
ANOTHER PEDAGOGY FOR PURE-INTEGER GOMORY ∗

Qi He1 and Jon Lee1

Abstract. We present pure-integer Gomory cuts in a way so that they
are derived with respect to a “dual form” pure-integer optimization
problem and applied on the standard-form primal side as columns,
using the primal simplex algorithm. The input integer problem is not
in standard form, and so the cuts are derived a bit differently. In
this manner, we obtain a finitely-terminating version of pure-integer
Gomory cuts that employs the primal rather than the dual simplex
algorithm.

Keywords: Gomory cut, Chvátal-Gomory cut, cutting plane, integer
program, integer linear program, integer optimization, simplex algo-
rithm, lexicographic

Mathematics Subject Classification. 90C10

Introduction

We assume some familiarity with integer linear optimization; see [1] for a mod-
ern treatment. We assume that A ∈ Zm×n has full row-rank m, c ∈ Zn, and we
consider a pure integer-optimization problem of the “dual form”

z := max y′b
y′A ≤ c′;
y ∈ Zm.

(DI)

The associated continuous relaxation is denoted D.

17 July 2015; revised 16 December 2015.

∗ This research was partially supported by NSF grant CMMI–1160915 and ONR grant N00014-

14-1-0315
1 IOE Department, University of Michigan, Ann Arbor, MI, USA.

e-mail: {qihe,jonxlee}@umich.edu

2

This linear-optimization problem has a non-standard form as a point of depar-
ture, but it is convenient that the dual of the continuous relaxation D has the
standard “primal form”

min c′x
Ax = b;
x ≥ 0.

(P)

We note that the only linear programs that we directly solve have the form P,
which is in the appropriate form for treating with the primal simplex algorithm.

For us, the essence of a pure-integer Gomory (or Chvátal-Gomory) cut is to take
an inequality α′x ≤ β that is valid for the continuous relaxation of a pure-integer
optimization problem, with α ∈ Zn, and produce the valid cut α′x ≤ bβc for
the pure-integer problem. In the classical presentation of Gomory, the inequality
α′x ≤ β is obtained by rounding down the left-hand side coefficients of a “tableau”
equation of a standard-form problem, which leads to a valid α′x ≤ β because the
variables are non-negative. In our setting, the integer-constrained variables (on
our “dual side”) are not non-negative, and our “tableau” equations are on the
other side (i.e., our “primal side”), so we will have to proceed differently.

In §1, we briefly summarize the classical presentation of pure-integer Gomory
cuts. In §2, we present a new variation of a pure-integer Gomory cutting-plane
algorithm. Our variation avoids the dual simplex algorithm, and rather precisely
fits into the well-known column-generation framework based on the primal simplex
algorithm (commonly used, for example, for Dantzig-Wolfe decomposition and for
the cutting-stock problem; see [5], for example). Furthermore, it turns out there
is a certain computational economy which we will explain. In §3, we present an
example. In §4, we present a finite cutting-plane algorithm based on the cuts of
§2.

An advantage of our set-up and finiteness proof is that it does not rely on the
lexicographical dual simplex method. In the senior author’s (30+ years) experience
of of teaching non-doctoral engineering students: (i) already the lexical primal
simplex algorithm is a topic that many students are challenged to comprehend,
but eventually learn in the context of proving finiteness for the primal simplex
algorithm and for establishing the strong-duality theorem of linear optimization
(i.e., the approach in [5], for example); (ii) a quick explanation of the dual simplex
algorithm is taken as very technical and somewhat mysterious; (iii) putting these
two topics together to explain the lexical dual simplex algorithm leaves many
students behind; so (iv) few students can then absorb the standard (and quite
technical) finiteness proof for classical Gomory cuts, because it rests on the shaky
foundation that they have for the lexical dual simplex algorithm.

We note that throughout (§2 and §4), we deconstruct the derivations and proofs,
to completely expose the movable parts, rather than seeking to make the presen-
tation as short as possible.

