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cDepartment of Mathematics, State University of Maringá, Maringá, PR, Brazil.
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Abstract

In this work we present an algorithm for solving constrained optimization problems that
does not make explicit use of the objective function derivatives. The algorithm mixes an
inexact restoration framework with filter techniques, where the forbidden regions can be
given by the flat or slanting filter rule. Each iteration is decomposed in two independent
phases: a feasibility phase which reduces an infeasibility measure without evaluations of the
objective function, and an optimality phase which reduces the objective function value. As
the derivatives of the objective function are not available, the optimality step is computed
by derivative-free trust-region internal iterations. Any technique to construct the trust-
region models can be used since the gradient of the model is a reasonable approximation
of the gradient of the objective function at the current point. Assuming this and classical
assumptions, we prove that the full steps are efficient in the sense that near a feasible
nonstationary point, the decrease in the objective function is relatively large, ensuring the
global convergence results of the algorithm. Numerical experiments show the effectiveness
of the proposed method.

Keywords: Derivative-free optimization; inexact restoration; filter methods; global con-
vergence; numerical experiments
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1 Introduction

In this work we discuss the global convergence of a derivative-free filter method for
solving the nonlinear programming problem

minimize f(x)
subject to cE(x) = 0

cI(x) ≤ 0,
(1)

where the objective function f : IRn → IR and the functions ci : IRn → IR, for i ∈ E ∪ I, that
define the constraints are continuously differentiable. We assume that the derivatives of the
constraints are available whereas the derivatives of the objective function are not. The feasible
set of the problem is given by

Ω = {x ∈ IRn | cE(x) = 0 and cI(x) ≤ 0} .

There are many applications of derivative-free optimization, particularly when the ob-
jective function is provided by a simulation package or a black box, these and more cases can be
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seen in the book [18]. Such situations motivated researchers to pursue techniques for derivative-
free optimization.

Several derivative-free methods have been developed for unconstrained problems [15,
19, 26, 27, 61, 64], box-constrained problems [18, 37, 44, 62, 66], linearly constrained problems
[42, 45, 63], convex constrained problems [13], composite nonsmooth optimization [36].

Regarding the class of problems we address in this paper which involves equality and/or
inequality constraints, many derivative-free techniques have been used. Methods based on fea-
sible iterates [5, 43, 51] may not work well in the presence of nonlinear equality constraints or
thin domains. Penalty methods [25, 48] and augmented Lagrangian methods [21, 46, 47] pe-
nalize, generally, “difficult” constraints and solve box or linear constrained subproblems. These
methods evaluate function and constraints at the same points which can cause the necessity
of performing unnecessary evaluations in the presence of topologically complex constraints. In
contrast, derivative-free two-phase algorithms [38, 54] deal with cases where finding a more
feasible point is easier than minimizing the objective function. Inexact restoration approaches
[28, 52, 53] were proposed in a derivative-free context in which the progress of the algorithm
is measured by a merit function [3, 8]. Since adjusting the penalty parameters of merit func-
tions or penalty functions can be a difficult task, filters have been suggested in literature as an
alternative.

Filter methods were initially proposed by Fletcher and Leyffer [30] to solve nonlinear
programming problems. Chin and Fletcher [9] considered the slanting filter, which is a slight
modification of the original flat filter. These methods have been combined to trust-region ap-
proaches [59, 65], SQP techniques [29, 73], inexact restoration algorithms [32, 40], interior point
strategies [70] and line-search algorithms [39, 57, 72]. They also have been extended to other
areas of optimization such as nonlinear equations and inequalities [23, 31, 33, 35], nonsmooth
optimization [41, 58], unconstrained optimization [34, 74], complementarity problems [49, 50]
and derivative-free optimization [4, 24].

In this work we propose a derivative-free inexact restoration algorithm for general
constrained problems using the flat or the slanting filter. Each iteration is composed of two
phases. First, a feasibility step is computed from the current point in order to obtain a restored
point that reduces an infeasibility measure h. In this phase, basically any method for reducing h
can be used [23, 52, 53]. Next, from the restored point, a trust-region [14, 56, 67, 75] optimality
phase computes a point which is not forbidden by the filter and that reduces the objective
function value. Linear or quadratic models that approximate the objective function based only
on zero-order information are considered. In our analysis, the Hessians of the models must be
bounded symmetric matrices and the gradients must represent properly the gradients of the
objective function. Models satisfying these properties can be constructed by many derivative-
free techniques, such as polynomial interpolation [11, 17, 18, 20] and support vector regression
[71]. Under classical assumptions, global convergence results are obtained. Numerical results
illustrate the performance of the proposed algorithm for a set of test problems from the Hock-
Schittkowski collection [69].

A derivative-free inexact restoration filter algorithm has also been proposed in [24]. It
does not use derivatives of the constraints, but uses only linear models for the objective function,
deals with equality constraints and considers just the flat filter. It is worthwhile to mention that
the use of the slanting filter in the present work allow us to prove stronger convergence results,
namely all accumulation points are stationary. Moreover if some constraints do not have available
derivatives or their evaluations are expensive, it is sensible to include these constraints in the
objective function in an augmented Lagrangian context [1].

The paper is organized as follows. Section 2 describes the derivative-free inexact restora-
tion filter algorithm. Section 3 shows that the step computed in each iteration is efficient, en-
suring the global convergence results. Numerical experiments are discussed in Section 4. Final
remarks are presented in Section 5.
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2 The algorithm

This section presents a derivative-free inexact restoration filter algorithm to solve the
problem (1). The sequence of points generated by the algorithm will be denoted by (xk)k∈IN. In
order to prove the global convergence of the algorithm, the following standard assumptions are
considered.

A1 All the functions f, ci, for i ∈ E ∪ I, are continuously differentiable.

A2 The sequence (xk) remains in a convex compact set X ⊂ IRn.

A3 The gradient ∇f is Lipschitz continuous in an open set containing X, that is, there exists
a constant L > 0 such that

‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖

for all x and y in the open set containing X.

Although A2 is an assumption on the sequence generated by the algorithm, it can be enforced
by including a bounded box into the problem constraints.

We define an infeasibility measure function h : IRn → IR+ by

h(x) =
∥∥c+(x)

∥∥ ,
where ‖·‖ is an arbitrary norm and c+ : IRn → IRm is defined by

c+
i (x) =

{
ci(x), if i ∈ E ,
max {0, ci(x)} , if i ∈ I.

