
On the steepest descent algorithm for quadratic functions

Clóvis C. Gonzaga∗ Ruana M. Schneider†

July 9, 2015

Abstract

The steepest descent algorithm with exact line searches (Cauchy algorithm) is inefficient,
generating oscillating step lengths and a sequence of points converging to the span of the eigen-
vectors associated with the extreme eigenvalues. The performance becomes very good if a short
step is taken at every (say) 10 iterations. We show a new method for estimating short steps,
and propose a method alternating Cauchy and short steps. Finally, we use the roots of a certain
Chebyshev polynomial to further accelerate the method.

1 Introduction

We study the quadratic minimization problem

(Pz) minimize
z∈IRn

f̄ (z) = cT z +
1
2

zT Hz,

where c ∈ IRn and H ∈ IRn×n is symmetric with eigenvalues

0 < d1 < d2 < . . . < dn,

and condition number C = dn/d1. The problem has a unique solution z∗ ∈ IRn.
The steepest descent algorithm, also called gradient method, is a memoryless method defined

by
z0 ∈ IRn given, zk+1 = zk − λk∇ f (zk), λk > 0. (1)

The only distinction among different steepest descent algorithms is in the choice of the step
lengths λk.

For the analysis, the problem may be simplified by assuming that z∗ = 0, and so f (z) = zT Hz/2.
The matrix H may be diagonalized by setting z = Mx, where M has orthonormal eigenvectors of H
as columns. Then the function becomes

f (x) =
1
2

xT Dx, D = diag(d1, d2, . . . , dn), (2)

so that for z ∈ IRm, f̄ (z) = f (MT z). M defines a similarity transformation, and hence for z = Mx,

‖z‖ = ‖x‖ ,
∥∥∥∇ f̄ (z)

∥∥∥ = ‖∇ f (x)‖ , ∇ f̄ (z) = M∇ f (x),

using throughout the paper the 2-norm ‖z‖2 = zT z.

2Department of Mathematics, Federal University of Santa Catarina, Florianópolis, SC, Brazil; e-mail :
ccgonzaga1@gmail.com. The author was partially supported by CNPq under grant 308413/2009-1.

2Department of Mathematics, Federal University of Santa Catarina, Florianópolis, SC, Brazil; e-mail:
ruanamaira@gmail.com.

1

2

We define the diagonalized problem

(P) minimize
x∈IRn

f (x) =
1
2

xT Dx.

The steepest descent iterations with step lengths λk for minimizing respectively f (·) from the
initial point x0 = MT z0, and f̄ (·) from the initial point z0, are related by zk = Mxk. Thus, we may
restrict our study to the diagonalized problem.

The steepest descent method, was devised by Augustine Cauchy [?] in 1847. He studied the
quadratic minimization problem, using in each iteration the “Cauchy step”

λk = argmin
λ≥0

f (xk − λ∇ f (xk)). (3)

The steepest descent method with Cauchy steps will be called Cauchy algorithm. Steepest descent
is the most basic algorithm for the unconstrained minimization of continuously differentiable func-
tions, with step lengths computed by a multitude of line search schemes.

The quadratic problem is the simplest non-trivial non-linear programming problem. Being able
to solve it is a pre-requisite for any method for more general problems, and this is the first reason
for the great effort dedicated to its solution. A second reason is that the optimal solution of (Pz) is
the solution of the linear system Hz = −c.

It was soon noticed that the Cauchy algorithm generates inefficient zig-zagging sequences. This
phenomenon was established by Akaike [?] in 1959, and further developed by Forsythe [?]. A clear
explanation of its consequences is found in Nocedal, Sartenaer and Zhu [?]. For some time the
steepest descent method was displaced by methods using second order information.

In the last years gradient methods returned to the scene due to the need to tackle large scale prob-
lems, with millions of variables, and due to novel methods for computing the step lengths. Barzilai
and Borwein [?] proposed a new step length computation with surprisingly good properties, which
was further extended to non-quadratic problems by Raydan [?], and studied by Dai [?], Raydan and
Svaiter [?], Birgin, Martı́nez and Raydan [?], among others. In another line of research, several
methods were developed to enhance the Cauchy algorithm by breaking its zig-zagging pattern. For
the latest developments of this subject, see Asmundis et al. [?, ?].

This paper has two goals. In section 2 we write complete proofs for the main properties of the
Cauchy algorithm, including the classical results by Akaike, hopefully simplifying the treatment. In
section 3 we develop new ways of breaking the oscillatory behavior of the algorithm and compare
several enhancements.

We do not attempt to generalize these procedures to non-quadratic or to constrained problems.

2 The Cauchy algorithm

In this section we intend to state and prove the main asymptotic properties of the Cauchy algorithm.
These properties will be summarized in Theorem ?? below, and then the whole section is dedicated
to prove it and describe some other properties of the sequences generated by the algorithm. The
reader may well accept the theorem without going through the proofs, and proceed to the next
section. The reason for proving these results, which are not original, is that the original Akaike and
Forsythe papers, not being aimed exclusively at these results, are frequently not considered easy to
read. We also prove simplified versions of results in [?, ?, ?], with a unified notation.