3

1. Classic Gomory

In the classical presentation of pure-integer Gomory cutting planes (see [4], for
example), we seek to solve a standard-form linear-optimization problem P with
the restriction that all variables are integer. Here we assume that b is an integer
vector. From a primal basis β for the standard-form problem (we use η for the
non-basic indices), we derive a Gomory cut from any “source equation”

xβi
+

n−m∑
j=1

āi,ηjxηj = x̄βi
(Ei)

having x̄βi non-integer. The cut is simply

xβi +

n−m∑
j=1

⌊
āi,ηj

⌋
xηj ≤ bx̄βic ,

which is clearly violated by x = x̄. Introducing a non-negative slack variable xk,
we get an equation

xβi
+

n−m∑
j=1

⌊
āi,ηj

⌋
xηj + xk = bx̄βi

c ,

which, subtracting the equation Ei, can be introduced at the current stage as

n−m∑
j=1

(⌊
āi,ηj

⌋
− āi,ηj

)
xηj + xk = bx̄βi

c − x̄βi
.

This new variable xk is an additional basic variable, but it has a negative value
xk = bx̄βi

c − x̄βi
. Naturally, we proceed to re-optimize by the dual simplex

algorithm, seeking to regain primal feasibility while maintaining dual feasibility.
As established by Gomory (see [3]; also see [4] for a presentation more closely
following the notation used here), this can be realized as a finite algorithm by:

(i) introducing an integer objective variable x0 and associated equation x0 −
c′x = 0; here we note that it is important that c is an integer vector, and
so x0 is an integer on the set of feasible integer solutions of P; moreover,
the additional equation implies an additional basic variable, which we take
as x0 and deem it to be the first basic variable: that is, β ← (0, β), now
an ordered list of m+ 1 basic indices from {0, 1, 2, . . . , n},

(ii) always choosing a source equation Ei with least i among those with x̄βi

non-integer; here we stress the importance of the objective variable x0
having index 0 and being the first basic variable at the outset,

(iii) sequentially numbering added slack variables xn+1, xn+2, . . .,
(iv) re-solving each linear-optimization problem after a cut via the lexicographic

(i.e., epsilon-perturbed) dual simplex algorithm (see [7]).

4

Gomory did say in [3]:

“In these proofs we will use the lexicographical dual simplex method
described in Section 7. It is not implied that this simplex method
be used in practice or that it is necessary to the proof. It is simply
that its use in the proof has reduced the original rather long and
tedious proofs to relatively simple ones.”

This proof has endured in all presentations that we know of (e.g, see [1, pp.
215–6]; [4, pp. 165–7]; [8, pp. 372–3]; [9, pp. 285–7]; [10, pp. 121–3]; [11, pp.
354–8]), and we do not know Gomory’s “original rather long and tedious proofs”.
Incidentally, many of these published proofs are lacking a bit in complete rigor,
including the one of the the second author of the present paper (see [4]). A clear
unfortunate aspect of the proof is its delicate set up.

The classical way of doing Gomory uses the dual simplex algorithm because
the cut-generation methodology seems wedded to a standard form for the integer
problem that we wish to solve. In what follows, we derive cuts a bit differently so
that the dual of the continuous relaxation of the integer problem that we wish to
solve is in standard form. In this way, we simply add columns to a standard-form
problem and naturally re-optimize via the primal simplex algorithm. Though just
a bit more complicated in its derivation than the classical Gomory approach, our
method can be presented and implemented in a unified and simple manner with
other column-generation algorithms based on the primal simplex algorithm (in
particular, Dantzig-Wolfe decomposition, the cutting-stock algorithm, and even a
presentation of branch-and-bound ; see [5]). Moreover, the actual calculations are
quite straightforward to carry out (see the example in §3). Finally, we wish to
point out and emphasize that in carrying out the primal simplex algorithm for P,
every basis has precisely m elements, even as we add columns. This is in sharp
contrast to the classical Gomory approach, where each cut increments the number
of basis elements (as well as appends a slack variable). If classical Gomory were
to be applied to our formulation DI (which has m variables in n inequalities),
putting it into standard form would give us a problem with 2m+n (non-negative)
variables in n equations. So (dual simplex algorithm) bases would have size n and
would grow as we add cuts. Because of this, the matrix algebra of each pivot-step
in our approach is simpler.

We note that [6] addresses extending our approach to the mixed-integer case.
Another direction that could be explored is how to lift inequalities to strengthen
them (see [2], for example).

2. Gomory another way

Let us return to approaching the pure integer-optimization problem DI . In
what follows, we refer to D (the continuous relaxation of DI) as the dual and P
(the dual of D) as the primal. Let β be any basis for P. The associated dual basic
solution (for the continuous relaxation D) is ȳ′ := c′βA

−1
β . Suppose that ȳi is not

an integer. Our goal is to derive a valid cut for DI that is violated by ȳ.