Note that h(x) = 0 if and only if x ∈ IRn is a feasible point.
We say that a feasible point x̄ is a stationary point for the original problem (1) when

lim inf
x→x̄

∥∥PL(x)(x−∇f(x))− x
∥∥ = 0, (2)

where PL(x) denotes the orthogonal projection onto the set L(x) defined by

L(x) = {x+ d ∈ IRn | JcE(x)d = 0 and cI(x) + JcI(x)d ≤ c+
I (x)},

where JcE(.) and JcI(.) are the Jacobian matrices of the constraints cE and cI , respectively. At
a feasible point x, the set L(x) is a linearization of the feasible set.

To simplify the notation we denote f(xk) and h(xk) by fk and hk, respectively. Each
iteration k of the algorithm is composed of a feasibility phase which reduces the infeasibility
measure without evaluations of the objective function and an optimality phase which reduces
the objective function. These phases are independent and the coupling between them is provided
by a filter Fk which is a set of pairs (f j , hj) from well-chosen former iterations. Given α ∈ (0, 1),
the filter defines a forbidden region Fk =

{
∪Rj | (f j , hj) ∈ Fk

}
where Rj is given either by

Rj =
{
x ∈ IRn

∣∣ f(x) ≥ f j − αhj and h(x) ≥ (1− α)hj
}
, (3)

as suggested originally in [30], or by

R̀j =
{
x ∈ IRn

∣∣ f(x) + αh(x) ≥ f j and h(x) ≥ (1− α)hj
}
, (4)

as proposed in [10]. A filter based on the rule (3) will be referred as flat filter and the one based
on (4) will be called slanting filter. Note that the slanting filter satisfies the following inclusion
property

f j = f i and hj > hi ⇒ R̀j ⊂ R̀i,
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Figure 1: The inclusion property of the slanting filter, which is not satisfied for the flat filter.

as illustrates Figure 1 which also shows that this property does not hold for the flat filter. The
slanting filter allows a stronger statement about the convergence of the algorithm as will be
shown ahead.

From the current point xk, the feasibility phase computes a restored point zk /∈ F̂k

satisfying

h(zk) < (1− α)h(xk) and
∥∥∥zk − xk∥∥∥ ≤ βh(xk), (5)

where F̂k = Fk ∪ Rk and β > 0. The procedure used in this phase could, in principle, be
any iterative algorithm for decreasing h, and finite termination should be achieved because all
filter entries (f j , hj) ∈ Fk have hj > 0 (see [59, Lemma 2.1]). As the feasibility step studied by
Mart́ınez [52] can be applied directly to our case, we shall not describe the feasibility procedure
in detail in this paper. Note that the feasibility algorithm may fail if h(·) has an infeasible
stationary point. In this case, the method stops without success.

Once zk is computed, the optimality phase must find a point xk+1 = zk +dk /∈ F̂k, with
zk+dk ∈ L(zk), such that f(xk+1) < f(zk).Within the optimality phase, we will perform internal
trust-region iterations kj for j ∈ IN, with radius ∆kj . The quadratic model mkj : IRn → IR of f

around the restored point zk is defined by

mkj (x) = f(zk) + (x− zk)T gkj +
1

2
(x− zk)TBkj (x− z

k),

where gkj ∈ IRn and Bkj ∈ IRn×n is a symmetric matrix. The model is updated at the beginning
of each iteration kj and its quality is controlled by a second radius δkj ∈ (0,∆kj ]. To ensure a

good approximation for f near the restored point zk, we require that each quadratic model mkj

satisfies the following condition:

A4 There exist constants γ > 0 and σ > 0 such that∥∥Bkj

∥∥ ≤ γ and
∥∥∥gkj −∇f(zk)

∥∥∥ ≤ σδkj
for all k ∈ IN, j ∈ IN and δkj > 0.

Observe that once zk is fixed, this assumption is responsible for updating the models in
each internal iteration kj , since gkj = g(zk, δkj ) and consequently mkj ( . ) = m( . , zk, δkj ). This
dependence of the models with each radius δkj occurs only in the gradients. The Hessians can
always be the same, in particular null for linear models. There are algorithms able to find models
with such properties without computing ∇f(zk), for instance [18, Chapter 6]. Any technique
that fulfills Assumption A4 can be used in the optimality step, although in literature the most
usual procedure is polynomial interpolation [18, 26, 68].

Each internal iteration kj should compute a step dkj such that ‖dkj‖ ≤ ∆kj and the

point zk + dkj ∈ L(zk) provides a sufficient reduction in the objective function value. We define
the actual reduction provided by this step by

aredkj = f(zk)− f
(
zk + dkj

)
(6)
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and the predicted reduction by

predkj = mkj (z
k)−mkj

(
zk + dkj

)
. (7)

The step dkj can be any approximate solution of the trust-region subproblem

minimize mkj (z
k + d)

subject to zk + d ∈ L(zk)
‖d‖ ≤ ∆kj ,

(8)

since

predkj ≥ ξπkj (z
k)min

{
πkj (z

k)

1 +
∥∥Bkj

∥∥ ,∆kj

}
, (9)

where ξ > 0 is a constant independent of k and j and

πkj (x) =
∥∥PL(x)(x−∇mkj (x))− x

∥∥
is the measure of stationarity at a point x for the problem of minimizing mkj over the set L(x).

To satisfy (9), the approximate solution dkj has only to achieve a reduction that is at least some
fixed fraction ξ of the reduction achieved by the Cauchy point [18, Theorem 10.1].

The algorithm may be stated in the following form.

Algorithm 1

Given: x0 ∈ IRn, α ∈ (0, 1), η ∈ (0, 1), ε > 0, β > 0,∆min > 0, µ > 0
Set F0 = ∅, F0 = ∅, k = 0
Repeat

Define F̂k = Fk ∪
{(
fk, hk

)}
and

F̂k = Fk ∪Rk, where either Rk = Rk or Rk = R̀k as given in (3) and (4)
Computing the step

Feasibility phase
If h(xk) = 0, then zk = xk

Else, compute zk /∈ F̂k satisfying (5)
If impossible, then stop without success

Optimality phase
Set j = 0, choose ∆k0 ≥ ∆min and set δk0 = ∆k0

Repeat
Construct the model mkj

If δkj > µπkj (z
k), then

If δkj ≤ ε and h(zk) = 0, then stop the algorithm with success

Else, set dkj = 0, δkj+1
= δkj/2 and choose ∆kj+1

∈ [δkj+1
,∆kj ]

Else
Compute dkj as an approximate solution of (8)

If zk + dkj /∈ F̂k and aredkj > η predkj

Set xk+1 = zk + dkj , dk = dkj , ∆k = ∆kj , δk = δkj
and stop the optimality phase with success

