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Abstract

METRIC Approximation is a popular model for supply chain management. We prove that it has
a unimodal objective function when the demands of the n retailers are normally distributed. That
allows us to solve it with a convergent sequence. This optimization method leads us to a closed-form
equation of computational complexity ©(n). Its solutions are at most 0.001% above the optimum for
all our instances. Our proof relies on a generic analytical rule that we introduce to prove unimodality,
S0 quasi-concavity or quasi-convexity, of univariate functions.

1 Introduction

In literature devoted to optimization of distribu-
tion systems, the most studied configuration con-
sists in several retailers which replenish from a
common warehouse. In general, the latter receives
goods from suppliers whose joint capacity is infi-
nite. Regarding the retailers, they face stochastic
demands, thus making the whole problem diffi-
cult. The simplest model for this system sticks
to fixed transportation times, negligible orderings
costs (no fixed costs) and both warehouse and re-
tailers order 1 unit as soon as they are withdrawn
from 1 unit (that is called a (S — 1,5) policy).
The goal is generally to minimize the sum of the
average holding and back-order costs, which are
linear in the average on-hand and shorted inven-
tories.

Authors often work on more complicated but
more realistic variants. Sometimes, they fo-
cus on centralized policy control whereas the
simplest problem manages independent decisions
([19] compares both). Certain authors tackle
stochastic transportation times [35, 14|, direct re-
tailing by the warehouse [9] or ordering costs [8].
Most of them deal with (R, @) policies (batch re-
plenishments). Nevertheless, the basic system de-
scribed above and the most famous method to

address it are still widely used [29, 7]. The latter
has been introduced in 1968 by Craig Sherbrooke
[28] and, nowadays, it is usual to call it METRIC
Approximation. In the eighteens, Vari-METRIC
improved it by using a more accurate approxima-
tion of the retailer lead times [20]. But, for a
start, we chose to focus on METRIC Approxima-
tion, popular, simple and not so bad [29].

1.1 Usual simplifications

Before exploring our simplified approach, we
present an overview on usual ways of making
supply chain problems tractable. A first idea
is to explore the solution space with heuristics,
as done by [19] and [24] among others. A dif-
ferent point of view consists in interpolation of
precomputed tables, like [8] for a single-echelon
problem and [11] for a two-echelon problem. On
the opposite, when an exact solution is required,
tight bounds on the solution have been stated to
shrink the search space, for instance in [4]. More-
over, when looking for exact solutions, problem
decompositions are a successful way of tractabil-
ity. In [25], decomposition methods for serial sys-
tems as well as for distribution ones are stated.
Thus, sub-problems with a fewer number of vari-
ables are obtained. For instance, [32, 33] decom-



pose a serial system into successive single-echelon
problems, which results in a set of incomplete
convolutions to be minimized recursively. Some-
times, these expensive recursions can be avoided,
as done by the famous model of Clark and Scarf
[13]. For decomposing two-echelon distribution
systems, [2], [6] and [11] assign a virtual back-
order cost to the warehouse, whose purpose is to
account the impact of its decision to the rest of
the system. By means of it, they consider the
warehouse as a single-echelon problem, thus com-
puting easily its optimal base-stock level. Conse-
quently, the distribution of the retailer lead times
is known and their inventories are optimized as
single-echelon systems too. Another approach to
simplify the problems consists in the use of nor-
mally distributed demands, which is very com-
mon [2, 5, 6, 11, 8, 19, 16, 14]. That allows for an-
alytical simplifications and is faster to compute.
Moreover, it allows for gradient-based searches
[16]. At last, for some problems, other distribu-
tions can bring simplifications. Indeed, [32, 33]
approximate the demands of a serial system by
Erlang distributions, because they are trivial to
convolute. One can cite also [14] who describes
the stochastic warehouse lead time by an expo-
nential distribution, although he still approxi-
mates the overall durations by normal distribu-
tions.

1.2 Overview of our approach

As shown in classical literature, when a model de-
scribes stochastic data by a Poisson distribution
whose parameter A tends to +o0o, the probabil-
ities can be approximated by a normal distribu-
tion. Then, one translates the mean by p = X\ and
the standard deviation by o = v/A. In practice,
A > 6 is largely noticed to give accurate probabili-
ties. Concretely, multiplying average demands by
lead times has to give high values. For instance,
our model is suitable for small parts (such as cere-
als, electronic components, screws). Furthermore,
normal distributions match reality when continu-
ous amounts of fluids are handled (such as water,
sand, gas, fuel).

The replenishment policy of METRIC Approxi-
mation is (S—1, 5), which corresponds to a (R, Q)
policy with R =5 — 1 and @Q = 1, meaning that

both warehouse and retailers order 1 unit as soon
as they are withdrawn from 1 unit, thus the in-
ventory positions are constant. When adapting
this model to continuous optimization, quanti-
ties are in R. For any inventory of size S, an
infinitesimal withdraw d.S must trigger a replen-
ishment in order to keep the position at S. As
we will see, our solving method is equivalent to
that of [2] and [6], but they do not state any uni-
variate objective function for the model that we
address. They build their method by a different
approach. Convergence of the algorithm of [2]
is proven only when back-order costs are greater
than holding costs and they do not ensure that
the first solution found is the global optimum,
whereas our algorithm always reaches the global
optimum independently of the parameters. In [6],
a fast method is also stated but it is less accu-
rate and optimum-uniqueness is not proven for
any model. Other authors are not far from our
approach. For instance, [19] rely on a more ac-
curate model and approximate it by a formula
close to ours. Nevertheless, their function is not
proven to hold one optimum only. Consequently,
they optimize it through a generic search algo-
rithm instead of a fast devoted method. Indeed,
we will show that our cost formula is quasi-convex
and unimodal, and fast solving methods are suit-
able for such objective functions [27]. On this
point, we noted that Sven Axséter proposed a
search method in O(|R|log S5 log S,.) for a model
assumed to be convex, where |R| is the number of
retailers, S§ is the optimal warehouse base-stock
level and S, is the greatest retailer base-stock
level [5]. In contrast, our solving method con-
verges so quickly that we suggest a closed-form
solution in O(|R|).

Companies may face very large problems, that
is why they are in their best interest to have a
fast solving method. Our approximation is ac-
curate for large demands and is fast due to the
suggested closed-form solution. In section 2, we
translate METRIC Approximation into a model
dealing with normally distributed demands and
non-identical retailers, under the assumption that
the average demand of any retailer is equal to the
variance, like in the original model. Section 3
presents a solution approach for our model. Sec-
tion 4 compares our closed-form solution to that



of 6] and exact solutions. At last, section 5 con-
cludes and compares our approach to that assign-
ing virtual back-order costs to the warehouse.