5

Let

b̃ := ei +Aβr,

where r ∈ Zm, and ei denotes the i-th standard unit vector in Rm. Note that by
construction, b̃ ∈ Zm.

Theorem 2.1. ȳ′b̃ is not an integer, and so y′b̃ ≤ bȳ′b̃c cuts off ȳ.

Proof. ȳ′b̃ = ȳ′(ei +Aβr) = ȳi + (c′βA
−1
β)Aβr = ȳi︸︷︷︸

/∈Z

+ c′βr︸︷︷︸
∈Z

. �

At this point, we have an inequality y′b̃ ≤ bȳ′b̃c which cuts off ȳ, but we have
not established its validity for DI .

Let H·i := A−1β ei, the i-th column of A−1β . Now let

w := H·i + r.

Clearly we can choose r ∈ Zm so that w ≥ 0; we simply choose r ∈ Zm so that

rk ≥ −bhkic, for k = 1, . . . ,m. (1)

Theorem 2.2. Choosing r ∈ Zm satisfying (1), we have that y′b̃ ≤ bȳ′b̃c is valid
for DI .

Proof. Because w ≥ 0 and y′A ≤ c′, we have the validity of

y′Aβ(A−1β ei + r) ≤ c′β(A−1β ei + r),

even for the continuous relaxation D of DI . Simplifying this, we have

y′(ei +Aβr) ≤ ȳi + c′βr.

The left-hand side is clearly y′b̃, and the right-hand side is

ȳi + c′βr = ȳi + ȳ′Aβr = ȳ′(ei +Aβr) = ȳ′b̃.

So we have that y′b̃ ≤ ȳ′b̃ is valid even for D. Finally, observing that b̃ ∈ Zm and
y is constrained to be in Zm for DI , we can round down the right-hand side and
get the result. �

So, given any non-integer basic dual solution ȳ, we have a way to produce a
valid inequality for DI that cuts it off. This cut for DI is used as a column for P:
the column is b̃ with objective coefficient bȳ′b̃c. Taking β to be an optimal basis
for P, the new variable corresponding to this column is the unique variable eligible
to enter the basis in the context of the primal simplex algorithm applied to P —
the reduced cost is precisely

ȳ′b̃− bȳ′b̃c < 0.

6

Observation 2.3. The new column for A is b̃ which is integer. The new objective
coefficient for c is bȳ′b̃c which is an integer. So the original assumption that
A and c are integer is maintained, and we can repeat. In this way, we get a
legitimate cutting-plane framework for DI — though we emphasize that we do
our computations as column generation with respect to P.

There is clearly a lot of flexibility in how r can be chosen. Next, we demonstrate
that in a very concrete sense, it is always best to choose a minimal r ∈ Zm satisfying
(1).

Theorem 2.4. Let r ∈ Zm be defined by

rk = −bhkic, for k = 1, . . . ,m, (2)

and suppose that r̂ ∈ Zm satisfies r ≤ r̂. Then the cut determined by r dominates
the cut determined by r̂.

Proof. It is easy to check that our cut can be re-expressed as

yi ≤ bȳic+
(
c′β − y′Aβ

)
r.

Noting that c′β−y′Aβ ≥ 0 for all y that are feasible for D, we see that the strongest
inequality is obtained by choosing r ∈ Zm to be minimal. �

3. Example

In this section, we present an example which illustrates the simplicity of the
calculations. Throughout, we choose r ∈ Zm to be minimal, as defined in 2.

Let

A =

(
7 8 −1 1 3
5 6 −1 2 1

)
, b =

(
26
19

)
and c′ =

(
126 141 −10 5 67

)
.

So, the integer program DI which we seek to solve is defined by five inequalities
in the two variables y1 and y2. For the basis of P, β = (1, 2), we have

Aβ =

(
7 8
5 6

)
, and hence A−1β =

(
3 −4
−5/2 7/2

)
.

It is easy to check that for this choice of basis, we have

x̄β =

(
2

3/2

)
,

and for the non-basis η = {3, 4, 5, 6}, we have c̄′η =
(

5 1/2 1
)
, which are both

non-negative, and so this basis is optimal for P. The associated dual basic solution
is

ȳ′ =
(

51/2 −21/2
)
, and the objective value is z = 463 1/2.