Else, set δkj+1
= δkj/2 and ∆kj+1

= ∆kj/2

j = j + 1
end

Filter update
If f(xk+1) < f(xk), then

Fk+1 = Fk, Fk+1 = Fk (f−iteration)
Else,
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Fk+1 = F̂k, Fk+1 = F̂k (h−iteration)
k = k + 1

end

At the beginning of each iteration, the pair (fk, hk) is temporarily introduced in the
filter. This pair helps to define the forbidden region Rk = Rk as given in (3) or Rk = R̀k as
given in (4) depending on the considered filter rule. After the iteration is completed, the pair
(fk, hk) will become permanent in the filter only if the iteration does not produce a decrease in
f , that is, if k is an h-iteration. When k is an f -iteration, the new entry (fk, hk) is discarded and
the filter is not updated. Note that if xk is feasible then any point x that is not forbidden must
satisfy f(x) < f(xk). The pairs forbidden by the filter and the permanent Fk and temporary
F̂k filters can be seen in the Figure 2.

f

h

fk

hk

f

h

fk

hk

Figure 2: Permanent and temporary filters at the beginning of the iteration k.

3 Global convergence

The task of this section is to ensure the global convergence of the Algorithm 1, i.e. to
show that the sequence generated by the algorithm has a stationary accumulation point.

Although Algorithm 1 decomposes each iteration in two phases, it essentially consists
of calculating a point xk+1 not forbidden by the filter from the current point xk. Furthermore,
the construction and updating rule of the filter are made by the same way considered in the
general filter algorithm [59, Alg. 1]. So, our algorithm fits in the general filter algorithm from
that paper, which considers classical hypotheses and the following efficiency condition in order
to prove the global convergence.
Efficiency condition on the step. Given a feasible nonstationary point x̄ ∈ X, there exist
M > 0 and a neighborhood V of x̄ such that for any iterate xk ∈ V ,

f(xk)− f(xk+1) ≥Mvk,

where vk is the filter height given by

vk = min
{

1,min
{

(1− α)hj | (f j , hj) ∈ Fk

}}
.

In [65], a filter slack is defined as

Hk = min
{

1,min
{

(1− α)hj
∣∣∣ (f j , hj) ∈ Fk and f j ≤ fk

}}
.

Note that Hk ≥ vk as shown in Figure 3.
So, our task now is to prove that our algorithm satisfies this efficiency condition, inher-

iting the global convergence results from [59]. First, we show that if the algorithm has successful
finite termination then an approximate stationary point is obtained.
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Figure 3: The difference between the filter slack Hk and the filter height vk.

Lemma 3.1 If the algorithm stopped with success, then a stationary point was obtained with
sufficient accuracy.

Proof. Suppose that the algorithm stopped with zk at the internal iteration kj . By the triangle
inequality and the contraction property of projections we have∥∥∥PL(zk)(z

k −∇f(zk))− zk
∥∥∥ ≤

≤
∥∥∥PL(zk)(z

k − gkj )− zk
∥∥∥+

∥∥∥PL(zk)(z
k −∇f(zk))− PL(zk)(z

k − gkj )
∥∥∥

≤
∥∥∥PL(zk)(z

k − gkj )− zk
∥∥∥+

∥∥∇f(zk)− gkj
∥∥ .

Using the definition of πkj , Assumption A4 and the successful finite termination criterion we
obtain ∥∥∥PL(zk)(z

k −∇f(zk))− zk
∥∥∥ ≤ πkj (zk) + σδkj ≤

(
1

µ
+ σ

)
ε,

which implies that zk is an approximate stationary point.
From now on we assume that the algorithm has generated infinite sequences (xk) and

(zk) and that Assumptions A1-A4 are satisfied. The following lemma states that the number of
internal iterations that just construct the models but do not compute trust-region steps is finite.

Lemma 3.2 Consider zk a nonstationary point. Then the set

Jk = {j ∈ IN | δkj > µπkj (z
k)} (10)

is finite.

Proof. Suppose by contradiction that Jk is infinite. By the algorithm we have δkj =
(

1
2

)j
δk0 > 0

and consequently
δkj−→0. (11)

Thus, by the definition of Jk,

πkj (z
k)

j ∈Jk−−−−→0. (12)

On the other hand, since zk is nonstationary, by (2) we have
∥∥∥PL(zk)(z

k −∇f(zk))− zk
∥∥∥ =

c > 0. By (11), there exists j0 ∈ IN such that for all j > j0, δkj <
c

2σ
. Using these facts, the

contraction property of projections and Assumption A4 we have for all j > j0

πkj (z
k) =

∥∥∥PL(zk)(z
k − gkj )− PL(zk)(z

k −∇f(zk)) + PL(zk)(z
k −∇f(zk))− zk

∥∥∥
≥ −

∥∥∥gkj −∇f(zk)
∥∥∥+

∥∥∥PL(zk)(z
k −∇f(zk))− zk

∥∥∥ > c− σδkj >
c

2
> 0,
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which contradicts (12).

The requirement that δkj ≤ µπkj (z
k) in the trust-region steps is inherently related

to the fact that the models should be reasonable approximations of the objective function in
a neighborhood of the current point. Note that when πkj (z

k) is small, the current point is
probably close to a solution of the subproblem (8). On the other hand, if the radius δkj is large,
we cannot guarantee that the objective function is well represented by the model.

Now we present an auxiliary result.

Lemma 3.3 [32, Lemma 3.3] There exists a constant C1 > 0 such that, for any z ∈ X and
z + d ∈ L(z),

|h(z + d)− h(z)| ≤ C1 ‖d‖2 .

From now on we also assume the following classical constraint qualification [56].

A5 Every feasible point x satisfies the Mangasarian-Fromovitz constraint qualification, i.e.,
there exists a vector d ∈ IRn such that ∇ci(x)td = 0 and ∇cj(x)td < 0, for all i ∈ E and
j ∈ {I | cj(x) = 0} and the set of equality constraint gradients {∇ci(x) | i ∈ E} is linearly
independent.

The next result ensures the continuity of some auxiliary functions.

Lemma 3.4 [32, Lemmas A.1 and A.2] Consider a point x that satisfies the Mangasarian-
Fromovitz constraint qualification and p : IRn → IRn a continuous function at x. Then the point
to set map L(.) and the function PL(.)(p(.)) are continuous at x.

An auxiliary result involving the measure of stationarity is presented below.