2 The model

Our model is built by considering METRIC Ap-
proximation [28] and replacing Poisson distribu-
tions of the retailer demands with normal distri-
butions. We denote by 0 the warehouse and by
R = {1...|R|} the set of retailers. The base-stock
levels Sg and S, Vr € R are the decision vari-
ables. The warehouse is subject to a holding cost
hg, while a holding cost h, and a back-order cost
b, are assigned to every retailer r. The average
cost induced by stocked goods in the warehouse is
Co(Sp). For each retailer r, the average cost due
to back-orders and stocked goods is C..(S,.).

As shown in classical literature, any Poisson
distribution of parameter A can be approximated
by the normal distribution when A tends to +oo
(A > 6 allows already for a good approximation),
by taking ;1 = A and o = v/ as parameters. So,
to consider that METRIC Approximation is un-
der normally distributed demands, our model as-
sumes that each retailer r faces a normal demand
whose mean and variance are p, = 02 = \,..

The problem is to minimize the average overall
cost

C(So, .-, Sjr)) = Co(So) + > Cr(Sr). (1)

reR

The METRIC cost formulas are used without
change:
Co(S0) = hoIo(So) (2)

and
Cy(Sr) = hyL.(S;) + b B(Sy). (3)

The average inventory levels I,.(S,.) and the aver-
age back-orders B,.(S,) are translated into their
respective continuous versions in a common way:

S

I(S;) = / (S —2) filw)de,  (4)

—00

“+o0
Bi(S)) = /S (x—S) file)de  (5)

i

with f;(x) the normal distribution of the demand
(at the warehouse for ¢ = 0, at a retailer for ¢ =
r € R). For efficiency, formulas (36) and (41) in
appendix B can be used instead of those integrals.

The difficulty of the problem comes from the
computation of C.(S,). According to equation
(3), this cost depends on the expectations of the
inventory level and the back-orders. In turn, they
depend on the delay L, between a replenishment
order and its effective delivery. Indeed, the longer
it is, the more back-orders occurs. In METRIC
Approximation, this delay is taken into account
through its influence on the parameters of the
distribution f, and is approximated by the trans-
portation duration L, and adding the average
waiting time /\%BO(S@) due to stock-outs at the
warehouse [28|. The latter expression comes from
the well known Little’s formula [26], which states
the average waiting time in a queue with respect
to the event rate A\g and the average number of
events By(Sp) (a simple proof is given in [30]).
The average demand )\, which occurs during the
approximated delay L, = L, + %OBO(SO) being
proportional to L, itself, the model considers that

— 1
o= A (L,.+ BO(SO)> .
)\0

We view our demand distribution as a normal ap-
proximation of the Poisson distribution. Conse-
quently, the mean and the variance of the retailer
demands look similar:

fr = prLy + &BO(SO) (6)
Mo

o2

0'77«2 = O’,«QLT. + Bo(So). (7)

Ho
Those parameters define the distributions used in
the expressions of I,.(S,) and B, (S, ), thus making
them intricate. We keep distinguishing g, from
o2 in order to allow further work to extend our
equations to the case o2 # ..

Similarly, we inherit from the additive property
of the Poisson distribution in order to compute
the distribution parameters of the total demand
viewed by the warehouse:

MO:ZNT7 (8)

reR
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r€R
Like in the original model, they are extended over

the transportation time Ly between the ware-
house and its supplier by

o = Lo po, (10)
o = Lood. (11)

Those parameters define the distribution used in
the expressions of I(Sp) and By(So).

Because METRIC is a decentralized model,
each retailer r is a single echelon system. As
shown by lemma 15 in appendix B, the opti-
mal base-stock level of such a system with nor-
mally distributed demands is known to be S} =
F: 1(h,,i[b,,.) where F1 is the inverse cumulative
distribution function of the retailer. Therefore,
the objective function (1) of our problem can be
written with respect to one variable only. Our

model will be solved by

S(r)g% {CO(SO) + Z C, (F,Il (hrlibr)> } . (12)

reR

As it is, the equation is still complicated, since we
saw that the parameters of C, and F, ' depends
on Sy. The next section shows how to tackle it in
a simple way and without loss of optimality.

3 Analysis and solution ap-
proach

Our problem, summarized by equation (12), can
be written as a simpler function of one variable
(namely Sp). In theorem 1, we state it. We show
in theorem 2 that it is strictly unimodal, meaning
that it holds one global optimum and no other sta-
tionary point. This property allows theorem 3 to
state a convergent sequence which always reaches
the optimal solution. We use it as a search al-
gorithm and it turns out to converge so fast that
we suggest a closed form approximation based on
the first two iterations. The reader will find in
appendix proofs of the lemmas and methods that
we use here. We advice non-specialists to read
the appendix first. There, tools are introduced

in an pedagogical and linear structure, without
cross-references to the article.

The following theorem brings our model an ob-
jective function of one variable, thus optimization
becomes easier.

Theorem 1. For a given warehouse base-stock
level Sy, the optimal overall cost of the complete
model can be computed independently of the op-
timal retailer base-stock levels. It is

C*(S) =
1
ho 10(S0) + D (hr +br)ry [ Lr + —Bo(So)
reR Ko
(13)
with o )
= ——e 5" 14
LY~ (14)
and

sy = erf’! (212) (15)

two constants related to every retailer 7.
Some readers may prefer to consider -, =
or ¢(® (), where ¢ is the standard normal
distribution, ®-! is the inverse of its cumulative

distribution, and a, = 3 l_’;h .
T T

Proof. According to equation (1), for a given Sy,
the optimal overall cost is

C(S0, 87, Siy) = hoIo(So) + > C(S7)
reR

*

where ST ... R Are the optimal base-stock levels
of the retailers. Lemma 16 in appendix B states

that L
Or 2

CT(S:) = (hy +br) m e’

where @, is replaced by o,/L, + iBo(SO) ac-

cording to equation (7). O

Due to the following theorem, any algorithm
finding a stationary point on function (13) is en-
sured to have reached the global optimum. By
a straightforward extension of the traditional no-
tion of strict unimodality (defining functions hav-
ing one maximum and no other stationary point),
we say that this theorem state that our univariate
objective function is strictly unimodal.

Theorem 2. Function (13) has one minimum
and no other stationary point.



Proof. We follow the flowcharts of the rule pre-
sented in appendix D, but we will test positivity
of functions instead of negativity. Indeed, we are
proving uniqueness of the minimum.

