constraints given by a black-box.
Note that the same authors, along with others, discussed hidden constraints
in [41].

Additional terms for describing general constraints are found in the liter-
ature. For example, chance constraints [17] are constraints whose satisfaction
requirement depends on a probability. Side constraint is a generic term some-
times used to qualify constraints that are not lower or upper bounds or to dis-
tinguish new constraints added to a preexisting model; see [3] for an example.
Other terms include the notions of vanishing constraints [1], complementarity
constraints, or variational inequalities [43].

Conn et al. describe easy constraints and difficult constraints as follows [20]:

“Easy constraints are the constraints whose values and derivatives can
be easily computed,”
and
“Difficult constraints are constraints whose derivatives are not available
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and whose values are at least as expensive to compute as that of the
objective function.”

The latter definition is similar to what [22] calls derivative-free constraints,
that is, those for which derivatives are not available and which are typically
given by a black-box. Such characterizations vary from our proposed taxonomy,
which does not seek to guarantee a specific order based on the computational
expense of constraint evaluation and/or feasibility determination.

Similarly, the authors of [20] refer to virtual constraints as “constraints that
cannot explicitly be measured.” Only the satisfiability of such constraints can
be checked, and this is assumed to be a computationally expensive procedure.
In our taxonomy such constraints are N**K.

Numerous modeling languages and collections of test problems such as
GAMS [15], AMPL [26], CUTEst [29], or ZIMPL [38], use the following clas-
sic ways of categorizing constraints: fixed variables; bounds on the variables;
adjacency matrix of a (linear) network; linear, quadratic, equilibrium, and
conic constraints; logical constraints found in constraint programming; and
equalities or inequalities. Usually, the remaining constraints are qualified as
“general”, a term frequently used in classical nonlinear optimization. All these
constraints fit as **AK constraints in the “classical optimization” portion of
the tree of Figure 1.

4.4 Software for constrained SBO problems

To highlight the potential benefits of utilizing the proposed taxonomy, we
briefly outline how some algorithms and software handle various types of con-
straints, using the terminology of the taxonomy.

In general, most general-purpose software packages consider QR*K con-
straints, but some tend to use exclusively algebraic forms (e.g., box, linear,
quadratic, convex). Furthermore, relaxable constraints often are also assumed
to be quantifiable. Several packages allow for a priori constraints, but some
assume that these cannot be relaxed, while others assume that they can.

The package SNOBFIT [35] treats soft and also NUSH (hidden) constraints.
The software SID-PSM [23] handles constraints with derivatives and U (un-
relaxable) constraints. The DFO code [21] (which we distinguish from the
general class of optimization problems without derivatives) considers NUSH
(hidden), NU*K, and Q*AK constraints. On the DFO solver page [21], the au-
thors recommend moving S (simulation, difficult) constraints to the objective
function, while keeping easy constraints (with derivatives) inside the trust-
region subproblem; the authors also describe virtual constraints as N (non-
quantifiable) constraints and recommend using an extreme-barrier approach.
The HOPSPACK package [50] explicitly addresses integers; linear equalities and
inequalities; and general inequalities and equalities. Depending on the type of
constraint, HOPSPACK assumes that the constraint is relaxable (e.g., general
equality constraints) or unrelaxable (e.g., integer sets). In NOMAD [11,40], the
progressive-barrier technique [9] is used for the QRSK constraints, and special
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treatment (such as projection) is applied for some Q*AK constraints (i.e.,
bounds and integers). The extreme barrier is used for all other constraints,
including hidden constraints.

In PDE-constrained optimization, solution approaches can be loosely clas-
sified into “Nested Analysis and Design” (NAND) and “Simultaneous Anal-
ysis and Design” (SAND) approaches [28]. In NAND approaches, the state
variables of the PDE constraints are not treated as decision (optimization)
variables and hence the solution of the PDE (for the state variables) is a sim-
ulation constraint. This situation exists even if the simulation is not just a
black-box, but also returns additional information (e.g,. sensitivities, adjoints,
tolerances). In the SAND approach, the state variables are included as deci-
sion variables and hence the PDE reduces to a set of algebraic equations (and
therefore **AK constraints in our taxonomy).

5 Discussion

This work proposes a unification of past conventions and terms into a sin-
gle taxonomy, denoted KARQ, which targets the constraints encountered in
simulation-based optimization. The taxonomy has an intuitive representation
as a tree where each leaf describes one of nine types of possible constraints. In
addition, examples have been given for each constraint type and their possible
treatment in applications and algorithms.

We propose that BBO, DFO, and SBO software and algorithms should
adopt this taxonomy for two important reasons. The first is unification, so
that researchers in the field use the same terms and practitioners and al-
gorithm developers share the same language. The second reason is that the
taxonomy is a tool to better identify constraint types and thereby achieve effec-
tive algorithmic treatment of more general types of constrained optimization
problems.

Future work is related to extending the existing taxonomy. It is possible
to refine the tree in Figure 1 by adding subcases to the leaves, depending on
the specific context. These extensions within KARQ could encompass various
constraint types, including stochastic, convex, linear, and smooth constraints
that have available derivatives. Additionally, options for equality, inequality,
or set membership constraints could be explored. For instance, while treating
an equality N*SK constraint might be challenging (or even impossible), han-
dling an equality Q*AK constraint could be more feasible. At a different level,
we consider the addition of three branches from each Q node: quantifiable fea-
sibility only, quantifiable violation only, and fully quantifiable. There is also
a limit to being unrelaxable: So far we say that a constraint is unrelaxable if
it is unrelaxable at some point, and we may want to specify such limits when
they are known. Finally, some of the terms of the developed taxonomy could
be extended to the objective function.
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