Given a point x ∈ IRn, with g = ∇ f (x), the Cauchy step from x defined as

x+ = (I − λD)x, g+ = (I − λD)g.

where

λ = argmin
σ≥0

f (x − σg) =
gT g

gT Dg
.

3

If follows from the definition of λ that gT g+ = 0.
We shall frequently use the value µ = 1/λ = (gT Dg)/ ‖g‖2. The following sequences will

be associated with an application of the steepest descent algorithm from an initial point x0 with
g0 = ∇ f (x0):
(xk): iterates: xk+1 = (I − λkD)xk.
(gk): gradients: gk+1 = (I − λkD)gk.
(λk): Cauchy step length from xk.
(µk): µk = 1/λk.
(yk): normalized gradients yk = gk/

∥∥∥gk
∥∥∥.

Assumption: We assume that g0 has no zero components. This is done because if a component is
null, then it will remain null forever.

It is well known that xk → 0 and gk → 0. The main goal of this section is the study of
the asymptotic properties of the sequence of normalized gradients yk, following Akaike [?] and
Forsythe [?].

2.1 The main theorem

The theorem below summarizes some of the main results of the cited references. It is stated, com-
mented, and then proved in the following section.

Theorem 1. Consider the sequences with elements xk, gk, yk ∈ IRn, λk and µk = 1/λk generated by
the Cauchy algorithm from an initial point x0 ∈ IRn, assuming that n > 1 and x0

1, x
0
n , 0. Then there

exist µ, µ′ ∈ (d1, dn), r, r′ ∈ IRn and α ∈ (0, 1) such that
(i) µ2k → µ, µ2k+1 → µ′, with µ + µ′ = d1 + dn.
(ii) yk

i → 0 for i = 2, 3, . . . , n − 1.
(iii) y2k → r, y2k+1 → r′, with r, r′ ∈ L(e1, en), where L(e1, en) denotes the subspace generated by
e1 and en.

(iv) lim
k→∞

∣∣∣∣∣∣∣g
k+2
i

gk
i

∣∣∣∣∣∣∣ ≤ 1 for all i = 1, . . . , n such that gk
i , 0 for k ∈ IN.

(v) lim
k→∞

gk+2
i

gk
i

= lim
k→∞

‖gk+2‖

‖gk‖
= α for i = 1 and i = n, with

α ≥ 1 − 2
d1dn

d̃2 − δ2
,

where d̃ = (d1 + dn)/2 and δ = min{|di − d̃| | i = 1, . . . , n}.
(vi) The limiting values for µ, µ′ are bounded by

µmin = d̃ −
√

(d̃2 + δ2)/2 ≤ µ, µ′ ≤ d̃ +

√
(d̃2 + δ2)/2 = µmax.

(vii) For large k, |gk
n| oscillates around the values of |gk

1|, with∣∣∣∣∣r1

rn

∣∣∣∣∣ =

∣∣∣∣∣∣r′nr′1

∣∣∣∣∣∣ =
µ − d1

µ′ − d1
.

One of the scopes of this paper is to present a complete proof of this theorem. The proof will
be postponed to the next section, after a qualitative analysis of the asymptotic properties of the
algorithm.

For this discussion, assume that the condition number C is large, say, C >> 10, and that the
space dimension is n > 2, possibly large. The variables will be loosely classified as light, medium
and heavy, associated respectively with small, medium and large eigenvalues.

4

In a typical step, g+
i = (1 − λdi)gi, λ = 1/µ. Let us comment on step sizes

Short steps: safe and frequent. We call ’short’ a step with µ ≥ dn/2. Short steps are:

• Harmless: all |gi| decrease.

• Efficient for heavy variables.

• Inefficient for light variables: if λ << 1/di, then |g+
i |/|gi| = |1 − λdi| is near 1.

We conclude that short steps reduce heavy variables, with little effect on light variables. About one
half of the steps will be short.
Large steps: dangerous but needed. We call ’large’ a step with µ < dn/2. Large steps are:

• Dangerous: the heavy variables (|gn|) increase.

• Reasonably efficient for light variables. Very light variables (di near d1) can only be reduced
by very large steps. For example, if d1 = 0.001, dn = 1, a step λ = 500 >> 2/dn produces
g+

1 = g1/2 and g+
n = −499g1.

We conclude that only very large steps are efficient for reducing |g1|, and they increase very much
the heavy variables. “Medium” steps are also inefficient for the light variables.
Cauchy steps: safe and essential. Cauchy steps satisfy µ ∈ (d1, dn), and hence with g+

i = (1 −
di/µ)gi, g1 always decreases in absolute value, keeping the sign unchanged; gn changes sign at all
iterations, and increases in absolute value if the step is large.

The Cauchy algorithm generates a sequence of steps λk = 1/µk that oscillate, with (µk, µk+1)
converging to the two limit points µ, µ′, with µ + µ′ = d1 + dn. Then (say) µ < (d1 + dn)/2 and
µ′ > (d1 + dn)/2 > dn/2. So, for large k, the steps alternate between short and large,

Cauchy steps are in general “medium short”, i.e., they are not very large.
The sequence of normalized gradients (yk) zig-zags, so that the pairs of consecutive iterations

(y2k, y2k+1) converge to a pair of vectors (r, r′) inL(e1, en). In the original space, this is the subspace
generated by the eigenvectors associated with the two extreme eigenvalues d1, dn. The step lengths
also zig-zags, so that (λ2k, λ2k+1) → (λ, λ′), or equivalently (µ2k, µ2k+1) → (µ, µ′), with µ + µ′ =

d1 + dn.
For large k, the absolute values of all gradient components must decrease in each pair of iter-

ations. In fact, gk
1 never changes sign and decreases in absolute value in all iterations; gk

n changes
size in all iterations, while |gk

n| oscillates around |gk
1| for large k.

