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Abstract In this paper, we consider a class of finite-sum convex optimization problems whose objective function

is given by the summation of m (≥ 1) smooth components together with some other relatively simple terms. We

first introduce a deterministic primal-dual gradient (PDG) method that can achieve the optimal black-box iteration

complexity for solving these composite optimization problems using a primal-dual termination criterion. Our major

contribution is to develop a randomized primal-dual gradient (RPDG) method, which needs to compute the gradient

of only one randomly selected smooth component at each iteration, but can possibly achieve better complexity than

PDG in terms of the total number of gradient evaluations. More specifically, we show that the total number of gradient

evaluations performed by RPDG can beO(
√
m) times smaller, both in expectation and with high probability, than those

performed by deterministic optimal first-order methods under favorable situations. We also show that the complexity

of the RPDG method is not improvable by developing a new lower complexity bound for a general class of randomized

methods for solving large-scale finite-sum convex optimization problems. Moreover, through the development of PDG

and RPDG, we introduce a novel game-theoretic interpretation for these optimal methods for convex optimization.

Keywords: convex programming, complexity, incremental gradient, primal-dual gradient method, Nesterov’s method,

data analysis
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1 Introduction

The basic problem of interest in this paper is the convex programming (CP) problem given by

Ψ∗ := min
x∈X

{
Ψ(x) :=

∑m
i=1fi(x) + h(x) + µω(x)

}
. (1.1)

Here, X ⊆ Rn is a closed convex set, h is a relatively simple convex function, fi : Rn → R, i = 1, . . . ,m, are smooth

convex functions with Lipschitz continuous gradient, i.e., ∃Li ≥ 0 such that

‖∇fi(x1)−∇fi(x2)‖∗ ≤ Li‖x1 − x2‖, ∀x1, x2 ∈ Rn, (1.2)

ω : X → R is a strongly convex function with modulus 1 w.r.t. an arbitrary norm ‖ · ‖, i.e.,

〈ω′(x1)− ω′(x2), x1 − x2〉 ≥ 1
2‖x1 − x2‖2, ∀x1, x2 ∈ X, (1.3)
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and µ ≥ 0 is a given constant. Hence, the objective function Ψ is strongly convex whenever µ > 0. For notational

convenience, we also denote f(x) ≡
∑m
i=1fi(x) and L ≡

∑m
i=1Li. It is easy to see that for some Lf ≥ 0,

‖∇f(x1)−∇f(x2)‖∗ ≤ Lf‖x1 − x2‖ ≤ L‖x1 − x2‖, ∀x1, x2 ∈ Rn. (1.4)

Throughout this paper, we assume subproblems of the form

argminx∈X〈g, x〉+ h(x) + µω(x) (1.5)

are easy to solve. CP given in the form of (1.1) has recently found a wide range of applications in machine learning,

statistics, and image processing, and hence becomes the subject of intensive studies during the past few years.

Stochastic (sub)gradient descent (SGD) (a.k.a. stochastic approximation (SA)) type methods have been proven

useful to solve problems given in the form of (1.1). SGD was originally designed to solve stochastic optimization

problems given by

min
x∈X

Eξ[F (x, ξ)], (1.6)

where ξ is a random variable with support Ξ ⊆ Rd. Problem (1.1) can be viewed as a special case of (1.6) by setting ξ to

be a discrete random variable supported on {1, . . . ,m} with Prob{ξ = i} = νi and F (x, i) = ν−1
i fi(x) + h(x) + µω(x),

i = 1, . . . ,m. Since each iteration of SGDs needs to compute the (sub)gradient of only one randomly selected fi
1,

their iteration cost is significantly smaller than that for deterministic first-order methods (FOM), which involves the

computation of first-order information of f and thus all the m (sub)gradients of fi’s. Moreover, when fi’s are general

nonsmooth convex functions, by properly specifying the probabilities νi, i = 1, . . . ,m 2, it can be shown (see [25]) that

the iteration complexities for both SGD and FOM are in the same order of magnitude. Consequently, the total number

of subgradients required by SGDs can be m times smaller than those by FOMs.

Note however, that there is a significant gap on the complexity bounds between SGDs and deterministic FOMs if

fi’s are smooth convex functions. For the sake of simplicity, let us focus on the strongly convex case when µ > 0 and

let x∗ be the optimal solution of (1.1). In order to find a solution x̄ ∈ X s.t. ‖x̄−x∗‖2 ≤ ε, the total number of gradient

evaluations for fi’s performed by optimal FOMs can be bounded by

O
{
m
√

L
µ log 1

ε

}
, (1.7)

which was first achieved by the well-known Nesterov’s accelerated gradient method [27,28], see also relevant extensions

in [31,4,35]. On the other hand, a direct application of optimal SGDs to the aforementioned stochastic optimization

reformulation of (1.1) would yield an

O
{√

L
µ log 1

ε + σ2

µε

}
(1.8)

iteration complexity bound on the number of gradient evaluations for fi’s, which was first achieved by the accelerated

stochastic approximation method ([19,14,15]). Here σ > 0 denotes variance of the stochastic gradients. Clearly, the

latter bound is significantly better than the one in (1.7) in terms of its dependence on m, but much worse in terms of

its dependence on accuracy ε and a few other problem parameters (e.g., L and µ).

It should be noted that the optimality of (1.8) for general stochastic programming (1.6) does not preclude the

existence of more efficient algorithms for solving (1.1), because (1.1) is a special case of (1.6) with finite support Ξ.

Last few years have seen very active and fruitful research in this field (e.g., [32,17,12,34,36]). In particular, Schmidt,

Roux and Bach [32] presented a stochastic average gradient (SAG) method, which recursively computes an estimator of

∇f by aggregating the gradient of a randomly selected fi with some other previously computed gradient information.

They proved that the complexity of SAG is bounded by O
(
(m+ L/µ) log 1

ε

)
, see also Johnson and Zhang [17] and

Defazio et al. [12] for similar complexity results for solving (1.1). In a related but different line of research, Shalev-

Shwartz and Zhang [34] studied a special class of CP problems given in the form of (1.1) with fi(x) given by φi(a
T
i x),

where ai denotes an affine mapping. Under the assumption that ω(x) = ‖x‖22, they presented an accelerated stochastic

dual coordinate ascent (A-SDCA) method, obtained by properly restarting a stochastic coordinate ascent method in

1 Observe that the subgradients of h and ω are not required due to the assumption in (1.5).
2 Suppose that fi are Lipschitz continuous with constants Mi and let us denote M :=

∑m
i=1Mi, we should set νi = Mi/M in

order to get the optimal complexity for SGDs.
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[33] applied to the dual of (1.1). Shalev-Shwartz and Zhang show that the iteration complexity of this method can be

bounded by O
{(
m+

√
mL
µ

)
log 1

ε

}
. However, each iteration of A-SDCA requires, instead of the computation of ∇fi,

the solution of a subproblem given in the form of

argmin{〈g, y〉+ φ∗i (y) + ‖y‖2∗}, (1.9)

where φ∗i denotes the conjugate function of φi. Moreover, these methods were also designed for solving a more special

class of problems than (1.1). More recently, Lin, Lu, and Xiao [23] proposed to apply the accelerated coordinate descent

methods by Nesterov [30], and Fercoq and Richtáriks [13] to obtain similar results for solving these “regularized empirical

loss functions” as in [34]. Zhang and Xiao [36] had also obtained similar results by using different stochastic primal-dual

coordinate decomposition techniques.

In this paper, we focus on randomized incremental gradient methods that can access the first-order information of

only one randomly selected smooth component fi at each iteration (see Bertsekas [5] for an introduction to incremental

gradient methods). It should be noted that while the algorithms in [32,17,12] belong to incremental gradient methods,

generally speaking, the dual coordinate algorithms in [23,34,36] cannot be considered as incremental gradient methods

because they require the solutions of a different subproblem rather than the computation of the gradient of fi. The

previous attempts to improve the complexity of the existing incremental gradient methods, e.g., based on the extrap-

olation idea in Nesterov [27], however, turned out to be tricky and unsuccessful, see Section 1.2 of Bertsekas [5] and

Section 5 of Agarwal and Bottou [1] for more discussions. Another important yet unresolved issue is that there does not

exist a valid lower complexity bound for randomized incremental gradient methods in the literature. Hence, it remains

unknown what would be the best possible performance that one can expect for these types of methods. Regarding

this question, Agarwal and Bottou [1] recently suggested a lower complexity bound for solving problems given in the

form of (1.1). However, as pointed out by them in a recent ISMP talk in 2015, the lower complexity bound in [1] is

deterministic by construction, and hence cannot be used to justify the optimality or suboptimality for the randomized

incremental gradient methods in [32,17,12] or dual coordinate methods in [23,34,36].

Our contribution in this paper mainly lies on the following several aspects. Firstly, we present a new class of

deterministic FOMs, referred to as the primal-dual gradient (PDG) methods, which can achieve the optimal black-box

iteration complexity in (1.7) for solving (1.1). The novelty of these methods exists in: 1) a proper reformulation of (1.1)

as a primal-dual saddle point problem and 2) the incorporation of a new non-differentiable prox-function (or Bregman

distance) based on the conjugate functions of fi in the dual space. As a consequence, we are able to show that the PDG

method covers a variant of the well-known Nesterov’s accelerated gradient method as a special case. In particular, the

computation of the gradient at the extrapolation point of the accelerated gradient method is equivalent to a primal

prediction step combined with a dual ascent step (employed with the aforementioned dual prox-function) in the PDG

method. While it is often difficult to interpret Nesterov’s method, the development of the PDG method allows us to

view this method as a natural iterative buyer-supplier game. Such a game-theoretic view of the accelerated gradient

method seems to be new in the literature. In fact, the obtained complexity results for the PDG method are slightly

stronger than the one in (1.7) and those in [27,28] for Nesterov’s accelerated gradient method, because a stronger

primal-dual termination criterion has been used in our analysis.

Secondly, we develop a randomized primal-dual gradient (RPDG) method, which is an incremental gradient method

using only one randomly selected component ∇fi at each iteration. A variant of PDG, this algorithm incorporates an

additional dual prediction step before performing the primal descent step (with a properly defined primal prox-function).

We prove that the number of iterations (and hence the number of gradients) required by RPDG is bounded by

O
((

m+
√

mL
µ

)
log 1

ε

)
, (1.10)

both in expectation and with high probability. The complexity bounds of the RPDG method are established in terms of

not only the distance from the iterate xk to the optimal solution, but also the primal optimality gap based on the ergodic

mean of the iterates. In comparison with the accelerated stochastic dual coordinate ascent method in [34], RPDG deals

with a wider class of problems and can be applied to the cases when fi’s involve a more complicated composite structure

(see examples in [5]) and/or a more general regularization term ω that is strongly convex with respect to an arbitrary

norm (see open problems in Section 7 of [34]). Moreover, each iteration of RPDG only involves the computation ∇fi,
rather than the more complicated subproblem in (1.9), which sometimes may not have explicit solutions [34] (e.g., the

logistics regression problem). The RPDG method also admits an interesting game theoretic interpretation, implying



4

that by properly incorporating randomization, the buyer and supplier can reach the equilibrium with possibly fewer

price changes at the expense of more order transactions.

Thirdly, we show that the number of gradient evaluations required by any randomized incremental gradient methods

to find an ε-solution of (1.1), i.e., a point x̄ ∈ X s.t. E[‖x̄− x∗‖22] ≤ ε, cannot be smaller than

Ω

((
m+

√
mL
µ

)
log 1

ε

)
, (1.11)

whenever the dimension n is sufficiently large. This bound is obtained by carefully constructing a special class of

separable quadratic programming problems and tightly bounding the expected distance to the optimal solution for

any arbitrary distribution used to choose fi at each iteration. Comparing (1.10) with (1.11), we conclude that the

complexity of the RPDG method is optimal if n is large enough. To the best of our knowledge, this is the first time that

such a lower complexity bound has been presented for randomized incremental gradient methods in the literature. As a

byproduct, we also derived a lower complexity bound for randomized block coordinate descent methods by utilizing the

separable structure of the aforementioned worst-case instances. These methods have been intensively studied recently,

but a valid lower complexity bound is still missing in the literature.

Finally, we generalize RPDG for problems which are not necessarily strongly convex (i.e., µ = 0) and/or involve

structured nonsmooth terms fi. We show that for all these cases, the RPDG can save O(
√
m) times gradient com-

putations (up to certain logarithmic factors) in comparison with the corresponding optimal deterministic FOMs. In

particular, we show that when both the primal and dual of (1.1) are not strongly convex, the total number of iterations

performed by the RPDG method can be bounded by O(
√
m/ε) (up to some logarithmic factors), which is O(

√
m)

times better, in terms of the total number of dual subproblems to be solved, than Nesterov’s smoothing technique [29],

Nemirovski’s mirror-prox method [24], or Chambolle and Pock’s primal-dual method [8]. It seems that this complexity

result has not been obtained before in the literature.