7

Because both ȳ1 and ȳ2 are not integer, we can derive a cut for DI from either.
Recalling the procedure, for any fraction ȳi, we start with the i-th column H·i of
H := A−1β , and we get a new A·j := ei +Aβr. That is,

H·1 =

(
3
−5/2

)
⇒ r =

(
−3
3

)
⇒ b̃ =

(
1
0

)
+

(
7 8
5 6

)(
−3
3

)
=

(
4
3

)
=: A·6

H·2 =

(
−4
7/2

)
⇒ r =

(
4
−3

)
⇒ b̃ =

(
0
1

)
+

(
7 8
5 6

)(
4
−3

)
=

(
4
3

)
.

In fact, for this iteration of this example, we get the same cut for either choice of
i. To calculate the right-hand side of the cut, we have

ȳ′b̃ =
(

51/2 −21/2
)(4

3

)
= 70 1/2,

so the cut for DI is

4y1 + 3y2 ≤ 70.

Now, we do our simplex-method calculations with respect to P. The new column
for P is A·6 (above) with objective coefficient c6 := 70.

Following the ratio test of the primal simplex algorithm, when index 6 enters
the basis, index 2 leaves the basis, and so the new basis is β = (1, 6), with

Aβ =

(
7 4
5 3

)
,

with objective value 462, a decrease. At this point, index 5 has a negative reduced
cost, and index 1 leaves the basis. So we now have β = (5, 6), which turns out to
be optimal for the current P. We have

ȳ′ =
(

131/5 −58/5
)
, and the objective value is z = 460 4/5.

We observe that the objective function has decreased, but unfortunately both ȳ1
and ȳ1 are not integers. So we must continue. We have

Aβ =

(
3 4
1 3

)
, and hence A−1β =

(
3/5 −4/5
−1/5 3/5

)
.

We observe that the objective function has decreased, but because both ȳ1 and
ȳ2 are not integers, we can again derive a cut for DI from either. We calculate

H·1 =

(
3/5
−1/5

)
⇒ r =

(
0
1

)
⇒ b̃ =

(
1
0

)
+

(
3 4
1 3

)(
0
1

)
=

(
5
3

)
=: A·7

8

H·2 =

(
−4/5
3/5

)
⇒ r =

(
1
0

)
⇒ b̃ =

(
0
1

)
+

(
3 4
1 3

)(
1
0

)
=

(
3
2

)
=: A·8 .

Correspondingly, we have ȳ′A·7 = 96 1/5 and ȳ′A·8 = 55 2/5, giving us c7 := 96
and c8 := 55. So, we have two possible cuts for DI :

5y1 + 3y2 ≤ 96 and 3y1 + 2y2 ≤ 55.

Choosing to incorporate both as columns for P, and letting index 8 enter the
basis, index 5 leaves (according to the primal-simplex ratio test), and it turns out
that we reach an optimal basis β = (8, 6) after this single pivot. At this point, we
have

ȳ′ =
(

25 −10
)
, and the objective value is z = 460.

Not only has the objective decreased, but now all of the ȳi are integers, so we have
an optimal solution for DI .

We wish to emphasize that to take this example with n = 5 inequalities in
m = 2 unrestricted variables and put it into standard form, we would end up with
2m + n = 9 variables and n = 5 equations. So, the initial basis for applying the
classical Gomory algorithm would have n = 5 elements, and subsequent bases after
cuts would be even larger. In contrast, our bases have m = 2 elements throughout,
thus making the matrix algebra less burdensome.

4. Finite convergence

To make a finitely-converging algorithm, we amend our set-up a bit:

(i) we assume that the objective vector b is integer, and we move the objective
function to the constraints;

(ii) after this, we lexicographically perturb the resulting objective function.

So, we arrive at

max y0 + y′~ε[1,m]

y0 − y′b ≤ 0;
y′A ≤ c′;

y0 ∈ Z;
y ∈ Zm,

(Dε
I)

where ~ε[i,j] := (εi, εi+1, ..., εj)′, and ε is treated as an arbitrarily small positive
indeterminate — we wish to emphasize that we do not give ε a real value, rather
we incorporate it symbolically. We note that if (y0, y

′) is optimal for Dε
I , then

y is a lexically-maximum solution of DI ; that is, y is optimal for DI , and it is
lexically maximum (among all optimal solutions) under the total ordering of basic
dual solutions induced by

∑m
i=1 ε

iyi.