Let us follow the iterates of the Cauchy algorithm for an example with 50 variables, with eigen-
values 0.01 ≤ di ≤ 1, x0

i = 1/
√

di.
Here are some numerical values for this example:

µmin = 0.148, µ = 0.467, µ′ = 0.543, µmax = 0.862.

α = 0.922, |rn/r1| = 0.926, |r′n/r
′
1| = 1.080.

The value α in item (v) deserves some attention: if C is large and δ is small (there exists an eigen-
value near d̃), then α > 1− 8d1 = 1− 8/C, very near the worst case convergence rate known for the
Cauchy algorithm, given by ((C − 1)/(C + 1))2 ≈ 1 − 4/C, counting pairs of iterations.

The figures show the values of |gi|, with the eigenvalues in the horizontal axis. Each figure
shows three iterates gk, gk+1, gk+2, with vertical lines at the points µk, µk+1 for k = 0, k = 5 and
k = 12. One sees that the gradient components associated with eigenvalues near µk are substantially
reduced in the iteration k. The last figure reproduces the third one using a logarithmic scale in the
horizontal axis.

In the beginning iterations the heavy variables are reduced (in absolute value), and soon the
oscillatory pattern is achieved. The values of µk, µk+1 converge to the values µ, µ′ as in the theorem,

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

eigenvalues

|g
|

Iterations 0,1,2

k−1

k

k+1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

eigenvalues

|g
|

Iterations 5,6,7

k−1

k

k+1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

eigenvalues

|g
|

Iterations 12,13,14

k−1

k

k+1

10
−2

10
−1

10
0

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

eigenvalues

|g
|

Iterations 12,13,14

k−1

k

k+1

Figure 1: Absolute values of gradient components in consecutive iterations, showing the values of
µk = 1/λk.

the medium gradient components are reduced and |gn| oscillates around |g1|, being slowly reduced
at each pair of iterations. In the last figure we see that the algorithm affects the “medium heavy”
variables, with little effect of the light variables. Large steps (small values of µ) are needed to reduce
the very light components, and they never happen.

Fig. ?? plots the evolution of µk (left) and of |g1| and |gn|, showing the oscillatory behavior.
The step lengths stabilize very fast. As |g0

n| >> |g
0
1|, |gn| decreases (in an oscillatory fashion) in the

beginning iterations to match |g1|.

0 5 10 15 20 25 30 35 40 45
1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

Step sizes

k

s
te

p
 l
e

n
g

th

0 5 10 15 20 25 30 35 40 45
10

−2

10
−1

10
0

First and last components of |g|

k

|g
i|

Figure 2: Behavior of λk and of
∣∣∣gk

1

∣∣∣ , ∣∣∣gk
n

∣∣∣. λk oscillates,
∣∣∣gk

1

∣∣∣ decreases and
∣∣∣gk

n

∣∣∣ oscillates.

6

2.2 The Akaike-Forsythe results: proof of the main theorem

The results in this subsection are a simplified version of those in Forsythe [?], reduced to the case
studied in this paper. We follow his proofs almost step by step, hopefully simplifying the treatment.

The study is simplified by the introduction of the following sequence:
(wk): defined by w0 = g0, wk+1 = (µkI − D)wk.

It is easy to see that wk = gk ∏k−1
i=0 µk. The sequence (wk) does not seem to have much interest

in itself, but as we shall see it is very handy for the study of each iteration of the algorithm. Note
that the normalized gradients satisfy yk = gk/

∥∥∥gk
∥∥∥ = wk/

∥∥∥wk
∥∥∥.

Notation. We are mostly interested in the sequence of gradient vectors. When studying an iteration,
we use the following maps, defined for a vector g ∈ IRn, g , 0:

µ(g) =
gT Dg
gT g

∈ [d1, dn], g+(g) = (I −
1
µ(g)

D)g, y+(g) =
g+(g)
‖g+(g)‖

. (4)

Whenever no confusion is possible, we omit the argument. If g+ , 0, we also define µ+ = µ(g+) and
g++. The fact that µ ∈ [d1, dn] is a standard result in linear algebra. If g has at least two non-zero
components, then µ(g) ∈ (d1, dn).

When dealing with the sequence (wk), we use the following notation:

w′ = (µI − D)w, w′′ = (µ+I − D)w′, (5)

when w′ , 0. Note that µ(gk) = µ(wk) = µ(yk).
By construction of the Cauchy steps, gT g+ = wT w′ = yT y+ = 0.
Let us begin by isolating a special case (and later prove that it never happens):

Lemma 1. Suppose that w̄ = αep for some p ∈ {1, 2, . . . , n}, α , 0. Then

µ(w̄) = dp, w̄′ = 0, lim
w→w̄

w′(w)
‖w‖

= 0.