Lemma 3.5 Let x ∈ X be a nonstationary feasible point, c = 1
4

∥∥PL(x)(x−∇f(x))− x
∥∥ > 0

and σ > 0 given by A4. Then there exists a neighborhood V1 of x such that for any zk ∈ V1 and
j ∈ IN

πkj (z
k) > −σδkj +

c

2
.

Proof. Let x be a nonstationary feasible point. Consider Ṽ1 = B

(
x,
c

2
min{1, 1/γ}

)
where γ > 0

is given by A4. Then, for any x ∈ Ṽ1 and k, j ∈ IN,∥∥∇mkj (x)−∇mkj (x)
∥∥ =

∥∥Bkj (x− x)
∥∥ < c

2
. (13)

Given v ∈ IRn, by Lemma 3.4, PL(.)(v) is continuous at x and there exists a neighborhood Ṽ2 of

x such that for all zk ∈ Ṽ2, ∥∥∥PL(zk)(v)− PL(x)(v)
∥∥∥ < c

2
. (14)

Since
∥∥PL(x)(x−∇f(.))− x

∥∥ is continuous at x, there exists a neighborhood Ṽ3 of x such that

for any zk ∈ Ṽ3 ∥∥∥PL(x)(x−∇f(zk))− x
∥∥∥ > 3

4

∥∥PL(x)(x−∇f(x))− x
∥∥ = 3c. (15)
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Consider V1 = Ṽ1 ∩ Ṽ2 ∩ Ṽ3. Using the definition of πkj , the triangle inequality and the

contraction property of projections, it follows that for any zk ∈ V1∣∣∣πkj (zk)− πkj (x)
∣∣∣ ≤

≤
∥∥∥PL(zk)(z

k −∇mkj (z
k))− zk − PL(x)(x−∇mkj (x)) + x

∥∥∥
≤
∥∥∥PL(zk)(z

k −∇mkj (z
k))− PL(zk)(x−∇mkj (x))

∥∥∥+

+
∥∥∥PL(zk)(x−∇mkj (x))− PL(x)(x−∇mkj (x))

∥∥∥+
∥∥∥x− zk∥∥∥

≤
∥∥∥∇mkj (x)−∇mkj (z

k)
∥∥∥+

∥∥∥PL(zk)(x−∇mkj (x))− PL(x)(x−∇mkj (x))
∥∥∥+

+ 2
∥∥∥x− zk∥∥∥ .

From this, (13), (14) and definition of Ṽ1,

πkj (z
k) > πkj (x)− 2c. (16)

On the other hand, using the definition of πkj again, the triangle inequality and the contraction
property of projections, we have that

πkj (x) =
∥∥PL(x)(x− gkj −Bkj (x− zk))− PL(x)(x−∇f(zk)) + PL(x)(x−∇f(zk))− x

∥∥
≥ −

∥∥PL(x)(x−gkj
−Bkj

(x−zk))−PL(x)(x−∇f(zk))
∥∥+∥∥PL(x)(x−∇f(zk))−x

∥∥
≥ −

∥∥gkj
+Bkj

(x− zk)−∇f(zk)
∥∥+

∥∥PL(x)(x−∇f(zk))− x
∥∥

≥ −
∥∥gkj

−∇f(zk)
∥∥− ∥∥Bkj

(x− zk)
∥∥+

∥∥PL(x)(x−∇f(zk))− x
∥∥ .

Thus, using Assumption A4, (15) and the fact that zk ∈ V1 ⊂ Ṽ1, we get

πkj (x) > −σδkj − γ
∥∥∥x− zk∥∥∥+ 3c ≥ −σδkj +

5

2
c.

Using this in (16) we obtain the desired result.

As an immediate result of this lemma we prove that the measure of stationarity around
a nonstationary feasible point is bounded below by a positive constant.

Corollary 3.6 Consider a nonstationary feasible point x ∈ X and the neighborhood V1 given
by Lemma 3.5. Then there exist constants δ̂ ∈ (0,∆min) and C2 > 0, such that for any zk ∈ V1

and
either j /∈Jk or j ∈ IN with δkj ≤ δ̂,

we have
πkj (z

k) > C2.

Proof. Let zk ∈ V1. Consider first that j /∈Jk. By Lemma 3.5 and the definition of Jk given
in (10), it follows that πkj (z

k) > −σµπkj (zk) + c/2. Then

πkj (z
k) >

c

2(1 + σµ)
.

Consider now δ̂ = min

{
c

4σ
,
∆min

2

}
> 0 and j ∈ IN such that δkj ≤ δ̂. By Lemma 3.5

πkj (z
k) > −σδ̂ +

c

2
≥ c

4
.

Setting C2 = min

{
1

2(1 + σµ)
,
1

4

}
c > 0, we complete the proof.

The next lemma states that, near a nonstationary feasible point, every point obtained
with a sufficiently small radius will be accepted by the trust-region criterion.
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Lemma 3.7 Consider a nonstationary feasible point x ∈ X and the neighborhood V1 given by
Lemma 3.5. Then there exist constants ∆ ∈ (0,∆min) and C3 > 0 such that for any zk ∈ V1 and
j /∈Jk,

predkj > C3 min
{

∆kj ,∆
}

(17)

and
aredkj > η predkj > ηC3∆kj , for ∆kj ∈ (0,∆]. (18)

Proof. Consider zk ∈ V1 and j /∈ Jk. So, by Corollary 3.6, πkj (z
k) > C2. Using this and

Assumption A4 in (9), it follows that

predkj > ξC2min

{
C2

1 + γ
,∆kj

}
.

Thus, setting ∆̃ = min

{
∆min

2
,
C2

1 + γ

}
and C3 = ξC2 > 0 we have

predkj > C3 min
{

∆kj , ∆̃
}
. (19)

On the other hand, by Assumption A1 and the mean value theorem there exist θ ∈ (0, 1)
such that

f(zk)− f(zk + dkj ) = −∇f(zk + θdkj )Tdkj .