9

The dual of the continuous relaxation of Dε
I is the rhs-perturbed primal problem

min c′x
x0 = 1;

−bx0 + Ax = ~ε[1,m];
x0 ≥ 0;

x ≥ 0,

(Pε)

Next, we observe that Dε
I is a special case of

z := max y′~ε[0,m−1]

y′A ≤ c′;
y ∈ Zm,

(lex-DI)

which has as the dual of its continuous relaxation the rhs-perturbed primal problem

min c′x
Ax = ~ε[0,m−1];
x ≥ 0.

(lex-P)

So, in what follows, we focus on lex-DI and lex-P.

4.1. First pivot after a new column

The primal simplex algorithm applied to the non-degenerate lex-P produces a
sequence of dual solutions ȳ′ with decreasing objective value ȳ′~ε[0,m−1]. This can
be interpreted as a lexically decreasing sequence of ȳ. We wish to emphasize that
after we add a new column to lex-P, on the next pivot (and of course subsequent
ones), the basic dual solution ȳ lexically decreases. We want to show more.

Lemma 4.1. If we derive a column from an i for which ȳi is fractional (in the
manner of §2), append this column to lex-P, and then make a single primal-simplex
pivot, say with the l-th basic variable leaving the basis, then after the pivot the new
dual solution is

¯̄y = ȳ +
bȳic − ȳi
hli + rl

Hl·,

where Hl· is the l-th row of A−1β .

Proof. This is basic simplex-algorithm stuff. ¯̄y is just ȳ plus a multiple ∆ of the
l-th for of A−1β . The reduced cost of the entering variable, which starts at bȳic− ȳi
will become zero (because it becomes basic) after the pivot. So

(bȳic − ȳi)−∆ (hli + rl) = 0,

which implies that

∆ =
bȳic − ȳi
hli + rl

.

�

10

Corollary 4.2. If we derive a column from an i for which ȳi is fractional (in the
manner of §2), choosing r ∈ Zm to be minimal (i.e., satisfies (2)), append this
column to lex-P, and then make a single primal-simplex pivot, then after the pivot,
either (¯̄y1, . . . , ¯̄yi−1) is a lexical decrease relative to (ȳ1, . . . , ȳi−1) or ¯̄yi ≤ bȳic.

Proof. A primal pivot implies that we observe the usual ratio test to maintain
primal feasibility. This amounts to choosing

l := argmin
l : hli+rl>0

{
Hl·~ε[0,m−1]

hli + rl

}
.

Also, we have

¯̄yi = ȳi +

<0︷ ︸︸ ︷
bȳic − ȳi
hli + rl︸ ︷︷ ︸

>0

hli.

Assume that (¯̄y1, . . . , ¯̄yi−1) is not a lexical decrease relative to (ȳ1, . . . , ȳi−1). Be-
cause ¯̄y is lexically less than ȳ, we then must have hli ≥ 0.

¯̄yi = ȳi +
bȳic − ȳi
hli + rl

hli = ȳi + (bȳic − ȳi)︸ ︷︷ ︸
< 0

(
hli

hli + rl

)
︸ ︷︷ ︸
≥ 1?

≤ ȳi + (bȳic − ȳi) = bȳic.

To finish the proof, we need to justify

hli
hli + rl

≥ 1. (Φ)

A sufficient condition for Φ to hold is rl ≤ 0 and hli > 0. Taking r to be minimal,
we have hli+rl = hli−bhlic > 0 which, together with hli ≥ 0, implies that hli > 0
and rl = −bhlic ≤ 0 �

Observation 4.3. We note that we are using the fact that we choose r to be
minimal to get Φ to hold. However, it is not necessary that we choose r ∈ Zm to
be minimal for the conclusion of Corollary 4.2 to hold. We simply need to have
rl ≤ 0 and hli > 0 to ensure that Φ holds.

4.2. A finite column-generation algorithm for pure integer-linear
optimization

Next, we specify a finitely-converging algorithm for lex-DI . We assume that the
feasible region of the continuous relaxation D of DI is non-empty and bounded.
Because of how we reformulate DI as lex-DI , we have that the feasible region of
the associated continuous relaxation lex-D is non-empty and bounded.

11

Algorithm 1: Column-generation for pure integer-linear optimization

(0) Assume that the feasible region of lex-D is non-empty and bounded. Start
with the basic feasible optimal solution of lex-P (obtained in any manner).