Proof. Clearly, µ(w̄) = eT
p Dep = dp, and then w̄′ = α(dpI − D)ep = 0, because Dep = dpep. The

last result follows from the continuity of µ(·) (and hence of w′(·)) at w̄ , 0. �

Lemma 2. Let p < q be the first and last non-zero components of a vector w ∈ IRn. Then µ(w) ∈
(dp, dq) and w′p , 0, w′q , 0. For the Cauchy algorithm, if g0

1 , 0 and g0
n , 0, then the same is true

for all wk and gk.

Proof. The result follows from (??) and the lemma above: µ(w) = dp (or µ(w) = dq) can only
occur if w1 (or wn) is its only non-zero component. The result on the sequence (gk) follows by
induction. �

From the lemmas above we see that the behavior of the Cauchy algorithm is anomalous at points
g on the coordinate axes. Let us call such vectors “scalar”, and eliminate them by defining the sets

Ω = {g ∈ IRn | g is not scalar}, Z = {y ∈ Ω | ‖y‖ = 1}.

Continuous maps: now all the maps defined above (µ, µ+, g+, g++, . . .) are continuous on Ω.
We use the simplified notation µ = µ(w), We assume that the Cauchy algorithm is applied

to the problem (P) from a point g0 ∈ Ω with no null component.

Theorem 2. Let (wk) be generated by the Cauchy algorithm. Then for k = 0, 1, . . .,

‖wk+1‖

‖wk‖
= cosψk

‖wk+2‖

‖wk+1‖
≤
‖wk+2‖

‖wk+1‖
,

where ψk is the angle between wk and wk+2.

7

Proof. Using our simplified notation for w = wk, we first prove that ‖w+‖2 = wT w++ : We have

wT w++ = wT (µI − D)(µ+I − D)w

‖w+‖2 = wT (µI − D)(µI − D)w.

Subtracting, we obtain

wT w++ − ‖w+‖2 = wT (µI − D)(µ+ − µ)w = (µ+ − µ)wT w+ = 0.

Now, using this and Cauchy-Schwartz,

wT w++ = ‖w‖‖w++‖ cos(ψ) = ‖w+‖2.

which divided by ‖w‖‖w+‖ gives the desired result, completing the proof. �

Theorem 3. Let (wk) be generated by the Cauchy algorithm from g0 ∈ Ω, and let ψk be the angle
between wk and wk+2. Then:
(i) The the sequence (φk), with φk = ‖wk+1‖/‖wk‖ increases towards a limit L > 0.
(ii) limk→∞ ψk = 0 and limk→∞

∥∥∥yk − yk+2
∥∥∥ = 0.

(iii) All limit points of (yk) are in Z.

Proof. (i) The sequence increases as a consequence of Theorem ??. Let us show that it is bounded:
given k ∈ IN, wk+1 = (µkI − D)wk, and then

‖wk+1‖ ≤ ‖µkI − D‖‖wk‖.

We know that µk ∈ (d1, dn), and hence

‖µkI − D‖ ≤ max{|µk − di| | i = 1, 2, . . . , n} ≤ dn − d1, φk =

∥∥∥wk+1
∥∥∥∥∥∥wk

∥∥∥ ≤ dn − d1.

Thus the sequence is increasing and bounded, implying that it converges to some value L.
(ii) From Theorem ??, φk = cos(ψk)φk+1, and taking limits,

cos(ψk) =
φk

φk+1
→ 1,

showing that ψk → 0. As ‖yk‖ = ‖yk+2‖ = 1 and ψk is the angle between these vectors, (ii) holds.

(iii) Assume that yk K→ r, with K ⊂ IN. If r < Z, then necessarily r = ±ep for some p = 1, . . . , n.
Then, by Lemma ??,

lim
yk→r

w′(yk)
‖yk‖

= 0.

This contradicts (i), because
‖wk+1‖

‖wk‖
=
‖w′(yk)‖
‖yk‖

,

which converges to L > 0, completing the proof. �

Summing up, the algorithm generates a sequence (yk) with yk =
gk

‖gk‖
=

wk

‖wk‖
, whose limit

points are all in the set Z. Then all transformations like µ(y),w+(y), . . . are continuous at any limit
point r of (yk).

8

For instance, assuming that yk K
→ r, and defining r′ = w′(r) = (µ(r)I − D)r, r′′ = w′′(r) =

(µ+(r)I − D)r′, r+ = r′/ ‖r′‖, r++ = w′′/ ‖w′′‖, we deduce that yk+1 K→ r+ and yk+2 K→ r++ = r. This
last equality follows from Theorem ??. Also from this theorem, we see that r′′ = L2r.
Remarks. There should be no confusion: given r ∈ Z with unit norm, r′ = (µI − D)r has ‖r′‖ = L,
and r+ has unit norm. Also r++ = r.

The sequence (y2k) satisfies
∥∥∥yk+2 − yk

∥∥∥→ 0. It is then easy to prove that either it is convergent
or it has no isolated limit point (actually, the set of limit points is a continuum).

Theorem 4. Let (yk) be the sequence of normalized gradients generated by the Cauchy algorithm
from y0 = g0/‖g0‖. Then (y2k) converges to a non-scalar point r ∈ L(e1, en), the linear space
generated by the basis vectors e1 and en.