Using the definitions of the reductions ared and pred and the above result, we have∣∣∣aredkj − predkj

∣∣∣ =

∣∣∣∣−∇f(zk + θdkj )Tdkj + gkj
Tdkj +

1

2
dkj

T
Bkjd

kj

∣∣∣∣
=

∣∣∣∣∣
(
∇f(zk)−∇f(zk + θdkj ) + gkj −∇f(zk) +

1

2
Bkjd

kj

)T

dkj

∣∣∣∣∣ .
Using this, the triangle and the Cauchy-Schwarz inequalities and the Assumption A3 we obtain∣∣∣aredkj − predkj

∣∣∣ ≤ (∥∥∥∇f(zk + θdkj )−∇f(zk)
∥∥∥+

∥∥∥∇f(zk)− gkj
∥∥∥)∥∥∥dkj∥∥∥+

+
1

2

∥∥Bkj

∥∥∥∥∥dkj∥∥∥2

≤
(
Lθ
∥∥∥dkj∥∥∥+

∥∥∥∇f(zk)−gkj
∥∥∥+

1

2

∥∥Bkj

∥∥∥∥∥dkj∥∥∥)∥∥∥dkj∥∥∥ .
Therefore, by Assumption A4 and the facts that

∥∥dkj∥∥ ≤ ∆kj and ∆kj ≥ δkj∣∣∣aredkj − predkj

∣∣∣ ≤ (Lθ + σ +
1

2
γ

)
∆2

kj
. (20)

Define ∆ ∈ (0,∆min) as

∆ = min

{
∆̃,

C2(1− η)(
Lθ + σ + 1

2γ
)} > 0.

Using the fact that ∆ ≤ ∆̃ in (19), we get (17).
Now consider j /∈Jk with ∆kj ∈

(
0,∆

]
. Thus, by (17), (20) and the definition of ∆,

we have ∣∣∣∣∣aredkj

predkj

− 1

∣∣∣∣∣ =

∣∣∣∣∣aredkj − predkj

predkj

∣∣∣∣∣ <
(
Lθ + σ + 1

2γ
)

C2
∆kj ≤ 1− η.

10



In this way, for any zk ∈ V1 and ∆kj ∈
(
0,∆

]
, we obtain that aredkj > ηpredkj . Using this and

(17) we get the second inequality of (18), which concludes the proof.

The next lemma proves that, near a nonstationary feasible point, the refusal of an
optimality step is due to a large increase of the infeasibility. For that, note that by A1, A2 and
the mean value theorem there exists a constant L̂ > 0 such that

∣∣f(zk)− f(xk)
∣∣ ≤ L̂∥∥zk − xk∥∥ .

Using this and (5), we have that there exists a constant C4 > 0 such that∣∣∣f(zk)− f(xk)
∣∣∣ ≤ C4h(xk). (21)

Lemma 3.8 Let x ∈ X be a nonstationary feasible point. Consider the constants given by
Lemmas 3.3 and 3.7 and Corollary 3.6 and the neighborhood V1 given by Lemma 3.5. Set

C5 = 1
2 min

{
1√
C1
, µC2

}
> 0 and ∆′ ∈ (0,∆min) given by

∆′ = min

{
δ̂,∆,

ηC3

8αC1
, ηC3

(
1− α
(C5)2

+ C1α+
C4

α(C5)2

)−1
}
. (22)

Then there exists a neighborhood V2 ⊂ V1 of x such that for any xk ∈ V2 and ∆kj ∈ (∆′/2,∆′]

with j /∈Jk we have zk ∈ V1 and

f(zk + dkj ) + αh(xk) < f(xk) for the flat filter (23)

and
f(zk + dkj ) + αh(zk + dkj ) < f(xk) for the slanting filter. (24)

Moreover, if dkj is refused by the algorithm, then

h(zk + dkj ) ≥ Hk.

Proof. Using the second inequality given in (5), we have

‖zk − x‖ ≤ ‖zk − xk‖+ ‖xk − x‖ ≤ βh(xk) + ‖xk − x‖.

Since x is feasible and h is a continuous function, there exists a neighborhood V2 ⊂ V1 of x such
that if xk ∈ V2, then zk ∈ V1 and h(xk) is sufficiently small, i.e.,

h(xk) ≤ ηC3∆′

2
min

{
1

α+ C4
,

1

2C4
,

1

4α(1− α)

}
. (25)

Consider xk ∈ V2, zk ∈ V1 and j /∈Jk with ∆kj ∈
(

∆′

2 ,∆
′
]
⊂
(
0,∆

]
. Since ∆′

2 < ∆kj ≤ ∆, by

Lemma 3.7,

f(zk)− f(zk + dkj ) > ηC3∆kj >
ηC3∆′

2
.

Thus, using this and (21) we obtain that

f(xk)− f(zk + dkj ) = f(xk)− f(zk) + f(zk)− f(zk + dkj ) > −C4h(xk) +
ηC3∆′

2
. (26)

Using (25) it follows that

f(xk)− f(zk + dkj ) > −C4h(xk) + (α+ C4)h(xk) = αh(xk)

which implies the result (23) to the flat filter.
By (25) and (26) we have

f(xk)− f(zk + dkj ) > −C4
ηC3∆′

4C4
+
ηC3∆′

2
=
ηC3∆′

4
. (27)

11



On the other hand, by Lemma 3.3 we have |h(zk +dkj )−h(zk)| ≤ C1∆2
kj

and by the mechanism

of Algorithm 1, h(zk) < (1− α)h(xk). Therefore, by these and the fact that ∆kj ≤ ∆′, we have

h(zk + dkj ) ≤ h(zk) + C1∆2
kj
< (1− α)h(xk) + C1(∆′)2.

Multiplying by α > 0 and using (22) and (25), we obtain

αh(zk + dkj ) < α(1− α)
ηC3∆′

8α(1− α)
+ C1α(∆′)2 =

ηC3∆′

8
+ C1α(∆′)2 <

ηC3

4
∆′.

Therefore, combining this with (27), we have

f(xk)− f(zk + dkj ) > αh(zk + dkj )

which proves (24) to the slanting filter.
To complete the proof, suppose that the point zk + dkj was refused by the algorithm.

Since ∆kj ≤ ∆ and j /∈ Jk, the Lemma 3.7 ensures that this point was accepted by the
trust-region criterion. Thus, it was refused by the filter criterion, i.e.,

zk + dkj ∈ F̂k.

Therefore, since (23) or (24) holds by the flat or the slanting filter, respectively, we have, by the
definitions of filter and of Hk, that h(zk + dkj ) ≥ Hk and the proof is complete.

The next result presents that, near a nonstationary feasible point the optimization
phase provides a sufficient decrease in the objective function.