It is worth mentioning a few relevant works to our development. The most two related ones are conducted inde-

pendently by Dang and Lan [11], and Zhang and Xiao [36]. Both of these papers deal with randomized variants of

the primal-dual method presented by Chambolle and Pock [8] (see also extensions in [10]) for solving saddle point

problems. Zhang and Xiao’s development [36] was based on a variant of the primal-dual method for solving strongly

convex saddle point problems [8]. They were able to show that a block-wise randomized version of the algorithm can

achieve similar complexity as the A-SDCA method in [34]. Since Zhang and Xiao’s algorithm targets for solving a

similar class of problems and requires the solutions of a similar subproblem to [34], it appears that the aforementioned

possible advantages of RPDG over A-SDCA are also applicable to the stochastic primal-dual coordinate method in

[36]. Moreover, the complexity bound of Zhang and Xiao’s algorithm is only established in terms of the Euclidean

distances of the iterate xk, yk to the optimal solution. They did not deal with the convergence of the ergodic mean

of iterates. On the other hand, Dang and Lan’s work was motivated by the observation in [9] that a direct extension

of the alternating direction method of multiplier (ADMM) does not converge for multi-block problems. Their work in

[11] then focuses on the non-strongly convex case and shows that a randomized primal-dual method, which is equiva-

lent to a randomized pre-conditioned ADMM for linear constrained problems, does converge for multi-block problems.

Without incorporating the aforementioned dual prediction step, the complexity obtained in [11] is O(
√
m) times worse

than Chambolle and Pock’s method. Nevertheless, this is the first time that randomized algorithms for saddle point

optimization with an O(1/ε) complexity has been presented in the literature. More recently, close to the end of the

preparation of this paper, we notice that Lin, Mairal, and Harchaoui [22] in a concurrent work presented a catalyst

scheme that can be used to accelerate the SAG method in [32] and thus possibly achieve the complexity bound in

(1.10) (under the Euclidean setting). While their approach is an indirect one obtained by properly restarting SAG

(or other “non-accelerated” first-order methods), the proposed randomized primal-dual gradient method is a direct

approach with a “built-in” acceleration. Also none of these works [11,36,22] discussed the lower complexity bound for

randomized methods.

This paper is organized as follows. We first study the deterministic primal-dual method in Section 2. Section 3 is

devoted to the design and analysis of the randomized primal-dual method for the strongly convex case, as well as the

development of the lower complexity bound in (1.11). In Section 4, we generalize the RPDG method to different classes

of CP problems that are not necessarily strongly convex. Important technical results and proofs of the main theorems

in Sections 2 and 3 are provided in Section 5. Some brief concluding remarks are made in Section 6.

Notation and terminology. We use ‖ · ‖ to denote an arbitrary norm in Rn, which is not necessarily associated

with the inner product 〈·, ·〉. We also use ‖ · ‖∗ to denote the conjugate norm of ‖ · ‖. For any convex function h,
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∂h(x) is the set of subdifferential at x. Given any X ⊆ Rn, we say a convex function h : X → R is nonsmooth if

|h(x) − h(y)| ≤ Mh‖x − y‖ for any x, y ∈ X. We say that a convex function f : X → R is smooth if it is Lipschitz

continuously differentiable with Lipschitz constant L > 0, i.e., ‖∇f(y) − ∇f(x)‖∗ ≤ L‖y − x‖ for any x, y ∈ X. For

any p ≥ 1, ‖ · ‖p denotes the standard p-norm in Rn, i.e.,

‖x‖pp =

n∑
i=1

|xi|p, for any x ∈ Rn.

For any real number r, dre and brc denote the nearest integer to r from above and below, respectively. R+ and R++,

respectively, denote the set of nonnegative and positive real numbers. N denotes the set of natural numbers {1, 2, . . .}.

2 An optimal primal-dual gradient method

Our goal in this section is to present a novel primal-dual gradient (PDG) method for solving (1.1), which will also

provide a basis for the development of the randomized primal-dual gradient methods in later sections. We establish

the optimal convergence of this algorithm in terms of the primal-dual optimality gap under the assumption that the

gradient of f is computed at each iteration. We show that PDG generalizes one variant of the well-known Nesterov’s

accelerated gradient method, and allows a natural game interpretation, and hence that the latter algorithm also admits

a similar interpretation.

2.1 Preliminaries: primal and dual prox-functions

In this subsection, we discuss both primal and dual prox-functions (proximity control functions) in the primal and dual

spaces, respectively.

Recall that the function ω : X → R in (1.1) is strongly convex with modulus 1 with respect to ‖ · ‖. We can define

a primal prox-function associated with ω as

P (x0, x) ≡ Pω(x0, x) := ω(x)− [ω(x0) + 〈ω′(x0), x− x0〉], (2.1)

where ω′(x0) ∈ ∂ω(x0) is an arbitrary subgradient of ω at x0. Clearly, by the strong convexity of ω, we have

P (x0, x) ≥ 1
2‖x− x

0‖2, ∀x, x0 ∈ X. (2.2)

Note that the prox-function P (·, ·) described above generalizes the Bregman’s distance in the sense that ω is not

necessarily differentiable (see [6,2,3,18] and references therein). Throughout this paper, we assume that the prox-

mapping associated with X, ω, and h, given by

MX(g, x0, η) ≡MX,ω,h(g, x0, η) := arg min
x∈X

{
〈g, x〉+ h(x) + µω(x) + ηP (x0, x)

}
, (2.3)

is easily computable for any x0 ∈ X, g ∈ Rn, µ ≥ 0, and η > 0. Clearly this is equivalent to the assumption that (1.5)

is easy to solve. Whenever ω is non-differentiable, we need to specify a particular selection of the subgradient ω′ before

performing the prox-mapping. We assume throughout this paper that such a selection of ω′ is defined recursively as

follows. Denote x1 ≡MX(g, x0, η). By the optimality condition of (2.3), we have

g + h′(x1) + (µ+ η)ω′(x1)− ηω′(x0) ∈ NX(x1),

where NX denotes the normal cone of X at x1. Once such a ω′(x1) satisfying the above relation is identified, we will

use it as a subgradient when defining P (x1, x) in the next iteration.

Now let us consider the dual space G, where the gradients of f reside, and equip it with the conjugate norm ‖ · ‖∗.
Let Jf : G → R be the conjugate function of f such that

f(x) := max
g∈G
〈x, g〉 − Jf (g). (2.4)
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It is clear that Jf is strongly convex with modulus 1/Lf w.r.t. ‖ · ‖∗. Therefore, we can define its associated dual

prox-functions and dual prox-mappings as

Df (g0, g) := Jf (g)− [Jf (g0) + 〈J ′f (g0), g − g0〉], (2.5)

MG(−x̃, g0, τ) := arg min
g∈G

{
〈−x̃, g〉+ Jf (g) + τDf (g0, g)

}
, (2.6)

for any g0, g ∈ G. Again, Df may not be uniquely defined since Jf is not necessarily differentiable. Instead of choosing

J ′f ∈ ∂Jf similarly to ω′, we can explicitly specify such selections as will be discussed later in this paper.

The following simple result shows that the computation of the dual prox-mapping associated with Df is equivalent

to the computation of ∇f .

Lemma 1 Let x̃ ∈ X and g0 ∈ G be given and Df (g0, g) be defined in (2.5). For any τ > 0, let us denote z =

[x̃+ τJ ′f (g0)]/(1 + τ). Then we have ∇f(z) =MG(−x̃, g0, τ).

Proof. In view of the definition of Df in (2.5), we have

MG(−x̃, g0, τ) = arg min
g∈G

{
−〈x̃+ τJ ′f (g0), g〉+ (1 + τ)Jf (g)

}
= arg max

g∈G

{
〈z, g〉 − Jf (g)

}
= ∇f(z).

2.2 Primal-dual gradient method, Nesterov’s method, and a game interpretation

By the definition of Jf in (2.4), problem (1.1) is equivalent to:

Ψ∗ := min
x∈X

{
h(x) + µω(x) + max

g∈G
〈x, g〉 − Jf (g)

}
. (2.7)

The primal-dual gradient method in Algorithm 1 can be viewed as a game iteratively performed by a primal player

(buyer) and a dual player (supplier) for finding the optimal solution (order quantity and product price) of the saddle

point problem in (2.7). In this game, both the buyer and supplier have access to their local cost h(x) + µω(x) and

Jf (g), respectively, as well as their interactive cost (or revenue) represented by a bilinear function 〈x, g〉. Our goal is

to design an algorithm such that the buyer and supplier can achieve a equilibrium as soon as possible. In the proposed

algorithm, the supplier first applies (2.8) to predict the demand x̃t based on historical information, i.e., xt−1 and xt−2.

She then determines in (2.9) the price gt in a way to maximize the predicted profit 〈x̃t, g〉 − Jf (g), regularized by the

dual prox-function Df (gt−1, g) with a certain weight τt ≥ 0. Once after the supplier has made her decision, the buyer

then determines his action according to (2.10) in order to minimize the cost h(x) + µω(x) + 〈x, g〉, regularized by the

primal prox-function P (xt−1, x) with a certain weight ηt ≥ 0.

Algorithm 1 The primal-dual gradient method

Let x0 = x−1 ∈ X, and the nonnegative parameters {τt}, {ηt}, and {αt} be given.
Set g0 = ∇f(x0).
for t = 1, . . . , k do

Update (xt, gt) according to

x̃t = αt(x
t−1 − xt−2) + xt−1. (2.8)

gt =MG(−x̃t, gt−1, τt). (2.9)

xt =MX(gt, xt−1, ηt). (2.10)

end for

In order to implement the above primal-dual gradient method, it is more convenient to rewrite step (2.9) in a form

involving the computation of gradient rather than the dual prox-mapping MG . In order to do so, we shall specify

explicitly the selection of the subgradient J ′f in (2.9). Denoting x0 = x0, we can easily see from g0 = ∇f(x0) that
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x0 ∈ ∂Jf (g0). Using this relation and letting J ′f (gt−1) = xt−1 in Df (gt−1, g) (see (2.5)), we then conclude from

Lemma 1 that for any t ≥ 1, (2.9) reduces to

xt = (x̃t + τtx
t−1)/(1 + τt) and gt = ∇f(xt).

With the above selection of the dual prox-function, we can specialize the primal-dual gradient method as follows.

Algorithm 2 A particular implementation of the primal-dual gradient method

Input: Let x0 = x−1 ∈ X, and the nonnegative parameters {τt}, {ηt}, and {αt} be given.
Set x0 = x0.
for t = 1, 2, . . . , k do

x̃t = αt(x
t−1 − xt−2) + xt−1. (2.11)

xt =
(
x̃t + τtx

t−1
)
/(1 + τt). (2.12)

gt = ∇f(xt). (2.13)

xt =MX(gt, xt−1, ηt). (2.14)

end for

Observe that one potential problem associated with this scheme is that the search points xt defined in (2.11) and

(2.12), respectively, may fall outside X. As a result, we need to assume f to be differentiable over Rn. However, it

can be shown that by properly specifying αt and τt, we can guarantee xt ∈ X and thus relax such restrictions on the

differentiability of f (see (2.31) and (2.32) below).

The above PDG method is related to the well-known Nesterov’s accelerated gradient (AG) method. Let us focus on

a simple variant of the AG method that has been extensively studied in the literature (e.g., [28,35,19,14–16]). Given

(xt−1, x̄t−1) ∈ X ×X, this AG algorithm updates (xt, x̄t) by

xt = (1− λt)x̄t−1 + λtx
t−1, (2.15)

xt =MX(gt, xt−1, ηt), (2.16)

x̄t = (1− λt)x̄t−1 + λtx
t, (2.17)

for some λt ∈ [0, 1]. By (2.15) and (2.17), we have

xt = (1− λt)[(1− λt−1)x̄t−2 + λt−1x
t−1] + λtx

t−1

= (1− λt)[xt−1 − λt−1x
t−2 + λt−1x

t−1] + λtx
t−1

= (1− λt)xt−1 + (1− λt)λt−1(xt−1 − xt−2) + λtx
t−1.

Therefore, (2.15) is equivalent to (2.11) and (2.12) with τt = (1−λt)/λt and αt = λt−1(1−λt)/λt. Moreover, (2.16) is

identical to (2.14)(and (2.10)), and (2.17) basically defines the output of the AG algorithm as an ergodic mean of the

iterates xt. We then conclude that the above variant of Nesterov’s AG method is a special case of Algorithm 2 (and

Algorithm 1). It should be noted, however, that Algorithm 1 provides more flexibility in the specification of parameters,

which will be used later in the development of the RPDG method. Moreover, the presentation of the PDG method

helps us to reveal a natural game interpretation out of the intertwined and somehow mysterious updating of the three

search sequences in the AG method.

Algorithm 1 is also closely related to Chambolle and Pock’s primal-dual method for solving saddle point problems

[8], which explains the origin of its name. Two versions of primal-dual methods were discussed in [8]. One is designed

for solving general saddle point problems without assuming the strong convexity of Jf and the other one is to deal with

the case when Jf is strongly convex by incorporating an additional extrapolation step. As pointed out in Remark 3 of

[8], the rate of convergence for the latter primal-dual method is only suboptimal for solving (1.1) as it uses a weaker

termination criterion. On the other hand, the PDG method does not involve any additional extrapolation steps and

so it shares a similar scheme to the basic version of the primal-dual method in [8]. Moreover, the original primal-dual

methods in [8] do not employ general prox-functions, which, as shown in Lemma 1, is crucial to relate the dual step
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(2.9) to the computation of the gradients. It should be noted that some recent extensions of the primal-dual method

in [10,11,7] indeed consider the incorporation of prox-functions, but restricted to problems without strong convexity.

Hence, none of these earlier primal-dual methods can be viewed as a generalized accelerated gradient method.

2.3 Convergence properties of the primal-dual gradient method

Our goal in this subsection is to show that Algorithm 1 exhibits an optimal rate of convergence for solving problem (1.1).