According to step 2 of the main procedure, we
derive equation (13):

ho Fo(So)
Fo(So) — 1 hy + by
. %Z%- : . (16)
Ho reR \/Lr + EBO(SO)

where Fy(Sp) and Fp(Sp) — 1 are the respective
derivatives of Iy(Sp) and By(Sp) according to lem-
mas 6 and 11 in appendix B. For conciseness, let
us denote

Iy + b,
S1(S0) = Y -
reR L, + %BO(SO)

and

h,. + b,
¥3(80) = Z% 3 -
r€R L, + ;1030(50)

As allowed by step 2, equation (16) is divided by
ho (1 — FO(SO)), thus obtaining

Fo(So) 1
1= Fp(So)  2umoho

¥1(So) - (17)

At step 3, the latter is derived:

fo(So) 1= Fo(So)

(1- Fo(So))2 44102hg ¥3(S).  (18)

According to step 5 of the sub-procedure, we

extract lej 7o from equation (17) :
1 Fy(So) 1
2uoho 1 — Fo(So) X1(S0)

and we substitute it in equation (18) :

Jo(So) ~ Fo(S0) 25(S0)
(1— Fy(S0))” 210 21(S0)

(19)

At step 2, we perform the first three transforma-
tions allowed. Regarding the dominance trans-
formation, a lower function is considered because
we are proving positivity. We suggest to replace

gfgggg with a greater function. Let L be the pa-

rameter L, of the retailer r having the greatest
quotient

-1
h,+b,.
Yr - 3 | T
LT + EBO(SO)

h,+b,.
1
L, + %BO(SO)

The latter is simply equal to and,

1
L+ Bo(So)
due to theorem 17 in appendix C, we have
1 S £3(S0)
L+ 4-Bo(So) ~ 1(S)

Furthermore is dominated by %

1
? L+%BO(SO)
due to non-negativity of parameters L,. Thus,

gfggg; is replaced with the latter in equation (19).

As allowed by step 2, we multiply the result by

2%3!25%3) That leads us to
2By(So) _ Fo(So)
0'70(1 — Fo(So))2 FOfO(SO)

At last, we compose that equation with g + ¢z,
as allowed by step 2. By denoting the standard
normal distribution by ¢(z) and its cumulative
distribution by ®(z), and from definition of By
(equation (42) in appendix B), we obtain

SIRC EEEL 16) NI TC R

(1-2(2))

At this point, it is noticed that the whole prob-
lem data disappeared. The main principle of our
rule to prove unimodality, namely simplifying the
function to study, succeeds.

Step 3 must be passed by proving that u(z) is
positive everywhere. For a start, we show that
u(z) tends to +00 as x approaches +oo. When
x — —oo, the left fraction of u(z) is trivially
equivalent to —z and the right fraction is showed
to be equivalent to —1/z by means of the well
known 1'Hopital’s rule (take ¢'(2) = —z¢(z)).
Hence

1
lim u(z) = lim 2|z|+ - = +0c0.
Z——00 2——00 z

The shortest way to obtain the limit for z — 400
consists in 2 steps. First, the limit of the quotient



of the fractions is computed. Note that multiply-
ing the first fraction by ¢(z)/®(z) can be done by
replacing ®(z) with its limit, namely 1. Thus, we
look for the limit of

p(z)  o(z) - 2(1-@(2))
1—®(2) 1—®(2) '

In that equation, we apply once I’'Hopital’s rule
to the left fraction and independently twice to
the right one. z- % = 1 is obtained, meaning that
both fractions of u(z) are equivalent. The first
one is then replaced by ®(z)/¢(z), hence

. . 1 1
Jm u(z) = lm 2275 — o0y = 490

Then, lemma 21 in appendix D tells us that
u(z) has a minimum. Due to the limits, it is suf-
ficient to check positivity of the minimums.

The derivative of u(z) is

P(z) — 2(1 — @(2)) 2 d(2)

O e 1-8() 4

from which we state

(1-0(2) (1+ 5H2) +2

o 902) —2(1 - 2(2))
2
(1-2())

at stationary points. Consequently, we substitute
the first fraction of u(z) through that equality in
order to obtain a function having the same value
as u(z) for all stationary points. Since we are not
interested in the values but only in the signs, we
simplify the function by multiplying it by ¢2(z),
thus obtaining

2¢(2)

(1—(2))(o(2) + 22(2)) + ¢(2)(1 — ®(2)).

N =

¢(2) + 2®(z) is identified with [  &(x)dz.
Therefore, every term is positive. O]

The following sequence is an efficient way of
solving the problem. It starts at any value x¢ > 1
and is iterated until it reaches its fixed point ..
The optimal solution Sj to the objective function
(13) is then deduced from 2.

Theorem 3. The sequence

Pt = 145 1h Z% 1hr+br
poho S e + I (Fi (o)
(21)
converges to a unique fixed point z., whose basin
of attraction is ]1;+oo[. The minimum of func-

tion (13) is at

Sy = 27y — Fy't (1> . (22)

Loo

F;1 is the inverse of the cumulative normal distri-
bution whose parameters are given by equations
(10) and (11).

Proof. Theorem 2 implies that there exists a
unique point S§ where equation (16) is zero. At
this point, we can divide the equation by any non-
zero function, the result will remain 0. Let us
divide by hg (FO(SO) — 1). Then, for Sy = 5§,

Fo(So) 1 hy + by

1—Fy(So)  2poho %:{% \/m
(23)
Let us denote by Q(Sp) the left part and by X(Sp)
the right part. For clarity, we might also de-
note F' = Fy(Sp) and Q = Q(Sp). The equation
Q = % is trivial to rewrite ' = 1 — SO

1
+Q
So = Q! (Q) = F;! (1 — ﬁ) that we write,
according to lemma 2 in appendix A,

Sy = 270 — Fy'! (1+1Q) : (24)

Because equation (13) has a minimum at S§
and no other stationary point, equation (16) is
negative for any So < Sg, which implies Q(S50) <
E(SO) VSy < Sg Similarly, Q(So) > Z(So) VSy >
Sg. The right-hand side of equation (24) can be
easily shown to be monotonically increasing with
respect to Q. Hence Sy < Q1 (2(Sp)) VSo < S§
and So > Q1(X(Sp)) VSo > S;. Therefore, the
sequence

So Tt =Q7(2(S))
converges to S .

Now we show that equations (21) and (22) are
a shortened writing of this sequence. Let us apply



function ¥ to both sides of the sequence. We ob-
tain £(S5T) = 2(Q((SF))) and, by denoting
z1, — 1 = %(S%), it becomes

rpy1 —1=3(Q " (z — 1)) (25)

In the expression of the right-hand side,

By (2% — FO_1 <1+(a;1k—1)))

is replaced with
Iy (F o ( ﬁ ) )

according to lemma 10 in appendix B. Note that
the convergence is kept because X(Sp) is mono-
tonic due to the monotonicity of By(Sy) stated
by lemma 11. O

We advice to compute Iy(Sp) by means of the
efficient formula (36) given in appendix B. Once
the optimum S§ is found, each optimal retailer
base-stock level can be obtained in O(1) by means
of S* = F'(a,), the latter being defined by the
parameters stated in equations (6) and (7). Thus
the problem is entirely solved. Experiments will
show that the sequence above converges quickly,
so we suggest to view the first two iterations as
a closed form equation approaching the optimal
warehouse base-stock level. Starting from zy =
400, we decompose the iterations in 4 steps:

= 2,u0h0 Z

h+b

T‘

A= ilo (R (2))

- Z h, + b,
? 2Noho "VL.+A
Sy~ 2%—F0‘1(i).