Theorem 3.9 Given a nonstationary feasible point x ∈ X, there exist constants C6, C7 > 0 and
a neighborhood V3 of x such that for any iterate xk ∈ V3, the point xk+1 obtained by Algorithm 1
satisfies

f(zk)− f(xk+1) ≥ C6

√
Hk (28)

and
f(zk)− f(xk+1) ≥ C7

∥∥∥zk − xk+1
∥∥∥ . (29)

Proof. As the sequence (xk) is infinite, by the mechanism of the algorithm

f(zk)− f(xk+1) = aredk > ηpredk, (30)

where aredk = aredkj and predk = predkj with j ∈ IN such that dk = dkj . By Lemma 3.3 we
have that for any ∆kj > 0 there exists a constant C1 > 0 such that∣∣∣h(zk + dkj )− h(zk)

∣∣∣ ≤ C1∆2
kj
. (31)

Consider ∆ > 0 given by Lemma 3.7, ∆′ ≤ ∆ and V2 given by Lemma 3.8. Let
V3 ⊂ V2 be the neighborhood of x such that h(xk) < 1 and zk ∈ V2, for any xk ∈ V3. This
neighborhood is well defined since h(x) = 0, h(.) ≥ 0 is a continuous function and (5) holds.

Consider xk ∈ V3 and consequently zk ∈ V2. By the feasibility phase, the definition of
Hk and the fact that h(xk) < 1, we have

h(zk) < (1− α)h(xk) < (1− α)Hk. (32)

Denote j∗ the index of the successful internal iteration, i.e., ∆k = ∆kj∗ . Note that by the
mechanism of the algorithm, j∗ /∈Jk. We shall consider some cases as summarized on Table 1.

First case: suppose that ∆k >
∆′

2 . By the fact that j∗ /∈Jk, Lemma 3.7 and the fact
∆′

2 < min{∆k, ∆} we have that predk > C3
∆′

2 . Applying this in (30), we obtain

f(zk)− f(xk+1) >
1

2
ηC3∆′. (33)

12



First case: Second case:

∆k >
∆′

2 ∆k ≤ ∆′

2

h(zk + dkj ) ≥ Hk, ∃j /∈Jk with ∆kj ≤ (∆′/2)

∀ ∆kj ≤ (∆′/2) with j /∈Jk such that h(zk + dkj ) < Hk

ĵ − 1 /∈Jk ĵ − 1 ∈Jk

Table 1: Cases considered on the proof of Theorem 3.9.

The sequences
(√
Hk

)
k∈IN

and
(∥∥zk − xk+1

∥∥)
k∈IN

are bounded, because for any k ∈ IN we have
0 < Hk ≤ 1 and (∆k)k∈IN is a positive nonincreasing sequence. Thus, there exist constants
C6, C7 > 0 such that 1

2ηC3∆′ ≥ C6

√
Hk and 1

2ηC3∆′ ≥ C7

∥∥zk − xk+1
∥∥. Applying this in (33),

we get (28) and (29).
Second case: suppose that

∆k ≤
∆′

2
. (34)

Since x is nonstationary we can restrict V3, if necessary, such that for any zk ∈ V3, we have that
zk is nonstationary. By Lemma 3.2 and the mechanism of the algorithm, there exists at least
one j ∈ IN such that j /∈ Jk. Moreover xk+1 = zk + dkj∗ with j∗ /∈ Jk and the trust-region
steps are computed only in internal iterations in which j /∈Jk. Thus it is enough to ensure the
result for j /∈Jk. Let us look again at two situations.

• Suppose that the condition

h(zk + dkj ) ≥ Hk, (35)

holds for any ∆kj ≤
∆′

2
with j /∈ Jk. Thus, by (34) we have that (35) holds in particular for

j∗. Therefore, by (32) and (35) we have

h(zk + dk)− h(zk) > αHk.

Using this and (31), we obtain

αHk < h(zk + dk)− h(zk) ≤ C1∆2
k. (36)

From (30), Lemma 3.7 and the fact that ∆k ≤
∆′

2
< ∆, it follows that

f(zk)− f(xk+1) > ηC3∆k. (37)

Using this and (36) we have

f(zk)− f(xk+1) > ηC3

√
α

C1

√
Hk.

Thus, setting C6 = ηC3

√
α

C1
> 0, we obtain (28). On the other hand, using the fact that∥∥zk − xk+1

∥∥ ≤ ∆k in (37) and considering C7 = ηC3 > 0, we get (29).

• Now assume that there exists some j /∈Jk with ∆kj ≤
∆′

2
such that (35) does not

hold. Consider ĵ /∈Jk the first index with ∆kj ≤
∆′

2
such that (35) fails. Denote ∆̂ = ∆kĵ

and

x̂ = zk + dkĵ .

13



First let us bound the radius ∆̂ with respect to the filter slack Hk. Note that since
2∆̂ ≤ ∆′ ≤ ∆ < ∆min and ∆k0 > ∆min, we have that the radius 2∆̂ of the internal iteration
ĵ − 1 was refused by the algorithm.

◦ Suppose that ĵ− 1 /∈Jk. In this case, ∆kĵ−1
= 2∆̂. We claim that (35) holds in 2∆̂.

In fact, if 2∆̂ ≤ ∆′

2 , the statement follows immediately by the definition of ∆̂ and the fact that

ĵ− 1 /∈Jk. On the other hand, if 2∆̂ ∈ (∆′

2 ,∆
′], the claim is due to Lemma 3.8. Thus, by (31),

(32) and (35), we have

4C1∆̂2 ≥ h(zk + dkĵ−1)− h(zk) > Hk − (1− α)Hk = αHk.

Therefore

∆̂ >
1

2
√
C1

√
αHk. (38)

◦ Suppose now that ĵ − 1 ∈ Jk. Thus, by the definitions of ∆̂ and Jk and the fact
that

√
Hk ≤ 1 and α ∈ (0, 1),

2∆̂ = ∆kĵ−1
≥ δkĵ−1

> µπkĵ−1
(zk) > µ

√
αHkπkĵ−1

(zk).

Using this and the fact that δkĵ−1
≤ 2∆̂ ≤ ∆′ ≤ δ̂ we have by Corollary 3.6 that

∆̂ >
µC2

2

√
αHk. (39)

Consider C5 > 0 the constant given by Lemma 3.8. Combining the definition of C5

with (38) and (39), we have in both cases ĵ − 1 /∈Jk and ĵ − 1 ∈Jk, that

∆̂ > C5

√
αHk. (40)

On the other hand, since ĵ /∈Jk, by Lemma 3.7 and the fact that ∆̂ < ∆, it results in

f(zk)− f(x̂) > ηC3∆̂. (41)

Using (40) in (41) and considering C6 = ηC3C5
√
α > 0, it follows that

f(zk)− f(x̂) > C6

√
Hk. (42)