(1) Let ȳ be the associated dual basic solution. If ȳi ∈ Z for all i ∈ I, then
STOP: ȳ solves lex-DI .

(2) Otherwise, choose the minimum i ∈ I for which ȳi /∈ Z. Related to
this i, construct a new variable (and associated column and objective
coefficient) for lex-P in the manner of §2, choosing r to be minimal. Solve
this new version of lex-P, starting from the current (primal feasible) basis,
employing the primal simplex algorithm.
(a) If this new version of lex-P is unbounded, then STOP: lex-DI is

infeasible.
(b) Otherwise, GOTO step 1.

Theorem 4.4. Algorithm 1 terminates in a finite number of iterations with either
an optimal solution of lex-DI or a proof that lex-DI is infeasible.

Proof. It is clear from well-known facts about linear optimization that if the al-
gorithm stops, then the conclusions asserted by the algorithm are correct. So
our task is to demonstrate that the algorithm terminates in a finite number of
iterations.

Consider the full sequence of dual solutions ȳt (t = 1, 2, . . .) visited during the
algorithm. We refer to every dual solution after every pivot (of the primal-simplex
algorithm), over all visits to step 2b. This sequence is lexically decreasing at
every (primal-simplex) pivot. We claim that after a finite number of iterations of
Algorithm 1, ȳt is an integer vector upon reaching step 1, whereupon the algorithm
stops. If not, let j be the least index for which ȳj does not become and remain
constant (and integer) after a finite number of pivots

Choose an iteration T where ȳT of step 1 has ȳTk constant (and integer) for all
k < j and all subsequent pivots. Consider the infinite (non-increasing) sequence

S1 := ȳTj , ȳ
T+1
j , ȳT+2

j , · · · . By the choice of j, this sequence has an infinite strictly
decreasing subsequence S2. By the boundedness assumption, this subsequence
has an infinite strictly decreasing subsequence S3 of fractional values that are
between some pair of successive integers. By Corollary 4.2, between any two visits
to step 1 with ȳj fractional, there is at least one integer between these fractional
values. Therefore, S3 corresponds to pivots in the same visit to step 2b. But this
contradicts the fact that the lexicographic primal simplex algorithm converges in
a finite number of iterations. �

References

1. Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli, Integer programming, Graduate
Texts in Mathematics, vol. 271, Springer, 2014.

2. Santanu S. Dey and Jean-Philippe Richard, Linear-programming-based lifting and its ap-

plication to primal cutting-plane algorithms, INFORMS Journal on Computing 21 (2009),
no. 1, 137–150.

12

3. Ralph E. Gomory, An algorithm for integer solutions to linear programs, Recent advances

in mathematical programming, McGraw-Hill, New York, 1963, pp. 269–302.
4. Jon Lee, A first course in combinatorial optimization, Cambridge Texts in Applied Mathe-

matics, Cambridge University Press, Cambridge, 2004.

5. Jon Lee, A first course in linear optimization (Second edition, version 2.1), Reex Press,
2013–5, https://github.com/jon77lee/JLee_LinearOptimizationBook.

6. Jon Lee and Angelika Wiegele, Another pedagogy for mixed-integer gomory, Tech. report,

2015.
7. Carlton E. Lemke, The dual method of solving the linear programming problem, Naval Re-

search Logistics Quarterly 1 (1954), 36–47.

8. George L. Nemhauser and Laurence A. Wolsey, Integer and combinatorial optimization,
Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons,

Inc., New York, 1988, A Wiley-Interscience Publication.
9. R. Gary Parker and Ronald L. Rardin, Discrete optimization, Computer Science and Scien-

tific Computing, Academic Press, Inc., Boston, MA, 1988.

10. Harvey M. Salkin and Kamlesh Mathur, Foundations of integer programming, North-Holland
Publishing Co., New York, 1989.

11. Alexander Schrijver, Theory of linear and integer programming, Wiley-Interscience Series

in Discrete Mathematics, John Wiley & Sons, Ltd., Chichester, 1986, A Wiley-Interscience
Publication.

https://github.com/jon77lee/JLee_LinearOptimizationBook

	Introduction
	1. Classic Gomory
	2. Gomory another way
	3. Example
	4. Finite convergence
	4.1. First pivot after a new column
	4.2. A finite column-generation algorithm for pure integer-linear optimization

	References