Proof. We already know that any limit point of (yk) is non-scalar. Let r be a limit point of (y2k).
The proof will be done in three steps.
(i) There exist two indices p < q such that r, r+ ∈ L(ep, eq).

Let r be a limit point of (yk), and define the vectors r′, r′′ as above. We have

r′′i = (µ − di)(µ+ − di)ri = L2ri, i = 1, . . . , n,

where µ, µ+ are fixed. For each i, either ri = 0 or (µ − di)(µ+ − di) = L2. This is a second degree
equation, which will have two real solutions, say, di = dp and di = dq, because Theorem ??(iii)
prevents a single solution.
If r ∈ L(ep, eq), then trivially r′ = (µI − D)r ∈ L(ep, eq).
(ii) r is the unique limit of (y2k).
Assume by contradiction that r is not a unique limit point, and hence a non-isolated limit point of
(y2k). Then there exist an infinite number of limit points r̃ satisfying ‖r̃ − r‖ < min{|rp|, |rq|}. All
such points must belong to L(ep, eq), for the following reason: any limit point r̃ must belong to
some space L(es, et), where s, t are indices. If {s, t} , {p, q}, then either r̃p = 0 or r̃q = 0, and then
‖r̃ − r‖ ≥ min |rp|, |rq|.

Let us examine a point r ∈ L(ep, eq). We have

µ = r2
pdp + r2

qdq,

and immediately,
µ − dp = r2

q(dp − dq), µ − dq = r2
p(dq − dp).

We also know that ‖r′‖ = L, where

r′p = (µ − dp)rp, r′q = (µ − dq)rq.

So,

L = (r′p)2 + (r′q)2 = (dq − dp)2(r4
qr2

p + r4
pr2

q)

= (dq − dp)2r2
pr2

q(r2
q + r2

p)

= (dq − dp)2r2
pr2

q.

Hence, we have the equations

r2
pr2

q = L/(dq − dp)2

r2
p + r2

q = 1,

a system with a finite number of isolated solutions, establishing a contradiction and proving (ii).
(iii) r ∈ L(e1, en).

9

Let us prove that q = n. The proof that p = 1 is similar. Assume by contradiction that q < n. We
know that both r and r+ belong to L(ep, eq), and by Lemma ??, µ(r) < dq < dn and µ(r+) < dq.
Since r, r+ are the unique limit points of the sequence (yk), for k sufficiently large, say, k ≥ k̄,
µ(yk) < dq. For such k, ∣∣∣gk+1

q

∣∣∣∣∣∣gk
q

∣∣∣ = |µ(yk) − dq| < |µ(yk) − dq| =

∣∣∣gk+1
n

∣∣∣∣∣∣gk
n

∣∣∣ .
Hence for all k > k̄ ∣∣∣gk

q

∣∣∣∣∣∣∣gk̄
q

∣∣∣∣ <
∣∣∣gk

n

∣∣∣∣∣∣∣gk̄
n

∣∣∣∣ ,
contradicting the fact that yk

n → 0 and yq → rq , 0. �

2.3 Properties of the limiting points

Now we know that the study of asymptotic properties of the sequences generated by the Cauchy
algorithm may be reduced to the study of the limit points. This leads to simple results that reproduce
properties described by Nocedal, Sartenaer and Zhu [?] and by De Asmundis et al [?, ?].

Consider an application of the Cauchy algorithm as above, starting from x0 with no null compo-
nent, and define r = limk→∞ y2k, with yk = gk/

∥∥∥gk
∥∥∥. We know that the only non-zero components

of r are r1 and rn. From the analysis above, we know that

‖r‖ = 1 (6)

µ = d1r2
1 + dnr2

n, λ = 1/µ (7)

r′ = (µI − D)r,
∥∥∥r′

∥∥∥ = L (8)

µ′ = (r′)T Dr/
∥∥∥r′

∥∥∥2
, λ′ = 1/µ′ (9)

r′′ = (µ′I − D)r′ = L2r,
∥∥∥r′′

∥∥∥ = L2. (10)

Lemma 3. µ + µ′ = d1 + dn.

Proof. As r′′ = (µI − D)(µ′I − D)r = L2r,

L2 = (µ − d1)(µ′ − d1) = (µ − dn)(µ′ − dn).

Then

−d1(µ + µ′) + d2
1 = −dn(µ + µ′) + d2

n

(dn − d1)(µ + µ′) = d2
n − d2

1.

The result follows by dividing by (dn − d1), completing the proof. �

This completes the proofs of the items (i)-(iii) of Theorem ??. Let us prove the remaining items,
studying a double iteration for large k:

lim
k→∞

gk+2
i

gk
i

= (1 −
di

µ
)(1 −

di

µ′
) ≤ (1 −

dn

µ
)(1 −

dn

µ′
), (11)

because di ≤ dn. As gk
i → 0, we must have

lim
k→∞

∣∣∣∣∣∣∣g
k+2
i

gk
i

∣∣∣∣∣∣∣ ≤ 1,

10

proving (iv). In view of the inequality above, this is reduced to

(1 −
di

µ
)(1 −

di

µ′
) > −1, i = 1, . . . , n. (12)