Combining
∥∥zk − x̂∥∥ ≤ ∆̂ with (41) and taking C7 = ηC3 > 0 we obtain

f(zk)− f(x̂) > C7

∥∥∥zk − x̂∥∥∥ .
Therefore, (28) and (29) hold at x̂. To finish the proof it is sufficient to verify that xk+1 = x̂.
Since ĵ /∈ Jk and ∆̂ < ∆, the Lemma 3.7 yields aredkĵ

> ηpredkĵ
. Thus, the point x̂ satisfies

the trust-region criterion. Moreover, since (35) does not hold at x̂, for xk+1 to be equal to x̂ it
is enough to check that

f(x̂) < f(xk)− αh(xk) (43)

for the flat filter and
f(x̂) < f(xk)− αh(x̂)

for the slanting filter, because then x̂ /∈ F̂k. Let us first ensure the result to the flat filter. By
(21) and (42), we have

f(x̂) < f(zk)− C6

√
Hk ≤ f(xk) + C4h(xk)− C6

√
Hk. (44)

If h(xk) = 0,

f(x̂) < f(xk)− C6

√
Hk < f(xk) = f(xk)− αh(xk)

14



and in this case xk+1 = x̂. Suppose now that h(xk) > 0. Since h(xk) < Hk, because h(xk) < 1,
we have by (44) that

f(x̂) < f(xk) + C4h(xk)− C6

√
h(xk) = f(xk) +

(
C4 −

C6√
h(xk)

)
h(xk). (45)

Since h is a continuous function and x is a feasible point, we can restrict V3, if necessary, such
that for any xk ∈ V3, we have √

h(xk) <
C6

C4 + α
.

Thus, combining this with (45) we have (43) and xk+1 = x̂ as desired.
Let us verify that xk+1 = x̂ when the slanting filter is considered. By (31) and (32),

h(x̂) ≤ h(zk) + C1∆̂2 < (1− α)Hk + C1∆̂2.

Using (40) we obtain

h(x̂) <

(
(1− α)

α(C5)2
+ C1

)
∆̂2. (46)

On the other hand, combining the fact that Hk ≥ h(xk) with (21) and (40) it follows that∣∣∣f(zk)− f(xk)
∣∣∣ ≤ C4Hk <

C4

α(C5)2
∆̂2. (47)

Thus, (41), (47) and the fact that ∆̂ < ∆′ yield

f(xk)− f(x̂) = f(xk)− f(zk) + f(zk)− f(x̂)

> − C4

α(C5)2
∆̂2 + ηC3∆̂ >

(
− C4

α(C5)2
+
ηC3

∆′

)
∆̂2.

Finally, using the definition of ∆′ given by Lemma 3.8 and (46), it results that

f(xk)− f(x̂) >

(
(1− α)

(C5)2
+ C1α

)
∆̂2 > αh(x̂)

and the proof is complete.

The efficiency condition of the optimality phase proved in the last theorem is extended
to the full step as shows the next result, fulfilling our task.

Lemma 3.10 Consider a nonstationary feasible point x ∈ X. Then, there exist a constant
C8 > 0 and a neighborhood V4 of x such that for any iterate xk ∈ V4,

f(xk)− f(xk+1) ≥ C8vk.

Proof. Consider the neighborhood V3 and the constant C6 given by Theorem 3.9, and C4 given
in (21). As x is feasible and, by A1, the function h is continuous, there exists a neighborhood

V4 ⊂ V3 of x such that, for all xk ∈ V4, h(xk) ≤ min
{

1, (C6/(2C4))2
}

. Consider xk ∈ V4. Using

(21), Theorem 3.9 and the fact that h(xk) ≤ Hk, we have

f(xk)− f(xk+1) = f(xk)− f(zk) + f(zk)− f(xk+1)

≥ (−C4

√
h(xk) + C6)

√
Hk

≥ C6

2

√
Hk

As Hk ≤ 1, we have
√
Hk ≥ Hk ≥ vk. Using this and taking C8 = C6/2 > 0, we complete the

proof.
Having the efficiency condition on the step, the global convergence of the Algorithm 1

is inherited from [59] as shown below.
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Theorem 3.11 Let (xk) be the infinite sequence generated by the Algorithm 1. Assume that the
Assumptions A1-A5 hold. Then the sequence (xk) has a stationary accumulation point.

Proof. Our algorithm fits in the general framework of [59, Algorithm 1]. By Lemma 3.10, the
sequence (xk) satisfies the efficiency condition on the step which coincides with the Hypothesis
H3 of [59]. Consequently the global convergence result is inherited from [59, Theorem 3.5], i.e.,
the sequence (xk) has a stationary accumulation point.

The last theorem ensures that the sequence (xk) generated by Algorithm 1 has a sta-
tionary accumulation point, independent of the filter rule adopted. However, from [40], stronger
results are obtained when the slanting filter is used, as presented in the next theorem.

Theorem 3.12 Let (xk) be the infinite sequence generated by the Algorithm 1 with Rk = R̀k

as defined in (4). Assume that the Assumptions A1-A5 hold. Then any accumulation point of
the sequence (xk) is stationary.

Proof. Our algorithm fits in the general framework of [40, Algorithm 2.1] which uses the slanting
filter. By Theorem 3.9, the sequence (xk) satisfies the Hypothesis H5 of [40]. Consequently the
global convergence result is inherited from [40, Theorem 3.7], i.e., any accumulation point of the
sequence (xk) is stationary.

4 Implementation and numerical experiments

Inexact restoration algorithms allow the use of different algorithms in the feasibility and
optimality phases. Algorithm 1 was implemented with the ability of using different algorithms
for: feasibility phase, building and updating the trust-region model, and solving subproblem (8).

At iteration k, as explained in [8], to find zk in the feasibility phase we solve

minimize ‖z − xk‖22
subject to z ∈ Ω

(48)

only when h(xk) > 0. Since the derivatives of the constraints are available, problem (48) is solved
with Augmented Lagrangian algorithm ALGENCAN [1, 2]. Moreover, to ensure conditions (5), we
set β = 103 and α = 10−1 and, to ensure zk 6∈ F̂k, we set ALGENCAN’s feasibility tolerance to a
value smaller than h(xk). If the restored point does not satisfy (5) or belongs to F̂k, then the
feasibility tolerance is decreased. This procedure will certainly stop, since h(xk) > 0 and Ω 6= ∅.

The quadratic models required at optimality phase were obtained by polynomial in-
terpolation. The construction and updating of the interpolation sets were based on the ideas
proposed in [12]. The number of interpolation points was fixed to 5 if n = 2 and 2n + 3 oth-
erwise. At inner iterations of the optimality phase, these sets were constructed from scratch or
updated from the previous iterations. Between outer iterations, the algorithm tries to reuse the
last interpolation set of iteration k − 1 to construct the first model at iteration k.