For z1, L, is alone in the square root because
lim I (Fo'l(oz)) = lim Iy(Sp) and the latter is 0
a—0 Sp——o0

according to equation (36) in appendix B.

4 Experiments

We restrict the test to 5 identical customers. The
default data is b, = 20, u,, = 5, hg = 5, h, = 10,
Ly = 10, L, = 5. On figure 1, each graph re-
ports the relative error of our convergent sequence
for various data values and iteration depths. The
data varies on the X-axis and the relative error is
reported on the Y-axis. The latter has a logarith-
mic scale.

We notice that our sequence converges in linear
time in the sense of complexity theory (in num-
ber of correct decimal digits). Indeed, for each
graph and for a given data value, the distance be-
tween the curves (iteration depths) is quite con-
stant. This behavior is noticed for all depths but
we report the first three iterations only for read-
ability.

Iteration 1 refers to the solution computed by
[6] when their method is applied to the univari-
ate objective function that we give in theorem
1. Iteration 2 refers to our closed-form solution.
Each iteration improves by a factor 100 or 1000
the relative precision. In particular, our closed-
form solution is never further than 0.001% from
the optimal solution. Since we proved that the
sequence converges always to the optimum, such
a closeness is not surprising, although there is no
formal guarantee within 2 iterations.
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Figure 1: Relative error of our convergent sequence.
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5 Conclusion

The details of our approach being stated, we dis-
cuss its contribution when compared to similar
works.

An approach of [19] consists in approximating
the cost function by means of normal distribu-
tions. They state a cost formula close to ours,
but they distinguish the variance of the warehouse
inventory from the mean, as suggested by [20],
thus leading to a more accurate solution. They
do not prove that the obtained function is uni-
modal. In such a case, a convergent sequence
could be stated, perhaps leading to a good closed-
form solution to Vari-METRIC with normally dis-
tributed demands.

The convergent sequence introduced in theorem
3 relies on equation (23). Under the notations
used there, a little algebra shows that the equa-

tion is equivalent to Fo(S§) = 1_%(27‘?%)) . Then, by
0
denoting

bo(So) = ho X(So),

we can write

Sy = Fo-l (bo(Sg)) )

ho + bo(S§)

Concretely, we identify here the optimal solution
to a single-echelon problem (see lemma 15 in ap-
pendix B), where by(Sp) is a virtual back-order
cost at the warehouse. Thus, we meet the work of
[2], which seems to be the first to assign a virtual
back-order cost to the warehouse in two-echelons
distribution systems. As a result, it is sufficient
to solve the warehouse inventory as if it was a
single-echelon problem. Their procedure for esti-
mating the virtual back-order cost is iterative and
proven to converge. However, they prove only
that it converges to a local optimum and they
have to assume that back-order costs are greater
than holding costs.

A few years later, one of the authors simplified
that method by using the first iteration only [6].
To estimate the virtual cost, he assumes that no
stock-outs occur at the warehouse (meaning that
he initializes the method of [2] with Sy = +00).
No univariate function like ours (see theorem 1)
is given, approaching the global optimum is not

proven and, since one iteration only is done, it is
less accurate than our solution.

A recent work simplifies the solving by means
of pre-computations [11]. Up to the practitioner,
it suggests to estimate the virtual back-order cost
either by reading precomputed tables or by the
use of closed-form formulas whose parameters are
precomputed. In both cases, when all parameters
of the problem match the table, no interpolation
is done and the given cost is optimal. That im-
proves the solving time of [2] (iterations are no
longer needed) and improves the accuracy of [6].
It might be interesting to compare to the accuracy
of our closed-form equation.
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Appendix

A Probability density func-
tions

We recall here common definitions and straight-
forward properties used over the article.

A.1 Definitions

Except in the last appendix, f(x) denotes a prob-
ability density function and F'(z) is its cumulative
distribution function. For any  where f(x) is not
defined, our formulas will consider that f(x) is 0.

For any cumulative distribution function F(z),

F (o) (26)

is the real number = such that F(z) = a.

We say that a probability density function f(x)
is symmetric about p when

f@p—=)= f(x). (27)

For instance, it is clear that uniform and normal
distributions are symmetric.

When mentioned, some lemmas are restricted
to the normal distribution

1 _(=z—p)?

e 202 28
2ro ( )
and the cumulative normal distribution
1 Yo e-w?
/ e o2 dt. (29)
270 J_0o

where p is the mean and o the standard deviation.

A.2 Lemmas

Lemma 1. For any probability density function
symmetric about u, the complementary of its cu-
mulative distribution function is

1—F(z) = FQ2u—x). (30)

10

Proof. Since [ f(t)dt =1,

+oo

F(8)dt.

T

1-F(z) =

By symmetry, it is equal to

+00
fQu—t)dt

€T

and the change of variable ¢’ = 2u — t gives

_ [ ryar = Feu—1).

2u—x

O

Lemma 2. Given a probability density function
symmetric about p and a complementary proba-
bility 1 — «, the inverse of the cumulative distri-
bution function is

Fl1l-a) =2u—F*(a). (31)

Proof. In equation (30), we change F(z) into «
and, therefore, z into F~!(a). We obtain

l—a = F(2u—F'(a)

and take the inverse of the cumulative distribu-
tion function for both parts. O

The following lemma is usually known for the
special case where a — —oo. Our version allows
the reader to adapt the rest of the paper when
negative demands are neglected (a = 0).

Lemma 3. The mean of a normally distributed
value over an interval [a;b] is

b
/wwmxzﬁﬂw—ﬂw—ﬁw@—ﬂm.
’ (32)

Proof. Let f(x) be defined by equation (28). We
notice that

df
@(95) =
We reorder it to get

P2 r@).

o2

2f(@) = nf(x) — o* 3L (@)

whose integral is equation (32). O



Lemma 4. The inverse function of the cumula-
tive normal distribution is

Fla) = p+V20erft(2a—1). (33)
Proof. 1t is well known that
1 1 T — [
F = -+ _—erf(—| . 34
@ =z+zet(SL) .
Indeed, the change of variable ¢ = f}T’; in equa-

tion (29) leads to

which is decomposed into

1[0 1 [VEr e
— [ et + — et at.
w5

The first integral is half the well known Gaussian
integral, equal to v/m. The second term is by def-

inition half the function erf (ﬂ) Hence (34).

z—

"
V2o 42
(oo}

dt’

V20
The inverse of the latter is

= p+V20erf(2F(z) — 1)

where we identify F(x) with « and, therefore, x
with F-1 (). O

B The single echelon problem

We noticed that most papers dealing with the
single echelon problem subject to normally dis-
tributed demands use statistical formalisms and
properties spread in literature, thus making them
less approachable for non-specialists and stu-
dents. Consequently, we decided to gather here
some common properties along with some original
or rare claims. Above all, the formalism is legi-
ble for non-statisticians and everything is proven
in a consistent, clear and short chain of lemmas.
When literature gives a different proof, we cite it.