It is worth mentioning that our analysis significantly differs from the previous studies on optimal gradient methods

and those on primal-dual methods for saddle point problems.

Given a pair of feasible solutions z̄ = (x̄, ḡ) and z = (x, g) of (2.7), we define the primal-dual gap function Qf (z̄, z)

by

Qf (z̄, z) :=
[
h(x̄) + µω(x̄) + 〈x̄, g〉 − Jf (g)

]
−
[
h(x) + µω(x) + 〈x, ḡ〉 − Jf (ḡ)

]
. (2.18)

It can be easily seen that z̄ (resp., z) is an optimal solution of (2.7) if and only if Qf (z̄, z) ≤ 0 for any z ∈ X×G (resp.,

Qf (z̄, z) ≥ 0 for any z̄ ∈ X ×G). Therefore, one can assess the solution quality of z̄ by the primal-dual optimality gap:

gap(z̄) := max
z∈X×G

Qf (z̄, z). (2.19)

It should be noted that gap(z̄) may not be well-defined, for example, when X is unbounded and h is not strictly convex.

In these cases, we can define a slightly modified primal-dual gap

gap∗(z̄) := max
{
Qf (z̄, z) : x = x∗, g ∈ G

}
(2.20)

for an arbitrary optimal solution x∗ of (1.1). Since Jf is strongly convex, gap∗ is well-defined.

The following result establishes some relationship between the primal optimality gap Ψ(z̄) − Ψ∗ and the above

primal-dual optimality gaps.

Lemma 2 Let z̄ = (x̄, ḡ) ∈ X × G be a given pair of feasible solutions of (2.7) and denote ḡ∗ = ∇f(x̄). Also let

z∗ = (x∗, g∗) be a pair of optimal solutions of (2.7). Then we have

Ψ(x̄)− Ψ(x∗) = Qf ((x̄, g∗), (x∗, ḡ∗)) ≤ gap∗(z̄). (2.21)

If in addition, X is bounded, then

gap∗(z̄) ≤ gap(z̄). (2.22)

Proof. It follows from the definitions of ḡ∗, gap∗ and the gap function Qf that

Ψ(x̄)− Ψ(x∗) = Qf ((x̄, g∗), (x∗, ḡ∗))

= [h(x̄) + µω(x̄) + max
g∈G
〈x̄, g〉 − Jf (g)]− [h(x∗) + µω(x∗) + 〈x∗, g∗〉 − Jf (g∗)]

≤ [h(x̄) + µω(x̄) + max
g∈G
〈x̄, g〉 − Jf (g)]− [h(x∗) + µω(x∗) + 〈x∗, ḡ〉 − Jf (ḡ)]

= gap∗(z̄).

Relation (2.22) follows directly from the definitions of gap∗ and gap.

Theorem 1 below describes the main convergence properties of the PDG method. More specifically, we provide

in Theorem 1.a) a constant stepsize policy which works for the strongly convex case where µ > 0, and a different

parameter setting that works for the non-strongly convex case with µ = 0 in Theorem 1.b). Note that for the strongly

convex case, we estimate the solution quality for the iterates xt, t = 1, . . . , k, as well as that for their ergodic mean

x̄k = (
∑k
t=1θt)

−1∑k
t=1(θtx

t) (2.23)

for some θt ≥ 0, while only establishing the error bounds for x̄k for the non-strongly convex case. We put the proof of

Theorem 1 in Section 5 since it shares many basic elements with the convergence analysis of the RPDG method.

Theorem 1 Let x∗ be an optimal solution of (1.1), xk and x̄k be defined in (2.10) and (2.23), respectively.
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a) Suppose that µ > 0 and that {τt}, {ηt}, {αt} and {θt} are set to

τt =

√
2Lf
µ , ηt =

√
2Lfµ, αt = α ≡

√
2Lf/µ

1+
√

2Lf/µ
, and θt = 1

αt , ∀t = 1, . . . , k. (2.24)

Then,

P (xk, x∗) ≤ µ+Lf
µ αkP (x0, x∗), (2.25)

Ψ(x̄k)− Ψ(x∗) ≤ gap∗(z̄k) ≤ µ(1− α)−1
[
1 +

Lf
µ (2 +

Lf
µ )
]
αkP (x0, x∗), (2.26)

Ψ(x̄k)− Ψ(x∗) ≤ gap(z̄k) ≤ µ(1− α)−1
[
1 +

Lf
µ (2 +

Lf
µ )
]
αk max

x∈X
P (x0, x). (2.27)

b) Suppose that {τt}, {ηt}, {αt} and {θt} are set to

τt =
t− 1

2
, ηt =

4Lf
t
, αt =

t− 1

t
and θt = t, ∀t = 1, . . . , k. (2.28)

Then,

Ψ(x̄k)− Ψ(x∗) ≤ gap∗(z̄k) ≤
8Lf

k(k + 1)
P (x0, x∗), (2.29)

Ψ(x̄k)− Ψ(x∗) ≤ gap(z̄k) ≤
8Lf

k(k + 1)
max
x∈X

P (x0, x). (2.30)

Observe that when the algorithmic parameters are set to (2.24), by using an inductive argument, we can easily

show that

xk = (1− α2)xk−1 + (1− α)
∑k−2
t=1 (αk−txt) + αkx0. (2.31)

In other words, xk can be written as a convex combination of x0, . . . , xk−1 and hence xk ∈ X for any k ≥ 1. Similarly,

when the algorithmic parameters are set to (2.28), we can show by using induction that

xk =
2(2k−1)
k(k+1)

xk−1 + 2
k(k+1)

∑k−2
t=1 (ixi), (2.32)

which implies xk ∈ X. Therefore, we only need to assume the differentiability of f over X rather than the whole Rn.

In view of the results obtained in Theorem 1, the primal-dual gradient method is an optimal method for convex

optimization. In fact, the rates of convergence in (2.26), (2.27), (2.29) and (2.30) associated with the ergodic mean

z̄k have employed the primal-dual optimality gaps g∗(z̄k) and g(z̄k), which are stronger than the primal optimality

gap Ψ(x̄k)− Ψ(x∗) used in the previous studies for accelerated gradient methods. Moreover, whenever X is bounded,

the primal-dual optimality gap g(z̄k) gives us a computable online accuracy certificates to check the quality of the

solution z̄k (see [21,14] for some related discussions). Also observe that each iteration of the PDG method requires

the computation of ∇f , and hence all the m components ∇fi. In the next section, we will develop a randomized PDG

method that can possibly save the number of gradient evaluations for ∇fi by utilizing the finite-sum structure of

problem (1.1).

3 Randomized primal-dual gradient methods

In this section, we present a randomized primal-dual gradient (RPDG) method which needs to compute the gradient

of only one randomly selected component function fi at each iteration. We show that RPDG can possibly achieve a

better complexity than PDG in terms of the total number of gradient evaluations.



10

3.1 Multi-dual-player reformulation and the RPDG algorithm

We start by introducing a different saddle point reformulation of (1.1) than (2.7). Let Ji : Yi → R be the conjugate

functions of fi and Yi, i = 1, . . . ,m, denote the dual spaces where the gradients of fi reside. For the sake of notational

convenience, let us denote J(y) :=
∑m
i=1Ji(yi), Y := Y1 × Y2 × . . . × Ym, and y = (y1; y2; . . . ; ym) for any yi ∈ Yi,

i = 1, . . . ,m. Clearly, we can reformulate problem (1.1) equivalently as a saddle point problem:

Ψ∗ := min
x∈X

{
h(x) + µω(x) + max

y∈Y
〈x, Uy〉 − J(y)

}
, (3.1)

where U ∈ Rn×nm is given by

U := [I, I, . . . , I] . (3.2)

Here I is the identity matrix in Rn. Given a pair of feasible solutions z̄ = (x̄, ȳ) and z = (x, y) of (3.1), we define the

primal-dual gap function Q(z̄, z) by

Q(z̄, z) := [h(x̄) + µω(x̄) + 〈x̄, Uy〉 − J(y)]− [h(x) + µω(x) + 〈x, Uȳ〉 − J(ȳ)] . (3.3)

It is well-known that z̄ ∈ Z ≡ X × Y is an optimal solution of (3.1) if and only if Q(z̄, z) ≤ 0 for any z ∈ Z.

Since Ji, i = 1, . . . ,m, are strongly convex with modulus σi = 1/Li w.r.t. ‖ · ‖∗, we can define their associated dual

prox-functions and dual prox-mappings as

Di(y
0
i , yi) := Ji(yi)− [Ji(y

0
i ) + 〈J ′i(y

0
i ), yi − y0

i 〉], (3.4)

MYi(−x̃, y
0
i , τ) := arg min

yi∈Yi

{
〈−x̃, y〉+ Ji(yi) + τDi(y

0
i , yi)

}
, (3.5)

for any y0
i , yi ∈ Yi. Accordingly, we define

D(ỹ, y) :=
∑m
i=1Di(ỹi, yi). (3.6)

Again, Di may not be uniquely defined since Ji are not necessarily differentiable. However, we will discuss how to

specify the particular selection of J ′i ∈ ∂Ji later in this subsection.

We are now ready to describe the randomized primal-dual method, which is obtained by properly modifying the

primal-dual gradient method as follows. Firstly, in (3.8), we only compute a randomly selected dual prox-mappingMYi
rather than the dual prox-mapping MG as in Algorithm 1. Secondly, in addition to the primal prediction step (3.7),

we add a new dual prediction step (3.9), and then use the predicted dual variable ỹt for the computation of the new

search point xt in (3.10). It can be easily seen that the RPDG method reduces to the PDG method whenever this

algorithm is directly applied to (2.7) (i.e., m = 1, Y1 = G, and J1 = Jf ) .

Algorithm 3 A randomized primal-dual gradient (RPDG) method

Let x0 = x−1 ∈ X, and the nonnegative parameters {τt}, {ηt}, and {αt} be given.
Set y0i = ∇fi(x0), i = 1, . . . ,m.
for t = 1, . . . , k do

Choose it according to Prob{it = i} = pi, i = 1, . . . ,m.
Update zt = (xt, yt) according to

x̃t = αt(x
t−1 − xt−2) + xt−1. (3.7)

yti =

{
MYi (−x̃t, y

t−1
i , τt), i = it,

yt−1
i , i 6= it.

(3.8)

ỹti =

{
p−1
i (yti − y

t−1
i ) + yt−1

i , i = it,

yt−1
i , i 6= it.

. (3.9)

xt =MX(
∑m

i=1ỹ
t
i , x

t−1, ηt). (3.10)

end for
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Similarly to the PDG method, the RPDG method can be viewed as a game iteratively performed by a buyer and

m suppliers for finding the solutions (order quantities and product prices) of the saddle point problem in (3.1). In this

game, both the buyer and suppliers have access to their local cost h(x)+µω(x) and Ji(yi), respectively, as well as their

interactive cost (or revenue) represented by a bilinear function 〈x, yi〉. Also, the buyer has to purchase the same amount

of products from each supplier (e.g., for fairness). Although there are m suppliers, in each iteration only a randomly

chosen supplier can make price changes according to (3.8) using the predicted demand x̃t. In order to understand the

buyer’s decision in (3.10), let us first denote

ŷti :=MYi(−x̃
t, yt−1

i , τt), i = 1, . . . ,m; t = 1, . . . , k. (3.11)

In other words, ŷti , i = 1, . . . ,m, denote the prices that all the suppliers can possibly set up at iteration t. Then we can

see that

Et[ỹti ] = ŷti . (3.12)

Indeed, we have

yti =

{
ŷti , i = it,

yt−1
i , i 6= it.

(3.13)

Hence Et[yti ] = piŷ
t
i + (1 − pi)yt−1

i , i = 1, . . . ,m. Using this identity in the definition of ỹt in (3.9), we obtain (3.12).

Instead of using
∑m
i=1ŷ

t
i in determining his order in (3.10), the buyer notices that only one supplier has made a change

on the price, and thus uses
∑m
i=1ỹ

t
i to predict the case when all the dual players would modify the prices simultaneously.

In order to implement the above RPDG method, we shall explicitly specify the selection of the subgradient J ′it in

the definition of the dual prox-mapping in (3.8). Denoting x0
i = x0, i = 1, . . . ,m, we can easily see from y0

i = ∇fi(x0)

that x0
i ∈ ∂f

∗
i (y0

i ), i = 1, . . . ,m. Using this relation and letting J ′i(y
t−1
i ) = xt−1

i in the definition of Di(y
t−1
i , yi) in

(3.8) (see (3.4)), we then conclude from Lemma 1 (with Jf = Jit and Df = Dit) and (3.8) that for any t ≥ 1,

xtit = (x̃t + τtx
t−1
it

)/(1 + τt), xti = xt−1
i , ∀i 6= it;

ytit = ∇fit(x
t
it), yti = yt−1

i , ∀i 6= it.

Moreover, observe that the computation of xt in (3.10) requires an involved computation of
∑m
i=1ỹ

t
i . In order to save

computational time, we suggest to compute this quantity in a recursive manner as follows. Let us denote gt ≡
∑m
i=1y

t
i .

Clearly, in view of the fact that yti = yt−1
i , ∀i 6= it, we have

gt = gt−1 + (ytit − y
t−1
it

).

Also, by the definition of gt and (3.9), we have∑m
i=1ỹ

t
i =

∑
i 6=ity

t−1
i + p−1

it
(ytit − y

t−1
it

) + yt−1
it

=
∑m
i=1y

t−1
i + p−1

it
(ytit − y

t−1
it

)

= gt−1 + p−1
it

(ytit − y
t−1
it

).