Developing (??), we obtain immediately

µµ′ ≥
(µ + µ′)di − d2

i

2
=

(d1 + dn)di − d2
i

2
, µ + µ′ = d1 + dn. (13)

Let us define d̃ = (d1 + dn)/2, δi = d̃ − di, i = 1, . . . , n and δ = argmin{|δi| | i = 1, . . . , n}.
It is straightforward to check that the numerator of (??) satisfies

(d1 + dn)di − d2
i = d̃2 − δ2

i ,

and hence we know that µ, µ′ must satisfy

µµ′ ≥
d̃2 − δ2

i

2
, µ + µ′ = 2d̃, i = 1, . . . , n,

which is equivalent to

µµ′ ≥
d̃2 − δ2

2
, µ + µ′ = 2d̃. (14)

The components |g1|, |gn| are reduced by α = (1 − dn/µ)(1 − dn/µ
′). Developing this expression

and substituting µ + µ′ = d1 + dn we obtain

α = 1 −
d1dn

µµ′
. (15)

From (??) and this expression we conclude that,

α ≥ 1 − 2
d1dn

d̃2 − δ2
, (16)

proving item (v) of Theorem ??.
Bounds for the inverse steps µ, µ′ are obtained by solving the system (??), which reduces to a

simple second degree equation whose solution is

µ̄, µ̄′ = d̃ ±
√

(d̃2 + δ2)/2, (17)

and thus µ̄ ≤ µ, µ′ ≤ µ̄′, proving the item (vi).
The last item of the main theorem is proved in the following lemma:

Lemma 4. There exists c > 0 such that

c =

∣∣∣∣∣rn

r1

∣∣∣∣∣ =

∣∣∣∣∣∣r′1r′n

∣∣∣∣∣∣ =

√
µ − d1

µ′ − d1
, with

rn

r1
= −

r′1
r′n
.

Proof. By construction of the Cauchy step, r ⊥ r′, i.e., r1r′1 + rnr′n = 0. The first equalities follow
by dividing this by r1rn.

Using this result, consider r+ = (I − D/µ). We have

r+
n = (1 − dn/µ)rn, r+

1 = (1 − d1µ)r1,

and so
r+

n

r+
1

=
(1 − dn/µ)
(1 − d1/µ)

rn

r1
=
µ − dn

µ − d1

rn

r1
= −

r1

rn
.

11

From this last equality, it follows that

c2 =
r2

n

r2
1

= −
µ − d1

µ − dn
=
µ − d1

µ′ − d1
,

using the fact that µ + µ′ = d1 + dn, completing the proof. �

Some interesting relations proved in [?] are now straightforward: from |rn| = c|r1| and r2
1+r2

n = 1
and then r2

1 + c2r2
1 = 1 we obtain:

r2
1 =

1
1 + c2 , r2

n =
c2

1 + c2 , (18)

µ =
d1 + c2dn

1 + c2 = d1
1 + c2C
1 + c2 , (19)

µ′ =
c2d1 + dn

1 + c2 = d1
c2 + C
1 + c2 . (20)

Let us now relate the constants L and c. We have

L2 = (µ − d1)(µ′ − d1),

µ − d1 = d1
1 + c2C
1 + c2 − d1 = d1

c2(C − 1)
1 + c2

µ′ − d1 = d1
c2 + C
1 + c2 − d1 = d1

C − 1
1 + c2 .

Simplifying these expressions and using Lemma ?? we obtain

L2 =
c2(dn − d1)2

(1 + c2)2 = µµ′ − d1dn. (21)

3 Breaking the cycle

The Cauchy algorithm reduces the medium variables and acts very slowly on the light and heavy
variables. The cycle may be broken by enforcing either a very short (µ near dn) or a very large (µ
near d1) step. It is difficult to estimate the value d1, and a very large step will cause a great increase
in the heavy variables (in absolute values), and will possibly increase the function value. A very
large step should only be allowed if it is obtained by a Cauchy iterate, which always reduces the
function value.

A very short step is harmless, and reduces the heavy variables. If the medium variables are
already small, the function will then be dominated by the light variables, and the next Cauchy step
will be large, breaking the cycle.

This is done by Asmundis et al. [?]: if µk, µk+1 are near µ, µ′, then µk + µk+1 ≈ d1 + dn, and
then the step 1/(µk + µk+1) will be short. They check the evolution of µk and decide to periodically
estimate and apply short steps by this method. Their algorithm was named “steepest descent with
alignment” (SDA).

We shall follow their approach, but with a different way of estimating short steps: all steps will
be Cauchy steps taken at some point, making sure that in all iterations satisfy µk ∈ (d1, dn).

In the algorithms below we call λ−gradient step a steepest descent step with step length λ. The
algorithm below is the Cauchy algorithm modified by periodically applying short steps.
Stopping rule. Each step must be followed by the statement k = k + 1 and by testing a stopping
rule. The usual test is

∥∥∥gk
∥∥∥ ≤ ε, for a given ε > 0. In our examples with diagonal Hessian matrices

we test the function values, because the optimal value is zero.

12

Algorithm 1. Cauchy-short Algorithm

Data: x0 ∈ IRn, KI ,KC ,Ks ∈ IN (respectively 10, 6, 2 in our choice), k = 0.
Take KI Cauchy steps.
repeat

Compute an estimated short step λs.
Take Ks λs−gradient steps.
Take KC Cauchy steps.