B.1 Average inventory level

For any probability density function f(z), the av-
erage amount of goods available from an inventory
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whose base-stock level is S is

S
1(S) = / (S—2) f(x)de.  (35)

— 00

Lemma 5. For the normal distribution, the aver-
age amount of goods available from an inventory
whose base-stock level is S is

I(S) = (S = w) F(S) +0*f(S).  (36)

Proof. Equation (35) can be decomposed into

S S
1(S) = § [ Fo)dz — [ ef(@)dz.  (37)

The first term is SF(S) by definition. The second
one is translated through equation (32) by noting
that EIEI fla) = Er_n F(a) = 0. O

Lemma 6. For any probability density function,
the derivative of I(S) with respect to S is

dr

15(8) = F(9).

(38)

Proof. The derivative of equation (37) is

d § d [°
ES[i(x)dx - 15 70;2f(a:)dx.

Due to the rule (uv)’ = v'v 4 uv’, the first term is
F(S)+Sf(S). The second term is S f(S). There-
fore, only F'(S) remains. O

Lemma 7. For the normal distribution, I(.S)
meets the differential equation

Loy (s wLis) - 1(s) = 0.

7 152 as (39)

Proof. In equation (36), F(S) is identified with
equation (38) and f(.9) is viewed as the derivative
of the latter. O



B.2 Average back-order

For any probability density function f(z), the av-
erage amount of goods which cannot be delivered
immediately from an inventory whose base-stock
level is S is

B(S) =

+oo
/ (x—=09) f(z)dz. (40)
5

Lemma 8. For any probability density function,
the average amount of goods which cannot be
delivered immediately from an inventory whose
base-stock level is S is

B(S) = I(S) — S+ p. (41)

Proof. First, we notice that

/ 05— 2) fa)de

—0o0

+oo “+oo
=S| flz)dx f/ zf(x)de = S —p.

On the other hand, the sum can be decomposed:

/ 05— 2) fla) da

7.5?0 o0
_ / (S - 2) f(z)de +/ (S — ) f(z) da.
— 00 S

On the right, we identify equation (35) added to
the opposite of equation (40). Therefore, that
equality is

S—u=1I(S)—B(5)
which is reordered to obtain equation (41). [
Lemma 9. For the normal distribution, the av-
erage amount of goods which cannot be delivered

immediately from an inventory whose base-stock
level is S is

B(S) = (S—p)[F(S)=1] + o?f(S). (42)

Proof. According to equation (41), we subtract S
from equation (36) and add p, thus obtaining

(S =) F(S)+a*f(S) — (S —n),

which is factorized into equation (42).

A different proof is given by [14]. O

B(S) =

12

Lemma 10. For any probability density func-
tion symmetric about u, the average back-order
and the average inventory level are linked by the
relations

B(S) = I(2u— S) (43)

and

B(2u—S) = I(S). (44)

Proof. For a start, let us prove the first relation.
In equation (35), we change S into 2p — S, thus
obtaining

2u—S’
/ Cu-—z-25") f(z)dx.

— 00

The change of variable 2’ = 21 — x gives

o
—/ (' = 8" f(2u — ') da’

+oo

where, by symmetry, f(2u — 2') is replaced with
f(z'). Then, the integral is identified with B(S’)
according to equation (40).

Equation (44) is a straightforward corollary ob-
tained by replacing S with 24 — S’ in equation
(43). O

Lemma 11. For any probability density func-
tion, the derivative of B(S) with respect to S is

dB

(8) = F(8) - 1.

(45)

Proof. That is the derivative of equation (41),
where the derivative of I(S) is given by equation
(38). 0

Lemma 12. For the normal distribution, B(\S)
meets the differential equation

dB

2 °B dB
as

0?5 (8) + (S—p) T (8) = B(S) = 0. (46)

Proof. In equation (42), F'(S)—1 is identified with
equation (45) and f(.9) is viewed as the derivative
of the latter. O



B.3 Average overall cost

For any probability density function, the average
cost for holding and back-ordering is

C(S) = hI(S) + bB(S). (47)
Due to equation (41) it is also
C(S) = (h+b)I(S) — bS + bp. (48)

Lemma 13. For any probability density func-
tion, the derivative of C(S) with respect to S is

dC

1G(8) = (h+b)F(8) ~b.

(49)
Proof. That is the derivative of equation (48), in

which the derivative of I(S) is given by equation
(38).

A different proof is given by [7]. O

Lemma 14. For the normal distribution, C(.5)
meets the differential equation

,d2C

dC
7 sz )

+ (S—p)75(5) = C(S) (50)
Proof. According to equation (47), C(S) is a lin-
ear combination of I(S) and B(S). Both of them
match the differential equation, as stated by equa-

tions (39) and (46). O

Lemma 15. For any probability density func-
tion, C(S*) is optimal if and only if the inventory
base-stock level is

b
* F—l .
5= (553)

For any probability density function symmetric
about p, it is also

h
gy p ()
s H (h+b>

Proof. For a start, let us prove the first equality.
We look for the base-stock level S* for which the
derivative of C'(S*) is 0. According to equation
(49), that means

(51)

(52)

b

P =573
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The second derivative of C(S*) is positive, since
the derivative of equation (49) is (h + b) f(5)
whose every term is positive. So it is a minimum.
A different proof is given by [7].

To obtain the second equality, we notice that

h%_b =1- hL_H), to which we apply equation (31).
O

Lemma 16. For the normal distribution, the
optimal cost C(S*) is

g

V2r

b—h
_ -1
s = erf (b h) .

d
Proof. Due to optimality conditions, %(S*) =

e (53)

C* = (h+b)

with

0, so differential equation (50) becomes

d2C * *

The second derivative of C'is (h+b) f(S) accord-
ing to equation (49), thus giving

C(S*) = (h+Db)o>f(5).

o (—1542),
where S* is replaced with equation (51), namely
uw+ V20 erf™! (2}#17 — 1) according to equation
(33). b=h Thus,

(54)

By definition, f(S*) = —2

2o

. b _
We notice that 2T+b —1= b

! e—[erf’l %]2

S*) =
f(57) 5
and o simplifies with o2 in equation (54).

An equivalent formula is proven by [19]. O

C Algebra

The fact introduced here is exploited in the proof
of theorem 2.

Theorem 17. Let N = {1...n} be a set of n
indexes. Let {a;Vi € N} and {b; Vi € N} be two
sets of real numbers. All b; # 0 and all b; have
the same sign.