Incorporating these two ideas mentioned above, we present an efficient implementation of the RPDG method in Algo-

rithm 4.

Clearly, the RPDG method is an incremental gradient type method since each iteration of this algorithm involves

the computation of the gradient ∇fit of only one component function. As shown in the following Subsection, such an

randomization scheme can lead to significantly savings on the total number of gradient evaluations, at the expense of

more primal prox-mappings.

It should also be noted that due to the randomness in the RPDG method, we can not guarantee that xti ∈ X for

all i = 1, . . . ,m, and t ≥ 1 in general, even though we do have all the iterates xt ∈ X. That is why we need to make

the assumption that fi’s are differentiable over Rn for the RPDG method.
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Algorithm 4 An efficient implementation of the RPDG method

Let x0 = x−1 ∈ X, and nonnegative parameters {αt}, {τt}, and {ηt} be given.
Set x0i = x0, y0i = ∇fi(x0), i = 1, . . . ,m, and g0 =

∑m
i=1y

0
i .

for t = 1, . . . , k do
Choose it according to Prob{it = i} = pi, i = 1, . . . ,m.
Update zt := (xt, yt) by

x̃t = αt(x
t−1 − xt−2) + xt−1. (3.14)

xti =

{
(1 + τt)−1

(
x̃t + τtx

t−1
i

)
, i = it,

xt−1
i , i 6= it.

(3.15)

yti =

{
∇fi(xti), i = it,

yt−1
i , i 6= it.

(3.16)

xt =MX(gt−1 + p−1
it

(ytit − y
t−1
it

), xt−1, ηt). (3.17)

gt = gt−1 + ytit − y
t−1
it

. (3.18)

end for

3.2 The convergence of the RPDG algorithm

Our goal in this subsection is to describe the convergence properties of the RPDG method for the strongly convex case

when µ > 0. Generalization of the RPDG method for the non-strongly convex case will be discussed in Section 4.

Theorem 2 below states some general convergence properties of RPDG. Similar to PDG method, we provide bounds

on E[P (xk, x∗)] and E[Ψ(x̄k)−Ψ(x∗)]. However, we cannot provide a bound on the expected primal-dual gap E[gap(x̄k)]

even though our analysis for the RPDG algorithm still relies on the primal-dual gap function Q in (3.3) (see [11] for

some relevant disucssions).

Theorem 2 Suppose that {τt}, {ηt}, and {αt} in the RPDG method are set to

τt = τ, ηt = η, and αt = α, (3.19)

for any t ≥ 1 such that

(1− α)(1 + τ) ≤ pi, i = 1, . . . ,m, (3.20)

η ≤ α(µ+ η), (3.21)

ητpi ≥ 4Li, i = 1, . . . ,m, (3.22)

for some α ∈ (0, 1). Then, for any k ≥ 1, we have

E[P (xk, x∗)] ≤
(

1 +
Lfα

(1−α)η

)
αkP (x0, x∗), (3.23)

E[Ψ(x̄k)− Ψ(x∗)] ≤ αk/2
(
α−1η + 3−2α

1−α Lf +
2L2

fα

(1−α)η

)
P (x0, x∗), (3.24)

where x̄k = (
∑k
t=1θt)

−1∑k
t=1(θtx

t) with {θt} defined as in (2.24), and x∗ denotes the optimal solution of problem

(1.1), and the expectation is taken w.r.t. i1, . . . , ik.

We now provide a few specific selections of pi, τ , η, and α satisfying (3.20)-(3.22) and establish the complexity

of the RPDG method for computing a stochastic ε-solution of problem (1.1), i.e., a point x̄ ∈ X s.t. E[P (x̄, x∗)] ≤ ε,

as well as a stochastic (ε, λ)-solution of problem (1.1), i.e., a point x̄ ∈ X s.t. Prob{P (x̄, x∗) ≤ ε} ≥ 1 − λ for some

λ ∈ (0, 1). Moreover, in view of (3.24), similar complexity bounds of the RPDG method can be established in terms of

the primal optimality gap, i.e. E[Ψ(x̄)− Ψ∗].
The following corollary shows the convergence of RPDG under a non-uniform distribution for the random variables

it, t = 1, . . . , k.
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Corollary 1 Suppose that {it} in the RPDG method are distributed over {1, . . . ,m} according to

pi = Prob{it = i} = 1
2m + Li

2L , i = 1, . . . ,m. (3.25)

Also assume that {τt}, {ηt}, and {αt} are set to (3.19) with

τ =

√
(m−1)2+4mC−(m−1)

2m , η =
µ
√

(m−1)2+4mC+µ(m−1)
2 , and α = 1− 1

(m+1)+
√

(m−1)2+4mC
, (3.26)

where

C = 8L
µ . (3.27)

Then for any k ≥ 1, we have

E[P (xk, x∗)] ≤ (1 +
3Lf
µ )αkP (x0, x∗), (3.28)

E[Ψ(x̄k)− Ψ∗] ≤ αk/2(1− α)−1

[
µ+ 2Lf +

L2
f

µ

]
P (x0, x∗). (3.29)

As a consequence, the number of iterations performed by the RPDG method to find a stochastic ε-solution and a

stochastic (ε, λ)-solution of (1.1), in terms of the distance to the optimal solution, i.e., E[P (xk, x∗)], can be bounded by

K(ε, C) and K(λε, C), respectively, where

K(ε, C) :=
[
(m+ 1) +

√
(m− 1)2 + 4mC

]
log
[
(1 +

3Lf
µ )

P (x0,x∗)
ε

]
. (3.30)

Similarly, the total number of iterations performed by the RPDG method to find a stochastic ε-solution and a stochastic

(ε, λ)-solution of (1.1), in terms of the primal optimality gap, i.e., E[Ψ(x̄k) − Ψ∗], can be bounded by K̃(ε, C) and

K̃(λε, C), respectively, where

K̃(ε, C) := 2
[
(m+ 1) +

√
(m− 1)2 + 4mC

]
log

[
2(µ+ 2Lf +

L2
f

µ )(m+
√
mC)

P (x0,x∗)
ε

]
. (3.31)

Proof. It follows from (3.26) that

(1− α)(1 + τ) = 1/(2m) ≤ pi, (1− α)η = (α− 1/2)µ ≤ αµ, and ητpi = µCpi ≥ 4Li,

and hence that the conditions in (3.20)-(3.22) are satisfied. Notice that by the fact that α ≥ 3/4, ∀m ≥ 1 and (3.26),

we have

1 +
Lfα

(1−α)η
= 1 + Lf

α
(α−1/2)µ

≤ 1 +
3Lf
µ .

Using the above bound in (3.23), we obtain (3.28). It follows from the facts (1− α)η ≤ αµ, 1/2 ≤ α ≤ 1, ∀m ≥ 1, and

η ≥ µ
√
C > 2µ that

α−1η + 3−2α
1−α Lf +

2L2
fα

(1−α)η
≤ (1− α)−1(µ+ 2Lf +

L2
f

µ ).

Using the above bound in (3.24), we obtain (3.29). Denoting D ≡ (1 +
3Lf
µ )P (x0, x∗), we conclude from (3.28) and the

fact that log x ≤ x− 1 for any x ∈ (0, 1) that

E[P (xK(ε,C), x∗)] ≤ Dα
log(D/ε)

1−α ≤ Dα
log(D/ε)
− logα ≤ Dα

log(ε/D)
logα = ε.

Moreover, by Markov’s inequality, (3.28) and the fact that log x ≤ x− 1 for any x ∈ (0, 1), we have

Prob{P (xK(λε,C), x∗) > ε} ≤ 1
εE[P (xK(λε,C), x∗)] ≤ D

ε α
log(D/(λε))

1−α ≤ D
ε α

log(λε/D)
logα = λ.

The proofs for the complexity bounds in terms of the primal optimality gap is similar and hence the details are skipped.

The non-uniform distribution in (3.25) requires the estimation of the Lipschitz constants Li, i = 1, . . . ,m. In case

such information is not available, we can use a uniform distribution for it, and as a result, the complexity bounds will

depend on a larger condition number given by mmaxi=1,...,m Li/µ. However, if we do have L1 = L2 = · · · = Lm, then

the results obtained by using a uniform distribution is slightly sharper than the one by using a non-uniform distribution

in Corollary 1.
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Corollary 2 Suppose that {it} in the RPDG method are uniformly distributed over {1, . . . ,m} according to

pi = Prob{it = i} = 1
m , i = 1, . . . ,m. (3.32)

Also assume that {τt}, {ηt}, and {αt} are set to (3.19) with

τ =

√
(m−1)2+4mC̄−(m−1)

2m , η =
µ
√

(m−1)2+4mC̄+µ(m−1)
2 , and α = 1− 2

(m+1)+
√

(m−1)2+4mC̄
, (3.33)

where

C̄ := 4m
µ max

i=1,...,m
Li. (3.34)

Then we have

E[P (xk, x∗)] ≤ (1 +
Lf
µ )αkP (x0, x∗), (3.35)

E[Ψ(x̄k)− Ψ∗] ≤ αk/2(1− α)−1

(
µ+ 2Lf +

L2
f

µ

)
P (x0, x∗). (3.36)

for any k ≥ 1. As a consequence, the number of iterations performed by the RPDG method to find a stochastic ε-

solution and a stochastic (ε, λ)-solution of (1.1), in terms of the distance to the optimal solution, i.e., E[P (xk, x∗)], can

be bounded by Ku(ε, C̄) and Ku(λε, C̄), respectively, where

Ku(ε, C̄) :=
(m+1)+

√
(m−1)2+4mC̄

2 log
[
(1 +

Lf
µ )

P (x0,x∗)
ε

]
.

Similarly, the total number of iterations performed by the RPDG method to find a stochastic ε-solution and a stochastic

(ε, λ)-solution of (1.1), in terms of the primal optimality gap, i.e., E[Ψ(x̄k) − Ψ∗], can be bounded by K̃(ε, C̄)/2 and

K̃(λε, C̄)/2, respectively, where K̃(ε, C̄) is defined in (3.31).

Proof. It follows from (3.33) that

(1− α)(1 + τ) = 1/m = pi, (1− α)η − αµ = 0, and ητ = µC̄ ≥ 4mLi,

and hence that the conditions in (3.20)-(3.22) are satisfied. By the identity (1− α)η = αµ, we have

1 +
Lfα

(1−α)η
= 1 +

Lf
µ .

Using the above bound in (3.23), we obtain (3.35). Moreover, note that η ≥ µ
√
C̄ ≥ 2µ and 2/3 ≤ α ≤ 1,∀m ≥ 1 we

have

α−1η + 3−2α
1−α Lf +

2L2
fα

(1−α)η
≤ (1− α)−1(µ+ 2Lf +

L2
f

µ ).

Using the above bound in (3.24), we obtain (3.36). The proofs for the complexity bounds are similar to those in

Corollary 1 and hence the details are skipped.

Comparing the complexity bounds obtained from Corollaries 1 and 2 with those of any optimal deterministic first-

order method, they differ in a factor of O(
√
mLf/L), whenever

√
mC log(1/ε) is dominating in (3.30). Clearly, when

Lf and L are in the same order of magnitude, RPDG can save up to O(
√
m) gradient evaluations for the component

function fi than the deterministic first-order methods. However, it should be pointed out that Lf can be much smaller

than L. In particular, when Lf = Li, i = 1, . . . ,m, Lf = L/m. In the next subsection, we will construct examples in

such extreme cases to obtain the lower complexity bound for general randomized incremental gradient methods.
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3.3 Lower complexity bound for randomized methods

Our goal in this subsection is to demonstrate that the complexity bounds obtained in Theorem 2, and Corollaries 1

and 2 for the RPDG method are essentially not improvable. Observe that although there exist rich lower complexity

bounds in the literature for deterministic first-order methods (e.g. [26,28]), the study on lower complexity bounds for

randomized methods are still quite limited. Recently Agarwal and Bottou [1] suggested a lower complexity bound for

minimizing the finite-sum convex optimization problem given in the form of (1.1). However, their bounds are developed

for deterministic algorithms and hence not applicable to randomized incremental gradient methods.

To derive the performance limit of the incremental gradient methods, we consider a special class of unconstrained

and separable strongly convex optimization problems given in the form of

min
xi∈Rñ,i=1,...,m

{
Ψ(x) :=

∑m
i=1

[
fi(xi) + µ

2 ‖xi‖
2
2

]}
. (3.37)

Here ñ ≡ n/m ∈ {1, 2, . . .} and ‖ · ‖2 denotes standard Euclidean norm. To fix the notation, we also denote x =

(x1, . . . , xm). Moreover, we assume that fi’s are quadratic functions given by

fi(xi) =
µ(Q−1)

4

[
1
2 〈Axi, xi〉 − 〈e1, xi〉

]
, (3.38)

where e1 := (1, 0, . . . , 0) and A is a symmetric matrix in Rñ×ñ given by

A =


2 −1 0 0 · · · 0 0 0

−1 2 −1 0 · · · 0 0 0

0 −1 2 −1 · · · 0 0 0

· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · −1 2 −1

0 0 0 0 · · · 0 −1 κ

 with κ =
√
Q+3√
Q+1

. (3.39)

Compared with the classic worst-case example given in [28], the tridiagonal matrix A above consists of a different

diagonal element κ (instead of 2). This modification allows us to study problems of finite dimension more conveniently. It

can be easily checked that A � 0 and its maximum eigenvalue does not exceeds 4. Indeed, for any s ≡ (s1, . . . , sñ) ∈ Rñ,

we have

〈As, s〉 = s21 +
∑ñ−1
i=1 (si − si+1)2 + (κ− 1)s2ñ ≥ 0

〈As, s〉 ≤ s21 +
∑ñ−1
i=1 2(s2i + s2i+1) + (κ− 1)s2ñ

= 3s21 + 4
∑ñ−1
i=2 s

2
i + (κ+ 1)s2ñ ≤ 4‖s‖22,

where the last inequality follows from the fact that κ ≤ 3. Therefore, for any Q > 1, the component functions fi in

(3.38) are convex and their gradients are Lipschitz continuous with constant bounded by Li = µ(Q− 1), i = 1, . . . ,m.