Remark. The choice of KI ,KC ,Ks is somewhat arbitrary, but we noticed in many tests that the
oscillatory pattern is achieved in about 10 Cauchy iterations initially, and in about 6 Cauchy itera-
tions after each set of short steps. Two consecutive short steps are sufficient to cause a substantial
reduction in the large variables. See Fig. ?? for an example. Note that even if the estimated short
step is not very near 1/dn, the short steps are harmless.

Estimating a short step: a “mock” large step. We intend to state an algorithm in which all
iterations take Cauchy steps, and so all steps will satisfy d1 < µk < dn. As the cycle pattern is
established, an artificially very large step will cause a great increase in the heavy variables, and
consequently the next Cauchy step will be short. The very large step will be computed but not
applied. Let S be a very large step length (S >> 1/d1). At an iteration k we compute the following
short step:

g̃ = (I − S D)gk (22)

λs =
g̃T g̃

g̃T Dg̃
. (23)

The reason why this will be a short step is the following: for a large value of S ,

g̃i = (1 − S di)gk
i ≈ −S digi, i = 1, . . . , n.

Hence the following Cauchy step will satisfy

λs =
g̃T g̃

g̃T Dg̃
=

∑n−1
i=1 g2

1d2
i + g2

nd2
n∑n−1

i=1 g2
1d3

i + g2
nd3

n

If the medium components are small, then for i = 1, . . . , n−1, |gidi| << |gndn|, and then λs ≈ 1/dn. A
safeguard may be used to enforce short steps, by setting λs = min{λs, λk−1, λk−2}, as min{λk−1, λk−2}

should be a short step.
Fig.?? shows iterates before and after the short steps for our example. Fig. ?? shows the behav-

ior of the step lengths for the Cauchy-short algorithm: the cyclic pattern is broken by periodically
forcing a short step, which is naturally followed by a large Cauchy step.

Alternating Cauchy and short steps. It is known that about one half of the steps will be short.
The algorithm below uses the computation of short steps as above, but applies them after all Cauchy
steps:

Algorithm 2. Alternated Cauchy-short steps.

Data: x0 ∈ IRn, KI ,KC ,Ks (respectively 10, 6, 2 in our choice), k = 0.
Take KI Cauchy steps.
repeat

Compute an estimated short step λs.
Take Ks λs−gradient steps.
Take KC iterations composed of a Cauchy step followed by one λs−gradient step.

13

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

eigenvalues

|g
|

Short step, followed by a large step

k−1

k

k+1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

eigenvalues

|g
|

Following iteration

k−1

k

k+1

Figure 3: Before and after 2 short steps in CS algorithm.

0 50 100 150 200 250
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

First and last components of |g|

k

|g
i|

0 10 20 30 40 50 60 70
10

0

10
1

10
2

10
3

Step sizes

k

s
te

p
 l
e
n
g
th

Figure 4: Behavior of λk and of
∣∣∣gk

1

∣∣∣ , ∣∣∣gk
n

∣∣∣ in an application of the CS algorithm.

The algorithm has a stronger effect on the very heavy variables. Consequently the Cauchy and
eventually the short steps increase. Fig.?? shows the behavior of the function values on an example
with C = 1000 and n = 1000, eigenvalues uniformly distributed between 0.001 and 1, x0

i = 1/
√

di.
The figure shows the evolution of the Barzilai-Borwein (BB), the Cauchy-short (CS), the steepest
descent with alignment (SDA), and the Alternated Cauchy-short (ACS) algorithms. It also shows
the effect of using Chebyshev roots to correct the step lengths, as described below.

Using Chebyshev roots. The paper [?] has the following result: if bounds l ≤ d1 and u ≥ dn are
known, then the stopping condition |xk

i | ≤ ε|x
0
i | for i = 1, . . . , n is achieved by the following steepest

descent scheme:
For k = 0 to K − 1, gk+1 = (I − ΛkD)gk,

where, using C = u/l,

K = K(C) =


cosh−1

(
2
ε

)
cosh−1

(
1 +

2
C − 1

)

≈


√

C
2

log
(
2
ε

) ,
and the set of step lengths is

Λ = {1/µk | k = 0, . . . ,K − 1}, µk =
u − l

2
cos

(
1 + 2k

2K
π

)
+

u + l
2

, (24)

14

Iteration

0 50 100 150 200 250 300 350

f(
x
)

10-8

10-6

10-4

10-2

100

102

104
Convergence history

BB

CS

ACS

CS using Chebyshev roots (adaptative)

SDA

Figure 5: Function values for the BB, CS, ACS, SDA and CS with steps corrected to Chebyshev
roots using adaptive bounds for the eigenvalues.

taken in any order. If the bounds l and u are exact, this number of iterations coincides almost
exactly with the worst case performance of the Krylov space method, the best possible.

This means that if good bounds for the eigenvalues are known, then the number of iterations of
any gradient algorithm may be limited to K(C) if the step lengths are corrected to match elements
of Λ. This is the resulting scheme:
Let C = u/l, compute K(C) and the set Λ by (??).
Take any steepest descent method, and execute the following command after the computation of
each step length λk;
Set λk = argmin{|ν − λk | ν ∈ Λ}.
Remove the element λk from the set Λ.