Let 324 be the greatest fraction of {3 Vi € N}

and let ‘g’" be the lowest one. Then,
ang ZieN a; am
> = > 55
bM - Zieri o bm ( )

By denoting by S,, the set of all permutations of
N, tighter bounds are

Go(s o G
min max —& > 2ien % >

max min Qo ()
0€S, ieN b, ZieN b, —

oc€S,, 1eEN bl
(56)

Proof. For a start, we prove relation (55) by in-
duction.

Let us denote by o a permutation of N such
that
& QAo (i) > Ao (i+1)

bo (i)

Vie N\{n}.  (57)

ba(i+1)
For conciseness, we denote a = a,(;) and b =
be(i)- Due to commutativity of the sum, we have

ZiEN a; ZieN @i

ZzeN b; ZieN bi ’

so proving the theorem over o will prove it over N.
Let us denote A} = >, _, a), and B} = >, _, b,.
Due to relation (57), we have

/ A/ /

TEE 2 (58)
by B by

That inequality is the basis of our induction. Our

induction hypothesis is

Al a;

Let us rewrite it A, ;b > B! _ja; and add ar-
bitrarily A;_;B}_; to both sides, thus obtaining

Ai (Bioy +b5) = Bi_y(Aj_, +a;),s0 Aj_ B >
B}_, Al that we rewrite
AL A
= > L. (60)
B, — B

Similarly, adding arbitrarily b} to both sides of
AlL_ b, > Bl_,a} leads to

4 a
P>
B;

/
=, (61)
z
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a
1+1

i
al

Moreover, according to relation (57), b—f >
K3

= b/+1’
so equation (61) implies
Al a;
B/ Z b/H_l N (62)
1+1

The latter relation turns out to be the induction
hypothesis (59) at ¢ + 1. Then, due to the ba-
sis relation (58), the hypothesis is true for all
i € N\{1}. Therefore, relation (60) is true for all
i € N\{1} and relation (61) is true for all ¢ € N.
Then, from relation (60), we deduce

Ay A A,
1 [ n
SO , A/
a
W 2B
1 n

which is the first inequality of relation (55). A
particular case of relation (61) is

!/ !/
Al a

n

—no> n
B, — by,
which is the second inequality of relation (55).

At last, relation (56) is proven by the fact that,
for a given i, the claim does not assume any rela-
tion between a; and b;, therefore all permutations

are suitable, in particular those leading to tighter
bounds. O

The following corollary is not required in this
paper but we mention it for elegance of the for-
mula and potential utility.

Corollary 18. Let N be a set of indexes. Let

{a; Vi € N} be a set of non-negative real numbers

and {b; Vi € N} be a set of positive real numbers.
a;

Then
ZiEN a; Y1 (63)
E‘eN bi oA bi .
g 1EN

Proof. Let 32 be the greatest fraction in {§* Vi €
N}. Then, accordlng to equation (55),

DieN @i < M
Dienbi T bu

All fractions are positive, so that inequality re-
mains true after adding any 7* to its right

part. O



D A rule to show unimodality

Unimodality is an important property in opti-
mization. When an objective function is proven
to be unimodal, most algorithms will find the
global optimum. In particular, there exist spe-
cialized and fast optimal procedures. Further-
more, economists use such functions widely be-
cause of the simpler models they allow. Unfor-
tunately, literature does not provide any general
rule to show analytically that a function is uni-
modal. After a brief review of history and defini-
tions of unimodality, we introduce a rule for twice
differentiable univariate functions. It constitutes
a sufficient condition, meaning that, if it succeeds,
the function is unimodal. Otherwise, nothing is
proven.

In 1938, while working on probability distribu-
tions, Alexander KHINTCHINE defined the notion
of unimodality [22]. When (strict) unimodality
is generalized to univariate functions, it means
that function f(z) reaches a maximum at z = x*
and is monotonically (strictly) increasing for all
2z < z* and monotonically (strictly) decreasing
for all z > x*. Any monotonic shape is allowed
on both sides, so such functions are not necessar-
ily concave. In other words, one has a single max-
imum and no minimum — bounds of the domain
are not considered among the possible optimums
— and, in case of strict unimodality, no other sta-
tionary point. Originally, unimodality addressed
the uniqueness of a maximum, but considering
—f instead of f extends the notion to functions
having a minimum. Later, unimodality has been
generalized to multivariate functions [1].

Quasi-concavity

Unimodality is a particular case of quasi-
concavity, so proving the former proves the lat-
ter and we will see the condition to add to prove
the former through the latter. Several variants
of the notion of quasi-concavity has been stud-
ied [15, 31]. Quasi-concavity, formalized by [17],
is the fundamental one. It has several equiva-
lent definitions [10, 15, 12]. We review here a few
points of view, representative of the variety.

The earliest one says that a function f : X" C
R"” — Y C R is quasi-concave if and only if, for
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any [ €Y, the upper level set {z € X"| f(z) > I}
is convex. This elegant definition is intuitive
with two variables, since it means that the sur-
face enclosed by any contour line is convex. An-
other definition says that f is quasi-concave if and
only if, for every couple £ € X" and =’ € X",
min{f(z), f(z')} < f(Az+(1-N)z’) VA € [0;1].
Both definitions are suitable for univariate func-
tions.

An interesting definition for multivariate func-
tions is due to Jacques FERLAND [18] and relies
on the n determinants of what is called the bor-
dered Hessian sub-matrices of f. It was originally
stated for quasi-convexity but has been extended
straightforwardly to quasi-concavity and a sum-
mary can be found in [12]. Note that it is unsuit-
able for univariate functions.

To conclude the review, we suggest to regard
two well known theorems as sufficient conditions
of quasi-concavity. First, if a function can be
decomposed into a convolution of two symmet-
ric and quasi-concave functions, then it is quasi-
concave [34]. Second, let g be a log-concave
and quasi-concave function and f the function to
check; if f % g is quasi-concave, then f is quasi-
concave [21].

On the interest of a rule to prove unimodal-
ity

Proving that a function is unimodal is most of
the time difficult. It may be done by means of
the first definition given in the introduction, pro-
vided that a unique increasing part and a unique
decreasing part can be shown, which is rarely fea-
sible in practice. Instead, one could check the
quasi-concavity conditions that we reviewed. If
one test is passed and if the function has a max-
imum (see, for instance, lemma 22 below), then
the function is unimodal. Unfortunately, those
quasi-concavity definitions are too formal to be
usable in general. The first one requires to check
an infinite number of values [. Similarly, with
the second one, an infinite number of values of
A and couples (z,x’) must satisfy the inequality.
Concerning the two sufficient conditions that we
selected, they require to check the properties of
other functions instead, and a convolution prod-



uct is often impossible to, respectively, reverse or
state.