We consider a general class of randomized incremental gradient methods which sequentially acquire the gradients of

a randomly selected component function fit at iteration t. More specifically, we assume that the independent random

variables it, t = 1, 2, . . ., satisfy

Prob{it = i} = pi and
∑m
i=1pi = 1, pi ≥ 0, i = 1, . . . ,m. (3.40)

Similar to [28], we assume that these methods generate a sequence of test points {xk} such that

xk ∈ x0 + Lin{∇fi1(x0), . . . ,∇fik (xk−1)}, (3.41)

where Lin denotes the linear span.

Theorem 3 below describes the performance limit of the above randomized incremental gradient methods for solving

(3.37).
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Theorem 3 Let x∗ be the optimal solution of problem (3.37) and denote

q :=
√
Q−1√
Q+1

. (3.42)

Then the iterates {xk} generated by any randomized incremental gradient method must satisfy

E[‖xk−x∗‖22]

‖x0−x∗‖22
≥ 1

2exp
(
− 4k

√
Q

m(
√
Q+1)2−4

√
Q

)
(3.43)

for any

n ≥ n(m, k) ≡
m log

[
(1−(1−q2)/m)k/2

]
2 log q . (3.44)

As an immediate consequence of Theorem 3, we obtain a lower complexity bound for randomized incremental

gradient methods.

Corollary 3 The number of gradient evaluations performed by any randomized incremental gradient methods for find-

ing a solution x̄ ∈ X of problem (1.1) such that E[‖x̄− x∗‖22] ≤ ε cannot be smaller than

Ω
{(√

mC +m
)

log
‖x0−x∗‖22

ε

}
if n is sufficiently large, where C = L/µ and L =

∑m
i=1Li.

Proof. It follows from (3.43) that the number of iterations k required by any randomized incremental gradient

methods to find an approximate solution x̄ must satisfy

k ≥
(
m(
√
Q+1)2

4
√
Q − 1

)
log
‖x0−x∗‖22

2ε ≥
[
m
2

(√
Q
2 + 1

)
− 1
]

log
‖x0−x∗‖22

2ε . (3.45)

Noting that for the worst-case instance in (3.37), we have Li = µ(Q− 1), i = 1, . . . ,m, and hence that L =
∑m
i=1Li =

mµ(Q− 1). Using this relation, we conclude that

k ≥
[

1
2

(√
mC+m2

2 +m
)
− 1
]

log
‖x0−x∗‖22

2ε =: k.

The above bound holds when n ≥ n(m, k).

In view of Theorem 3, we can also derive a lower complexity bound for randomized block coordinate descent

methods, which update one randomly selected block of variables at each iteration for minx∈X Ψ(x). Here Ψ is smooth

and strongly convex such that

µΨ
2 ‖x− y‖

2
2 ≤ Ψ(x)− Ψ(y)− 〈∇Ψ(y), x− y〉 ≤ LΨ

2 ‖x− y‖
2
2, ∀x, y ∈ X.

Corollary 4 The number of iterations performed by any randomized block coordinate descent methods for finding a

solution x̄ ∈ X of minx∈X Ψ(x) such that E[‖x̄− x∗‖22] ≤ ε cannot be smaller than

Ω
{(
m
√
QΨ
)

log
‖x0−x∗‖22

ε

}
if n is sufficiently large, where QΨ = LΨ/µΨ denotes the condition number of Ψ .

Proof. The worst-case instances in (3.37) have a block separable structure. Therefore, any randomized incremental

gradient methods are equivalent to randomized block coordinate descent methods. The result then immediately follows

from (3.45).

4 Generalization of randomized primal-dual gradient methods

In this section, we generalize the RPDG method for solving a few different types of convex optimization problems

which are not necessarily smooth and strongly convex.



17

4.1 Smooth problems with bounded feasible sets

Our goal in this subsection is to generalize RPDG for solving smooth problems without strong convexity (i.e., µ = 0).

Different from the deterministic PDG method, it is difficult to develop a simple stepsize policy for {τt}, {ηt}, and {αt}
which can guarantee the convergence of this method unless a weaker termination criterion is used (see [11]). In order

to obtain stronger convergence results, we will discuss a different approach obtained by applying the RPDG method

to a slightly perturbed problem of (1.1).

In order to apply this perturbation approach, we will assume that X is bounded (see Subsection 4.3 for possible

extensions), i.e., given x0 ∈ X, ∃ΩX ≥ 0 s.t.

max
x∈X

Pω(x0, x) ≤ Ω2
X . (4.1)

Now we define the perturbation problem as

Ψ∗δ := min
x∈X

{Ψδ(x) := f(x) + h(x) + δPω(x0, x)} , (4.2)

for some fixed δ > 0. It is well-known that an approximate solution of (4.2) will also be an approximate solution of

(1.1) if δ is sufficiently small. More specifically, it is easy to verify that

Ψ∗ ≤Ψ∗δ ≤ Ψ
∗ + δΩ2

X , (4.3)

Ψ(x) ≤Ψδ(x) ≤ Ψ(x) + δΩ2
X , ∀x ∈ X. (4.4)

The following result describes the complexity associated with this perturbation approach for solving smooth prob-

lems without strong convexity (i.e., µ = 0).

Proposition 1 Let us apply the RPDG method with the parameter settings in Corollary 1 to the perturbation problem

(4.2) with

δ = ε
2Ω2

X

, (4.5)

for some ε > 0. Then we can find a solution x̄ ∈ X s.t. E[Ψ(x̄)− Ψ∗] ≤ ε in at most

O
{(

m+

√
mLΩ2

X
ε

)
log

mLfΩX
ε

}
(4.6)

iterations. Moreover, we can find a solution x̄ ∈ X s.t. Prob{Ψ(x̄)− Ψ∗ > ε} ≤ λ for any λ ∈ (0, 1) in at most

O
{(

m+

√
mLΩ2

X
ε

)
log

mLfΩX
λε

}
(4.7)

iterations.

Proof. Let x∗δ be the optimal solution of (4.2). Denote C := 16LΩ2
X/ε and

K := 2
[
(m+ 1) +

√
(m− 1)2 + 4mC

]
log

[
(m+

√
mC)(δ + 2Lf +

L2
f

δ )
4Ω2

X
ε

]
.

It can be easily seen that

Ψ(x̄K)− Ψ∗ ≤ Ψδ(x̄K)− Ψ∗δ + δΩ2
X = Ψδ(x̄

K)− Ψ∗δ + ε
2 .

Note that problem (4.2) is given in the form of (1.1) with the strongly convex modulus µ = δ, and h(x) = h(x) −
δ〈ω′(x0), x〉. Hence by applying Corollary 1, we have

E[Ψδ(x̄
K)− Ψ∗δ ] ≤ ε

2 .
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Combining these two inequalities, we have E[Ψ(x̄K) − Ψ∗] ≤ ε, which implies the bound in (4.6). The bound in (4.7)

can be shown similarly and hence the details are skipped.

Observe that if we apply a deterministic optimal first-order method (e.g., Nesterov’s method or the PDG method),

the total number of gradient evaluations for ∇fi, i = 1, . . . ,m, would be given by

m

√
LfΩ

2
X

ε .

Comparing this bound with (4.6), we can see that the number of gradient evaluations performed by the RPDG method

can be O
(√
m log−1(mLfΩX/ε)

)
times smaller than these deterministic methods when L and Lf are in the same

order of magnitude.

4.2 Structured nonsmooth problems

In this subsection, we assume that the smooth components fi are nonsmooth but can be approximated closely by

smooth ones. More specifically, we assume that

fi(x) := max
yi∈Yi

〈Aix, yi〉 − qi(yi). (4.8)

Nesterov in an important work [29] shows that we can approximate fi(x) and f , respectively, by

f̃i(x, δ) := max
yi∈Yi

〈Aix, yi〉 − qi(yi)− δvi(yi) and f̃(x, δ) =
∑m
i=1f̃i(x, δ), (4.9)

where vi(yi) is a strongly convex function with modulus 1 such that

0 ≤ vi(yi) ≤ Ω2
Yi , ∀yi ∈ Yi. (4.10)

In particular, we can easily show that

f̃i(x, δ) ≤ fi(x) ≤ f̃i(x, δ) + δΩ2
Yi and f̃(x, δ) ≤ f(x) ≤ f̃(x, δ) + δΩ2

Y , (4.11)

for any x ∈ X, where Ω2
Y =

∑m
i=1Ω

2
Yi . Moreover, fi(·, δ) and f(·, δ) are continuously differentiable and their gradients

are Lipschitz continuous with constants given by

L̃i =
‖Ai‖2

δ
and L̃ =

∑m
i=1‖Ai‖

2

δ =
‖A‖2
δ , (4.12)

respectively. As a consequence, we can apply the RPDG method to solve the approximation problem

Ψ̃∗δ := min
x∈X

{
Ψ̃δ(x) := f̃(x, δ) + h(x) + µω(x)

}
. (4.13)

The following result provides complexity bounds of the RPDG method for solving the above structured nonsmooth

problems for the case when µ > 0.

Proposition 2 Let us apply the RPDG method with the parameter settings in Corollary 1 to the approximation problem

(4.13) with

δ = ε
2Ω2

Y

, (4.14)

for some ε > 0. Then we can find a solution x̄ ∈ X s.t. E[Ψ(x̄)− Ψ∗] ≤ ε in at most

O
{
‖A‖ΩY

√
m
µε log

m‖A‖ΩXΩY
µε

}
(4.15)

iterations. Moreover, we can find a solution x̄ ∈ X s.t. Prob{Ψ(x̄)− Ψ∗ > ε} ≤ λ for any λ ∈ (0, 1) in at most

O
{
‖A‖ΩY

√
m
µε log

m‖A‖ΩXΩY
λµε

}
(4.16)

iterations.
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Proof. It follows from (4.11) and (4.13) that

Ψ(x̄k)− Ψ∗ ≤ Ψ̃δ(x̄k)− Ψ̃∗δ + δΩ2
Y = Ψ̃δ(x̄

k)− Ψ̃∗δ + ε
2 . (4.17)

Using relation (4.12) and Corollaries 1, we conclude that a solution x̄k ∈ X satisfying E[Ψ̃δ(x̄
k) − Ψ̃∗δ ] ≤ ε/2 can be

found in

O
{
‖A‖ΩY

√
m
µε log

[
(m+

√
mL̃
µ )

(
µ+ 2L̃+ L̃2

µ

)
Ω2
X
ε

]}
iterations. This observation together with (4.17) and the definition of L̃ in (4.12) then imply the bound in (4.15). The

bound in (4.16) follows similarly from (4.17) and Corollaries 1, and hence the details are skipped.

The following result holds for the RPDG method applied to the above structured nonsmooth problems when µ = 0.

Proposition 3 Let us apply the RPDG method with the parameter settings in Corollary 1 to the approximation problem

(4.13) with δ in (4.14) for some ε > 0. Then we can find a solution x̄ ∈ X s.t. E[Ψ(x̄)− Ψ∗] ≤ ε in at most

O
{√

m‖A‖ΩXΩY
ε log

m‖A‖ΩXΩY
ε

}
iterations. Moreover, we can find a solution x̄ ∈ X s.t. Prob{Ψ(x̄)− Ψ∗ > ε} ≤ λ for any λ ∈ (0, 1) in at most

O
{√

m‖A‖ΩXΩY
ε log

m‖A‖ΩXΩY
λε

}
iterations.

Proof. Similarly to the arguments used in the proof of Proposition 2, our results follow from (4.17), and an application

of Proposition 1 to problem (4.13).

By Propositions 2 and 3, the total number of gradient computations for f̃(·, δ) performed by the RPDG method,

after disregarding the logarithmic factors, can be O(
√
m) times smaller than those required by deterministic first-order

methods, such as Nesterov’s smoothing technique [29].

4.3 Unconstrained smooth problems

In this subsection, we set X = Rn, h(x) = 0, and µ = 0 in (1.1) and consider the basic convex programming problem

of

f∗ := min
x∈Rn

{
f(x) :=

∑m
i=1fi(x)

}
. (4.18)

We assume that the set of optimal solutions X∗ of this problem is nonempty.

We will still use the perturbation-based approach as described in Subsection 4.1 by solving the perturbation problem

given by

f∗δ := min
x∈Rn

{
fδ(x) := f(x) + δ

2‖x− x
0‖22,

}
(4.19)

for some x0 ∈ X, δ > 0, where ‖ · ‖2 denotes the Euclidean norm. Also let Lδ denote the Lipschitz constant for fδ(x).