Adaptive scheme. This scheme depends on reliable lower and upper bounds l and u for the
eigenvalues. When they are not available, we construct them by adding the following procedure to
Algorithms ?? and ??:
Initialization: choose an integer k0 > Ki + Ks, take the first k0 iterations of the algorithm and set
u = 1.2 maxk=0,...,k0−1 1/λk, l = 0.25 mink=0,...,k0−1 1/λk, C = u/l, and compute Λ by (??).
Adaptation: at all steps with k > k0, perform the following adaptation of the set Λ:
if u < 1/λk, set u = 1.2 u, C=u/l and reset Λ by (??).
if l > 1/λk, set l = l/4, C=u/l and reset Λ by (??).

The initial value of u will hopefully satisfy u > dn, because the short step computation is
efficient, both using our algorithms and ASD (with k0 properly chosen). The lower bound will
probably be updated, and each time l changes the size of Λ doubles.

We applied this scheme to our test problems, using the Cauchy-short algorithm. The result is
shown in Fig. ??. This scheme is only applicable to quadratic functions, but it reduces all variables
to |gK

i | ≤ ε|g0
i |, which may be important in the solution of linear systems of equations and least

squares problems.
Performance profile. Finally, Fig. ?? is a performance profile, computed as described in

[?], using 120 quadratic problems with 1000 variables, three values of the condition number C =

1000, 10000, 100000, and each problem with a different randomly generated initial point. The
eigenvalues are randomly generated with four different distributions, exemplified by Fig. ??.

It shows that all new schemes are efficient, and seem to be superior to the Barzilai-Borwein
method, with the advantage of generating monotonically decreasing function values.

15

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Uniform dist.

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Logarithmic dist.

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Sinusoidal dist.

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

2 Blocks dist.

Figure 6: Eigenvalue distributions: a point (k, s) means that dk = sdn.

1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Barzilai-Borwein

CS

ACS

CS using Chebyshev roots and adaptative C

SDA

Figure 7: Performance profile for the algorithms Barzilai-Borwein, Algorithm (??) (CS), Algo-
rithm (??) (ACS), steepest descent with alignment (SDA) and CS with adaptive computation of
Chebyshev steps.

Conclusion. We believe that a good understanding of algorithms for quadratic problems is
fundamental for the design of methods for more general problems. The steepest descent method,
mainly using approximated Cauchy steps, is the most well known of all methods. Its poor per-
formance, which contradicts the simple intuition of greedily computing the maximum function
reduction at each iteration, has always been frustrating. It was explained by Akaike, and only re-
cently a simple cure has been found: just take a short step once in a while. In this paper we hope to
have summarized the classical proofs of this behavior, and proposed new procedures for quadratic
problems. We did not, for the time being, try to apply similar schemes to non-quadratic functions,
but we hope that these ideas may lead to general methods without the need of strategies for dealing
with non-monotonicity.

16

References

[1] H. Akaike. On a successive transformation of probability distribution and its application to
the analysis of the optimum gradient method. Ann. Inst. Statist. Math. Tokyo, 11:1–17, 1959.

[2] J. Barzilai and J. M. Borwein. Two-point step size gradient methods. IMA J. Numer. Anal.,
8:141–148, 1988.

[3] E. G. Birgin, J. M. Martı́nez, and M. Raydan. Spectral Projected Gradient Methods. In
C. A. Floudas and P. M. Pardalos, editors, Encyclopedia of Optimization, pages 3652–3659.
Springer, 2009.

[4] A. Cauchy. Méthode générale pour la résolution des systèmes d’équations simultanées. Comp.
Rend. Acad. Sci. Paris, 25:536–538, 1847.

[5] Y. H. Dai. Alternate step gradient method. Optimization, 52(4-5):395–415, 2003.

[6] R. de Asmundis, D. di Serafino, W. Hager, G. Toraldo, and H. Zhang. An efficient gradient
method using the Yuan steplength. Technical report, Sapienza University of Rome, Italy,
2014.

[7] R. de Asmundis, D. di Serafino, R. Riccio, and G. Toraldo. On spectral properties of steepest
descent mehtods. IMA J. Numer. Anal., 33:1416–1435, 2013.

[8] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance profiles.
Mathematical Programming, 91(2):201–213, 2002.

[9] G. E. Forsythe. On the asymptotic directions of the s-dimensional optimum gradient method.
Numerische Mathematik, 11:57–76, 1968.

[10] C. C. Gonzaga. Optimal performance of the steepest descent algorithm for quadratic functions.
Technical report, Federal University of Santa Catarina, Florianopolis, Brazil, 2014.

[11] J. Nocedal, A. Sartenaer, and C. Zhu. On the behavior of the gradient norm in the steepest
descent method. Computational Optimization and Applications, 22:5–35, 2002.

[12] M. Raydan. The Barzilai and Borwein gradient method for large scale unconstrained mini-
mization problem. SIAM Journal on Optimization, 7:26–33, 1997.

[13] M. Raydan and B. Svaiter. Relaxed steepest descent and Cauchy-Barzilai-Borwein method.
Computatinal Optimization and Applications, 21:155–167, 2002.