To solve subproblem (8) we use ALGENCAN with default parameters. According to [2],
a solution dkj found by ALGENCAN satisfies the KKT conditions of subproblem (8). Since the
feasible set of (8) is convex, denoting by x+ the point zk + dkj , it is not hard to show (see [7,
Chapter 9] and [6, Chapter 2]) that

x+ = PL(zk)(x
+ −∇mkj (x

+)). (49)

Condition (49) gives us a reasonable way of estimating πkj (z
k). By (49), the definitions of x+

and mkj and the contraction property of projections

‖x+ − zk‖ = ‖PL(zk)(x
+ −∇mkj (x

+))− zk‖ ≥ −‖Bkj (x
+ − zk)‖ − ‖x+ − zk‖+ πkj (z

k).
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Using this and Assumption A4, we have

‖dkj‖ = ‖x+ − zk‖ ≥ 1

2 + γ
πkj (z

k),

which implies that πkj (z
k) can be estimated by ‖dkj‖ in the condition of the first If of the

optimality phase. In practice, according to [12], this condition is replaced by

δkj > 2‖dkj‖

and the parameter µ is implicitly defined due to its dependency of γ. Note that subproblem (8)
needs to be solved before this condition is tested. The algorithm declares that a solution of (1)
was found if zk + dkj 6∈ F̂k is feasible and ‖dkj‖ ≤ ε.

From now on Algorithm 1 will be referred to as FIRD (Filter Inexact Restoration
Derivative-free algorithm). We considered two variants of the algorithm. The first one, called
F-FIRD, uses the flat filter criterion given by (3). The second variant, called S-FIRD, considers
the slanting filter criterion given by (4).

To put our approach in perspective, S-FIRD and F-FIRD were compared with two
derivative-free algorithms: the inexact restoration algorithm [8] and algorithm DFO [16]. The
inexact restoration algorithm proposed in [8], here denoted by IR, controls the progress of the
algorithm by a merit function, instead of filters. DFO is a well known derivative-free trust-region
method which uses Newton polynomials to build the models. Both algorithms are able to use
information of the derivatives of the constraints. For solving the feasibility suproblems needed
by IR and the trust-region problems needed by DFO, it was used ALGENCAN. For solving the
optimality subproblems needed by IR, the algorithm GSS was used (see [8]).

Algorithms S-FIRD and F-FIRD were implemented in Fortran 90. The numerical tests
were performed on a 64-bit Intel Xeon E3-1220 v3, with 3.10 GHz of CPU and 16GB RAM,
using LUbuntu operating system. The code was compiled with gfortran version 4.8.4. The
supremum norm was always used in the implementation of FIRD. The feasibility tolerance used
for all algorithms was 10−8. The optimality tolerance for FIRD and DFO was ε = 10−4. As
suggested in [8], the optimality tolerance of IR was 10−3. For each problem, up to 10 minutes
of CPU time were allowed. The remaining parameters of FIRD were defined by η = 0.1 and
∆min = 10−30. ALGENCAN 3.0.0 was used for solving all nonlinear programming subproblems
from the tested algorithms. In the optimality phase of IR, the GSS algorithm implemented in
HOPSPACK 2.0 [60] was used.

The set of test problems consisted of all 206 problems from the Hock-Schittkowski col-
lection [69] that involve at least one constraint besides box constraints for which the derivatives
are available. The initial point was always the default of the collection. As suggested in [8], a
problem was considered solved by an algorithm if the obtained solution x̄ was such that

h(x̄) ≤ 10−8 and
fmin − f(x̄)

max{1, fmin, f(x̄)}
≤ 10−4,

where fmin is the smallest function value found among all the strategies under comparison.
Figure 4 displays the data and performance profiles [22, 55] considering the number of function
evaluations.

The two profiles of Figure 4(a) are related to all 206 problems. S-FIRD solved 88% of the
problems while F-FIRD solved 87%, followed by DFO and IR with 85% and 73%, respectivelly. DFO
was the most efficient algorithm in 82% of the problems. This behavior has already been observed
in the literature [54, 12]. S-FIRD and F-FIRD were the most efficient in 13% of the problems.
It can be noted that the convergence properties of FIRD resulted in a more robust method.
The direct search procedure used in IR’s optimality phase can explain its poor performance.
Although a trust-region procedure could be used for solving the subproblems of this phase, IR
would lose its theoretical results. Data profile shows that if an amount of approximately 5000
function evaluations is allowed, then FIRD and DFO solve the same number of problems.
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Figure 4: Data and performance profiles for the compared algorithms. (a) Profiles related to
the 206 constrainted problems from the Hock-Schittkowski collection. (b) Profiles related to the
66 equality constrained problems.

18



The two profiles in Figure 4(b) consider the subset of all 66 equality constrained prob-
lems. In this scenario, S-FIRD, F-FIRD and IR are the most robust algorithms, solving 59, 57 and
56 problems, respectivelly, while DFO solved 53. Still, DFO was the most efficient algorithm. The
increase in the percentual difference on the robustness between inexact restoration approaches
and DFO can be explained by the fact that inexact restoration algorithms allow infeasible points,
as long as they are “good” choices. On the other hand, DFO projects infeasible points to build
the quadratic models.

The code of FIRD is available to download at https://github.com/fsobral/fird.
The complete results of the numerical experiments are available at https://docs.ufpr.br/

~ewkaras/pesquisa/publicacoes/supplemental_FKSS.

5 Conclusions

In this work we have proposed an inexact restoration filter algorithm for nonlinear
programming problems, in which the objective function derivatives are not explicitly used. Each
iteration consists of two phases: a restoration phase for reducing an infeasibility measure, and
an optimality phase for improving the objective function value in the linearization of the feasible
direction set. These two phases are independent and the coupling between them is made by a
filter, which can either be the flat filter [30] or the slanting [10] one. As the derivatives of the
objective function are not available, it is in the optimality phase that the derivative-free trust-
region techniques are used. The linear or quadratic trust-region models can be constructed by
any technique as long as they approximate sufficiently well the objective function at the current
point. We have showed that the obtained steps provides an efficiency condition using both
flat and slanting filter rules. For the flat filter, we have proved that the algorithm generates a
stationary accumulation point. A stronger result has been proved for the slanting filter, namely,
all accumulation points are stationary. A set of numerical experiments was prepared to illustrate
the practical performance of the proposed algorithm. The implementation was shown to be more
robust than other methods that are capable of using derivatives of the constraints.
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