Clearly, Lδ = L + δ. Since the problem is unconstrained and the information on the size of the optimal solution is

unavailable, it is hard to estimate the total number of iterations by using the absolute accuracy in terms of E[f(x̄)−f∗].
Instead, we define the relative accuracy associated with a given x̄ ∈ X by

Rac(x̄, x
0, f∗) :=

2[f(x̄)−f∗]
L(1+minu∈X∗ ‖x0−u‖22)

. (4.20)

We are now ready to establish the complexity of the RPDG method applied to (4.18) in terms of Rac(x̄, x
0, f∗).
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Proposition 4 Let us apply the RPDG method with the parameter settings in Corollary 1 to the perturbation problem

(4.19) with

δ = Lε
2 , (4.21)

for some ε > 0. Then we can find a solution x̄ ∈ X s.t. E[Rac(x̄, x
0, f∗)] ≤ ε in at most

O
{√

m
ε log m

ε

}
(4.22)

iterations. Moreover, we can find a solution x̄ ∈ X s.t. Prob{Rac(x̄, x0, f∗) > ε} ≤ λ for any λ ∈ (0, 1) in at most

O
{√

m
ε log m

λε

}
(4.23)

iterations.

Proof. Let x∗δ be the optimal solution of (4.19). Also let x∗ be the optimal solution of (4.18) that is closest to x0,

i.e., x∗ = argminu∈X∗‖x0 − u‖2. It then follows from the strong convexity of fδ that

δ
2‖x
∗
δ − x

∗‖22 ≤ fδ(x∗)− fδ(x∗δ)

= f(x∗) + δ
2‖x
∗ − x0‖22 − fδ(x∗δ)

≤ δ
2‖x
∗ − x0‖22,

which implies that

‖x∗δ − x
∗‖2 ≤ ‖x∗ − x0‖2. (4.24)

Moreover, using the definition of fδ and the fact that x∗ is feasible to (4.19), we have

f∗ ≤ f∗δ ≤ f
∗ + δ

2‖x
∗ − x0‖22,

which implies that

f(x̄K)− f∗ ≤ fδ(x̄K)− f∗δ + f∗δ − f
∗

≤ fδ(x̄K)− f∗δ + δ
2‖x
∗ − x0‖22.

Now suppose that we run the RPDG method applied to (4.19) for K iterations. Then by Corollary 1, we have

E[fδ(x̄
K)− f∗δ ] ≤ αK/2(1− α)−1

(
δ + 2Lδ +

L2
δ
δ

)
‖x0 − x∗δ‖

2
2

≤ αK/2(1− α)−1
(
δ + 2Lδ +

L2
δ
δ

)
[‖x0 − x∗‖22 + ‖x∗ − x∗δ‖

2
2]

= 2αK/2(1− α)−1
(

3δ + 2L+
(L+δ)2

δ

)
‖x0 − x∗‖22,

where the last inequality follows from (4.24) and α is defined in (3.26) with C = 8Lδ/δ =
8(L+δ)

δ = 8(2/ε + 1).

Combining the above two relations, we have

E[f(x̄K)− f∗] ≤
[
2αK/2(1− α)−1

(
3δ + 2L+

(L+δ)2

δ

)
+ δ

2

]
[‖x0 − x∗‖22.

Dividing both sides of the above inequality by L(1 + ‖x0 − x∗‖22)/2, we obtain

E[Rac(x̄
K , x0, f∗)] ≤ 2

L

[
2αK/2(1− α)−1

(
3δ + 2L+

(L+δ)2

δ

)
+ δ

2

]
≤ 4

(
m+ 2

√
2m( 2

ε + 1)

)(
3ε+ 4 + (2 + ε)( 2

ε + 1)
)
αK/2 + ε

2 ,

which clearly implies the bound in (4.22). The bound in (4.23) also follows from the above inequality and the Markov’s

inequality.

By Proposition 4, the total number of gradient evaluations for the component functions fi required by the RPDG

method can be O(
√
m log−1(m/ε)) times smaller than those performed by deterministic optimal first-order methods.
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5 Complexity analysis

Our main goal in this section is to prove the main theorems in Sections 2 and 3. After introducing some basic tools

and general results about PDG and RPDG methods in Subsection 5.1 and 5.2, respectively, we provide the proofs

for Theorem 1 and Theorem 2, which describe the main convergence properties for the PDG and RPDG methods, in

Subsection 5.3. Moreover, in Subsection 5.4, we provide the proof for the lower complexity bound in Theorem 3.

5.1 Some basic tools

The following result provides a few different bounds on the diameter of the dual feasible sets G and Y in (2.7) and

(3.1).

Lemma 3 Let x0 ∈ X be given, y0
i = ∇fi(x0), i = 1, . . . ,m, and g0 = ∇f(x0). Assume that J ′i(y

0) = x0 and

J ′f (g0) = x0 in the definition of D(y0, y) and Df (g0, g) in (3.4) and (2.5), respectively.

a) For any x ∈ X and yi = ∇fi(x), i = 1, . . . ,m, we have

D(y0, y) ≤
Lf
2
‖x0 − x‖2 ≤ LfP (x0, x). (5.1)

b) If x∗ ∈ X is an optimal solution of (1.1) and y∗i = ∇fi(x∗), i = 1, . . . ,m, then

D(y0, y∗) ≤ Ψ(x0)− Ψ(x∗). (5.2)

c) For any x ∈ X and g = ∇f(x), we have

Df (g0, g) ≤
Lf
2
‖x0 − x‖2. (5.3)

Proof. We first show part a). It follows from the definition of Ji, (3.4), and (3.6) that

D(y0, y) = J(y)− J(y0)−
∑m
i=1〈J

′
i(y

0), yi − y0
i 〉

= 〈x, Uy〉 − f(x) + f(x0)− 〈x0, Uy0〉 − 〈x0, U(y − y0)〉

= f(x0)− f(x)− 〈Uy, x0 − x〉

≤
Lf
2
‖x0 − x‖2 ≤ LfP (x0, x),

where the last inequality follows from (2.2). We now show part b). By the above relation, the convexity of h and ω,

and the optimality of (x∗, y∗), we have

D(y0, y∗) = f(x0)− f(x∗)− 〈Uy∗, x0 − x∗〉

= f(x0)− f(x∗) + 〈h′(x∗) + µω′(x∗), x0 − x∗〉 − 〈Uy∗ + h′(x∗) + µω′(x∗), x0 − x∗〉

≤ f(x0)− f(x∗) + 〈h′(x∗) + µω′(x∗), x0 − x∗〉 ≤ Ψ(x0)− Ψ(x∗).

The proof of part c) is similar to part a) and hence the details are skipped.

The following lemma gives an important bound for the primal optimality gap Ψ(x̄)− Ψ(x∗) for some x̄ ∈ X.

Lemma 4 Let (x̄, ȳ) ∈ Z be a given pair of feasible solutions of (3.1), and z∗ = (x∗, y∗) be a pair of optimal solutions

of (3.1). Then, we have

Ψ(x̄)− Ψ(x∗) ≤ Q((x̄, ȳ), z∗) +
Lf
2
‖x̄− x∗‖2. (5.4)
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Proof. Let ȳ∗ = (∇f1(x̄);∇f2(x̄); . . . ;∇fm(x̄)), and by the definition of Q(·, ·) in (3.3), we have

Q((x̄, ȳ), z∗) =
[
h(x̄) + µω(x̄) + 〈x̄, Uy∗〉 − J(y∗)

]
−
[
h(x∗) + µω(x∗) + 〈x∗, Uȳ〉 − J(ȳ)

]
≥ [h(x̄) + µω(x̄) + 〈x̄, Uȳ∗〉 − J(ȳ∗)] + 〈x̄, U(y∗ − ȳ∗)〉 − J(y∗) + J(ȳ∗)

−
[
h(x∗) + µω(x∗) + max

y∈Y

{
〈x∗, Uy〉 − J(y)

}]
= Ψ(x̄)− Ψ(x∗) + 〈x̄, U(y∗ − ȳ∗)〉 − 〈x∗, Uy∗〉+ f(x∗) + 〈x̄, Uȳ∗〉 − f(x̄)

= Ψ(x̄)− Ψ(x∗) + f(x∗)− f(x̄) + 〈x̄− x∗,∇f(x∗)〉 ≥ Ψ(x̄)− Ψ(x∗)−
Lf
2
‖x̄− x∗‖2,

where the second equality follows from the fact that Ji, i = 1, . . . ,m, are the conjugate functions of fi.

5.2 General results for both PDG and RPDG

We will establish some general convergence results in Proposition 5 which holds for both deterministic and randomized

PDG methods by viewing PDG as a special case of RPDG with m = 1. Then both Theorems 1 and 2 follow as some

immediate consequences of Proposition 5.

Before showing Proposition 5 we will develop a few technical results. Lemma 5 below characterizes the solutions of

the prox-mapping in (2.3) and (3.5). This result generalizes some previous results (e.g., Lemma 6 of [20] and Lemma

2 of [14]).

Lemma 5 Let U be a closed convex set and a point ũ ∈ U be given. Also let w : U → R be a convex function and

W (ũ, u) = w(u)− w(ũ)− 〈w′(ũ), u− ũ〉, (5.5)

for some w′(ũ) ∈ ∂w(ũ). Assume that the function q : U → R satisfies

q(u1)− q(u2)− 〈q′(u2), u1 − u2〉 ≥ µ0W (u2, u1), ∀u1, u2 ∈ U (5.6)

for some µ0 ≥ 0. Also assume that the scalars µ1 and µ2 are chosen such that µ0 + µ1 + µ2 ≥ 0. If

u∗ ∈ Argmin{q(u) + µ1w(u) + µ2W (ũ, u) : u ∈ U}, (5.7)

then for any u ∈ U , we have

q(u∗) + µ1w(u∗) + µ2W (ũ, u∗) + (µ0 + µ1 + µ2)W (u∗, u) ≤ q(u) + µ1w(u) + µ2W (ũ, u).

Proof. Let φ(u) := q(u) + µ1w(u) + µ2W (ũ, u). It can be easily checked that for any u1, u2 ∈ U ,

W (ũ, u1) = W (ũ, u2) + 〈W ′(ũ, u2), u1 − u2〉+W (u2, u1),

w(u1) = w(u2) + 〈w′(u2), u1 − u2〉+W (u2, u1).

Using these relations and (5.6), we conclude that

φ(u1)− φ(u2)− 〈φ′(u2), u1 − u2〉 ≥ (µ0 + µ1 + µ2)W (u2, u1) (5.8)

for any u1, u2 ∈ Y , which together with the fact that µ0 + µ1 + µ2 ≥ 0 then imply that φ is convex. Since u∗ is an

optimal solution of (5.7), we have 〈φ′(u∗), u− u∗〉 ≥ 0. Combining this inequality with (5.8), we conclude that

φ(u)− φ(u∗) ≥ (µ0 + µ1 + µ2)W (u∗, u),

from which the result immediately follows.

The following simple result provides a few identities related to yt and ỹt that will be useful for the analysis of the

PDG algorithm.
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Lemma 6 Let yt, ỹt, and ŷt be defined in (3.8), (3.9), and (3.11), respectively. Then we have, for any i = 1, . . . ,m

and t = 1, . . . , k,

Et[Di(yt−1
i , yti)] = piDi(y

t−1
i , ŷti), (5.9)

Et[Di(yti , yi)] = piDi(ŷ
t
i , yi) + (1− pi)Di(yt−1

i , yi), (5.10)

for any y ∈ Y, where Et denotes the conditional expectation w.r.t. it given i1, . . . , it−1.

Proof. (5.9) follows immediately from the facts that Probt{yti = ŷti} = Probt{it = i} = pi and Probt{yti = yt−1
i } =

1− pi. Here Probt denotes the conditional probability w.r.t. it given i1, . . . , it−1. Similarly, we can show (5.10).

We now prove an important recursion about the RPDG method.

Lemma 7 Let the gap function Q be defined in (3.3). Also let xt and ŷt be defined in (3.10) and (3.11), respectively.

Then for any t ≥ 1, we have

E[Q((xt, ŷt), z)] ≤ E
[
ηtP (xt−1, x)− (µ+ ηt)P (xt, x)− ηtP (xt−1, xt)

]
+
∑m
i=1E

[(
p−1
i (1 + τt)− 1

)
Di(y

t−1
i , yi)− p−1

i (1 + τt)Di(y
t
i , yi)

]
+ E

[
〈x̃t − xt, U(ỹt − y)〉 − τtp−1

it
Dit(y

t−1
it

, ytit)
]
, ∀z ∈ Z. (5.11)

Proof. It follows from Lemma 5 applied to (3.10) that ∀x ∈ X,

〈xt − x, Uỹt〉+ h(xt) + µω(xt)− h(x)− µω(x) ≤ ηtP (xt−1, x)− (µ+ ηt)P (xt, x)− ηtP (xt−1, xt). (5.12)

Moreover, by Lemma 5 applied to (3.11), we have, for any i = 1, . . . ,m and t = 1, . . . , k,

〈−x̃t, ŷti − yi〉+ Ji(ŷ
t
i)− Ji(yi) ≤ τtDi(y

t−1
i , yi)− (1 + τt)Di(ŷ

t
i , yi)− τtDi(y

t−1
i , ŷti).