Thus, there is no general method to show uni-
modality of non-trivial functions. Consequently,
this property is sometimes ignored or assumed
[19]. The first interest in such functions con-
cerns economists, to model real behaviors as well
as obtain simpler equations [3]. Another benefit
is the guarantee that certain algorithms always
find the global optimum. On this point, efficient,
simple and devoted search procedures exist. In-
deed, while unimodal functions can make general
algorithms bounce many times from a slope to
its opposite, dedicated algorithms are not trou-
bled. For instance, Golden Section Search runs in
O(D + log Az), where Az is the search window
given by two bounds surrounding the optimal so-
lution and D is the asked number of correct deci-
mal digits. It has been introduced in 1953 [23] and
a modern description can be found in [27]. For
more speed, it can be hybridized with quadratic
convergence algorithms.

Overview

By means of our rule, some functions can be
proven to be unimodal. Its philosophy consists in
decomposing functions into easy and hard parts
and substituting and bounding the latter by sim-
plifying functions. The allowed transformations
rely on the fact that studying the function at its
stationary points is sufficient.

Properties resulting from the transformations
are hopefully easier to check and, when met, im-
ply unimodality of the original function. Never-
theless, our rule can amplify the variations of the
functions, thus taking them away from the de-
sired properties. Hence, non-unimodality cannot
be proven.

D.1 Prerequisites

Several claims of this section look straightfor-
ward, but they have practical purposes beside
proving the rule. In particular, lemmas 21 and 22
can be viewed as a brief handbook helping prac-
titioners to progress in the flowchart, as done for
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example in the proof of Theorem 2. For a func-
tion f, we will denote by f’ its first derivative and
by f” the second one.

Definition 19. Let f be a twice differentiable
function defined on X C R.

a € X is called an optimum of f if and only if
f'(a) =0 and f"(a) #£0.

Definition 20. Let f be a twice differentiable
function defined on X C R.

f is (strictly) unimodal if and only if there exists
one maximum a € X and no other optimum (and
no other stationary point).

Lemma 21. Let f be a once differentiable func-
tion defined on X C R. Denote by a and b, a < b,
the bounds of X.

If either

(1) lim f(z) = lim f(z) = —o0,

(2) f(t) > lim f(z) and f(¢) > lim f()
Yt € la, b ,

(3) lm f'(x)

Tr—a

> 0 and lim f'(z) < 0.
z—b
then

e There is at least one maximum on |]a, b[.

e The number of optimums on ]a, b cannot be
2.

e If the number of optimums on Ja, b[ is at least
3, then a local minimum is between two local
maximums.

Proof. f defined on X means that f(z) is finite
for any x € X. Therefore, condition (1) implies
condition (2) and there exists ¢ € X such that
fle) > f(x) Vx € X. By contradiction, assume
that exactly 2 optimums exist on |a,b[. Denote
the other optimum by ¢. Since ¢ is a maximum, ¢
is a minimum. Therefore, for ¢ < ¢, f(x) > f(t)
Vr < t, including © — a, which contradicts (2).
For t > ¢, f(z) > f(t) Vo > t, including © — b,
which contradicts (2). Let us assume that at least
3 optimums exist. As just seen, the first one and
the last one cannot be minimums, so a minimum
is between two maximums.



To prove (3), note that there exists at least one
x € X such that f'(z) =0, due to Darboux’s the-
orem. For each optimum z, the sign of f'(z7)
changes to the sign of f/(z%). According to (3),
sign(f’(a™%)) # sign(f’(b7)), which implies that
the number of changes is odd. If only 1 change
occurs at ¢, lim f'(z) > lim f'(z) implies that

T—a z—b

c is a maximum. Let us assume that at least 3
changes occur. Since lim,_,, f'(x) > 0, the first
change consists in triggering positivity of f’ to
negativity, so the first optimum is a maximum.
Then, the second change corresponds to a min-
imum and, consequently, the third change to a
maximum. O

Lemma 22. Let f be a twice differentiable func-
tion defined on X C R. Denote by a and b, a < b,
the bounds of X.

f has a local maximum if either

(1) Jy € X such that f(y) >;1§zf(x) and
Fl) > lim f (),

(2) Jz,y,z € X such that z < y < z and
f(x) < fy) and f(y) > f(2),

(3) 3z € X such that f/(x) =0 and f”(z) <0,

(4) 3z,y € X such that z < y and f/(z) > 0 and
f'(y) <0,

(5) a condition of lemma 21 is met.

Proof. Due to continuity, (1) implies (2) and
(2),(3) are the definition of a maximum. (4) im-
plies condition (3) of lemma 21 over [z, y]. O

Lemma 23. Given X, Y C R, let f: X — Y be
a function which meets conditions of lemma 22.
Let v1 : Z — R, and vs : Z — Ry be positive
and once differentiable functions, with Z C R.
Let w : Z — X be a monotonically increasing
and once differentiable function. Denote g(t) =

vy (t) - f o w(t).
If va(t)g'(t) < 0Vt € Z then f is strictly uni-
modal.

Proof. By contraposition, let us prove that non-
strict unimodality of f implies 3¢t € Z|vs(t)g'(t) >
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0. Due to lemma 22, there exists a maximum so
non-strict unimodality implies that there exists
a € X such that f'(a) =0 and f"(a) > 0. Let ¢
be such that w(t) = a. Then, f’(a) = 0 implies
vi(t) - f ow(t) = 0. Moreover, due to positiv-
ity of v; and because w is increasing, f"(a) > 0
implies vy (t)w'(t) - f” o w(t) > 0. Therefore,
Vi (t)- frow(t)+vy (t)w'(¢)- fow(t) > 0, whose left
side is ¢'(t). Due to positivity of vs, that implies
va(t)g'(t) > 0. O

Lemma 24. Let f(z) = ¢(z, g(x)) be a function
which meets conditions of lemma 21. Let h(z) be
a vector function whose domain is or include that

of f(z), such that f'(z) =0 = g(z) = h(z).

If ¢(x,h(x)) is unimodal, then f(z) is uni-
modal.

Proof. By contraposition, let us prove that
non-unimodality of qﬁ(m, g(x)) implies non-
unimodality of ¢(z, h(z)). According to lemma
21, f(z) has a local minimum surrounded by two
local maximums. Formally, let us denote the min-
imum by b and the maximums by a and c¢. Then
F(a@) > f(b), f(b) < f(c) and f'(a) = F'(b) =
f'(¢) = 0. The latter implies g(z) = h(z) Va €
{a,b,c}. Hence ¢>(a, h(a)) > (b(b, h(b)) and
¢(b, h(b)) < ¢(c, h(c)), meaning that ¢(z, h(x))

has a local minimum between a and c. O

Lemma 25. Let f, vs, g and Z all be as defined
by lemma 23. Let w; and us be vector func-
tions whose domains are or include Z, such that
v(D)g'(H) = Bt ua(t)) and g(t) = 0 = wy(t) =
’U,Q(t).