Summing up these inequalities over i = 1, . . . ,m, we have, ∀y ∈ Y,

〈−x̃t, U(ŷt − y)〉+ J(ŷt)− J(y) ≤
∑m
i=1

[
τtDi(y

t−1
i , yi)− (1 + τt)Di(ŷ

t
i , yi)− τtDi(y

t−1
i , ŷti)

]
. (5.13)

Using the definition of Q in (3.3), (5.12), and (5.13), we have

Q((xt, ŷt), z) ≤ ηtP (xt−1, x)− (µ+ ηt)P (xt, x)− ηtP (xt−1, xt)

+
∑m
i=1

[
τtDi(y

t−1
i , yi)− (1 + τt)Di(ŷ

t
i , yi)− τtDi(y

t−1
i , ŷti)

]
+ 〈x̃t, U(ŷt − y)〉 − 〈xt, U(ỹt − y)〉+ 〈x, U(ỹt − ŷt)〉. (5.14)

Also observe that by (3.8), (3.12), (5.9), and (5.10),

Di(y
t−1
i , ŷti) = 0, ∀i 6= it,

E[〈x, U(ỹt − ŷt)〉] = 0,

E[〈x̃t, Uŷt〉] = E[〈x̃t, Uỹt〉],

E[Di(y
t−1
i , ŷti)] = E[p−1

i Di(y
t−1
i , yti)]

E[Di(ŷ
t
i , yi)] = p−1

i E[Di(y
t
i , yi)]− (p−1

i − 1)E[Di(y
t−1
i , yi)],

Taking expectation on both sides of (5.14) and using the above observations, we obtain (5.11).

We are now ready to establish a general convergence result which holds for both PDG and RPDG.
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Proposition 5 Suppose that {τt}, {ηt}, and {αt} in the RPDG method satisfy

θt

(
p−1
i (1 + τt)− 1

)
≤ p−1

i θt−1(1 + τt−1), i = 1, . . . ,m; t = 2, . . . , k, (5.15)

θtηt ≤ θt−1(µ+ ηt−1), t = 2, . . . , k, (5.16)

ηk
4 ≥

Li(1−pi)2
τkpi

, i = 1, . . . ,m, (5.17)

ηt−1

2 ≥ Liαt
τtpi

+
(1−pj)2Lj
τt−1pj

, i, j ∈ {1, . . . ,m}; t = 2, . . . , k, (5.18)

ηk
2 ≥

∑m
i=1(piLi)

1+τk
, (5.19)

αtθt = θt−1, t = 2, . . . , k, (5.20)

for some θt ≥ 0, t = 1, . . . , k. Then, for any k ≥ 1 and any given z ∈ Z, we have∑k
t=1θtE[Q((xt, ŷt), z)] ≤ η1θ1P (x0, x)− (µ+ ηk)θkE[P (xk, x)]

+
∑m
i=1θ1

(
p−1
i (1 + τ1)− 1

)
Di(y

0
i , yi). (5.21)

Proof. Multiplying both sides of (5.11) by θt and summing the resulting inequalities, we have

E[
∑k
t=1θtQ((xt, ŷt), z)] ≤ E

[∑k
t=1θt

(
ηtP (xt−1, x)− (µ+ ηt)P (xt, x)− ηtP (xt−1, xt)

)]
+
∑m
i=1E

{∑k
t=1θt

[(
p−1
i (1 + τt)− 1

)
Di(y

t−1
i , yi)− p−1

i (1 + τt)Di(y
t
i , yi)

]}
+ E

[∑k
t=1θt

(
〈x̃t − xt, U(ỹt − y)〉 − τtp−1

it
Dit(y

t−1
it

, ytit)
)]
,

which, in view of the assumptions in (5.16) and (5.15), then implies that

E[
∑k
t=1θtQ((xt, ŷt), z)] ≤ η1θ1P (x0, x)− (µ+ ηk)θkE[P (xk, x)]

+
∑m
i=1

[
θ1
(
p−1
i (1 + τ1)− 1

)
Di(y

0
i , yi)− p

−1
i θk(1 + τk)Di(y

k
i , yi)

]
− E

[∑k
t=1θt∆t

]
, (5.22)

where

∆t := ηtP (xt−1, xt)− 〈x̃t − xt, U(ỹt − y)〉+ τtp
−1
it
Dit(y

t−1
it

, ytit). (5.23)

We now provide a bound on
∑k
t=1θt∆t in (5.22). Note that by (3.7), we have

〈x̃t − xt, U(ỹt − y)〉 = 〈xt−1 − xt, U(ỹt − y)〉 − αt〈xt−2 − xt−1, U(ỹt − y)〉

= 〈xt−1 − xt, U(ỹt − y)〉 − αt〈xt−2 − xt−1, U(ỹt−1 − y)〉

− αt〈xt−2 − xt−1, U(ỹt − ỹt−1)〉

= 〈xt−1 − xt, U(ỹt − y)〉 − αt〈xt−2 − xt−1, U(ỹt−1 − y)〉

− αtp−1
it
〈xt−2 − xt−1, ytit − y

t−1
it
〉

− αt(p−1
it−1
− 1)〈xt−2 − xt−1, yt−2

it−1
− yt−1

it−1
〉, (5.24)

where the last identity follows from the observation that by (3.8) and (3.9),

U(ỹt − ỹt−1) =
∑m
i=1

{[
p−1
i (yti − y

t−1
i ) + yt−1

i

]
−
[
p−1
i (yt−1

i − yt−2
i ) + yt−2

i

]}
=
∑m
i=1

{[
p−1
i yti − (p−1

i − 1)yt−1
i

]
−
[
p−1
i yt−1

i − (p−1
i − 1)yt−2

i

]}
=
∑m
i=1

[
p−1
i (yti − y

t−1
i ) + (p−1

i − 1)(yt−2
i − yt−1

i )
]

= p−1
it

(ytit − y
t−1
it

) + (p−1
it−1
− 1)(yt−2

it−1
− yt−1

it−1
).
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Using relation (5.24) in the definition of ∆t in (5.23), we have∑k
t=1θt∆t =

∑k
t=1θt

[
ηtP (xt−1, xt)

− 〈xt−1 − xt, U(ỹt − y)〉+ αt〈xt−2 − xt−1, U(ỹt−1 − y)〉

+ αtp
−1
it
〈xt−2 − xt−1, ytit − y

t−1
it
〉+ αt(p

−1
it−1
− 1)〈xt−2 − xt−1, yt−2

it−1
− yt−1

it−1
〉

+ p−1
it
τtDit(y

t−1
it

, ytit)
]
. (5.25)

Observe that by (5.20) and the fact that x−1 = x0,∑k
t=1θt

[
〈xt−1 − xt, U(ỹt − y)〉 − αt〈xt−2 − xt−1, U(ỹt−1 − y)〉

]
= θk〈xk−1 − xk, U(ỹk − y)〉

= θk〈xk−1 − xk, U(yk − y)〉+ θk〈xk−1 − xk, U(ỹk − yk)〉

= θk〈xk−1 − xk, U(yk − y)〉+ θk(p−1
ik
− 1)〈xk−1 − xk, ykik − y

k−1
ik
〉,

where the last identity follows from the definitions of yk and ỹk in (3.8) and (3.9), respectively. Also, by the strong

convexity of P and Di, we have

P (xt−1, xt) ≥ 1
2‖x

t−1 − xt‖2 and Dit(y
t−1
it

, ytit) ≥
1

2Lit
‖yt−1
it
− ytit‖

2.

Using the previous three relations in (5.25), we have∑k
t=1θt∆t ≥

∑k
t=1θt

[ηt
2 ‖x

t−1 − xt‖2 + αtp
−1
it
〈xt−2 − xt−1, ytit − y

t−1
it
〉

+ αt(p
−1
it−1
− 1)〈xt−2 − xt−1, yt−2

it−1
− yt−1

it−1
〉+ τt

2Litpit
‖yt−1
it
− ytit‖

2
]

− θk〈xk−1 − xk, U(yk − y)〉 − θk(p−1
ik
− 1)〈xk−1 − xk, ykik − y

k−1
ik
〉.

Regrouping the terms in the above relation, and the fact that x−1 = x0, we obtain∑k
t=1θt∆t ≥ θk

[
ηk
4 ‖x

k−1 − xk‖2 − 〈xk−1 − xk, U(yk − y)〉
]

+ θk

[
ηk
4 ‖x

k−1 − xk‖2 − (p−1
ik
− 1)〈xk−1 − xk, ykik − y

k−1
ik
〉+ τk

4Likpik
‖yk−1
ik
− ykik‖

2
]

+
∑k
t=2θt

[
αt
pit
〈xt−2 − xt−1, ytit − y

t−1
it
〉+ τt

4Litpit
‖yt−1
it
− ytit‖

2
]

+
∑k
t=2

[
αtθt(p

−1
it−1
− 1)〈xt−2 − xt−1, yt−2

it−1
− yt−1

it−1
〉+

τt−1θt−1

4Lit−1
pit−1

‖yt−2
it−1
− yt−1

it−1
‖2
]

+
∑k
t=2

θt−1ηt−1

2 ‖xt−2 − xt−1‖2

≥ θk
[
ηk
4 ‖x

k−1 − xk‖2 − 〈xk−1 − xk, U(yk − y)〉
]

+ θk

(
ηk
4 −

Lik (1−pik )2

τkpik

)
‖xk−1 − xk‖2

+
∑k
t=2

[
θt−1ηt−1

2 − Litα
2
tθt

τtpit
−
α2
tθ

2
t (1−pit−1

)2Lit−1

τt−1θt−1pit−1

]
‖xt−2 − xt−1‖2

= θk

[
ηk
4 ‖x

k−1 − xk‖2 − 〈xk−1 − xk, U(yk − y)〉
]

+ θk

(
ηk
4 −

Lik (1−pik )2

τkpik

)
‖xk−1 − xk‖2

+
∑k
t=2θt−1

(
ηt−1

2 − Litαt
τtpit

−
(1−pit−1

)2Lit−1

τt−1pit−1

)
‖xt−2 − xt−1‖2

≥ θk
[
ηk
4 ‖x

k−1 − xk‖2 − 〈xk−1 − xk, U(yk − y)〉
]
, (5.26)
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where the second inequality follows from the simple relation that

b〈u, v〉+ a‖v‖2/2 ≥ −b2‖u‖2/(2a), ∀a > 0, (5.27)

and the last inequality follows from (5.17) and (5.18). Plugging the bound (5.26) into (5.22), we have∑k
t=1θtE[Q((xt, ŷt), z)] ≤ θ1η1P (x0, x)− θk(µ+ ηk)E[P (xk, x)] +

∑m
i=1θ1

(
p−1
i (1 + τ1)− 1

)
Di(y

0
i , yi)

− θkE
[
ηk
4 ‖x

k−1 − xk‖2 − 〈xk−1 − xk, U(yk − y)〉+
∑m
i=1p

−1
i (1 + τk)Di(y

k
i , yi)

]
.

Also observe that by (5.19) and (5.27),

ηk
4 ‖x

k−1 − xk‖2 − 〈xk−1 − xk, U(yk − y)〉+
∑m
i=1p

−1
i (1 + τk)Di(y

k
i , yi)

≥ ηk
4 ‖x

k−1 − xk‖2 +
∑m
i=1

[
−〈xk−1 − xk, yki − yi〉+ 1+τk

2Lipi
‖yki − yi‖

2
]

≥
(
ηk
4 −

∑m
i=1(piLi)
2(1+τk)

)
‖xk−1 − xk‖2 ≥ 0,

The result then immediately follows by combining the above two conclusion.

5.3 Proof of main convergence results

We now provide a proof for Theorem 1 which describes the main convergence properties of the deterministic PDG

method.

We first specialize Proposition 5 for the PDG method applied to (2.7).

Proposition 6 Suppose that {τt}, {ηt}, and {αt} in the PDG method satisfy

θtτt ≤ θt−1(1 + τt−1), t = 2, . . . , k, (5.28)

θtηt ≤ θt−1(µ+ ηt−1), t = 2, . . . , k, (5.29)

ηt−1τt ≥ 2Lfαt, t = 2, . . . , k, (5.30)

ηk(1 + τk) ≥ 2Lf , (5.31)

αt = θt−1/θt, t = 2, . . . , k, (5.32)

for some θt ≥ 0, t = 1, . . . , k. Also let us denote zt = (xt, gt), and

z̄k :=
(∑k

t=1θt

)−1∑k
t=1θtz

t. (5.33)

Then, for any k ≥ 1 and any given (x, g) ∈ X × G, we have(∑k
t=1θt

)
Qf (z̄k, z) + θk(µ+ ηk)P (xk, x) ≤ θ1η1P (x0, x) + θ1τ1Df (g0, g). (5.34)

Proof. Notice that in the deterministic PDG method, we have m = 1, pi = 1, and ŷt = gt. It can be easily seen

that the assumptions in (5.15)-(5.20) are implied by those in (5.28)-(5.32). It then follows from (5.21) that∑k
t=1θtQf (zt, z) ≤ θ1η1P (x0, x)− θk(µ+ ηk)P (xk, x) + θ1τ1Df (g0, g).

Dividing both sides of the above inequality by
∑k
t=1θt and using the convexity of Q(z̄, z) w.r.t. z̄, we have(∑k

t=1θt

)
Qf (z̄k, z) ≤

∑k
t=1θtQf (zt, z) ≤ θ1η1P (x0, x)− θk(µ+ ηk)P (xk, x) + θ1τ1Df (g0, g).

Rearranging the terms in the above relation, we obtain (5.34).

We are now ready to show Theorem 1.
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Proof of Theorem 1 We first show part a). It can be easily checked that (5.28)-(5.32) are satisfied with the selection

of {τt}, {ηt}, {αt}, and {θt} in (2.24). Using (5.34) (with x = x∗ and y = y∗), (5.3), and the fact that Qf (z̄, z∗) ≥ 0,

we have

θk(µ+ ηk)P (xk, x∗) ≤ θ1(η1 + Lf τ1)P (x0, x∗), ∀k ≥ 1.

Using the parameter settings in (2.24), we conclude that

P (xk, x∗) ≤ θ1(η1+Lfτ1)
θk(µ+ηk)

P (x0, x∗) =
(
√

2Lfµ+Lf
√

2Lf/µ)

α(µ+
√

2Lfµ)
αkP (x0, x∗) =

µ+Lf
µ αkP (x0, x∗).

Also using (5.34) and the fact that P (xk, x) ≥ 0, we have(∑k
t=1θt

)
Qf (z̄k, z) ≤ θ1η1P (x0, x) + θ1τ1Df (g0, g), ∀z ∈ Z. (5.35)

Denoting ḡk∗ := (∇f1(x̄k); . . . ;∇fm(x̄k)), we conclude from (5.3) that

Df (g0, ḡk∗ ) ≤ Lf
2 ‖x̄

k − x0‖2 ≤ Lf
2 [
∑k
t=1θt]

−1∑k
t=1θt‖x

t − x0‖2

≤ Lf
2 [
∑k
t=1θt]

−1∑k
t=1θt(‖x

t − x∗‖2 + ‖x0 − x∗‖2)

≤ Lf
2

[
2(µ+Lf )

µ P (x0, x∗) + ‖x0 − x∗‖2
]
≤ Lf

(
2µ+Lf
µ

)
P (x0, x∗),

where the second inequality follows from the convexity of ‖ · ‖2, the third inequality follows from the triangular

inequality, the fourth inequality follows from ‖xt − x∗‖2 ≤ 2P (xt, x∗) and (2.25), and the last inequality follows from

‖x0 − x∗‖2 ≤ 2P (x0, x∗). Also note that by the definition of θt, we have∑k
t=1θt =

∑k
t=1α

−t = 1−αk
(1−α)αk

≥ 1
αk
, (5.36)

where the last inequality follows from the fact that α ≤ 1 due to (2.24). Fixing g = ḡk∗ in (5.35) and using the above

two relations, we obtain

Qf (z̄k, (x, ḡk∗ )) ≤ αk
[
θ1η1P (x0, x) + Lfθ1τ1

(
2µ+Lf
µ

)
P (x0, x∗)

]
≤ (µ+

√
2Lµ)αk

[
P (x0, x) +

Lf
µ (2 +

Lf
µ )P (x0, x∗)

]
= µαk

1−α

[
P (x0, x) +

Lf
µ (2 +

Lf
µ )P (x0, x∗)

]
.

The result in (2.26) then directly follows from the above relation and (2.21). If X is bounded, the result in (2.27) then

follows from the above relation, (2.21), and (2.22).

We now show part b). It is trivial to check that the conditions in (5.28)-(5.32) hold by using our selection of {τt},
{ηt}, {αt}, and {θt}. Using (5.34) and the facts τ1 = 0 and P (xk, x) ≥ 0, we have(∑k

t=1θt

)
Qf (z̄k, z) ≤ θ1η1P (x0, x) = 4LfP (x0, x).

which, in view of (2.20) and (2.21) and the fact that
∑k
t=1θt = k(k+1)/2, clearly implies (2.29). In case X is bounded,

the result in (2.30) immediately follows from (2.21), (2.22), and the above inequality.

We are now ready to provide a proof for Theorem 2, which describes the main convergence properties of the RPDG

method applied to strongly convex problems with µ > 0.

Proof of Theorem 2. It can be easily checked that the conditions in (5.15)-(5.20) are satisfied with our requirements

(3.19)-(3.22) of {τt}, {ηt}, {αt}, and {θt}. Using the fact that Q((xt, ŷt), z∗) ≥ 0 , we then conclude from (5.21) (with

x = x∗ and y = y∗) that, for any k ≥ 1,

E[P (xk, x∗)] ≤ 1
θk(µ+η)

[
θ1ηP (x0, x∗) + θ1α

1−αD(y0, y∗)
]
≤
(

1 +
Lfα

(1−α)η

)
αkP (x0, x∗),

where the first inequality follows from (3.19) and (3.20), and the second inequality follows from (3.21) and (5.1).
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Let us denote ȳk ≡ (
∑k
t=1θt)

−1∑k
t=1(θtŷ

t), z̄k = (x̄k, ȳk). In view of (5.4), the convexity of ‖ · ‖, and (2.2), we

have

E[Ψ(x̄k)− Ψ(x∗)] ≤ E[Q(z̄k, z∗)] +
Lf
2 (
∑k
t=1θt)

−1E[
∑k
t=1θt‖x

t − x∗‖2]

≤ E[Q(z̄k, z∗)] + Lf (
∑k
t=1θt)

−1E[
∑k
t=1θtP (xt, x∗)]. (5.37)

Using (5.21) (with x = x∗ and y = y∗), the fact that P (xk, x) ≥ 0, and (5.36), we obtain

E[Q(z̄k, z∗)] ≤
(∑k

t=1θt

)−1∑k
t=1θtE[Q((xt, ŷt), z∗)] ≤ αk

(
α−1η +

Lf
1−α

)
P (x0, x∗).

We conclude from (3.23) and the definition of {θt} that

(
∑k
t=1θt)

−1E[
∑k
t=1θtP (xt, x∗)] = (

∑k
t=1α

−t)−1∑k
t=1α

−t(1 +
Lfα

(1−α)η
)αtP (x0, x∗)

≤ 1−α
α−k−1

∑k
t=1

αt

α3t/2 (1 +
Lfα

(1−α)η
)P (x0, x∗)

= 1−α
α−k−1

α−k/2−1
1−α1/2 (1 +

Lfα
(1−α)η

)P (x0, x∗)

= 1+α1/2

1+α−k/2
(1 +

Lfα
(1−α)η

)P (x0, x∗) ≤ 2αk/2(1 +
Lfα

(1−α)η
)P (x0, x∗).

Using the above two relations, and (5.37), we obtain

E[Ψ(x̄k)− Ψ(x∗)] ≤ αk
(
α−1η +

Lf
1−α

)
P (x0, x∗) + Lf2αk/2

(
1 +

Lfα
(1−α)η

)
P (x0, x∗)

≤ αk/2
(
α−1η + 3−2α

1−α Lf +
2L2

fα

(1−α)η

)
P (x0, x∗).

5.4 Proof of the lower complexity bound

This subsection is devoted to the proof of Theorem 3, which describes the performance limit for randomized incremental

gradient methods.

The following result provides an explicit expression for the optimal solution of (3.37).

Lemma 8 Let q be defined in (3.42), x∗i,j is the j-th element of xi, and define

x∗i,j = qj , i = 1, . . . ,m; j = 1, . . . , ñ. (5.38)

Then x∗ is the unique optimal solution of (3.37).

Proof. It can be easily seen that q is the smallest root of the equation

q2 − 2Q+1
Q−1q + 1 = 0. (5.39)

Note that x∗ satisfies the optimality condition of (3.37), i.e.,(
A+ 4

Q−1I
)
x∗i = e1, i = 1, . . . ,m. (5.40)

Indeed, we can write the coordinate form of (5.40) as

2Q+1
Q−1x

∗
i,1 − x

∗
i,2 = 1, (5.41)

x∗i,j+1 − 2Q+1
Q−1x

∗
i,j + x∗i,j−1 = 0, j = 2, 3, . . . , ñ− 1, (5.42)

−(κ+ 4
Q−1 )x∗i,ñ + x∗i,ñ−1 = 0, (5.43)

where the first two equations follow directly from the definition of x∗ and relation (5.39), and the last equation is

implied by the definitions of κ and x∗ in (3.39) and (5.38), respectively.

We also need a few technical results to establish the lower complexity bounds.
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Lemma 9 a) For any x > 1, we have

log(1− 1
x ) ≥ − 1

x−1 . (5.44)

b) Let ρ, q, q̄ ∈ (0, 1) be given. If we have

ñ ≥ t log q̄+log(1−ρ)
2 log q ,

for any t ≥ 0, then

q̄t − q2ñ ≥ ρq̄t(1− q2ñ).

Proof. We first show part a). Denote φ(x) = log(1 − 1
x ) + 1

x−1 . It can be easily seen that limx→+∞ φ(x) = 0.

Moreover, for any x > 1, we have

φ′(x) = 1
x(x−1)

− 1
(x−1)2

= 1
x−1

(
1
x −

1
x−1

)
< 0,

which implies that φ is a strictly decreasing function for x > 1. Hence, we must have φ(x) > 0 for any x > 1. Part b)

follows from the following simple calculation.

q̄t − q2ñ − ρq̄t(1− q2ñ) = (1− ρ)q̄t − q2ñ + ρq̄tq2ñ ≥ (1− ρ)q̄t − q2ñ ≥ 0.

We are now ready to prove Theorem 3.

Proof of Theorem 3 Without loss of generality, we may assume that the initial point x0
i = 0, i = 1, . . . ,m. Indeed,

the incremental gradient methods described in Subsection 3.3 are invariant with respect to a simultaneous shift of the

decision variables. In other words, the sequence of iterates {xk}, which is generated by such a method for minimizing

the function Ψ(x) starting from x0, is just a shift of the sequence generated for minimizing Ψ̄(x) = Ψ(x+ x0) starting

from the origin.

Now let ki, i = 1, . . . ,m, denote the number of times that the gradients of the component function fi are computed

from iteration 1 to k. Clearly ki’s are binomial random variables supported on {0, 1, . . . , k} such that
∑m
i=1ki = k.

Also observe that we must have xki,j = 0 for any k ≥ 0 and kj + 1 ≤ j ≤ ñ, because each time the gradient ∇fi is

computed, the incremental gradient methods add at most one more nonzero entry to the i-th component of xk due to

the structure of the gradient ∇fi. Therefore, we have

‖xk−x∗‖22
‖x0−x∗‖22

=

∑m
i=1‖x

k
i − x

∗
i ‖

2
2∑m

i=1‖x
∗
i ‖

2 ≥
∑m
i=1

∑ñ
j=ki+1(x∗i,j)

2∑m
i=1

∑ñ
j=1(x∗i,j)

2
=

∑m
i=1(q2ki − q2ñ)
m(1−q2ñ)

. (5.45)

Observing that for any i = 1, . . . ,m,

E[q2ki ] =
∑k
t=0

[
q2t
(
k
t

)
pti(1− pi)

k−t
]

= [1− (1− q2)pi]
k,

we then conclude from (5.45) that

E[‖xk−x∗‖22]

‖x0−x∗‖22
≥
∑m
i=1[1− (1− q2)pi]

k −mq2ñ

m(1−q2ñ)
.

Noting that [1 − (1 − q2)pi]
k is convex w.r.t. pi for any pi ∈ [0, 1] and k ≥ 1, by minimizing the RHS of the above

bound w.r.t. pi, i = 1, . . . ,m, subject to
∑m
i=1 pi = 1 and pi ≥ 0, we conclude that

E[‖xk−x∗‖22]

‖x0−x∗‖22
≥ [1−(1−q2)/m]k−q2ñ

1−q2ñ ≥ 1
2 [1− (1− q2)/m]k, (5.46)

for any n ≥ n(m, k) (see (3.44)) and possible selection of pi, i = 1, . . . ,m satisfying (3.40), where the last inequality

follows from Lemma 9.b). Noting that

1− (1− q2)/m = 1−
[
1−

(√
Q−1√
Q+1

)2
]

1
m = 1− 1

m + 1
m

(
1− 2√

Q+1

)2

= 1− 4
m(
√
Q+1)

+ 4
m(
√
Q+1)2

= 1− 4
√
Q

m(
√
Q+1)2

,
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we then conclude from (5.46) and Lemma 9.a) that

E[‖xk−x∗‖22]

‖x0−x∗‖22
≥ 1

2

[
1− 4

√
Q

m(
√
Q+1)2

]k
= 1

2exp
(
k log

(
1− 4

√
Q

m(
√
Q+1)2

))
≥ 1

2exp
(
− 4k

√
Q

m(
√
Q+1)2−4

√
Q

)
.

6 Concluding remarks

In this paper, we present a new class of optimal first-order methods, referred to as primal-dual gradient methods, for

solving the finite-sum composite convex optimization problems given in the form of (1.1). The optimal convergence of

this algorithm has been established based on the primal-dual optimality gap for the ergodic mean of iterates, i.e., z̄k,

and the distance from the iterate xk to the optimal solution x∗. We also develop a randomized primal-dual gradient

method which needs to compute the gradient of only one randomly selected component fi. The complexity bounds

of the randomized primal-dual gradient method have been established in terms of the distance from the iterate xk to

the optimal solution, and the primal optimality gap based on the ergodic mean of iterates, i.e., E[Ψ(x̄k) − Ψ∗]. We

show that these bounds are not improvable when the dimension n is large enough by developing new lower complexity

bounds for randomized incremental gradient methods. Extensions of the randomized primal-dual gradient method to

non-strongly convex, nonsmooth, and unbounded problems are also discussed in this paper. It should be noted that in

this paper we focus on the theoretic convergence properties of these primal-dual gradient methods, and the algorithmic

parameters were chosen in a conservative manner and were dependent on a few problem parameters, e.g., L and µ. In

the future, it will be interesting to develop more adaptive versions of these algorithms which do not require the explicit

estimation about L and µ.
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