If ¢(t, ua(t)) < 0Vt € Z then f is strictly uni-
modal.

Proof. By  contraposition, let us prove
that non-strict unimodality of f implies
3t € Z| ¢(t, u2(t)) > 0. As seen in the proof
of lemma 23, in case of non-strict unimodality,
there exists t € Z such that f o w(t) = 0 and
va(t)g'(t) > 0. The equality implies g(t) = 0,
so u1(t) = we(t). The inequality implies
o(t,ui(t)) > 0. So ¢(t, ua(t)) > 0. O



D.2 The rule

Although simple, applying our rule can take long.
Indeed, the main steps offer a wide range of pos-
sibilities in general, and a search tree is deployed
in some cases. The operations performed may be
categorized into derivations, transformations, ex-
tractions and substitutions. On flowcharts of fig-
ures 2 and 3, the numbers in parentheses refer to
the transformations of section D.2.1. Arrows nm
mean "not managed". Such paths must be cho-
sen when the practitioner cannot decide. Section
D.2.2 illustrates the variety of possible extractions
and substitutions through some examples.

For a start, we explain the main procedure of
the rule. It is described on figure 2. Denote by f;
the function to check, with ¢ = 1 when starting
the study.

At step (D), we ensure that f; has at least one
maximum by means of lemma 22. Indeed, lem-
mas 23 and 25 will be used next and they rely on
lemma 22.

Steps (2) and (3) prepare the use of lemma 23.
At step @), gi denotes ¢(t) in lemma 23. At step
(3), h; denotes va(t)g’(t) in lemma 23. The trans-
formations allowed at those steps should make
h; simpler to study than f;. At step @), we
check whether h; is negative everywhere. The
sub-procedure (figure 3) can help to decide. If
h; is negative everywhere, then f; is strictly uni-
modal as lemma 23 claims, so f; is unimodal.

Instead of the sub-procedure, typically because
it failed, the use of lemma 24 can be attempted.
Since it relies on lemma 21, we check the con-
ditions of the latter at step (6). At step (), we
state f/(x) = 0 in order to rise an equivalence
between a term of f/(x) and the rest. Then, ac-
cording to lemma 24, we can substitute part(s)
of f;(x) by their equivalents, in order to create a
simpler function to study. The new function is
named f;+1 at step (8). Step (9) looks recursively
for unimodality, as allowed by lemma 24. Note
that strict unimodality of f;11 does not ensure
that unimodality of f; is strict.

Now, we explain the sub-procedure of the rule.
It is described on figure 3. The goal is to decide
whether h; is negative everywhere, unless it is un-
decidable.
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At step (2), we are allowed to transform the
function in order to obtain a function wu; simpler
to study. It is obvious that transformations (1)
and (2) do not change the sign of the function,
whereas validity of transformations (3) and (4) is
also clear.

Note that tricks not detailed in this general
flowchart can help to decide at step (3). For in-
stance, at the end of the proof of theorem 2, u;(x)
is such that it is sufficient to study the sign of a
further transformed function whose value is that
of u;(x) at its stationary points.

At step (B), we state g;(xz) = 0 in order to rise
an equivalence between a term of g;(z) and the
rest. Then, according to lemma 25, we can sub-
stitute part(s) of h; by their equivalents, in order
to create a function wu; simpler to study.

D.2.1 Transformations

Here is the set of possible transformations to ap-
ply to a given equation:

multiplication by a positive and once differ-
entiable function,

composition with a monotonically increasing
and once differentiable function,

replacement with a dominating function,

change of variable.

Those transformations are applied when specified
in figures 2 and 3, but are not mandatory. The
practitioner can try them or not and experience
will play a role. However, they are part of the
founding principles of our rule: their purpose is
to simplify equations.

Typically, transformation (1) is used to re-
move a denominator and transformation (2)
may lighten the equation. On the other hand,
those transformations can produce more intricate
terms, but such that further steps will end suc-
cessfully.

At some point, after having transformed over
and over, one might obtain a formula whose vari-
able, everywhere it appears, is applied to a cer-
tain function. Then, transformation (4) allows for



substituting all occurrences of the function by a
variable. A simpler formula remains.

D.2.2 Extractions and substitutions

Here, we consider an example to illustrate the
wide range of possibilities. Let us assume that
the equation to extract from is of the form

x + p(zx) (64)

and the equation whose terms can be substituted
is

2%+ 2q(x) (65)
where p and ¢ are arbitrary functions.
We extract
z = —p(z) (66)
which implies
v? = p(z).

As a result, equation (65) can be replaced with
2 4+ 2q( — p(x)) or p*(z) + 2q(z).

Freedom is often large. Among others, multi-
plying equation (66) by x allows to state

22 = —xp(x).

Note that the right-hand side might be negative
wherever equation (64) is not zero. It is not a
issue for the founding lemmas of the rule. It is
also valid to take its absolute value if that helps
for further steps. We can also deduce

x = sign(x)+/|zp(z)|,

which gives further substitution candidates for
terms of equation (65).

If p(z) has a closed-form inverse then
r=p '(-x),

which implies

and even

SO

v = sign(e)y/lep 1 (—2)].
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Among further possibilities, one can also suggest

Those examples show that various substituting
terms can be extracted in general. The only lim-
itation is that they must be implied by setting to
0 the equation to extract from.

Note that constants can be also extracted.
From equation (64),

0==z+p(z)

holds. Hence, in our paradigm, equation (65) is
equivalent to z2 +z + p(z) +2¢(z), (2z 4—10(33))2 +
2q(z) or 2% + 2¢(2z + p(z)).

If p(x) is never 0 or if that value can be studied
separately, equation (64) allows for extracting

Thus, terms of equation (65) can be multi-

plied neutrally. That gives z2 — 230% or even

%+ 2q (—%) among other possibilities, which
might bring great simplifications.
Furthermore, by adding 1 to that substituting

term, we extract

which could lead to replace equation (65) with

22+ q(z) — 2 43,

Most examples look likely useless but the point
is the variety of possibilities to try, whose respec-
tive success depends on the studied function. In
each example, we substitute one term only for
readability. Nevertheless, note that several terms
of equation (65) can be substituted and that can
be done from different extracted terms.



unimodality of f;

fi meets a condition
of lemma 22

)

derive f;
transform with (1,2)
denote the result by g;

Y @

derive g;

backtrack to 1

transform with (1)
denote the result by h;

Y @

test negativity of
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®
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fi is unimodal
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from f; in f;

tried

extract term(s) from f; =0
substitute them in f;
denote the result by fii1

test unimodality of

fH»l

Figure 2: Main procedure
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< negativity of h; >

v ®

U; = hi

v @

»|transform u; with (1,2,3,4)

®
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all
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from g¢; in h;
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extract term(s) from g;=0

substitute them in h;

denote the result by wu;

Figure 3: Sub-procedure
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